
HAL Id: hal-02989011
https://hal.sorbonne-universite.fr/hal-02989011

Submitted on 5 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Experimaestro and Datamaestro
Benjamin Piwowarski

To cite this version:
Benjamin Piwowarski. Experimaestro and Datamaestro. SIGIR ’20: The 43rd International ACM
SIGIR conference on research and development in Information Retrieval, Jul 2020, Virtual Event
China, China. pp.2173-2176, �10.1145/3397271.3401410�. �hal-02989011�

https://hal.sorbonne-universite.fr/hal-02989011
https://hal.archives-ouvertes.fr

Experimaestro and Datamaestro:
Experiment and Dataset Managers (for IR)

Benjamin Piwowarski
b@piwowarski.fr

CNRS, LIP6/Sorbonne Université

ABSTRACT
Ensuring reproducibility is key to all scientific domains. As Infor-
mation Retrieval (IR) experiments are often composed of several
steps that can be shared between tested models, and rely on var-
ious resources, it is difficult to keep track of all the experimental
settings and to ensure experiments can be reproduced easily. In
this demo paper, we present two managers, Experimaestro and
Datamaestro, and their add-ons for IR, designed to help to define
and run experimental plans.

KEYWORDS
Experiment manager, dataset manager
ACM Reference Format:
Benjamin Piwowarski. 2020. Experimaestro and Datamaestro: Experiment
and Dataset Managers (for IR). In Proceedings of the 43rd International ACM
SIGIR Conference on Research and Development in Information Retrieval
(SIGIR ’20), July 25–30, 2020, Virtual Event, China. ACM, New York, NY, USA,
4 pages. https://doi.org/10.1145/3397271.3401410

1 INTRODUCTION
Ensuring reproducibility is key to all scientific domains. In com-
puter science, this implies preserving the processing code and soft-
ware environment on the one hand, the dataset and experimental
procedure on the other. Code and environment can nowadays be
somehow handled by virtualization solutions, but the dataset and
experimental procedure are often dealt with handcrafted scripts, ex-
perimental parameters being buried in scripts or directly in the code.
This makes it difficult, or even practically impossible, to ensure that
experiments can be reproduced easily and exposed publicly. More
importantly, changing parts of the experiments is made harder by
the fact that experimental components are not independent. This
problem has been recognized as one of the key goals in the 2018
Dagstuhl reproducibility workshop [6].

In Information Retrieval, the situation is exacerbated by the fact
that experiments are composed of several steps (e.g. pre-processing,
learning, evaluation), each step being potentially shared between
models, and relying on various resources (e.g. word embeddings,
document datasets, queries). It is hence difficult to keep track of all
the experimental settings.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGIR ’20, July 25–30, 2020, Virtual Event, China
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8016-4/20/07. . . $15.00
https://doi.org/10.1145/3397271.3401410

To achieve this reproducibility goal, and with information access
experiments in mind, we designed Experimaestro1 and Datamae-
stro2, which aim at fulfilling the following requirements: (i) Clearly
define experimental parameters for each task, and among those,
which are of interest for a specific experiment; (ii) Avoid running
two times the same task with the same experimental parameters ;
(iii) Allows easy experimental management by generating folder
paths that are unique for a given set of experimental parameters;
(iv) Allows to monitor jobs and their results through command
line and a web interface; (v) Automates the process of download-
ing and organizing datasets. In this demo paper, we present both
frameworks, and focus on examples from two add-ons specifi-
cally designed for IR (and more broadly text-related tasks), namely
Experimaestro-IR3 and Datamaestro-text4.

2 DATASET MANAGER
2.1 Related works
The closest related software is Kaggle5, which hosts datasets and
provides an API to search and download datasets – as well as
handling competition uploads. However, Kaggle is proprietary and
limited to datasets that are uploaded to the platform. There are also
numerous datasets listings on the Web – the most known in IR
being the TREC website. However, there is a lack of unified access
to those resources – i.e., even if all data were freely downloadable
from the Internet, there is no machine readable description of a
resource. For instance, TREC topics have a wide variety of formats
and data paths, and many research codes duplicate the efforts in
accessing those resources.

