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Active navigation relies on effectively extracting information from the surrounding
environment, and often features the tracking of gradients of a relevant signal—such as the
concentration of molecules. Microfluidic networks of closed pathways pose the challenge
of determining the shortest exit pathway, which involves the proper local decision-making
at each bifurcating junction. Here, we focus on the basic decision faced at a T-junction by
a microscopic particle, which orients among possible paths via its sensing of a diffusible
substance’s concentration. We study experimentally the navigation of colloidal particles
following concentration gradients by diffusiophoresis. We treat the situation as a mean
first passage time (MFPT) problem that unveils the important role of a separatrix in the
concentration field to determine the statistics of path taking. Further, we use numerical
experiments to study different strategies, including biomimetic ones such as run and tumble
or Markovian chemotactic migration. The discontinuity in the MFPT at the junction makes
it remarkably difficult for microscopic agents to follow the shortest path, irrespective of
adopted navigation strategy. In contrast, increasing the size of the sensing agents improves
the efficiency of short-path taking by harvesting information on a larger scale. It inspires
the development of a run-and-whirl dynamics that takes advantage of the mathematical
properties of harmonic functions to emulate particles beyond their own size.

DOI: 10.1103/PhysRevFluids.5.104202

I. INTRODUCTION

The importance of oriented motion in food searching, survival, and mating is a potent evolution-
ary force that led to the tinkering of effective and diverse strategies of navigation in the natural
realm [1]. Slugs can faithfully sense concentration gradients across their bodies to direct them
towards sources of nutrients [2]. This strategy does not lend itself to smaller organisms since the
local spatial gradient is overwhelmed by noise and diffusion of the chemical [3]. Instead, bacteria
such as E. coli ought to trade space for time, moving much faster, estimating the local concentration
gradients by time differences, and orienting by proper modulations of their tumbling rate [4]. The
size of the particles plays a similar discriminant role in the navigation of nonliving particles. As
a matter of fact, existing methods for the identification of the shortest path in a maze involve big

*Present address: Ladhyx, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France.
†Present address: Laboratoire de Physique de l’Ecole Normale Supérieure, ENS, Université PSL, CNRS,

Sorbonne Université, Université de Paris, F-75005 Paris, France.
‡palacci@ucsd.edu

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0
International license. Further distribution of this work must maintain attribution to the author(s) and the
published article’s title, journal citation, and DOI.

2469-990X/2020/5(10)/104202(12) 104202-1 Published by the American Physical Society

https://orcid.org/0000-0002-7212-8244
https://orcid.org/0000-0002-7253-9465
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevFluids.5.104202&domain=pdf&date_stamp=2020-10-14
https://doi.org/10.1103/PhysRevFluids.5.104202
https://creativecommons.org/licenses/by/4.0/


TANVI GANDHI et al.

particles and global knowledge harvested from nonlocal quantities, for instance, millimetric droplets
by the Marangoni effect [5,6], amoeboid growth [7], the propagation of chemical waves [8], trains
of droplets advected by a solvent flow [9], or the parallel exploration of all possible paths in a maze
by pressure-driven flows [10]. Microfluidic networks are further used to confine bioagents [11] and
chemotactic bacteria, showing the formation of bacterial clusters where bacteria secrete their own
chemoattractant [12] or the ability of bacteria to search out each other and dynamically confine
themselves [13]. Branching maze geometries have been used in ecology to study the orientation
of penguins or birds [14,15] and the routing of plant roots [16] in response to volatile chemical
compounds. In microfluidic settings, they offer controlled environments and chemical gradients to
study the navigation of C. elegans worms [17] or reveal phenotypic heterogeneity in chemotactic
sensitivity of bacteria [18].

