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Regulation of inflammation in diabetes: From
genetics to epigenomics evidence
Marc Diedisheim 1,4, Elena Carcarino 1,4, Claire Vandiedonck 1, Ronan Roussel 1,2, Jean-François Gautier 1,3,
Nicolas Venteclef 1,*
ABSTRACT

Background: Diabetes is one of the greatest public health challenges worldwide, and we still lack complementary approaches to significantly
enhance the efficacy of preventive and therapeutic approaches. Genetic and environmental factors are the culprits involved in diabetes risk.
Evidence from the last decade has highlighted that deregulation in the immune and inflammatory responses increase susceptibility to type 1 and
type 2 diabetes. Spatiotemporal patterns of gene expression involved in immune cell polarisation depend on genomic enhancer elements in
response to inflammatory and metabolic cues. Several studies have reported that most regulatory genetic variants are located in the non-protein
coding regions of the genome and particularly in enhancer regions. The progress of high-throughput technologies has permitted the charac-
terisation of enhancer chromatin properties. These advances support the concept that genetic alteration of enhancers may influence the immune
and inflammatory responses in relation to diabetes.
Scope of review: Results from genome-wide association studies (GWAS) combined with functional and integrative analyses have elucidated the
impacts of some diabetes risk-associated variants that are involved in the regulation of the immune system. Additionally, genetic variant mapping
to enhancer regions may alter enhancer status, which in turn leads to aberrant expression of inflammatory genes associated with diabetes
susceptibility. The focus of this review was to provide an overview of the current indications that inflammatory processes are regulated at the
genetic and epigenomic levels in diabetes, along with perspectives on future research avenues that may improve understanding of the disease.
Major conclusions: In this review, we provide genetic evidence in support of a deregulated immune response as a risk factor in diabetes. We
also argue about the importance of enhancer regions in the regulation of immune cell polarisation and how the recent advances using genome-
wide methods for enhancer identification have enabled the determination of the impact of enhancer genetic variation on diabetes onset and
phenotype. This could eventually lead to better management plans and improved treatment responses in human diabetes.

� 2020 The Authors. Published by Elsevier GmbH. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. INTRODUCTION

Diabetes is a worldwide endemic disease, leading to chronic compli-
cations affecting multiple organs, including the heart, eyes and kid-
neys, and is characterised by absolute or relative decreased insulin
secretion. Most common are type 1 (T1D) and type 2 diabetes (T2D),
but based on aetiology, recent World Health Organisation classification
identifies a dozen of others types of diabetes: hybrid forms of diabetes
between type 1 and type 2, including slowly evolving immune-
mediated diabetes of adults and ketosis-prone type 2 diabetes,
gestational diabetes mellitus, and rarer types, such as monogenic
diabetes, disease of the exocrine pancreas or endocrine disorders [1].
T1D affects 5e10% of diabetics and is characterised by auto-immune
destruction of pancreatic beta-cells, leading to absolute insulinopenia.
It mainly results from an insulitis, defined by immune cell infiltration of
the pancreatic islet. T2D represents 90e95% of diabetes and com-
bines decreased insulin secretion and increased insulin resistance.
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Despite this classification based on aetiology, pathogenic mechanisms
remain unclear for each type of diabetes as recently revisited by
Ahlqvist et al. [2]. Epidemic increase in diabetes prevalence is linked to
major changes in lifestyle and dietary habits, including high-calorie and
high-fat diet and inactivity. These environmental consequences are
modulated by genetic factors, with inter- and intra-population varia-
tion. Indeed, these environmental factors are sensed through epi-
genomic pathways that modify gene transcription. Genomic regions
called enhancers have been proposed to be extremely sensitive to
environmental factors. In fact, their activity is regulated through epi-
genomic mechanisms, including chromatin organisation, histone
modifications and coregulator dynamics. These epigenomic mecha-
nisms particularly regulate inflammatory processes throughout dia-
betes development. Here, we will review the evidence that links
genetics to inflammatory processes in the pathophysiology of T1D and
T2D. We also highlight the emerging role of genomic enhancer
regulation in immune cell activation through sensing the environmental
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factors of diabetes risk. Our focus is to provide an overview of the
current evidence that inflammatory processes are regulated at the
genetic and epigenomic levels in diabetes, along with perspectives on
future research avenues that may help to better understand the
diseases.