2.2 Datamaestro
The purpose of Datamaestro is to provide a simple and distributed
tool to catalog datasets (even if their access is partially restricted, e.g.
TREC collections), and to provide basic pre-processing functionality.
The main Datamaestro module is written in Python, and does not
define any dataset directly. The task of defining datasets is handled
by Datamaestro repositories, such as the text repository6 that
contains IR-related repositories – examples are presented below.
Datamaestro focus on simple but common goals of a generic
dataset manager:

• Providing a way to describe datasets through Python annota-
tions. Figure 1 gives an example for the TREC-5 dataset: four
datasets are defined (documents, topics, assessments, as well

1http://experimaestro.github.io/experimaestro/
2http://experimaestro.github.io/datamaestro/
3https://experimaestro-ir.readthedocs.io/
4https://experimaestro.github.io/datamaestro_text/
5https://www.kaggle.com/
6https://experimaestro.github.io/datamaestro_text/

https://doi.org/10.1145/3397271.3401410
https://doi.org/10.1145/3397271.3401410
http://experimaestro.github.io/experimaestro/
http://experimaestro.github.io/datamaestro/
https://experimaestro-ir.readthedocs.io/
https://experimaestro.github.io/datamaestro_text/
https://www.kaggle.com/
https://experimaestro.github.io/datamaestro_text/

1 @linkfolder("documents",
2 [DatafolderPath("gov.nist.trec.tipster", "Disk2/AP")])
3 def ap88(documents):
4 """Associated Press document collection (1988)"""
5 return {"path": documents}
6

7 ...
8

9 @links("documents", ap88=ap88.path, ...)
10 @dataset(TipsterCollection, id="5.documents")
11 def trec5_documents(documents):
12 """TREC-5 documents"""
13 return {"path": documents}
14

15 @filedownloader("topics.sgml",
16 "http://trec.nist.gov/data/topics_eng/topics.251-300.gz")
17 @dataset(TrecAdhocTopics, id="5.topics")
18 def trec5_topics(topics):
19 return {"path": topics, "parts": ["title", "desc"]}
20

21 @concatdownload("assessments.qrels",
22 url="http://trec.nist.gov/.../...parts1-5.tar.gz")
23 @dataset(TrecAdhocAssessments, id="5.qrels")
24 def trec5_assessments(assessments):
25 return {"path": assessments}
26

27 @reference("documents", trec5_documents)
28 @reference("topics", trec5_topics)
29 @reference("assessments", trec5_assessments)
30 @dataset(Adhoc, id="5")
31 def trec5(documents, topics, assessments):
32 "Ad-hoc task of TREC 5 (1996)"
33 return {"documents": documents, "topics": topics,
34 "assessments": assessments}

Figure 1: Definition of the TREC-5 collection

as the full TREC-5 dataset comprising the three previously
cited datasets). Each definition is composed of two parts: (1)
the definition of resources to download or prepare (e.g. lines
19-23); and (2) the definition of the object that describes the
dataset (e.g. lines 25-26), and which is returned when asking
for a given dataset through the API or using the command
line.

• Providing standard tools to download data (e.g. uncompress a
ZIP archive and concatenate the fileswith the @concatdownload
annotation).

Each dataset is defined by a unique ID (at least within the repos-
itory), such as gov.nist.trec.adhoc.5 for TREC-5. Once datasets
are defined, they can be downloaded using their IDwith the prepare
command as follows:

$ datamaestro prepare gov.nist.trec.adhoc.5

The above command automatically downloads the topics and as-
sessments (@filedownloader and @concatdownload instructions),
and locate the different TREC collections through the definition of
data folders, i.e. paths to data which has to be manually handled
(@linkfolder and DatafolderPath instructions). The command

also outputs a JSON that gives the ID of the dataset and the path to
its data (and which is directly a JSON representation of the return
statement of lines 25-26 in Figure 1):

{
"documents": {

"path": ".../5/documents",
"id": "gov.nist.trec.adhoc.5.documents"

},
"topics": {

"path": ".../5/topics/topics.sgml",
"parts": ["title", "desc"],
"id": "gov.nist.trec.adhoc.5.topics"

