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Statistical inference for the
evolutionary history of cancer
genomes
Khanh N. Dinh, Roman Jaksik, Marek Kimmel, Amaury
Lambert, and Simon Tavaré

Abstract. Recent years have seen considerable work on inference about
cancer evolution from mutations identified in cancer samples. Much of
the modeling work has been based on classical models of population ge-
netics, generalized to accommodate time-varying cell population size.
Reverse-time, genealogical views of such models, commonly known as
coalescents, have been used to infer aspects of the past of growing pop-
ulations. Another approach is to use branching processes, the simplest
scenario being the classical linear birth-death process. Inference from
evolutionary models of DNA often exploits summary statistics of the
sequence data, a common one being the so-called Site Frequency Spec-
trum (SFS). In a bulk tumor sequencing experiment we can estimate
for each site at which a novel somatic point mutation has arisen, the
proportion of cells that carry that mutation. These numbers are then
grouped into collections of sites which have similar mutant fractions.
We examine how the SFS based on birth-death processes differs from
those based on the coalescent model. This may stem from the different
sampling mechanisms in the two approaches. However, we also show
that despite this, they are quantitatively comparable for the range of
parameters typical for tumor cell populations. We also present a model
of tumor evolution with selective sweeps, and demonstrate how it may
help in understanding the history of a tumor as well as the influence
of data pre-processing. We illustrate the theory with applications to
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several examples from The Cancer Genome Atlas tumors.

MSC 2010 subject classifications: Primary 60J80, 60J85, 62Fxx, 92D15,
secondary 60J10, 92D10, 92D20, 97M60.
Key words and phrases: Cancer evolution; coalescents; birth-death pro-
cesses; site frequency spectrum; tumor heterogeneity; clonal selection;
ploidy; bulk sequencing.

1. INTRODUCTION AND PRELIMINARIES

We present mathematical models that can be used to extract information re-
garding cancer evolution from the genome sequences of human cancers. This
includes the history of growth and mutation and effects such as genetic drift and
selective sweeps. Our aim is to point out how mathematical and statistical mod-
eling may help in elucidating problems that frequently have been tackled using
intuitive approaches.

Biological cells undergo mutations as they proliferate and such mutations can
be neutral, advantageous, or deleterious. The rate of mutation depends on the
environment and DNA repair mechanisms. Progress in genome sequencing has
allowed cataloguing not only reference genomes of many biological species but
also of variants characteristic of human, animal and plant diseases. In particular,
initiatives such as The Cancer Genome Atlas program and the International Can-
cer Genome Consortium have allowed determination of sets of genomic variants
characteristic of some 50 human tumors, with several hundred specimens of each,
thus detailing their common mutational features.

One difficulty that arises is that most of the genome sequences available result
from so-called bulk sequencing, in which DNA from a sample of cells obtained
from the tumor and its environment is cut into fragments, amplified and se-
quenced, resulting in reads that are aligned with the human reference genome.
The resulting genome sequence includes variants that are characteristic of differ-
ent but not easily identifiable sub-populations of tumor cells. Short of sequenc-
ing a representative subset of genomes of individual cells, this difficulty cannot
at present be radically improved. Nevertheless, bulk-sequencing data constitute
most of the material currently available and it seems important to try to under-
stand the message they carry regarding tumor origin and natural course, perhaps
distorted by treatment. This might be called “the genomic archaeology of tu-
mors”.

There are two principal issues arising in the analysis of bulk sequencing data
from a tumor: the choice of a model for cell division, and the choice of a model
for the way in which the cells are sampled.

Recent years have produced a large amount of work on inference about cancer
evolution from mutations identified in cancer samples (cf. Nowell (1976), Greaves
and Maley (2012), Sottoriva et al. (2013, 2015), Williams et al. (2018)). Much
of the modeling work has been based on classical models of population genet-
ics, generalized to accommodate time-varying cell population size. Reverse-time,
genealogical, views of such models, commonly known as coalescent theory, have
been used to infer aspects of the past of growing populations. Another approach
is to use branching processes, the simplest scenario being the linear birth-death
process (lbdp), a binary fission Markov age-independent branching process. A
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genealogical view of such models is also available. As will be seen in the sequel,
the two approaches lead to similar but not identical results.

The “population” in the models we discuss is the collection of all cells in a given
tumor. These cells are sampled (for example, through a biopsy) and the DNA they
contain is sequenced. Typically a so-called normal DNA sample from the patient
is also obtained, and a comparison results in somatic variant DNA sites being
determined. These variants are based on a sample of reads that is quite difficult
to characterize, one reason being that the reads represent a mixture of variants
present in different cells of the tumor. We will present some simple models that
reflect sampling and show how they work on simulated and real data.

Inference from evolutionary models of DNA often exploits summary statistics
of the sequence data, a common one being the so-called Site Frequency Spec-
trum. In a sequencing experiment with a known number of sequences, we can
estimate for each site at which a novel somatic mutation has arisen, the number
of cells that carry that mutation. These numbers are then grouped into sites that
have the same number of copies of a mutant. Figure 1 gives an example; time
is running down the page. The genealogy of a sample of n = 20 cells includes
13 mutational events. We can see that mutations 4, 5, 7, 10, 11, 12, and 13 (a
total of 7 mutations) are present in a single cell, mutations 1, 2, and 3 (total of 3
mutations) are present in 3 cells, mutations 8 and 9 (a total of 2 mutations) are
present in six cells, and mutation 6 is present in 17 cells. If we denote the number
of mutations present in k cells by Sn(k), we see that in this example, Sn(1) = 7,
Sn(3) = 3, Sn(6) = 2, and Sn(17) = 1, with all other Sn(j) equal to 0. The vector
(Sn(1), Sn(2), . . . , Sn(n − 1)) is called the (observed) Site Frequency Spectrum,
abbreviated to SFS. It is conventional to include only sites that are segregating
in the sample, that is, those for which the mutant type and the ancestral type
are both present in the sample at that site. Mutations that occur prior to the
most recent common ancestor of the sampled cells will be present in all cells in
the sample; these are not segregating and are called truncal mutations.

In most cancer sequencing experiments, we do not know the number of cells
that were sampled, and, indeed, the DNA sequence of each cell cannot be de-
termined from bulk sequencing data. Nonetheless, we can estimate the relative
proportion of the mutant at each segregating site, and so arrive at a frequency
spectrum based on proportions. We continue to use the term SFS for such a
spectrum, as there should be no cause for confusion.

The emphasis in the definition of the SFS is that it is based on a DNA sample
extracted from cells, which does not usually constitute the entire tumor popula-
tion. Moreover, at any DNA site, the sample can, and most frequently does, arise
from DNA of different cells, as explained in Section A of the Online Supplement.
This underscores the importance of developing a sampling theory for the SFS
estimated from genome sequencing data. We will develop some simple results in
Section 5.