Our distinct goal here is to address the navigation of microfluidic networks by small particles
that orient and displace by active sensing, which prevents them from being simply carried by the
flow. We consider T-junctions, with bidirectional concentration gradients, which can lead to to one
or the other branch, differing by the amplitude of the gradient. This problem of navigation is the
path-taking agents entering the junction to follow the gradient along one branch or the other, in
contrast to the ecology examples discussed above. In this situation, the microscopic size of the
particles poses new challenges in sensing, similar to those mentioned above for bacteria as compared
to bigger eukaryotic cells. In addition to those fundamental reasons, the problem is also motivated
by applications to microrobotics, where reduced sizes are favored in order to reduce invasiveness
and local searches are needed for targeted delivery [19,20]. For particles with a sensing mechanism
leading to a mean migration velocity v ∝ ∇ f (s), where f is a reasonably smooth function of a
chemical s diffusing throughout the network, a global constraint of vanishing circulation,

∮
v · dl =

0, holds on every closed contour. A priori, this would imply a higher velocity along the shortest
available path in the maze, similarly to hydrodynamic flows [9]. However, hydrodynamic flows
are deliberately absent in our setup, as mentioned above. Instead, particles must find their way by
sensing local gradients of the chemical s and by using them to make their decisions at the successive
junctions of the maze.

In this work, we study the statistics of path taking at T-junctions, where microscopic agents
interact with steady concentration gradients imposed via flowing solutions connected to the inlet and
outlet of a microfluidic network. In such configurations, gradient-sensing particles travel to the exit
while discounting dead ends that exhibit uniform concentration—a feature recently highlighted for
chemotactic cells “seeing around the corner” [21]. As a result, particles navigate along pathways that
connect the entry to the exit of a microfluidic network. We determine how the series of successive
local decisions at the T-junctions affect global navigation and the capacity to effectively identify
optimal paths. We first investigate the phenomenon with a model system of colloidal beads directed
along a gradient of electrolyte by diffusiophoresis, an interfacial phenomenon [22–26] leading
to the migration of particles with velocity v = DDP∇ ln c. Here, c(x, t ) is the total electrolyte
concentration with temporal (t) and spatial (x) dependence, and DDP is the diffusiophoretic mobility
of the particle.

We study the navigation of those particles in a microfluidic network and the statistics of path
selection, which we compare with theoretical and numerical models. Specifically, we treat the
navigation as a mean first passage time (MFPT) problem, which allows us to unveil the existence of
discontinuities in the MFPT that determines the decision-making at junctions. We further investigate
different navigation strategies to improve the agents’ performance to follow the optimal (shortest)
path, including run-and-tumble and the Markovian chemotactic dynamics. We show that they all
exhibit relatively poor performance, which we trace back to the size of the agents by showing how
the performance improves with their dimensions. Finally, we illustrate this effect with a toy model
of “run-and-whirl” of particles performing straight runs combined with random left- or right-handed
turns circles, emulating the navigation of particles of larger size.
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FIG. 1. (a) Sketch of the experimental setup. Continuous lateral flows set the boundary conditions and
allow the development of a steady concentration map in the microfluidic network. Colloids (white particles)
added to the lateral flow enter the network by diffusiophoresis, migrating towards the high concentration of salt.
Engineered “hairy” colloids do not exhibit diffusiophoretic migration and allow one to ensure the absence of
transversal flow as controlled by a pressure controller. The color map represents the steady concentration map
of the Laplace equation �c = 0. (b),(c) Curvilinear displacement of colloidal particles by diffusiophoresis.
(b) In the absence of background salt, the time dependence of the curvilinear position is independent of the
path (color for the paths is defined in the inset). The experimental results are in good agreement with the
logarithmic sensing, v = DDP∇ ln c. (c) With the presence of background salt c̄, the time dependence of the
curvilinear position depends on the path (the color for the paths is defined in the inset). The speed on each
segment is constant, consistent with the linear sensing, v = DDP

c̄ ∇c.