2. INFLAMMATION IN DIABETES: GENETIC EVIDENCE

2.1. Type 1 Diabetes (T1D)
Type 1 Diabetes (T1D) is an autoimmune disorder characterised by
destruction of insulin-producing pancreatic beta cells (Figure 1). It
involves both cellular and humoral immunity. Although the aetiology of
T1D is not fully understood, inherited genetic factors have been rec-
ognised to be implicated in its pathogenesis [3]. For example, twin
studies have revealed a concordance of 43% for monozygotic twins,
versus only 7% for dizygotic twins [4]. Two genetic regions in the
human genome have emerged with consistent evidence of an asso-
ciation with T1D. These are the major histocompatibility complex
(MHC) on chromosome 6 (locus 6p21.3) and the insulin (INS) gene
locus on chromosome 11 (locus 11p15).
The MHC region was first found to be involved in T1D genetic pre-
disposition in the 1970s [5]. Subsequently, this genomic region was
divided into 3 main classes, and variants of human leukocyte antigen
(HLA) class II genes, including HLA-DQ, HLA-DP and DR genes, were
identified as the major risk factors of T1D [6e8]. In fact, rather than
single variants, combinations of alleles, also known as haplotypes,
have been found to drive these effects with a synergy of so-called DR3-
DQ2 and DR4-DQ8 haplotypes (standing for DRB1*03:01-
DQA1*05:01-DQB1*02:01 and DRB1*04:01/04:04-DQA1*03:01-
DQB1*03:02, respectively). These two haplotypes are carried by
90% of patients versus 30% of controls, while 40% of patients harbour
both of them, versus 3% of controls (odds ratio ¼ 30). HLA Class II
molecules are mainly expressed in immune cells, such as macro-
phages, dendritic cells, B cells, and T cells. HLA molecules are cell-
Figure 1: Inflammatory signals in diabetes. Type 1 diabetes: Activation of immune ce
Anti-gene presenting cells (APCs) and T lymphocytes participate in the inflammatory proce
dysfunction as well as gut dysbiosis contribute to the chronic inflammation. Inflammatory c
with the pancreatic islets leading to beta cell dysfunction. Examples of T1D/T2D-GWAS c
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surface receptors implicated in the immune system through antigen
presentation. By presenting antigens to T cells, HLA molecules play a
central role in the immune system, modulating regulatory T cells
(Tregs) and conventional T cell activation [9]. Specific HLA contribution
to T1D susceptibility might therefore be linked to antigen binding and
presentation specificity [10,11]. Indeed, imputation of amino acids
using single-nucleotide polymorphism (SNP) data confirmed the key
role of Ala57 in the peptide-binding groove of the HLA-DQb1 chain and
identified independent effects at positions 13 and 71 of the HLA-DRb1
chain [12]. By influencing effective antigen-binding, specific HLA al-
leles could influence central negative selection of self-reactive T
lymphocytes inside the thymus and peripheral activation inside
pancreatic nodes by dendritic-cells presenting beta-cell antigens,
leading to their activation and finally to beta-cell destruction (Figure 1).
The MHC is thought to contribute to 50% of T1D heritability [13], but
HLA class II genes were reported to explain nearly 30%. Consequently,
HLA class I alleles, including HLA-A*24 and HLA-B*39, have also been
independently associated with T1D [14].
Non-MHC regions of the human genome were also intensively
investigated to explain the missing heritability. Early in 1984, the INS
gene was also associated with T1D [15e18]. Candidate genes coding
for cytotoxic T-lymphocyte antigen-4 (CTLA4) [19], protein tyrosine
phosphatase non-receptor type 22 (PTPN22) [20,21] and interleukin-2
alpha chain receptor (IL-2RA) [22] were also associated with T1D.
Then, large genome-wide association studies (GWAS) (that scan the
whole genome using SNPs) were conducted, notably by the Type 1
Diabetes Genetics Consortium (T1DGC) that collected more than 6,000
T1D samples between 2002 and 2010 [23]. To date, 52 association
signals have been reported (Table 1, [24,25]). With the exception of the
HLA and 5 genes outside the MHC, including PTPN22, IFIH1, CTSH,
TYK2 and FUT2, all associated variants are non-protein-coding, a
finding recently corroborated by targeted deep resequencing of 301
candidate genes [26]. Most GWAS hits map to or near genes involved
in immune processes, namely: BACH2, C1QTNF6, CCR5, CD69,
lls is involved in pancreatic beta-cell death through a variety of inflammatory cytokines.
sses that promote the development of T1D. Type 2 diabetes: adipose tissue and liver
ytokines from T lymphocytes, monocytes and macrophages contribute to the interaction
andidate genes are represented inside cells.
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CD226, CLEC16A, CTSH, ERBB3, GPR183, IFIH1, IKZF1, IL2/IL21,
IL2RA, IL7R, IL10, IL18RAP, IL27, ITGB7, PTPN2, PTPN22, PRKCQ,
SH2B3, STAT4, TAGAP, TNFAIP3, UBASH3A, RASGRP1, RGS1 and
TYK2 [27]. Some of these (IFIH1, PTPN2, CTSH and CLEC16A) and also
GLIS3 are strongly expressed inside pancreatic beta-cells and are
related to pancreatic beta cell inflammation and apoptosis [28]. Loss of
pancreatic beta cells results from their aggression by immune cells
invading the endocrine islets [29]. Effectively, a large number of genes
linked to the susceptibility loci are expressed in the beta cell, and their
expression is modulated by pro-inflammatory cytokines [30]. For
example, IFIH1 and PTPN2 are involved in beta-cell response to viral
dsRNA (double stranded RNA) transduction, and CTSH, HIP14, TNFAIP3
and TYK2 regulate the effect of cytokines inside beta-cells for pro-
apoptotic signal transduction [28]. This knowledge reinforces the hy-
pothesis that genes implicated in islet inflammation and beta-cell
apoptosis play an important role in the onset of T1D [31].