2. MODELING EXPONENTIALLY GROWING CELL POPULATIONS

Stochastic models of growth and inheritance in biological populations follow
two major traditions, one originating from population genetics, the other from
population dynamics. Population genetics models, including those of Wright,
Fisher, Moran, and Cannings, assume in their original form time-constancy of
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Fig 1: Left panel: Genealogy of a sample of n = 20 cells includes 13 mutational events,
denoted by black dots. Mutations 4, 5, 7, 10, 11, 12, and 13 (total of 7 mutations) are
present in a single cell, mutations 1, 2, and 3 (total of 3 mutations) are present in three
cells, mutations 8 and 9 (2 mutations) are present in six cells, and mutation 6 (1 mutation)
is present in 17 cells. Right panel: The observed site frequency spectrum, S20(1) = 7,
S20(3) = 3, S20(6) = 2, and S20(17) = 1, other Sn(k) equal to 0.

the population size. Under this assumption, major mathematical population ge-
netics results such as the Ewens Sampling Formula (Ewens, 1972), Kingman’s
coalescent (1982a, 1982b), Kimura’s use of diffusion approximations (reviewed
in Watterson (1996)) and many others, have been derived. The tradition from
which the constancy assumption stems underscores the importance of constraints
under which populations evolve, such as space and resource limitations for ani-
mal and human populations, or hormonal controls and tissue size bounds for cell
populations in multi-cellular organisms.

The population dynamics tradition, embodied by branching process models,
emphasizes growth and stochastic fluctuations stemming from birth and death
events of a finite collection of independent individuals (here, cells). Historically,
models such as these have been employed to reproduce growth of bacterial pop-
ulations or other cells in culture, the growth of cancerous tumors, or to develop
methods for estimation of mutation rates.

How can we align these two rather different approaches? One way is to relax the
constancy assumption in from population genetics, and this will be the first type
of model discussed in this section. If the population size is growing exponentially
in time, this model can be compared to the supercritical branching process; cf.
Jagers (1975), and Haccou et al. (2005). There are three differences remaining:
first, the supercritical branching process grows exponentially only in the limit
(and in expectation); second, the “population growth rate” of the coalescent
is a summary parameter that may correspond to a wide range of supercritical
branching models with different population size distributions; and third, in birth-
death processes, coalescent events coincide with population size increments. It is
therefore of interest to know how these two methods compare when applied to
simulated or real cell populations. Another, potentially major, difference is that
in the coalescent models we assume we can trace the sampled cells back to their
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most recent common ancestor. There are several different sampling versions for
the branching process. The difference will become transparent later on.

In this section we compare two models based on the genealogical view of cell
evolution, the first being the variable population size coalescent. The other is
an analogous reverse-time, genealogical approach, known as the coalescent point
process, which is based on the linear birth and death process, mathematically
equivalent to the branching process with binary fission and exponentially dis-
tributed cell lifetimes; cf Kimmel and Axelrod (2015).

We describe both approaches in general terms, and then compare the expres-
sions for site frequency spectra (SFS) under these approaches.

2.1 A Moran model for cell division

The simplest model for cell division in a constant-size population of N cells is
the Moran model (Moran (1958, 1962)). We describe the process backwards in
time, noting that there are several essentially equivalent methods for doing this.
Such a description is convenient for simulating the effects of mutation on the cells
in the sample, and leads to the study of the ancestral process that counts the
number of distinct ancestral cells in the history of the sample back to its MRCA.
Imagine, then, that birth-death events occur independently to cells at rate 1. At
one of these events, one cell dies, and another is chosen from the remaining N −1
to divide. If there are currently i distinct ancestral cells in a sample of size n,
then the next event in the past results in i− 1 distinct ancestors if, and only if,
the pair of individuals is in the sample of i, an event of probability

(
i
2

)
/
(
N
2

)
. Thus

the rate at which the number of distinct ancestors reduces by 1 is

N

(
i

2

)
/

(
N

2

)
=

(
i

2

)
2

N − 1
.

It is convenient to consider what happens for large populations of cells. If time
is scaled in units of N/2, then asymptotically as N → ∞, the ancestral process
drops from i to i−1 at rate

(
i
2

)
, resulting in a particularly simple ancestral process

known as the coalescent.
To describe the ancestral process, let Tn, Tn−1, . . . , T2 denote the lengths of

time during which the sample has n, n− 1, . . . , 2 distinct ancestors back in time
to its most recent common ancestor. Kingman (1982b) showed that the Tj are
independent exponential random variables, with

(1) ETj =
2

j(j − 1)
, j = n, n− 1, . . . , 2.

The Markov chain {An(t), t ≥ 0} that counts the number of distinct ancestors of
the sample a time t ago has transition rates

qi,i−1 =
i(i− 1)

2
,

staying at 1 when the sample has been traced back to its most recent common
ancestor.

The variable population size version of this model supposes that at time t ago,
the population size is NλN (t). Arguing as above, the rate at which i ancestral
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lines coalesce to i− 1 is

NλN (t)

(
i

2

)
/

(
NλN (t)

2

)
=

(
i

2

)
2

NλN (t)− 1
.

Scaling time in units of N/2, as in the constant size case, we see that in the limit
as N →∞, the rate at time s becomes

(
i
2

)
/λ(s), where λ(s) := limλN (Ns/2).

In the setting of exponential growth from the past, we have λN (t) = exp(−rt),
so that

λN (Ns/2) = exp(−s(Nr/2))→ exp(−βs) =: λ(t),

where we have assumed that Nr/2 → β as N → ∞. This process maintains
the random merging of ancestral lines back into the past, but the distribution of
the coalescence times T βn , . . . , T

β
2 is more complicated, and most easily described

by the fact that the ancestral process {Aβn(t), t ≥ 0} for the exponential model
results from a deterministic time change of the constant size case:

(2) Aβn(t) = An

(
(eβt − 1)/β

)
, t ≥ 0.

We use this fact to simulate the T βj , as shown in Appendix D in the Online
Supplement.

2.2 A branching process model for cell division

Lambert (2010) and Lambert and Stadler (2103) demonstrated that under
general assumptions on birth and death rates, the coalescent of a binary branching
process has iid coalescence times. More specifically, if the branching process was
started from one cell at time 0 and conditioned to have at least one cell alive at
time t, then the coalescent tree of the Nt 6= 0 cells alive at t is a coalescent point
process (abbreviated CPP): that is, the Nt−1 coalescence times form a sequence
of independent copies of some rv H whose law can be characterized in terms of
the birth and death rates of the process, killed at its first value larger than t. This
conclusion hinges on the manner the tree is ordered, the two rules being that (1)
progeny branch out on the right of the parent, and (2) a given progeny’s life-line
is on the right of all further descendants of the parent cell (as in the example
in Fig. 4 of the online Supplement. It is common to characterize H through its
so-called inverse tail distribution W ,

W (x) = 1/P(H > x) x ∈ [0,∞).