II. RESULTS AND DISCUSSION

We first study the navigation of colloidal particles introduced into a microfluidic network made
of polydimethylsiloxane (PDMS) (see the Appendices). We consider the network constituted by
channels of constant height and width, and varying lengths [Figs. 1(a) and 2(a)]. Large lateral
channels connect to the entrance (source) or exit (sink) of the solute, allowing the solute to diffuse
through the network and establish a steady concentration field that satisfies the Laplace equation
�c = 0 [Fig. 1(b)].

Special attention was taken to suppress solvent flows inside the network: the reduced height of the
microfluidic channels, h ∼ 5 μm, provides a large hydrodynamic resistance ∝ 1/h3, and a precision
pressure controller (Fluigent), which imposes boundary flows and compensates for the pressure
imbalance in real time. Furthermore, solvent flows in the channels are monitored by control mi-
croparticles engineered to exhibit vanishing diffusiophoretic mobility (see the Appendices) [27]. All
experiments are performed in buffer (tetramethylammonium hydroxide salt, TMAH, cb = 0.6 mM)
with pH ∼ 9, which sets the surface chemistry of the particles.

Particles of interest are 1 μm fluorescently labeled beads that are introduced via the boundary
channels [Fig. 1(a), white particles]. They enter the microfluidic network as diffusiophoresis drives
them towards the high concentration of salt. The control particles with a grafted polymer brush
[black particles in Fig. 1(a)] only exhibit Brownian motion, indicative of the absence of solvent
or osmotic flows (see movie S1 in the Supplemental Material [41]). We observe the motion of
the particles by conventional fluorescent microscopy to extract the curvilinear position s(t ) [28].
In each channel, the steady concentration of LiCl is a solution of the Laplace equation, ∇2c = 0,
leading to c(s) = cmin + s�c/Li, where Li is the curvilinear length of each path, cmin and cmax are,
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FIG. 2. (a) Microfluidic network. Three different paths are coded with different colors, with red the shortest
and blue the longest. (b) Histogram of exit time for particles traveling through the microfluidic network, where
each path has the same color scheme as in (a). The histogram agrees well with the stochastic modeling
(solid lines). (c) Numerical solution of the mean first passage time (MFPT) in the geometry of (a). The
discontinuity in the MFPT is highlighted in the inset. (d) Discontinuity of MFPT is prescribed by a separatrix
in the concentration field, whose position is set by the geometry and the relative gradients in paths exiting the
T-junction.

respectively, the entrance and exit concentration, and �c = cmax − cmin. The magnitude of phoretic
velocity is then |vDP| = DDP|∇ ln c(s)| = �c/[Licmin + s�c]. So there are two limits for the profile
of vDP: when �c � cmin, |vDP| ≈ 1/s is independent of the path length and concentration; and when
�c � cmin, |vDP| ≈ �c/(cminLi ) is independent of s.

We first consider the situation �c � cmin by imposing a gradient of LiCl with cmin = 0 mM
and cmax = 6 mM. We observe s(t ) as shown in Fig. 1(b), exhibiting a higher particle velocity near
the entrance than further down the path. The diffusiophoretic mobility is determined by integrating
ds/dt = |vDP| = DDP/s and fitting to the experimental trajectories, which yields DDP ∼ 380 μm2/s
that is comparable to previously reported mobilities in LiCl gradients for particles of comparable
surface chemistry [24]. Remarkably, the particle velocity does not depend on the choice of the path
[Fig. 1(b)] and does not involve the magnitude of the concentration gradient �c/Li, in contrast with
other phenomena such as salt trapping [24] and persistent particle removal [29]. The logarithm sens-
ing suggests that diffusiophoretic motion remains effective down to very small salt concentrations
and gradients, provided that ∇c/c remains finite—a feature previously reported in the experiments
of “osmotic shocks” where particles migrate in vanishing concentration gradients and vanishing
concentration [30]. The limit of this counterintuitive result—in the context of an ultradilute salt
where the intra-ion distance compares with the particle size—remains to be investigated.