2.2. Type 2 diabetes (T2D)
Type 2 diabetes (T2D) is the consequence of insufficient insulin secretion
relative to insulin resistance, in a context of advanced age, excessive
weight gain and insufficient physical activity. In this sense, among
genomic regions associated with T2D, several genes are implicated in
regulation of insulin processing and secretion [32,33]. From the first
GWAS, conclusions were in favour of the predominant role of insulin
secretion deficit more than inflammation in the risk of developing T2D. In
addition to insulin secretion, GWAS also reported association signals
with peripheral insulin sensitivity, with genes such as PPARG and KLF14,
known to have pioneer regulatory actions in adipose tissue biology [34e
39]. Nonetheless, immunological changes are well described in obesity
and T2D, including increased apoptosis, altered level of various cyto-
kines and modified activation state of several immune cells [40]
(Figure 1). In this regard, in addition to its metabolic function, PPARG is
also involved in the regulation of immune cell polarisation suggesting
that inflammation could also be altered by SNPs. Moreover, further
studies of candidate genes, and subsequent GWAS revealed genes
associated with inflammation and immune pathways (Table 1) [41].
Among these alterations, T cells are of special interest, with a decisive
balance between effector and regulatory T cells in a metabolic disease
like T2D [40]. Thus, variants in the PTPRJ gene, encoding a regulator of
Table 1 e Most relevant human genes involved in the inflammatory
response associated with type 1 and type 2 diabetes.

Type 2 diabetes Type 1 diabetes

Cytokine-induced pathways Antigen presentation
IFNGR1 [44] HLA DR/DQ [7]
JAZF1 [52] T cell regulation
MACROD1 [48] BACH2 [10]
MAPK8IP1 [45] CTLA4 [19]
NFE2L3 [48] IL10 [10]
ST6GAL1 [46] IL2 [10]
TREG/T cell regulation IL27 [10]
CMIP [43] IL2RA [22]
KLF14 [34] PTPN22 [20]
MAP3K1 [52] Cytokine-induced pathways
NLRC3 [44] CTSH [10]
PTPRJ [42] GLIS3 [10]
M1/M2 polarisation HIP14 [39]
IFNGR1 [44] IFIH1 [10]
MAEA [43] PTPN2 [10]
PPARG [34] TNFAIP3 [10]

TYK2 [26]
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T lymphocyte signalling, were associated to fasting hyperinsulinaemia
[42]. Moreover, a meta-analysis of eight GWAS, including around 7,000
T2D participants and 12,000 controls, followed by a confirmation cohort
with 12,000 cases and 13,000 controls, revealed eight new loci. Two of
them mapped in or near CMIP, encoding a c-Maf-inducing protein
involved in T lymphocyte signalling, and in MAEA, encoding a protein-
mediating attachment of erythroblasts to macrophages and involved in
macrophage maturation [43]. These associations have also been re-
ported with other metabolic traits, such as body mass index, with as-
sociations in NLRC3, a gene encoding NOD-like receptor protein,
inhibiting activity of T cells [44]. Another important aspect in the immune
cell function underlying T2D consists of a metabolic-specific evolution of
cytokines levels [40]. The aforementioned meta-analysis also reported a
new association of theWWOX gene, which has a role in tumour necrosis
factor (TNF)-mediated apoptosis [43]. Similarly, several other cytokine-
related genes have been associated with diabetes or other clinical
metabolic traits in several GWAS: MAPK8IP1, implicated in interleukin
(IL)-1 induced apoptosis beta cells [45] and IFNGR1 (CD119), encoding
the gamma interferon cytokine receptor [44]. GWAS also revealed genes
involved in inflammatory signalling pathways, inside pancreatic endo-
crine islets, adipocytes or more systemically in the pathophysiology of
metabolic syndrome leading to T2D: ST6GAL1, involved in cell-surface
antigens production [46], JAZF1, a regulator of inflammation in adi-
pose tissue [47], two inflammatory genes MAP3K1 in JNK pathway [48]
or MACROD1 as a NF-kB regulator [48], NFE2L3, implicated in cellular
stress responses [50] and TLR4, from the toll-like receptor family,
activating the intra-cellular NF-kB pathways [44] (Table 1). Continuing to
increase the number of included individuals, and the coverage of the
genome, a more recent study, including nearly one million Europeans,
doubled the number of T2D-associated signals, up to 403, from com-
mon alleles through rare variants, including 19 protein-coding variants
corresponding to 18 distinct genes (PATJ, GCKR, SCD5, ANKH, PAM,
MRPS30, POC5, RREB1, SLC30A8, NEUROG3, QSER1, CDKN1B,
WSCD2, HNF1A, IRS2, ZNF771, APOE and HNF4A) [49]. In this largest
GWAS study, authors estimate that all of these loci could explain up to
18% the estimated heritability of T2D [49]. A whole-exome sequencing
(WES) study conducted on more than 20,000 cases and controls iden-
tified association of rare variants in already established T2D risk genes
and also identified a new gene, UBE2NL, although this needs to be
replicated. In addition, the contribution of rare variants to disease heri-
tability was 10e20% of that explained by common variants. Therefore,
the hope that there would be rare variants with large effects underlying
the genetics of T2D has been compromised. Both these studies (GWAS
and WES) were the largest investigating the contribution of coding
variants to T2D susceptibility [50].