The most general assumptions under which the last statement holds are (i) the
per-cell birth (division) rate depends only on absolute time, and (ii) the per-cell
death rate depends only on absolute time and cell age (or any other non-heritable
trait).

Implicit in condition (2) is that upon division, one can distinguish between the
mother cell (whose age continues to increase after division) and the daughter cell
(whose age is 0 at division). Another way of expressing this is that cells can have
lifetimes that follow a general distribution (not necessarily exponential, possibly
even deterministic) which possibly depends on their absolute birth time.

A consequence of the CPP representation is that Nt follows a geometric dis-
tribution with failure probability 1/W (t). Then conditional on Nt = n, the coa-
lescence times are iid rvs distributed as H conditioned on H < t.
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A useful feature of CPPs is that a Bernoulli sample from a CPP is again a
CPP. More specifically, if each tip of a CPP tree with inverse tail distribution W
is sampled independently with probability p, the tree spanned by the sampled
tips is a CPP with inverse tail distribution Wp given by

Wp(x) = 1− p+ pW (x) x ∈ [0,∞).

In the case when the bp has constant birth rate b and death rate d (linear birth-
death process), growth rate r := b− d,

W (x) = 1 +
b

r
(erx − 1) x ∈ [0,∞)

if b 6= d and W (x) = 1 + bx if b = d. Note that in the subcritical case when b < d,
P (H = +∞) = 1− b/d.

The coalescent point process representation of reconstructed trees generated
by an lbdp is originally due to Popovic (2004) in the critical case (b = d) and
has been extended to non-critical cases and to some non-Markovian branching
processes by Lambert (2010) and Lambert and Stadler (2013). A corollary of
this representation is that conditional on the number of tips, branching times
are independent with an explicit distribution. Note that this corollary is already
present in Thompson (1975), Nee et al (1994), Rannala (1997) and Gernhard
(2008).

3. SITE FREQUENCY SPECTRA UNDER THE
INFINITELY-MANY-SITES MODEL

We examine how the SFS based on birth-death processes differ from those
based on the coalescent model. This may stem from the different sampling mech-
anisms in the two approaches. However, we also show that despite this, they can
be made quantitatively comparable at least for the range of parameters typical
for tumor cell populations.

3.1 The SFS for the coalescent

We assume an infinitely-many-sites (IMS) model of mutation: think of the DNA
sequence as a unit interval, and label mutations by a sequence of independent
uniform(0,1) random variables. Mutations are almost surely distinct, giving rise
to the term “infinitely-many-sites”.

We assume that mutations arise over the lifetime of a cell according to a
Poisson process of rate τN , conditional on the lifetime. The expected number of
mutations accumulated per unit time is therefore τN . If time is rescaled in units
of N/2, the expected number becomes NτN/2, so to balance mutation and drift
we assume that NτN → ϑ as the population size increases. To summarize, time
is measured in units of N/2, mutations occur according to a Poisson process of
rate ϑ/2 during a cell’s lifetime, N is assumed very large, and

(3) β = limNr/2, ϑ = limNτN .

In the large population size limit, mutations take place according to independent
Poisson processes of rate ϑ/2 on the branches of the coalescent tree, conditional
on the lengths of the branches.
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Fu (1985) showed that for a constant size model,

ESn(k) =
θ

k
, k = 1, 2, . . . , n− 1.

Griffiths and Tavaré (1998) provide a general coalescent framework for the ex-
pected number ESn(k) of mutant sites having k copies of the mutant in a sample
of size n, drawn from a population with size changing deterministically in the
past. We provide a brief account of their results for the case of exponential pop-
ulation growth and describe a useful approximation due to Durrett (2013).

Griffiths and Tavaré showed that

(4) ESn(k) =
ϑ

2

n−k+1∑
j=2

jpnj(k)ETj ,

where

pnj(k) =

(
n− k − 1

j − 2

)/(n− 1

j − 1

)
,

the Tj denoting the coalescence times for the model with exponential growth.
While the expectations can be simulated, it is convenient to consider the approx-
imations provided by Durrett (2013), who showed that

(5) ESn(k) ≈ ϑ

2β

n

k(k − 1)
, k = 2, . . . , n− 1,

while

(6) ESn(1) ∼ ϑn log β

2β
.

3.2 The SFS for the birth-death process

Here, we consider an application of the theory of coalescent point processes to
a supercritical linear birth-death process (lbdp) with an ISM mutation model. We
derive an explicit expression for the expectation of the site frequency spectrum
(SFS) in this case, and develop a simple and efficient simulation scheme based
on the CPP representation. In the spirit of the original work, we use unscaled
parameters r and θ here, instead of the scaled β and ϑ. See Table 2, which displays
the conversions.

Lambert (2009) showed that the expected SFS for a sample size n has the form

(7) ESn(k) = θ

∫ ∞
0

(
1−W (t)−1

)k−1 (
(n− k − 1)W (t)−2 + 2W (t)−1

)
dt,

for k = 1, . . . , n− 1, where for the lbdp case the function W (x) has the form

W (t) = α+ (1− α)ert, t ≥ 0,

with r > 0, α ∈ (0, 1), and where θ is the mutation rate (the intensity of the
Poisson process of mutations assumed in the ISM). Recall that r = b − d and
α = 1 − pb/r, where b is division rate, d is death rate and p is the fraction of
cells sampled. The case when α = 0 corresponds to d = b(1− p), which occurs in
particular when d = 0 and p = 1.
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This version of the process is equivalent to the ancestor being “born in the
very remote past”, and it is the limit version of the process we will simulate. As
will be seen, the discrepancies are small for the cases in which we are interested.

We show in Section E of the Online Supplement that

(8) ESn(k) =
θ

r

(
n− k − 1

k(k + 1)
F ([1, 2]; k + 2, α) +

2

k
F ([1, 1]; k + 1, α)

)
,

where F ([p, r]; q, z) =
∑

j≥0(z
j/j!)

(p)j(r)j
(q)j

belongs to the hypergeometric family

of functions (cf. Abramowitz and Stegun, 1964) and

(k)j := k(k + 1) · · · (k + j − 1) =
(k + j − 1)!

(k − 1)!
.

An algorithm for simulating the SFS based on the CPP process is given in Sec-
tion D.2 of the Online Supplement.