The path-independence property is lost when adding a background concentration of salt, c̄ = 5
mM, obtained using cmin = 4 mM and cmax = 6 mM. The particle velocity becomes |vDP| =
(DDP/c̄)|∇c|, where c̄ = 5 mM is the average LiCl salt concentration and ∇c is a constant in
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each segment of the network, dependent on the geometry of the network and �c. The curvilinear
displacement of the particles is shown in Fig. 1(c), and the piecewise linear displacement confirms
the constant velocity in each segment of the path and is higher in shorter channels. Noticeably, a
reduced number of particles enters the microfluidic network in this situation, even using smaller
particles, showing that it is not a result of spatial hindrance. Furthermore, the diffusiophoretic
mobility measured for the particles navigating the microfluidic network, D∗

DP � 1000 μm2/s, is
significantly larger than for the case of no background salt [Figs. 1(b) and 1(c)]. We attribute
this observation to a sorting mechanism analogous to the diffusiophoretic capture of particles
in dead-end pores recently discussed by Battat et al. [25]. In brief, only particles that exhibit a
sufficient transverse drift in the concentration gradient at the entrance, |vDP| = D∗

DP/c̄∇c|s=0, can
escape flow streamlines of the boundary channels and enter the microfluidic network. It requires
that entering particles have higher diffusiophoretic mobilities D∗

DP with salt background rather than
without, for which the entrance velocity is |vDP| = DDP∇ ln c|s=0 [Figs. 1(b) and 1(c)]. It results
in an effective sorting, where only particles with high diffusiophoretic mobilities enter the network
with the presence of background salt. The origin of this difference in diffusiophoretic mobility,
which cannot be simply accounted for by differences in size [31], is likely related to differences in
surface chemistry and ζ potential in the colloidal suspension. A detailed analysis of this effect is,
however, beyond the scope of the present work.

Next, we investigate the navigation of particles in microfluidic networks, where the possible
paths are color coded by length [Fig. 2(a)]. The histogram of the exit times for particles choosing the
different paths is shown in Fig. 2(b), where the shortest (red) path exhibits the shortest exit time and
a much higher probability. It indicates a selectivity in the path taking, which we now aim to explain
through stochastic modeling. The particle motion has two contributions: (i) a diffusiophoretic drift,
vDP = DDP f (c)∇c, and (ii) a random component of Brownian motion,

√
2DWt , where the diffusion

coefficient, D ≈ 0.4 μm2/s for 1 μm particles, is estimated from the Stokes-Einstein relation [32].
The resulting equation for the position of the particle reads dXt = DDP f (c)∇c dt + √

2DdWt .
Without background salt, f (c) = 1/c, and the integration of this Itô stochastic differential equation
(SDE) (see the Appendices) yields the distribution shown in Fig. 2(b), which captures the experi-
mental statistics. The equilibrium statistics is determined analytically via the associated steady-state
Fokker-Planck equation ∇ · [−DDP f (c)ρ∇c] + D�ρ = 0, which can be solved exactly for the
particle density ρ(x, t ). The associated probability current is given by j = γ∇c, where γ is a
constant determined by the boundary conditions (see the Supplemental Material [41]). As a result,
the number of particles choosing each path is proportional to the concentration gradient, which
explains why more particles choose the shortest path [Figs. 2(a) and 2(b)].