2.3. Limits of genetic approaches in the understanding of diabetes
aetiology
Altogether, the genetic studies were able to identify 52 significantly
associated regions in T1D and 403 in T2D. However, the effect size of
these associations remains individually quite modest with odds ratios
below 1.5 except for the HLA class II genes, INS and PTPN22 in T1D.
Collectively, they explain up to 43% and 25% of the heritability in T1D
and T2D, respectively [12,50]. In both diseases, therefore, there is a
substantial fraction of heritability that remains to be elucidated.
In this endeavour, a first limitation concerns the inflation of studied
cohorts, in which an increased number of SNPs was significantly
associated with phenotypic traits, but with decreasing effects for newly
reported variants [51]. An additional risk with very large cohorts from
multicentre studies is the heterogeneity of the cases, with a lack of
measurable diagnostic parameters, a significant problem for T2D,
ccess article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). 3
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which is more a syndrome with heterogeneous aetiology than a single
disease [2].
In addition, the vast majority of associated genetic variants fall inside
non-protein coding regions; annotation of non-protein coding elements
and functional maps may help to identify variants that may alter im-
mune cell expression patterns and functions [52]. Additionally, the
regulated gene is not always the closest gene to the associated variant
as highlighted by intronic SNPs in the FTO gene consistently associated
with T2D and obesity, but that regulate two distant genes, IRX3 and
IRX5, located w500 kb away [53]. To identify the relevant genes, this
study also incorporated transcriptomic and chromosomal conformation
data. Moreover, the associated variant is often in strong linkage
disequilibrium with numerous other variants in the vicinity, and
therefore, the identification of the causative variant is challenging and
requires functional studies [54]. Thus, GWAS analyses do not auto-
matically determine the particular gene(s) in a specific locus that are
mechanistically associated with disease pathogenesis or elucidate the
manner in which disease gene(s) interact [55]. Moving from identifi-
cation of susceptibility genes to understanding the involved mecha-
nisms remains a major challenge. It has only been partially achieved
today, with comprehensive studies using cell lines deciphering specific
gene implications [56].
So far, annotations of non-protein coding elements have provided
useful information to colocalise putative regulatory regions and asso-
ciated SNPs [57]. However, they were mostly generated using in vitro
cultured cell lines. Most importantly, integrative approaches studying
multiple omic layers, notably including transcriptome and chromatin
conformation, in relevant cell types and disease context are increas-
ingly believed to be necessary to uncover the causative variants [54].