3.2.1 Computational example We carried out a number of simulation experi-
ments including a range of parameters. Figure 2 depicts results of one such ex-
periment. As can be seen, the average of 10,000 simulated SFS coincides closely
with the hypergeometric formula. However, the simulated SFS median becomes
equal to 0 for relatively small k. For individual SFS, this corresponds to more
than SFS half terms being equal to 0, which is consistent with spectra observed
in cancer mutations.

3.3 Using the two coalescents to model tumor growth and mutation

Section 2.1 explains how to use the Moran model with exponentially growing
population size to introduce coalescent structure into our cell proliferation model.
In the birth-death process approach, we model a growing population of tumor
stem cells as a birth-death process in continuous time with parameters b and d. In
biological terms this means that a cell population starts with a single cell at time
t = 0, the lifetimes of cells are exponentially distributed with parameter b + d,
and that cell divides into two progeny with probability b/(b + d) (probability of
self-renewal), or dies with probability d/(b + d). Under these assumptions, the
expected cell count at time t is equal to EN(t) = ert, t ≥ 0, with growth rate
r = b− d.

At time t = x, when the tumor is diagnosed, its nuclear DNA is sequenced with
average coverage n. (A more realistic sampling theory appears in Section 5.) This
can be represented as binomial sub-sampling from about N(x) cells with sub-
sampling probability p = n/N(x). Notice that the d-parameter does not have to
be literally equal to the death rate. The model applies equally well to the popu-
lation of cancer cells, in which case d is the combined death and differentiation
rate. Mutations occur according to the ISM model, at rate θ.

For illustrative purposes, this growth model will be parameterized to reflect
several scenarios differing with respect to growth rate and efficiency of division. In
the current computations we assume that the tumor is detected when it contains
approximately N(x) = 107 cells. How can we relate it to sizes of human tumors?
An analysis of this issue has been published by Del Monte (2009), who addresses
the commonly held view that 1cm3 tumor contains 109 cells. The author concludes
that this is true for “normal” human cell sizes, while tumor cells may frequently
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Fig 2: Numerical example of the expected SFS for the lbdp (semi-logarithmic
scale). Continuous line: expected SFS ESn(k) (interpolated for visual conve-
nience); circles: corresponding average of 10,000 simulations; dashes: standard
deviation estimate based on 10,000 simulations; dotted line, diamonds and trian-
gles: median and first and third quartile of 10,000 simulations. The parameters
for this simulation (cf. Table 2) are n = pEN(t) = 30, r = 1, θ = 1, α = 0.999999,
t = 100 for simulations, t = ∞ for ESn(k). Other parameters can be calculated
from these.

x 40 400 4000

r = ln[EN(x)]/x 0.40295 0.04029 0.00403

d = b− r 0.59704 0.95970 0.99597

1 − α = bp/r 7.44×10−6 7.44×10−5 7.44×10−4

Table 1

Calculations of parameters for the tumor birth-and-death process

be larger and interspersed with other cells, so it may be more appropriate to
claim that 1cm3 contains 108 or even fewer cells (so that 1010 cells might occupy
a cube 4.64 cm each side or larger). Ling et al. (2015) consider a 1mm thick slice
of hepatocellular carcinoma, roughly a disc 3.5cm in diameter (volume of a cube
0.98cm each side) and apparently assume (see their Table 1) only 105 cells (aside
from this, they sample mutations in different tumor regions and find the resulting
SFS in agreement with Durrett’s formula, based on non-singletons, which does
not relate to N). To sum up, our assumed N(x) = 107 cells seems on target.

We will consider slow-, moderate-, and fast growing tumors that reach this size
within x = 4000, 400, and 40 days, respectively. Also, we will assume the surviving
cell average lifetime 1/b corresponding to b = 1 day, which is consistent with the
average cell cycle time in mammalian cells (Mura et al., 2018). Calculations of
other parameters corresponding to these input specifications are listed in Table 1.

Figure 3 depicts the expected SFS based on the hypergeometric formula (8)
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Fig 3: Comparison of expected SFS based on the hypergeometric formula (8)
with parameters as in Table 1 (dotted lines), Griffiths-Tavaré theory (continuous
lines), and Durrett’s approximation (dashed lines). Three cases as in Table 1, fast-
growing tumors (red), moderate-growing (blue), and slow growing ones (black)
are considered. θ = 1 has been assumed. Unscaled parameters listed in Table 1,
can be converted to scaled ones, using Table 2.

with parameters as described above. The three cases considered are depicted
along with the corresponding SFS resulting from the Griffiths-Tavaré theory, this
latter using scaled parameters as at the top of the present section. In addition,
Figure 4 depicts the expected SFS based on the hypergeometric formula (8) with
parameters as for the center scenario in Table 1, but with parameter 1−α varying
from 10−8 through 0.5. For comparison, Durrett’s approximation (5) is included.

Several observations can be made. The hypergeometric spectrum for non-
singletons preserves signal (however faint) from 1 − α = bp/r in addition to
the signal from θ/r. The hypergeometric spectrum has different tails from the
Durrett’s approximation of the coalescent spectrum, although whether these can
be distinguished in noisy data set seems quite doubtful. Comparison is further
complicated by somewhat different sampling philosophies in coalescent and lbdp

Unscaled (Kingman coalescent)
r growth rate
τ mutation rate

Scaled (Kingman coalescent)
time measured in units of N/2

β = limNr/2 scaled growth rate
ϑ = limNτ scaled mutation rate

Unscaled (lbdp)
EN(t) expected population size at time t (counterpart of N)
p probability of sampling from the process (n ≈ pEN(t))
b, d birth and death rates, so that growth rate r = b− d
θ mutation rate

Table 2

Summary of growth and mutation parameters



12 DINH ET AL.

Fig 4: Expected SFS based on the hypergeometric formula (8) with parameters
as for the center scenario in Table 1, i.e., N = 107, n = 30 and r = 0.04029,
but with 1 − α = 10−8, 10−6, 0.0001, 0.01, 0.1, 0.5 (dashed, dotted, continuous,
and again dashed, dotted and continuous lines), and θ = 1, compared to GT
SFS (diamonds) and Durrett approximation (circles) with matching parameters.
Unscaled parameters listed here, can be converted to scaled ones, using Table 2.

approaches. An interesting question is how to apply the fitted theoretical spectra
to estimate the growth parameters and particularly the time elapsed from the
cell initiating tumor growth (more generally, from the population ancestral indi-
vidual)? The difficulty becomes clear upon inspection of the asymptotic formula
(5). None of the terms depends on N , the present-time population size, except
for the singleton term ESn(1) ∼ nθ

r ln(Nr), which is equal to nθt under expo-
nential growth. However, in genome data singletons are usually indistinguishable
from sequencing errors and are therefore discarded. Other terms may be used to
estimate the reduced mutation rate θ/r.