Defining the exit time te(x) of a particle started at position x in the network, its expectation is the
mean first passage time (MFPT) τ (x) = Ete, which satisfies DDP f (c)∇c · ∇τ + D�τ = −1 with
∂nτ = 0 at the maze wall and τ = 0 at the entrance and exit [33]. The MFPT is solved numerically
(Fig. 2(c); see Supplemental Material [41]) and exhibits a discontinuity at each junction, reflecting
the different paths taken by the particles [inset of Fig. 2(c)]. To explain this discontinuity, we plot
the color map of the magnitude of salt concentration gradient, with the direction of ∇c labeled by
red triangles [Fig. 2(d)]. It shows a separatrix between the two paths, along which ∇c is tangential,
and creates a discontinuity of the value for τ . In the absence of Brownian noise, particles do not
exchange between each side of the separatrix, leading to a sharp discontinuity of τ at the separatrix
and the formation of a shock. In this case, the conservation of mass leads to d1|cx,in| = d|cx,out|
and d2|cx,in| = d|cy,out|, using the notations from Fig. 2(d) and where cx and cy are the gradient of
the concentration c along x and y, respectively. For a uniform incoming density, the ratio of the
particle number choosing each branch is then N1/N2 = d1/d2 = |cx,out|/|cy,out|, reaching the same
conclusion as the Fokker-Planck approach: the particle number at each path is proportional to the
magnitude of salt gradient there. The discontinuity of the MFPT clearly identifies the origin of path
taking at the junction. Since it originates from the separatrix in the steady concentration field, we do
not expect the statistics of path taking to depend on the amplitude of the diffusiophoretic mobility,
provided it is nonzero (see the Supplemental Material [41]), though the exit time would. As a result,
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FIG. 3. (a) The efficiency of the path taking for particles with radius R is improved due to the exclusion
zone (shaded area) near the wall. A “run-and-whirl” navigation scheme (red trajectories) based on the
mathematical properties of the analytic is proposed, which allows point particles to emulate the performance of
particles with larger radii. (b) Path selectivity P for different navigation strategies (different symbols). f2 = 1/c
represents the phoretic strategy and f3 = 1c>c̄ represents a strategy that has a nonsmooth dependence on c.
Chemotactic migration is obtained by evolving a three-state system, run-and-tumble strategy and pure diffusion
give roughly 50% selectivity at the junction. All strategies but the run and tumble and pure diffusion compare
similarly and agree with our analytic prediction for particles of finite size (dashed line). The selectivity for point
particles at the considered gradient is P(0) = d1/d = 0.65, with the critical particle size Rc = d2 = 0.35d ,
beyond which the selectivity is 1.

the statistics of path taking should remain unchanged in the general case where the diffusiophoretic
mobility depends on the concentration, DDP(c), for example, when accounting for the variations of
diffusiophoretic mobility of particles of radius a with thin and finite Debye layer of thickness κ−1

[31,34] (see the Supplemental Material [41]).
So far, we have considered the path taking of small particles, whose spatial extension is small