3. EPIGENOMIC REGULATION OF INFLAMMATION:
IMPORTANCE OF ENHANCERS

Gene expression depends on genome structure and chromatin
conformation that governs accessibility of transcription factors and
coregulator complexes to regulatory DNA sequences. Among these
regulatory elements, enhancers are a class of regulatory DNA se-
quences that activate transcription of the associated genes from a
distance of up to 1 Mbps (millions of base pairs), independently of their
location and orientation with respect to the transcription start sites
(TSS) [58,59]. A central feature of enhancers is their ability to integrate
the binding of different transcription factors (TFs). Consequently, en-
hancers commonly contain clustered recognition motifs for multiple
TFs representing distinct classes of DNA binding proteins. Functional
binding of transcription factors to DNA at enhancers promotes
recruitment of general co-activators or co-repressors. The sum of the
activity of all the recruited proteins at a given time will determine the
capability of the enhancer to modulate transcription in a tissue-specific
manner [60e62]. Variants associated with autoimmune diseases,
including T1D, occur often in enhancer regions, supporting the
importance of enhancers in gene regulation in disease states [57].
Recruitment of TFs to the enhancers requires chromatin remodelling,
reflected by histone post-translational modifications, such as acety-
lation and methylation, that occur at specific residues. Depending on
their combination, these modifications have been associated with
transcriptional activation or silencing. In general, actively transcribed
genes show increased histone acetylation at promoters and en-
hancers, while repressed chromatin regions are characterised by
reduced acetylation. However, methylation of histone residues can
either be related to activation or repression of transcription. Histone
lysine acetylation (Kac) is enzymatically mediated by histone
4 MOLECULAR METABOLISM 41 (2020) 101041 � 2020 The Authors. Published by Elsevier GmbH. T
acetyltransferases (HAT), such as p300, CREB-binding protein (CBP)
and Tat-interactive protein 60 kDa (Tip60), which also act as tran-
scription co-activators. Conversely, histone deacetylases (HDAC),
including HDAC1e11 and sirtuins, remove acetylation marks and act
as co-repressors with some exceptions [63,64] (Figure 2). Histone
lysine methylation (Kme) is mediated by histone lysine methyl-
transferases (HMTs) and removed by lysine demethylases (KDMs) [64].
Histone acetylation can relax chromatin to enhance gene expression by
various mechanisms that facilitate access of transcription factors and
coregulators to enhancer regions, leading to transcription initiation and
elongation through nucleosome remodelling [64]. For acetylation,
cellular metabolites, such as acetyl coenzyme A (acetyl-CoA) and
nicotinamide adenine dinucleotide (NADþ) influence gene expression
by serving as cofactors for epigenetic modifiers [65]. For example,
acetylation by histone acetyltransferases (HATs) depends on local
subcellular acetyl-CoA concentrations [66,67]. Enhancer elements are
located in regions of accessible chromatin that are hypersensitive to
DNase digestion and often exhibit cell typeespecific patterns of
localisation [68]. Enhancers are associated with chromatin dynamic
regions. H3K4me1 and H3K27ac are the prevalent modifications
associated with enhancers. Before activation, enhancers can be in a
primed state (named “primed enhancer”), defined by the H3K4me1
mark. The presence of hypermobile nucleosomes, pioneer TFs, DNA
5 mC hypomethylation and hydroxylation (5hmC) are other features of
primed enhancers [69,70].
Although a large number of regions in the genome show these
properties, only a fraction of the H3K4me1-marked elements is active
to induce cell-specific gene transcription and is associated to the
presence of histone acetylation on lysine 27 of histone H3 (H3K27ac)
[69] (Figure 2A). Other H3K4me1-marked enhancers modulate tran-
scription in response to cellular stimuli and are thus considered poised
and known as “poised enhancers” [71]. They are defined by the
presence of H3K4me1 and lack of H3K27ac. The H3K27ac mark is
increased in response to activation by external stimuli. The poised
enhancers, shared by many cells (including immune cells), indicate the
potential to respond to local challenges and to induce gene expression
programs. The transcription factors are specifically activated in a cell
type and bind specific promoters and enhancers determining cell-fate
‘choices’ [62] (Figure 2B). Among poised enhancers, Ostuni et al.
identified the poised-activated enhancers that acquired H3K27Ac in
response to inflammatory stimuli [72]. They also described the latent
enhancers as regions of the genome that, in terminally differentiated
cells, are unbound by TFs and lack the histone marks characteristic of
enhancers but acquire them in response to stimulation (Figure 2C). In
immune cells (particularly macrophages), latent enhancers are char-
acterised by the lack of H3K4me1, H3K27Ac histone marks and by the
binding of the master regulator PU.1. Once manifested, many of these
enhancers do not return to their original state when the stimulation
ceases; instead, these enhancers persist and mediate a faster and
stronger response upon a second stimulus [72] (Figure 3). In the
context of inflammation, Park et al. demonstrate through ATAC-seq
analysis of enhancers in monocytes with differential enhancer acti-
vations (and relative TF binding) in response to lipopolysaccharides