4. MODELING MUTATION, GROWTH, AND SELECTIVE SWEEPS

We begin with a simple model for the clonal evolution of a tumor. Imagine
that at some time labeled t0 = 0, the initial malignant cell population (clone 0)
arises, grows deterministically in size at rate r0, these cells acquiring mutations
at the rate θ0 per time unit per genome. At time t1 > 0, a secondary clone (clone
1) arises, which differs from the original clone with respect to growth rate (now
equal to r1) and mutation rate (now equal to θ1). We call this the “selective
event”. The new clone arises on the background of a haplotype already harboring
K mutations. Finally, at t2 > t1 > 0, the tumor is diagnosed and a sample of
DNA is made available for sequencing. At that point, it is difficult to distinguish
cells arising from the two (or more) clones and the resulting sample represents a
mixture of DNA from both. The course of events in this tumor history is depicted
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in Fig. 5.

Fig 5: Events in the tumor evolution model. Horizontal intervals denote genomes
with mutations denoted as ×-s. At time t0 = 0, the initial cell population (clone
0) arises, grows at rate γ0, and mutates at rate θ0 per time unit per genome (blue
arrows). At time t1 > 0, a secondary sub-clone 1 arises (red arrow), which grows
at rate γ1 and mutates at rate θ1 (yellow arrows). The new clone arises on the
background of a haplotype of K mutations (denoted by dots on the genome). At
time t2 > t1 > 0, the tumor is diagnosed and a sample of DNA is sequenced.

We assume that both clones start from single cells, so that the sequenced
sample comes from N = N0 +N1 cells, and the number of cells in each clone is

N0 = exp(r0t), N1 = exp(r1(t2 − t1)),

and the fraction of clone i cells is approximately equal to

pi = Ni/(N0 +N1), i = 0, 1.

Based on this, we use the SFS from Section 3.1 to estimate the expected site
frequency spectra and then compare these to data, to obtain information con-
cerning the natural course of tumor development. As explained before, we use
scaled parameters β0, β1, ϑ0, ϑ1, instead of r0, r1, θ0, θ1, respectively.

4.1 Sampling formulae

We adopt the coalescent model with infinitely-many sites mutation and ex-
ponential population growth described in Section 2.1. We take a sample of n =
n0+n1 cells from the N cells in the tumor, ni coming from clone i. We also define

qn,k = ESn(k), k = 2, . . . , n, the expected number of variants present in k
copies in the sample of n sequences
q0n0,k

= ES0
n(k), k = 2, . . . , n0, the expected number of variants present in

the k copies in a sub-sample of n0 sequences
q1n1,k

= ES1
n(k), k = 2, . . . , n1, the expected number of variants present in

the k copies in a sub-sample of n1 sequences
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Qn,k = ESun(k), k = 2, . . . , n, the expected number of variants present in k
copies in the sample of n sequences from the union of clone populations 0
and 1

We use the approximate version of the expression for the qn,k, given in (5),

(9) qnk =
nϑ

2β

1

k(k − 1)
, k = 2, . . . , n,

and we ignore singletons.
If we knew n0 and n1, the expected number of variant sites represented k times

in the sample would be q0n0,k
+ q1n1,k

+Kδn1k, where δlk = 1 if l = k; = 0 if l 6= k.
However, if each of the n cells is randomly chosen from the two sub-clones, then
(n0, n1) is a random draw from the multinomial distribution, i.e.

(10) (n0, n1) ∼MN(p0, p1;n).

Therefore the expected count of variants present in k copies in the sample of n
cells is

(11)
Qnk =

∑n
i=0

(
n
i

)
pi0p

n−i
1

[(
iϑ0
2β0

+ (n−i)ϑ1
2β1

)
1

k(k−1) +Kδn−i,k

]
= A

k(k−1) +K
(
n
k

)
pn−k0 pk1

for k = 2, . . . , n, where

A

n
=

a0
2β0

+
a1
2β1

, ai = piϑi, i = 0, 1.

The model can be generalized to the case of H sub-clones arising at different
times. The previous expression for H = 1 now assumes the form

(12)

Qnk =
∑
{
∑
h nh=n, nh≥0}

(
n

n0,n1,...,nH

)∏H
s=0 p

ns
s ×[

1
k(k−1)

∑H
σ=0(nσ

ϑσ
2βσ

) +
∑H

σ=1Kσδnσm

]
= A

k(k−1) +
(
n
k

)∑H
σ=1Kσp

k
σ(1− pσ)n−k

where the notation is analogous to the case in (11). We will use these expressions,
taking into account the sampling effects, in Section 5.

4.2 Model parameters and their interpretation

We return to the case H = 1. Equation (11) can be represented in the following
form

(13) Qnk =
A

k(k − 1)
+K

(
n
k

)
pn−k0 pk1.

Given SFS data, and the value of n, we are able to obtain an optimal least-
squares fit by varying three parameters:

A, proportional to the mass of the spectra corresponding to the intervals
before and after the selective event;
p1 = 1− p0, the fraction of cells in sub-clone 1; and
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K, the number of variant sites constituting the background haplotype of
the selective event.

The parameters listed above are functions of the intrinsic parameters of the
model: times t1 and t2, growth rates β0 and β1 and mutation rates ϑ0 and ϑ1.
Some of their values can be constrained, based on additional information available
in part of the TCGA data.

5. SAMPLING FROM THE SFS

One of the conceptual problems with using the model-based expectations of
the site frequency spectrum is how to take into account the sampling process. In
Section A of the Online Supplement we provide a brief overview of the sequencing
process that relates input cells to output SFS. Indeed, the empirical SFS are
not based on the cell population, but on DNA reads (fragments) sampled from
the genomes of the cells. Therefore, it is necessary to proceed with care. Under
simplifying assumptions, we can obtain unbiased estimates of the expected SFS,
given a parametric model of either coalescent or lbdp type. The assumptions are
as follows:

1. DNA fragments (reads) used to estimate variant allele frequencies (VAF)
originate from a population of cells, with variant genomes representative of
a given tumor or a portion of the tumor.

2. For each particular mutation site, each read covering this site originates
from a different cell. This seems to be a reasonable assumption, as the
number of such reads is usually at most of order 102, while there are around
at least 3-5 orders of magnitude more tumor cells in a cubic millimeter of
tumor tissue (Del Monte 2009).

3. For a given mutation site, the numbers of reads covering it is considered
a random variable (generically named R) drawn from a distribution which
does not depend on the site position in the genome. This assumption can
be relaxed in a variety of ways, but it is used here for simplicity. The
distribution of R is estimated from coverage data.