},
"assessments": {

"path": ".../5/qrels/assessments.qrels",
"id": "gov.nist.trec.adhoc.5.qrels"

},
"id": "gov.nist.trec.adhoc.5"

}

The above output shows that paths to documents, assessments
and topics are given, as well as identifiers for each (sub)collection.
The Python interface often allows for more interaction with data,
such as transforming word embeddings into a Numpy matrix, and
more generally by defining standard ways to interact with specific
data types. The data types are defined within a hierarchy (following
the Python class hierarchy); for instance, in line 22 of Figure 1, the
TREC-5 dataset is defined as an Adhoc dataset, which is composed
of three mandatory fields (documents, topics and assessments).
This allows in turn, using Experimaestro, to define tasks that are
defined for Adhoc datasets.

Beside the command line, it is also possible to browse the datasets
via a web interface (Figure 2). This web interface organizes datasets
by tags and tasks, and is planned to allow a quick access to prepared
and available datasets.

3 EXPERIMENT MANAGER
3.1 Related works
Experiment managers are conceptually linked to job scheduling
software such as cluster-based OAR [3] or Slurm [4]. Those tools
however do not target experiment management, and are thus or-
thogonal to our purpose. There are projects closer to our work,
namely Comet [1], Sacred [8], FGLab [2], Sumatra [5] that all
track down experimental parameters. Comet has a strong focus on
collaboration and note taking, but targets machine learning single
shot experiments and is not open source. Sumatra and FGLab
are based on parameter files and are less flexible. The closest to
our work, Sacred, is an open-source project that allows to have
pre-processing steps (the ingredients), but there is no way to build
complex experimental plans as in Experimaestro. More precisely,
Sacred and all other experiment managers (as far as we know)
targets a single run of an experimental pipeline rather than man-
aging a set of related experimental tasks. They all consider that
an experimental plan is declarative – typically defined as a set of
parameter files, but this turns out to make things complicated when
building complex experimental plans.

Figure 2: Datamaestro text-related repository

Compared to those projects, Experimaestro has three distinc-
tive features. More precisely, it (1) defines types and tasks that can
be composed within an experimental plan, (2) has a clear way to
indicate which experimental parameters are monitored through
the use of tags, (3) automatically organizes tasks outputs within the
file system, removing the burden of choosing where to store a task
result, and (4) most importantly, it defines experiments imperatively
and not declaratively.

In IR, there is a trend towards reproducibility, such as OpenNIR
[9] and Capreolus [11] for Neural IR, or Anserini [10] for standard
IR models. OpenNIR is based on its own configuration system
(parameter files), Capreolus is based on Sacred, and Anserini is
controlled by command line arguments. In all cases, it is possible to
reproduce experimental results and manipulate some experimental
parameters through a command line interface. However, modifying
the pipeline is not easy since these projects are not modular. With
Experimaestro-IR, we show that experiments can be defined by
re-using experimental components, leading the way to an easier
and standard way to structure IR-related projects – in particular,
we leverage wrapped Anserini [10] for IR7 and adapted OpenNIR
[9] for neural IR 8.

3.2 Types and tasks
Types and tasks are the main components of an experimental
plan. Defining types and tasks is akin to defining structures in
any strongly-typed programming language. Data types can be ei-
ther simple (real, integer, boolean, string or path) or complex (arrays
or dictionaries).

Configurations and tasks are defined as dictionaries (keys asso-
ciated with types), and some properties such as a default value or
an ignored flag which are useful when computing the signature
of an experiment (see section 3.4). The example in Figure 3 a is a
simple configuration for the BM25 model, defining two parameters
(k1 and b) with their default values. It has a type identified a unique
ID (e.g. ir.model.bm25). Configurations are used as configuration

7https://github.com/bpiwowar/experimaestro-ir/
8https://github.com/bpiwowar/OpenNIR-xpm

1 @argument("k1", default=0.9)
2 @argument("b", default=0.4)
3 @config("ir.model.bm25")
4 class BM25(Model): pass

1 @argument("storePositions", default=False)
2 @argument("storeDocvectors", default=False)
3 @argument("storeRawDocs", default=False)
4 @argument("storeTransformedDocs", default=False)
5 @argument("documents", type=AdhocDocuments)
6 @argument("threads", default=8, ignored=True)
7 @pathargument("index_path", "index")
8 @task(ANSERINI_NS.index, description="Index documents")
9 class IndexCollection:
10 def execute(self):
11 # Calls java command and report progress
12 pass

Figure 3: Definition of BM-25 model and of the indexation
task

units (e.g. a dataset from Datamaestro, a stemmer configuration,
or the optimizer to use for a gradient descent).