(LPS), TNF or type I interferons (IFNeI) induce transcriptional cascades
that alter chromatin accessibility and broadly reprogram TLR4-induced
responses. TNF tolerizes inflammatory genes to prevent toxicity, while
preserving antiviral and metabolic gene induction. IFN-Is potentiate
TNF inflammatory function by priming chromatin to prevent silencing of
inflammatory NF-kB target genes [73]. Moreover, the binding of co-
activator histone acetyltransferases (CBP/p300) to enhancers posi-
tively regulate their associated gene expressions and it is generally
his is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Figure 2: Enhancer categories differently affect chromatin dynamics and gene transcription. (A) Active enhancers are bordered by widely spaced nucleosomes, bearing
modifications, including H3K4me1 and H3K27Ac, bound by lineage-determination transcription factors LDTF (es. PU1, AP1, p65), and histone acetyltransferases (HATs, es. CBP/
p300) and signal-dependent transcription factor (SDTF). Active enhancers are associated with promoters bearing Pol II binding, H3K27Ac and H3K4me3 histone marks. Their
activation correlates with the induction of both enhancer-promoter interactions (continuous arrow) and transcription. (B) Repressed-poised enhancers have reduced chromatin
accessibility and are marked by H3K4me1. repressed-poised enhancers are bound by LDTFs (es. PU1, AP1, p65), histone deacethylase (HDACs) and co-repressors (es. GPS2 and
SMRT/NCOR). Associated poised promoters have a bivalent signature (H3K27me3, H3K4me3). Enhancer-promoter interaction and transcriptional de-repression depend on the
status of enhancer activation. (C) Latent enhancers are not marked by histone marks. They are associated with poised promoters and become activated in response to external
stimuli. Enhancer-promoter (EeP) interaction and transcriptional de-repression depend on the status of enhancer activation (broken arrow).
coupled with a gain of H3K27ac modification. Consistent with this,
local recruitment of co-activator proteins promotes the transition of
primed enhancers to an active state. This evidence suggests that
stimulus-specific prolonged stimulation determines expansion of the
cis-regulatory repertoire and provides an “epigenomic memory” of the
exposure to environmental agents [72,73]. This memory phenomenon
has been observed both in experimental models and in clinical trials,
such as the Diabetes Control and Complications Trial (DCCT) and the
follow-up observational Epidemiology of Diabetes Interventions and
Complications (EDIC) study. The results of the DCCT indicated that T1D
patients subject to intensive glycaemic control had a much lower
incidence or severity of various complications. After the DCCT, both
groups were placed on intensive therapy and were followed over the
long term in the EDIC study phase. Despite the attainment of similar
levels of glucose control (based on Hb1Ac) in both groups during the
EDIC study, patients in the original DCCT intensive treatment group had
significantly lower risk of developing microvascular and macrovascular
complications relative to the original DCCT conventional treatment
group [74,75], a phenomenon termed ‘metabolic memory’. Chromatin
and DNA analysis were performed in blood monocytes and lympho-
cytes of T1D patients who participated in the DCCT and EDIC trials. The
analysis revealed that monocytes from patients treated with conven-
tional therapy during DCCT and developing complications during
subsequent EDIC follow-up study showed significant enrichment of
acetylation of histone H3 at lysine 9 (H3K9ac), a gene-associated
activation mark, at key inflammatory loci [76,77]. The association of
acetylation-associated chromatin changes and precedent history of
hyperglycaemia, strongly support the interrelation between epigenetic
mechanisms and metabolic memory [63]. Likewise, Christ et al. also
MOLECULAR METABOLISM 41 (2020) 101041 � 2020 The Authors. Published by Elsevier GmbH. This is an open a
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demonstrated this concept of metabolic memory through epigenomic
and transcriptomic reprogramming of immune cells in obesity and T2D
[78]. They proposed that the NRLP3 and IL1B axes are sensitive to
long-term epigenetic reprogramming, which causes aberrant activa-
tion of this pathway during a second exposure of metabolic cues and
disease progression [78]. Interestingly, this epigenomic regulation of
the IL1B pathway in humans was influenced by genetic variants, which
are important in pharmacological approaches [78]. This epigenome-
sensitive response could be controlled by abnormal activation of en-
hancers region leading to uncontrolled inflammation and a pro-diabetic
status as we recently proposed [79]. In collaboration with Eckardt
Treuter’s group, we discovered that G protein pathway suppressor 2
(GPS2), a HDAC3 corepressor complex subunit, controls enhancer
activity and consequently the activation of macrophages [79e82].
Macrophage GPS2-KO mice display a pro-inflammatory phenotype,
leading to increased adipose tissue inflammation and macrophage
infiltration and development of systemic insulin resistance under diet-
induced obesity conditions. The phenotype is consistent with the
genomic features of the GPS2-containing repression pathway and
involves direct repression of c-Jun in macrophage enhancers.
Comprehensively, these studies demonstrate that metabolic memory
at enhancer regions is an important sensor of the diabetes-associated
epigenetic changes that influence the disease onset and severity.