4. For a given mutation site, given coverage R, the count Z of variant reads has
a binomial distribution Binomial (R, ρ), where ρ is the relative frequency of
this mutation among the tumor cells.

Unfortunately, it seems difficult to exploit the higher moments of the SFS,
as this requires using mixed moments of variant counts at different sites. The
papers by Sargsyan (2015) and Klassman and Ferretti (2017) lay out the necessary
theory, which is however quite complex.

5.1 Binomial sampling and data pre-processing

In the following subsections we develop estimates of the coalescent SFS based
on binomial sampling. Since various types of thresholds might be used to pre-
process genome data, we would like the transformations to robustly reproduce
the effects of varying the thresholds, while keeping constant the parameters, such
as A, K, and p1, of the underlying model. We will see that in some instances this
works on real-life tumor data with some precision, while in some others it does
not.
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5.1.1 Sampling Let n be the total number of cells in the tumor sample. The
model-based expected SFS is the sequence {Qnk = ESun(k), k = 1, . . . , n − 1},
i.e. the expected number of mutations that occur in exactly k out of these n cells
(see (11)). For the ith mutation of the Sun(k) occurring in k cells, the probability
mass function (pmf) of read coverage is ϕr = P(Rki = r), r = 1, 2, . . ., and the
number of cells with mutation i in the sample is Zki, where conditionally on Rki,
we assume a binomial distribution with probability of success k/n and Rki trials
(see hypothesis 4 earlier on):

Zki|Rki ∼ Binomial

(
Rki,

k

n

)
.

Relative frequency of this particular mutation in the sample is Zki/Rki.
For 0 ≤ x1 < x2 ≤ 1, we are interested in the expectation of Ω(x1, x2), the

number of mutations with sampling frequencies within (x1, x2]:

(14)

E[Ω(x1, x2)] = E
(∑n

k=1

∑Sun(k)
i=1 1l

(
Zki
Rki
∈ (x1, x2]

))
= E

(∑n
k=1 S

u
n(k) · P

(
Zk
Rk
∈ (x1, x2]

))
=

∑n
k=1 ESun(k) ·

∑
r ϕr · Binomial

(
(x1r, x2r]; r,

k
n

)
where Binomial

(
(x1r, x2r]; r,

k
n

)
is the probability that a random variable with

distribution Binomial
(
r, kn
)

belongs to the interval (x1r, x2r]. Given a theoretical
SFS (for instance given by (11)), we can then compute the expected SFS, taking
into account sampling effects, by partitioning 0 = x1 < x2 < · · · < xK = 1 and
applying (14) for each interval.

In general, the read coverage pmf {ϕr} varies among patients and tumors. In
our computations, we use a “personalized” estimate of the coverage distribution,
which is based on the tally of reads for all sites in each sample and is usually
available from sequencing data.

5.1.2 Pre-processing and its influence on SFS visualization Mutations with
small frequencies may be difficult to distinguish from technical errors. Data are
therefore usually pre-processed before further analysis. Specifically, it is a usual
practice to remove from genome statistics variants that are present in only few
reads, since these may be confused with sequencing errors. A procedure of this
kind has been proposed among others by Williams et al. (2018), who disregard
variants present in less than five reads. We slightly generalize this approach.

We consider two pre-processing schemes:

1. Disregard mutations with fewer than L variant reads. This means that
the new variant read count Z ′ki is such that, given k and r, Z ′ki = 0 with

probability
∑L−1

s=0 Binomial (s; r, k/n) or Z ′ki = s ≥ L with respective prob-
abilities Binomial (s; r, k/n).

2. Disregard mutations with fewer than M total read coverage. This alters the
coverage pmf {ϕr}.

We note that different pairs (L,M), mask differently the neutral (clone 0) and
selective (sub-clone) components of the SFS. The following are some interesting
cases:

• L > 1 makes singletons invisible.



EVOLUTIONARY HISTORY OF CANCER GENOMES 17

• In general, larger values of L make it difficult to visualize the existence of
the neutral clone represented by the descending component at the left end
of the SFS, and therefore low Z/R ratios.
• However, large values of M with moderate L may allow uncovering of the

neutral component, since then more variants with low Z/R ratios may be
visible. The limitation is that there are enough variants with high R values.

In the next section, we show on biological examples how this may work.

5.2 Examples

We now study the effects of pre-processing on the SFS from patients from The
Cancer Genome Atlas (TCGA) collection. The fitted SFS is calculated based on
Eqn. (14) with 30 bins of uniform length in [0, 1]. The parameters from fitting
the expected SFS to the observed SFS are shown in Table 3. The numbers show
an interesting trend, which may have relevance for estimation of total mutation
count in the tumor sample (see Discussion). Two more examples are included in
the Online Supplement.

Cases Total mutation count H A K p

TCGA-AA-3977 1,051,861 2 20,000,000 200,000 0.23
450,000 0.35

TCGA-86-A4D0 1,104 4 15,000 140 0.31
280 0.44
80 0.61
50 0.78

Table 3

Parameters from fitting the SFS in the TCGA collection. For every case, the number of
mutations reported from the sequencing data is shown, as well as the number of

sub-clones in the fitted SFS, and parameters A and (K, p) for each sub-clone
(Eqn. (13)).

5.2.1 Colon cancers with polymerase ε mutator phenotype We start with the
case of TCGA-AA-3977 displaying the Polymerase ε mutator phenotype in colon
cancer, which results in a very large number of mutations caused by proofreading
errors of DNA replication due to faulty polymerase. Naturally, in these cases,
sites have unusually high coverage and therefore using a high threshold M does
not remove all information from the sample.

This case has been pre-processed using four different thresholds of L = 5, 10, 15,
and 20. The theoretical SFS based on expressions (14) and (12) is fitted to the
patient’s data with threshold L = 10. The resulting parameter set (consisting of A
for the neutral slope, and (Kσ, pσ) for each sub-clone, with σ = 1, . . . ,H) is then
used to compute the sampled SFS for the other thresholds (L = 5, 15, 20) and
compare them with the correspondingly thresholded data. We also examine the
effects of thresholding the total read counts. We consider four different thresholds,
M = 20, 30, 40, and 50, all with L = 5. Results are shown in Figure 6.