When it comes to actually running code, Experimaestro allows
to define tasks that are special kinds of configurations. The task in
Figure 3 allows to index a data collection retrieved from Datamae-
stro, based on various experimental parameters (storePositions,
storeDocvectors, storeRawDocs, storeTransformedDocs and the
collection documents). It also defines parameters which do not
change the outcome but rather (1) the processing (e.g. threads)
and are marked with an ignored flag, (2) the output location on
disk (e.g. index_path). In both cases, the parameter value should
be ignored when computing the signature of the experiment. The
method execute is called when the task is effectively run, with
the different parameters accessible through self in the execute
method.

https://github.com/bpiwowar/experimaestro-ir/
https://github.com/bpiwowar/OpenNIR-xpm

3.3 Running experiments
When configurations and tasks are defined, it is possible to assemble
them by defining an experimental plan. Contrarily to all the other
frameworks, Experimaestro has adopted an imperative style to
define an experiment. This makes it particularly easy to define
complex experimental plans. The code in Figure 4 shows a simple
but full experimental plan. The different tasks (whose definition is
not shown here) are used to perform various parts of the experi-
ment: (i) Word embeddings are downloaded and used to defined a
vocabulary (line 3-4); (ii) The robust collection index downloaded
and pre-processed for OpenNir (line 8); (iii) The DRMM is defined
(l. 8) and learned (l. 9-11) (iv) The learned model is evaluated on a
held out set (l. 15) Each task is submitted with .submit() (lines 5,
12 and 15), and handled to a job scheduler that monitors and runs
the tasks (on the local machine, or in future versions through SSH
or schedulers like OAR) by running the execute() method (see
Figure 3).

Finally, while many parameters can have an effect on the process
outcome, only a subset of those are monitored during a typical
experiment. These are specially marked using tagging. In the code
above, one tag is used (line 8). These tags can be easily retrieved
(e.g. when generating the final report), and are also easily accessi-
ble when interacting with the command line and web interfaces
through a local server which can be launched for any experiment.

3.4 Unique task ID
Notice that there is no indication of the folder where tasks are
run and store results is given in the experimental plan, beside the
location of the main experiment directory (not shown here). This
is one of the strength of Experimaestro, i.e. the exact location is
determined when a task is submitted, and is unique for a given set

1 # Prepare the collection
2 random = Random()
3 wordembs = prepare_dataset("edu.stanford.glove.6b.50")
4 vocab = WordvecUnkVocab(data=wordembs, random=random)
5 robust = RobustDataset.prepare().submit()
6

7 # Train with OpenNIR DRMM model
8 ranker = Drmm(vocab=vocab).tag("ranker", "drmm")
9 predictor = Reranker()
10 trainer = PointwiseTrainer()
11 learner = Learner(trainer=trainer, random=random,

ranker=ranker, valid_pred=predictor,↪→

12 train_dataset=robust.subset('trf1'),
val_dataset=robust.subset('vaf1'),
max_epoch=max_epoch)

↪→

↪→

13 model = learner.submit()
14

15 # Evaluate
16 Evaluate(dataset=robust.subset('f1'), model=model,

predictor=predictor).submit()↪→

Figure 4: Experimental plan for training a neural IR model
(using a special version of OpenNIR)

of experimental parameters – this allows to avoid running twice
the same task and the painful creation of unique folder names for
each experiment (such as in e.g. Capreolus or OpenNIR), which
are error-prone and time-consuming.