4. DO ENHANCER SNPS INFLUENCE THE INFLAMMATORY
RESPONSE IN DIABETES?

In addition to changes in enhancer activity, driven by environmental
stimuli, individual genetic differences also affect the activation status
ccess article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). 5
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Figure 3: Enhancer keeps memory. Latent enhancers have been associated with
epigenetic memory of the exposure to inflammatory signals. In response to a first
inflammatory stimulus (such as LPS), many latent enhancers do not return to their
latent status but are maintained in “memory” through H3K4me1 marks. Consequently
to the memory marks, enhancers have a faster and stronger sense of the second
exposure to inflammatory signals.

Review
of enhancers. GWAS studies have shown that the majority of disease-
associated SNPs reside in non-protein coding DNA-regions [83]. The
characteristics of genetic variation responsible for heritable phenotypic
variability depend on the number of genetic variants affecting a trait,
the magnitude of their effects and their interactions with each other
and the environment. GWAS have been successfully employed in large
human populations and have enabled a much-improved understanding
of the direct association of common variants with complex traits and
diseases [84]. Such genetic studies can also be performed to associate
variants modulating molecular quantitative traits including gene
expression levels, chromatin accessibility or histone marks, thus
identifying molecular Quantitative Trait Loci (molQTLs) like expres-
sionQTLs (eQTLs) or histone modification QTLs (hQTLs), altogether
contributing to the cascade of regulatory events [54]. As enhancer’s
function in a cell-specific manner and genetic variants can affect gene
expression by disrupting TF chromatin binding (bQTL), the interpre-
tation of non-protein coding variants requires definition of regulatory
landscapes in the relevant cell types. Experimental studies able to
demonstrate variant associations with open chromatin regions and
transcription factor binding have been recently reported [85e87]. In
this context, transcription factor binding sites (TFBSs) are particularly
studied as they represent the 31% of GWAS SNPs, yet only comprise
8% of the genome [88]. (Figure 4A). Van der Veeken et al. linked
genetic variation to allelic imbalances in chromatin accessibility to
reveal the contribution of specific TF DNA-binding motifs to stable and
transient gene regulation in CD8 T cells responding to acute viral
infection [89]. They identified some stably responsive DNA elements
that were characterised by chromatin remodelling events affecting
different neighbouring sites and requiring distinct TF-binding motifs for
their co-operations in virus-specific CD8 T cells. Interestingly, tran-
siently regulated regions had a higher degree of constitutive acces-
sibility than stably regulated peaks, and relatively minor changes were
induced by activation [89]. As discussed previously, important chro-
matin remodelling events are associated with stability across several
cell types and experimental systems. Enhancer remodelling and
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chromatin dynamics in Treg cells, natural killer (NK) cells, and mac-
rophages respond in a similar manner to inflammatory challenges [72].
Moreover, polymorphisms analysed in different mouse strains have
been used to identify TFs cooperating with macrophage lineage-
determining TFs [89]. Thus, this study provides insights into the mo-
lecular mechanisms driving virus-specific CD8 T cell responses but
also suggests a general mechanism for the formation of transcriptional
and epigenetic memory applicable to other immune and non-immune
cells [89]. Interestingly, an analogous approach has also been used by
Fasolino et al. [90] that added another layer of transcriptional regu-
lation consisting of the linear and 3D organisation of the genome [90]
aimed to study the impact of genetic variation associated with T1D on
the 3D chromatin topology of T lymphocytes using a genetic model of
T1D, the non-obese-diabetic (NOD) mouse strain. To elucidate the
effects of genetic susceptibility, they used diabetes-susceptible NOD
and diabetes-resistant C57BL/6 mice (as control) before disease onset,
and they produced high-resolution maps of linear and 3D genome
organisation of their T lymphocytes. The formation of multi-enhancer
interactions at genomic regions harbouring genes with prominent
roles in T cell development in both strains was observed. However,
diabetes risk-conferring loci enhancers and promoters coalesced in
diabetes-susceptible mice, but not in C57BL/6 mice, forming hyper-
connected “3D cliques” where these 3D interactions were mediated
in cis (Figure 4B). The genes located in these “3D cliques” belong to
the KRAB-ZFP gene family, and they found they were more commonly
expressed in the immune cell population of the pancreas of human
donors with T1D, suggesting the evolutionary conservation of this
pathway and its relevance to disease progression. This study dem-
onstrates that multi-enhancers containing SNPs contact at megabase
resolution generate chromatin misfolding at KRAB-ZFP family genes
and are associated structurally and functionally to T1D risk [90]. Study
by Gao et al. compared genome organisation and epigenomic profil of
Th1 and Treg cells isolated from healthy and T1D participants [91].
Among a large number of deregulated enhancers and altered tran-
scriptional circuitries in both cell types of T1D patients, they identified
four SNPs (rs10772119, rs10772120, rs3176792 and rs883868) in
linkage disequilibrium (LD) with T1D-associated GWAS hits. They
demonstrated that these SNPs alter enhancer activity and expression
of immune genes. Among them, rs10772119 and rs883868 disrupt
the binding of retinoic acid receptor a (RARA) and Yin and Yang 1 (YY1),
respectively. The study provides a mechanistic explanation for how
rs10772119 promotes the onset of T1D through regulation of Treg
cells. Moreover they identify that rs883868 can disrupt the binding of
YY1 in Treg cells, leading to the loss of enhancerepromoter looping
mediated by YY1 [91] (Figure 3). Combination of GWASs, cell/tissue-
specific histone modifications and TF promoter occupancy proposes
that some diabetes-associated SNPs are located in enhancer regions
that may interfere with the activation status of immune cells. Several
SNPs contribute to the regulation of chromatin conformation and have
the capability to influence the binding affinity of the transcription
factors. The analysis of enhancer-regulated genes showed a relevant
enrichment in the signalling pathways and regulatory process involved
in WNT signalling pathways and TLR responses [92]. In T2D, analysis
of chromatin conformation provided information on the contribution of
chronic inflammation of adipose tissue to the development of T2D [93],
although these pathways have not been found in previous GWAS.
Several other studies have integrated GWAS information with other
omics data to determine whether the accessibility of chromatin could
be altered by T2D-associated SNPs [94,95]. Another recent study used
a high-throughput chromosome conformation capture (promoter
capture Hi-C) to identify interactions between regulatory elements in
his is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Figure 4: Enhancer-associated genetic variants and enhancer-promoter interaction changes in response to environmental stimuli. (A) Enhancer SNPs may regulate both
enhancer-promoter (EeP) interactions and gene transcription. Environmental stimuli regulate transcription through regulation of chromatin dynamics and TF recruitment at
enhancer regions. Enhancer-associated genetic variant 1 alters signal-dependent TF recruitment and chromatin dynamics, leading to absence of EeP interaction and a tran-
scriptional repression (left panel). A different enhancer-associated genetic variant 2 enhances TF recruitment, histone modifications and chromatin remodelling, leading to EeP
interaction and increased transcription (right panel). (B) The presence of conferring risk loci determines dynamic chromatin 3D structure organisation. E1 (Enhancer 1), E2
(Enhancer 2), E3 (Enhancer 3) and E4 (Enhancer 4) represent four independent genomic regions. In healthy situations, the binding of TFs to enhancers allows loop formations (left
panel). In diabetes-susceptible mice, the presence of SNPs in enhancers (named enhSNP) promotes an inappropriate chromatin looping altering gene transcription of diabetic-
susceptible genes.
human islets and gene promoters. With this approach, 87% of T2D and
fasting glucose-susceptibility loci which overlapped with active en-
hancers were assigned to at least one gene [96].
Collectively, these recent findings demonstrate that genetic variants in
genomic enhancer regions can disrupt three-dimensional genome
organisation (emodQTLs or vcmQTLs) and affect gene expression
patterns, which may influence the intensity of the immune response
and increase the risk of diabetes and their complications (Figure 3).
However, the detailed molecular determinants governing the diabetes-
specific genome reprogramming and the dynamic of such misfolding
events remain to be understood.