compared to the dimensions (width or height) of the microfluidic network. We now turn to the effect
of particles size on the navigation scheme. Here, we simply consider the walls as impenetrable
boundaries setting the geometry of the network. The effects of the walls on continuum fluid
mechanics (hydrodynamic interactions) and solute transport can be neglected as a result of their
leading-order scaling ∝ (a/h)3, where a is the particle radius and h is the distance from the
particle center to the (nearest) wall (see the Supplemental Material [41]) [35,36]. The phoretic
velocity of a particle with finite radius R is obtained by averaging the slip velocity along the
particle surface, v(x, y) = 〈DDP f (c)∇c〉 [22,36]. In the presence of background salt, f = 1/c̄ is
a constant, the velocity of the particle of finite size is given by the value of the gradient at the center,
v = (DDP/c̄)∇c, as reported in [22,36], which can be formally understood from the components
of ∇c being harmonic functions and satisfying the mean value principle (MVP)—the spherical
three-dimensional (3D) or the circular (2D) average of a harmonic function is its value at the
center of the sphere or the circle. We extend this result to any smooth function f (c), showing that
f (c)∇c almost satisfies MVP for harmonic functions as a result of the harmonic properties of the
concentration field c. In that case, the correction is controlled by the aspect ratio of the network (see
the Supplemental Material [41]). It follows that we can treat a particle of finite size, in the limit of
thin Debye layers, the same way as a point particle positioned at the particle’s center, as previously
discussed in [22,36]. However, the nonoverlap condition of the particles with the walls creates an
exclusion zone, as shown in Fig. 3(a). Assuming the particle enters the junction with a uniform
density and the left exit has higher salt gradient, so that d1 > d2, the probability of the particle
exiting through the left side, or the selectivity, is P(R) = limN→∞ N1/N = (d1 − R)/(d − 2R),
where N = N1 + N2 is the total number of particles entered and d = d1 + d2 is the channel width.
The piecewise continuous P(R) is plotted in Fig. 3(b) and presents a critical particle radius Rc = d2,
above which particles show perfect selectivity at the junction: P(R) = 1, for R > Rc.
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We test this prediction numerically for particles of different sizes and different navigation
strategies, arriving at a junction. We assume that the presence of the particle does not modify
the concentration field obtained in the absence of particles, a reasonable assumption for dilute
suspension of particles, whose thickness is small compared to the height of the channel, as in the
experiment. Particles with velocity v ∼ f ∇c that has f1 = 1 or f2 = 1/c follow our prediction for
P(R) with an improved selectivity arising only as the particle size increases [Fig. 3(b)]. To test
the robustness of this result, we consider functions f that lack the regularity or depend on the
history: (i) A piecewise continuous indicator function f3 = θ (c − c̄) that is unity when c is greater
than its mean on the boundary and vanishes otherwise; (ii) temporal chemotaxis implemented via
run-and-tumble dynamics; (iii) spatial chemotaxis achieved from a three-state system that presents
a hysteretic behavior [37] (see the Appendices). Remarkably, most navigation strategies present a
selectivity in line with the simple geometric argument set by the concentration field [Fig. 3(b)].
Run-and-tumble navigation, however, performs poorly and compares with random diffusion, over a
broad range of tumbling rates (see the Supplemental Material [41]). Though run and tumble is an
efficient chemotactic strategy along smooth gradients, this result unveils the inadequacy of temporal
chemotaxis to capture the spatial discontinuity set by the separatrix. Three remarks are in order. The
first one is that the discontinuity in the direction of migration at the separatrix makes run and tumble
different from the migration along ∇c [see Fig. 3(b)]. The second one is that this phenomenon is
not observed in situations such as in Ref. [18], where the transverse component of the gradient in
the junction is unidirectional and therefore no separatrix is present. Finally, we only considered the
phoretic velocity component that has the same direction as ∇c, while other considerations—such
as the delays in the polarization of the active sites that can lead to displacements transverse to the
concentration gradient—could lead to a tensorial mobility have not been studied in the present work.

The results presented in Fig. 3 show that bigger particles achieve higher selectivity, emphasizing
the importance of averaging for adequate decision-making. Inspired by this result, we investigate
whether a small particle can emulate a particle of larger size by an adequate navigation strategy.
In line with the navigation strategies considered above, we assume that particles measure local
concentration c and gradient ∇c and have memory, so that c and ∇c along the path of the particle
are known. We are aiming to infer the distribution of c at a junction through its value along a curve
(trajectory of the particle), a problem formally known as the search for the analytic continuation of
c, i.e., determine the value of a harmonic function in a domain 
 given its value in a subdomain
� ⊂ 
. In general, this is numerically ill conditioned and one cannot estimate the value of the
concentration everywhere by knowing the value of the concentration and gradient along a line. The
concentration c can, however, be determined through boundary integrals if the trajectory forms a
closed loop. It inspires us in the design of “run and whirl,” where particles complete straight runs
of random lengths before making a random left- or right-handed turn and completing a full circle
with radius rt [see Fig. 3(a) and Appendices]. Upon completion of the loop, the values of c and
∇c are known along the circle, making it possible to determine ∇c at the center of the circle using
Poisson’s formula, and circumventing the above indetermination. Conveniently, this value is directly
determined by averaging ∇c along the circular path as a result of the MVP. The particle then runs
along the new direction set by this averaged ∇c; the overall effect of this scheme is for a point
particle to emulate a gradient-sensing particle with radius rt .