Experimaestro has a automated process that generates a unique
signature for each task depending on experimental parameters – this
idea is used for instance in PlanOut [7] to uniquely identify the
system parameters in A/B testing. First, any value can be associated
with a unique byte string: the byte string is obtained by outputting
the type of the value (e.g. string, ir.adhoc.dataset) and the
value itself as a binary string. A special handling of dictionaries
(i.e. configurations and tasks) is performed by sorting keys in as-
cending lexicographic order, thus ensuring the uniqueness of the
representation. Moreover,

• Default values are removed (e.g. k1 when set to 0.9). This
allows to handle the situation where one adds a new ex-
perimental parameter (e.g. a new loss component). In that
case, using a default parameter allows to add this parameter
without invalidating all the previously ran experiments.

• Ignored values are removed (e.g. the number of threads when
indexing, the path where the index is stored)

When .submit() is called, Experimaestro automatically com-
putes the task byte string, and its signature. The identifier will be
composed of the task ID and of the identifier, e.g. ir.model.bm25/
133778acb.... All the artifacts generated by this task are contained
within this folder (e.g. the argument index_path), allowing easy
task management (e.g. lookup results, cleaning up old experiments,
etc.).

4 CONCLUSION
In this paper, we have presented Experimaestro and Datamae-
stro, and their extensions to IR (Experimaestro-IR, OpenNIR-
XPM and Datamaestro-text), which aim at helping reproducibil-
ity, as well as easing the management of complex experiments in
Information Retrieval as well as other computer science fields. This
demo paper also seeks to publicize the projects so that new func-
tionalities and datasets are added to them – it is thus an open call
for using such frameworks as a basis for ongoing IR experimental
software projects.

REFERENCES
[1] 2019. Comet. https://www.comet.ml/. (2019).
[2] 2019. FGLab. https://kaixhin.github.io/FGLab/. (2019).
[3] 2019. OAR. http://oar.imag.fr/. (2019).
[4] 2019. Slurm. https://slurm.schedmd.com/. (2019).
[5] 2019. Sumatra. https://pythonhosted.org/Sumatra/. (2019).
[6] Vaibhav Bajpai, Olivier Bonaventure, Kimberly Claffy, and Daniel Karrenberg.

2019. Encouraging Reproducibility in Scientific Research of the Internet (Dagstuhl
Seminar 18412). Dagstuhl Reports 8, 10 (2019), 41–62. https://doi.org/10.4230/
DagRep.8.10.41

[7] Eytan Bakshy, Dean Eckles, and Michael S. Bernstein. 2014. Designing and De-
ploying Online Field Experiments. arXiv:1409.3174 [cs, stat] (Sept. 2014). arXiv:cs,
stat/1409.3174 http://arxiv.org/abs/1409.3174

[8] Klaus Greff. 2015. Sacred. (March 2015). https://doi.org/10.5281/zenodo.16386
[9] Sean MacAvaney. OpenNIR: A Complete Neural Ad-Hoc Ranking Pipeline

(WSDM ’20). 845–848. https://doi.org/10/ggk85j
[10] Peilin Yang, Hui Fang, and Jimmy Lin. 2018. Anserini: Reproducible Ranking

Baselines Using Lucene. 10, 4 (2018). https://doi.org/10/ggmdws
[11] Andrew Yates, Siddhant Arora, Xinyu Zhang, Wei Yang, Kevin Martin Jose, and

Jimmy Lin. Capreolus: A Toolkit for End-to-End Neural Ad Hoc Retrieval (WSDM
’20). 861–864. https://doi.org/10/ggjnkm

https://www.comet.ml/
https://kaixhin.github.io/FGLab/
http://oar.imag.fr/
https://slurm.schedmd.com/
https://pythonhosted.org/Sumatra/
https://doi.org/10.4230/DagRep.8.10.41
https://doi.org/10.4230/DagRep.8.10.41
http://arxiv.org/abs/cs, stat/1409.3174
http://arxiv.org/abs/cs, stat/1409.3174
http://arxiv.org/abs/1409.3174
https://doi.org/10.5281/zenodo.16386
https://doi.org/10/ggk85j
https://doi.org/10/ggmdws
https://doi.org/10/ggjnkm

	Abstract
	Introduction
	Dataset Manager
	Related works
	Datamaestro

	Experiment Manager
	Related works
	Types and tasks
	Running experiments
	Unique task ID

	Conclusion
	References