The SFS for L = 10 can be well fitted with the theoretical expression (Figure
6-B). Moreover, the resulting parameter set accurately recreates the SFS with
the other thresholds. This reinforces the relevance of the theoretical model and
the sampling scheme, including the pre-processing step. It can also be observed
that varying the conditioning thresholds for variant and total read counts leads
to very different visualizations.
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Fig 6: Fitting the SFS of case TCGA-AA-3977 (colon cancer). The theoretical
SFS (red lines, Eqn. (14)) is fitted to the patient’s SFS (green bars). The blue
and black dotted lines denote the contribution of the neutral part and sub-clones
in the fitted SFS, respectively. Threshold combinations of variant and total read
counts: [A]: L = 5,M = 0, [B]: L = 10,M = 0, [C]: L = 15,M = 0, [D]:
L = 20,M = 0, [E]: L = 5,M = 20, [F]: L = 5,M = 30, [G]: L = 5,M = 40, [H]:
L = 5,M = 50.
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Fig 7: Fitting the SFS of case TCGA-86-A4D0 (lung cancer). The theoretical SFS
(red lines, Eqn. (14)) is fitted to the patient’s SFS (green bars). The blue and
black dotted lines denote the contribution of the neutral part and sub-clones in the
fitted SFS, respectively. Driver mutations are denoted in blue at their frequencies.
Threshold combinations of variant and total read counts: [A]: L = 5,M = 0. [B]:
L = 10,M = 0. [C]: L = 15,M = 0. [D]: L = 20,M = 0. [E]: L = 5,M = 20. [F]:
L = 5,M = 50. [G]: L = 5,M = 80. [H]: L = 5,M = 100.

Although higher thresholds L result in more reliable SFS (as false positives
due to technical errors are less likely), they also gradually dissolve the neutral
part of the spectrum that dominates the region with low VAF. This neutral slope
can be easily recognized at L = 5 (Figure 6-A, 8% mutations in the dataset are
discarded) but at L = 20, only the sub-clone can be observed (Figure 6-D, 63%
mutations are discarded).

On the other hand, increasing the threshold M preserves the overall structure
of the SFS. Comparing the SFS with L = 5,M = 20 (Figure 6-E, 8% mutations in
the dataset discarded) and that with L = 5,M = 50 (Figure 6-H, 21% mutations
discarded), we observe a slight decrease in the height of the sub-clonal peak, while
the neutral slope remains intact.

5.2.2 Lung cancer We also fitted the model to a TCGA sample from lung
cancer, case TCGA-86-A4D0 (Figures 7). There are several differences between
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this sample and the cases displaying the Polymerase ε mutator phenotype. First,
the data result from whole-exome sequencing, which only reports mutations in
the protein-coding regions of genes, while the previous cases resulted from whole-
genome sequencing, which reported mutations in the non-coding regions as well.
This contributes, along with the absence of Polymerase ε mutation, to the number
of mutations in these cases being much lower than in the mutator dataset, and
SFS being accordingly more noisy.

While the TCGA-WGS-KEEP cases can be fitted withH = 2, this case is fitted
with H = 4. This is in agreement with the existence of various driver mutations at
different frequencies. Each of the drivers, therefore, could be associated with one
or more sub-clones in the fitted SFS. The difference between the real and fitted
SFS is most severe at frequency f ≤ 1/30. This may be because the mutations at
low frequencies are more likely to be disregarded, as they can be confused with
technical errors. However, the fitted SFS is in overall agreement with the data
across different thresholds of L and M .

5.3 Linear birth-death process with sweeps

5.3.1 Simulating selective sweeps It seems useful to compare the SFS with
selective sweeps based on the coalescent approach to those based on the lbdp
approach. While mathematical results have not been developed in the latter set-
ting, we experimented with simulation code that allows generating in time of the
order of minutes a random lbdp tree consisting of 104 or even 105 cells. If the
cell count is up to 103, we are able to draw the tree using the same convention
of enumeration that was used in Section 3.3.

Cells proliferate according to lbdp with rates b and d. During its lifetime, each
cell gathers neutral mutations according to a Poisson process with intensity θ.
These mutations are shared by progeny of the cell. At a predetermined time point
s, the cell with the highest number of neutral mutations among all cells alive,
acquires an advantageous mutation. This cell initiates a new lbdp (advantageous
clone) with rates b~ and d~ chosen so that the growth rate is higher than that
in the original process. At the end time T , the mutation counts of all live cells
from the original process and the advantageous clone are determined. The SFS
is determined from the frequencies of all neutral mutations, or from a random
sample obtained via binomial sampling.

The neutral mutations are partitioned into three subgroups:

• Background mutations: acquired by the selective founder cell or any of its
ancestors. These cells are therefore shared among all selective cells and
possibly some neutral cells.
• Foreground mutations: acquired by any selective cell. These can be shared

among some selective cells but not by any neutral cells.
• Other mutations: neither of the above.

Figure 8 represents an example of the resulting simulated tree. The neutral
cells are shown as blue circles and the advantageous cells as green circles. The
neutral cells that are ancestors to the selective founder cell are shown in red. In
the plot, dead and live cells are indexed so that all descendants of any given cell
are grouped together. Cells alive at the final time T are shown as solid symbols.

Figure 9, panel A, shows a “trimmed” view of the simulated tree. The cells
that have no progeny at final time T are removed, since their mutations do not
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(a) A (b) B

Fig 8: [A]: Example of a simulated tree and resulting SFS. The y-axis is time,
x-axis includes invisible indices of cells such that progeny of any given cell is
grouped together. The three types of mutations correspond to the SFS. [B]: the
SFS resulting from sampling the simulation under the TCGA distribution.

contribute to the SFS. All other aspects are similar to Figure 8.
We now discuss how the sampling coverage distribution may affect the SFS

from the simulation. A common assumption (e.g. Williams et al. 2018) is that
the sizes of samples for detecting mutations follow the binomial distribution. To
implement this, we performed one simulation, which resulted in ∼ 103 cells at the
final time (Figure 9-A). Four sampling coverage distributions are used: binomial
distributions with mean 50, 80 and 150, and the TCGA distribution as in Figure
9, panels B, C, D, and F.

We can observe in Figure 9 that the background mutations form a peak cen-
tered around frequency f = 0.68, consistent with the fact that the selective clone
makes up for 63% of the population. Meanwhile, the foreground mutations form
a decreasing slope at low frequencies (f < 0.2) which can be explained by the
theory in (13). Under deep binomial sampling distributions (Figure 9-C, D), the
other mutations also show the characteristic neutral slope, which is more obscure
under the TCGA distribution (Figure 9-F).

6. DISCUSSION

Our paper has outlined a model-based approach to inferring aspects of the
clonal evolution of cancers, using data from the site frequency spectrum of so-
matic single nucleotide variants found from bulk whole-genome or exome sequenc-
ing. We focused primarily on two aspects: stochastic models of tumor evolution
adapted from the fields of population genetics and population dynamics, and the
effects of “data cleaning” that is often used in the analysis of sequencing data.