5. FUTURE PERSPECTIVES

The study of enhancer mapping and regulation has been limited
mostly to cell lines or resting primary cells [88,97], whereas the
function of a substantial proportion of immune cell enhancers (and the
allelic variants that they harbour) becomes apparent only after cell
activation, including in monocytes and macrophages [98,99]. Specific
activation of enhancers can explain the tissue-specific macrophage
gene expression programme and raises the possibility that enhancer
remodelling can alter cellular responses to environmental signals
contributing to macrophage plasticity [100]. Moreover, in human
autoimmune diseases, it was shown that 90% of the causal disease
variants are non-protein coding, with 60% of the causal variants
mapping to enhancer elements [83]. These findings imply that
phenotypic consequences of such variations causing disease are
largely caused by an altered regulation of gene expression. The Im-
mune Variation Project and other studies have recently demonstrated
that the gene expression of thousands of inflammatory genes is
regulated by thousands of genetic variants [101,102]. Most of these
genetic variants were found in cis and are specific for both cell type
and environmental exposure, which justifies a need to study genetic
variation in enhancer elements in many cellular states. A better un-
derstanding of mechanisms by which genetic variation influences
disease risk therefore requires knowledge of its impact on the
functioning of enhancer elements. Whereas cell identity is associated
to TF binding at enhancers, TFs can recruit broadly expressed co-
activators, irrespective of cell type. As one TF within the cluster can
MOLECULAR METABOLISM 41 (2020) 101041 � 2020 The Authors. Published by Elsevier GmbH. This is an open a
www.molecularmetabolism.com
recruit a given co-activator, the profile of genome-wide co-activator
occupancy represents a potent strategy to detect enhancers. Recent
work has suggested that cis-eQTLs identified by studies of healthy
subjects might actually play a more limited pathogenic role than
anticipated as opposed to their strong impact on interindividual
variation of gene expression [103e105]. In fact, regulation of
important genes, those involved in development and diseases, is
robust to DNA variation as a consequence of enhancer redundancy
and shadow enhancers [106,107]. In this context, trans eQTLs could
play a much more important role than previously thought, empha-
sising the interest of a deeper understanding of the 3D architecture of
the functional genome [108]. Indeed, enhancers are also able to
mediate long-distance gene contacts participating in transcriptional
regulation in nuclear space that have also been associated to T2D
pathogenesis and risk classification [66]. The understanding of nu-
clear architecture has improved dramatically over the past decade.
The latest reports corroborate the formation of multi-enhancer con-
tacts, variously called cis-regulatory domains [109,110], activation
hubs [111], interacting triplets [112], connected gene communities
[113] or 3D cliques [114], all contained within topologically-
associated domains (TADs) [115]. Despite these observations, it re-
mains unclear how multi-enhancer interactions mediated by meta-
bolic- and pro-inflammatory stimuli are associated with diabetes
onset and progression.
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