The efficiency of this scheme depends on the tumbling rate β and the turning radius rt . At a
moderate rate β = 1 s−1 and turning radius rt < 0.1d , the point particle has enhanced selectivity at
the junction as its navigation scheme effectively emulates that of a bigger particle with size R = rt

(see the Supplemental Material [41]). We further test the robustness of the navigation by adding
angular diffusion Dr to the turning stage, such that particles are turning with a mean angular velocity
plus noise. As a result, the agent follows loops rather than perfect circles (see typical trajectories
in the Supplemental Material [41]). The results gathered in Table I show a range of enhancement
of the selectivity compared to the efficiency of a point particle and that the selectivity for a particle
with turning radius rt tracks the selectivity P(rt ) of a particle of radius rt , as discussed above and
presented in Fig. 3(b). However, the effects of collisions with the walls dominate when the turning
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TABLE I. Comparison of path taking between particles of finite size and of run-and-whirl navigation. The
first line is the efficiency P(rt ) for a particle of radius rt [see main text; dashed line in Fig. 3(b)]. The remaining
lines give the efficiency of the run-and-whirl strategy of point particles for varying whirling rate β, and angular
diffusion of the particles Dr .

�����������Model
rt/d

0 0.04 0.08 0.12

P(rt ) 0.66 0.67 0.69 0.70
β = 1 s−1, Dr = 0 s−1 0.65 0.67 0.69 0.65
β = 1 s−1, Dr = 0.2 s−1 0.65 0.71 0.61 0.61

radius or the whirling rate further increases and limits the effective average of the scheme (see the
Supplemental Material [41]). Remarkably, the effect is robust to the addition of noise (Table I), a
result of the harmonic properties of the concentration, allowing an adequate estimate of the concen-
tration on any closed-loop trajectories. Though the range of application and improvement remains
limited, the run-and-whirl navigation is primarily proposed as a toy model for its conceptual value,
showing how mathematical properties of harmonic functions can be leveraged to allow particles to
sense beyond their own size. For such a strategy to be effective, the persistence of the motion needs
to be sufficiently large. As a result, the implementation of such strategy for agents smaller than
1–2 μm appears problematic and will likely be dominated by angular noise. Recent experimental
realizations above this scale have demonstrated that memoryless “run and whirl” at the microscale
is within reach, using, for example, micrometric nanorods with curvature [38] or self-propelled
particles with anisotropic drag [39] to curve trajectories. Those systems were, however, missing the
integration of signal over their strategies to adequately implement our proposed navigation. Run
and whirl highlights the importance of averaging in space to gather information and capture the
separatrix, resulting in better selectivity at the junction. A conceptual asset of the navigation is its
use of the harmonic properties of the concentration field, which allows the strategy to remain valid
in the presence of angular noise, when particles form closed-loop trajectories rather than circles,
and providing a pathway to enhanced navigation efficiency.

III. CONCLUSION

We demonstrated that synthetic colloids can navigate through microfluidic networks by gradient-
sensing diffusiophoresis. We show that the statistics of path taking and exit time of small particles
are accurately captured by a mean-field approach to the corresponding mean first passage time
problem, borrowed from stochastic physics. It highlights that the separatrix in the concentration
field leads to a sharp jump in the mean first passage time, which is the key component that sets the
effectiveness of the navigation scheme. Our study was further extended to particles of larger size.
Using numerical experiments, we demonstrated that a broad class of navigation schemes along
∇c behaves similarly, since they share a common separatrix set by the concentration field and
independent of the navigation strategy. The discontinuous nature at the separatrix illustrates the
difficulty of the decision process at a junction for microscopic agents that have to rely on gradient
sensing and are not carried by any directed flow. Finally, we proposed a scheme that demonstrates
the possibility of improving the navigation scheme of small agents at a junction. Although the
experimental implementation of the proposed method remains elusive and is limited to navigations
with sufficient directional persistence, it shows that one can harness the harmonic properties of the
concentration field to improve navigation even in the presence of noise.
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APPENDIX A: EXPERIMENTAL METHODS