The modeling aspects have made a number of simplifying assumptions that
make the statistical inference aspects tractable. In the comments below, we ad-
dress a number of these in more detail.
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(a) A (b) B

(c) C (d) D

(e) E (f) F

Fig 9: The choice of sampling distribution distorts the resulting SFS. [A]: the
simplified presentation of the simulated tree. [B, C, D]: the SFS resulting from
sampling the simulation under the binomial distribution with mean 50 (B), 80
(C) and 150 (D). [E]: PDF of the TCGA sampling distribution. [F]: the SFS
resulting from sampling from the simulated tree according to the TCGA distri-
bution. Parameters: T = 1000, s = 800, b = 0.0162, b~ = 0.0721, d = d~ = 0.01,
θ = 1.
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Simplicity Following a review of mathematical models of site frequency spec-
tra based on Kingman’s coalescent and the linear birth-death process, we develop
a theory for models of clonal sweeps. We explored its action on simulated and
TCGA data-based spectra. The leading principle in our analysis was simplicity.
We considered a neutrally evolving cell population, which spawns an advanta-
geous mutant giving rise to a clone with different growth and mutation rates.
The clone leads to a peak in the spectrum. More than one such event can be
accommodated. This approach allows us to estimate aggregate parameters A, K,
and p1 of the model. We note that our model is not spatial, nor does it deal with
multiregion data explicitly, although extensions are conceivable.

Similar views have been expressed by other cancer genomics researchers. For
example, a recent review by Turajlic et al. (2019) features cartoons very similar
to ours, including the hypothetical SFS decomposition in their Fig. 2.

Simulation approach of Williams et al. Williams et al. (2018) present a
simulation-based approach that is based on an lbdp. Our sampling transformation
in (14) can be considered an “expected value” version of their data transforma-
tion. However, there are notable differences in approach. Williams et al. identify
as a separate category the “truncal” mutations, i.e. mutations that arose in the
ancestor of the tumor clone. These mutations are present in all tumor cells, how-
ever, since they are usually heterozygous (the other allele being a non-mutant
variant), they are present in 50% of DNA strands. Since reads covering a trun-
cal variant site are sampled binomially, truncal mutations form a binomial peak
centered at variant allele frequency x = 0.5. In contrast, the emerging new se-
lective clone leaves another binomial peak, being a signature of the mutations
accumulated in its ancestral cell (which might be called truncal mutations of this
particular clone). This peak is centered at VAF x 6= 0.5, depending on the frac-
tion of tumor cells in the new clone. In our experience, the “solitary” peaks seem
to be rarely centered at VAF x = 0.5. This might be a result of contamination.
However, please see the discussion of evolutionary history further on. We can
easily accommodate truncal mutations by adding an extra peak in Eqn. (12).

Biologically meaningful parameters As mentioned earlier, we can esti-
mate a small number of aggregate parameters, which are functions of growth
and mutation rates and the size of the background haplotypes of the emerging
clones, as well as the proportions of these clones in cell population. The diffi-
culty with interpretation of these parameters is illustrated best by the example
of A = n(a0/2β0 + a1/2β1). Suppose that we assume that mutation rate in the
emerging clone 1 is the same as in clone 0. We still have to consider differences
in growth rates between the two clones. These can be related to the proportion
p1 of clone 1 (which is estimable), but the ages of the clones would have to be
assumed.

Dissection of sub-clones and tumor evolutionary history We return to
the question discussed in Williams et al. (2018), namely the truncal mutations.
If we assume there are K0 of these, we obtain the following augmented version of
(12):

(15) Qnk = K0 1l{k=n} + A
k(k−1)1l{k>1} +

(
n
k

)∑H
σ=1Kσ p

k
σ(1− pσ)n−k,

for k = 0, 1, . . . , n. After transformation accounting for sampling and ploidy (as
in Eqn. (1) in the Online Supplement, with qnk replaced by Qnk), we see that



24 DINH ET AL.

the central term in (15) becomes one of the left-skewed profiles in Fig. 4 in the
Online Supplement, the truncal term becomes a K0 Binomial(r, 12) peak, and the
right hand-side peaks are transformed but retain their original masses Kσ, σ =
1, . . . ,H. In our examples (see Figs. 6 and 7, and Figs. 2 and 3 in the Online
Supplement), we notice that all estimated sub-clonal masses are comparable to
each other. If one of them corresponds to the truncal peak, this means that
the ancestral cell of the tumor already acquired a very large mutation count. If
the mass of this peak is approximately equal to 50% of all mutations, then this
assertion might be consistent with the hypothesis of Tomasetti and Vogelstein
(2015), who estimate that as many as 50% of mutations arise before transition
to malignancy. It cannot be generally excluded that all the peaks are truncal,
corresponding to mutations in regions with different ploidies. Genome sequencing
through time might allow to distinguish between this possibility and our model
of secondary clones.

Missing mutations Based on (15), the total mass of the SFS is to good
accuracy equal to

Σ = A+
H∑
σ=0

Kσ,

which is clear if we notice that
∑n−1

k=2(k(k − 1))−1 = 1 − (n − 1)−1. Table 3 in-
dicates that this is many times more than the total number of mutations found
in the sample. This result is understandable if one considers that the parame-
ter estimates were obtained using data pre-processing that makes the estimates
sensitive only to the terms of the GT-spectrum with k ≥ L. We may accept Σ
as a crude estimate of the total count of point mutations in the tumor sample
employed for sequencing.

Single-cell sequencing data The spread of new technologies will lead to
breakthroughs in understanding of mutations and other genome transformations
in cancer cells. Currently, we are witnessing a rapid expansion of single-cell DNA
sequencing methods, such as described in Zahn et al. (2017) and Laks et al.
(2019).

With relatively low coverage, VAF values can be estimated reliably since they
only may assume values from a spectrum k/P , where k = 1, . . . , P , if CNV or
local ploidy at the given site is equal to P . This also allows us to infer in principle
whether a substitution event at a given site preceded a chromosomal rearrange-
ment or the other way around. However, it is unlikely that single-cell sequencing
of a single snapshot of the tumor alone will bring a better understanding of evo-
lutionary dynamics of cancer cell populations. This requires taking serial samples
of DNA, which is still difficult at large scale.

Recurrent mutations The hypothesis underlying the methods in this paper
is that mutations arise only once, so that recurrent mutations at any site are
impossible. Whether this is satisfied or not depends on the mutation rate pre-
dominant at a given region of the genome. In the context of autosomal genomes,
Kuipers et al. (2017) showed, using single-cell data, that it is highly unlikely that
cancer cells do not feature recurrent mutations. Based on this possibility, Cheek
and Antal (2018) provide a theory of SFS spectra that includes the possibility of
recurrent mutation.
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