The experiments are performed in microfluidic mazes designed using the KLAYOUT software.
The mazes are networks of 5-μm-wide paths, connected to side channels at the entrance and exit
[Fig. 2(a)]. The side channels are 100 μm wide and connected to reservoirs that supplied them
with solutions. The height of the channels is 5–6 μm. The molds are fabricated via a standard
soft lithography process at the Nano3 Microfluidic Medical Device Facility at the University of
California San Diego, where a Minitech 4-axis CNC micromilling machine (step size resolution
0.1 μm) prints the designs on 4-inch silicon wafers with SU-8 photoresist. The molds are cast with
polydimethylsiloxane (PDMS, Sylgard 184, Dow Corning) and baked for two hours at 80–100◦ C.

An aqueous solution of LiCl with varying concentrations (0–6 mM) is supplied to the reservoirs
that set the boundary conditions at the entrance and exit for the maze. The channel at the entrance
of the maze is also supplied with fluorescent polystyrene colloids (Invitrogen Fluo-SpheresTM

carboxylate-modified microspheres), 1 μm in diameter. We also include 3-(trimethoxysilyl) propyl
methacrylate (TPM) spheres coated with a polymer brush (pluronic) that prohibits phoresis in our
salt concentration, providing the means to monitor the flow. Finally, 0.6 mM of tetramethylammo-
nium hydroxide (TMAH) is used in all solutions to stabilize the colloids. The channels are filled
with solution via a syringe pump (KD Scientific, model no. 180). A pressure controller (Fluigent
MFCS-4C, 25 mbar) balances the pressure in the side channels to ensure the absence of any flows
in the maze. This is further verified by the pluronic-coated TPM spheres, which diffuse randomly
(in the event of a flow, they will be advected by the flow).

The system is observed via a 40X objective on a Nikon Eclipse Ti microscope, with an EO-1312C
camera to record the experiments. The fluorescent colloids are excited at 470 nm and videos are
recorded at 20 fps, making it easy to track the trajectories of the particles using MATLAB.

APPENDIX B: STOCHASTIC MODEL

With the given geometry and boundary conditions, the salt concentration is solved with
COMSOL Multiphysics 5, which is also used for solving the mean first passage time equations.
Once the concentration field c is determined, the particle density associated with the phoretic
velocity, v = DDP f (c)∇c, can be determined as ρ(c) = C1

∫ 1
c exp [−(DDP/D)

∫ u
c f (s)ds]du +

C2 exp [−(DDP/D)
∫ 1

c f (s)ds], with the constants C1 and C2 determined by the entrance and exit
particle density.

The stochastic differential equation in Fig. 2 is integrated with the parameters D = 0.4 and
DDP = 400 μm2/s, comparable to the experimental values. The network in simulations has the
same geometry as in the experiments, except that all the dead ends have been removed to ensure
computational efficiency. All the collisions between the particle and the network are fully elastic,
which corresponds to the condition of a vanishing probability flux. Typically, one million particles
are simulated to ensure the convergence of stochastic quantities.

The junction in Fig. 3 has the channel width d = 5 μm, with the ratio of salt concentration
gradient to the left and right 2 : 1. Collisions are also fully elastic. The typical ratio of DDP/D =
1000 is fixed in all simulations. Each data point is sampled through 1000 stochastic simulations.
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The chemotaxis model evolves a three-state function (ρq, ρa, ρi ), where the subscription labels
the quiescent, activated, and inhibited states of the surface detection [37]. They are defined on the
surface of the phoretic particle and evolve according to the differential equations ∂tρq = −αcρq +
β f ρi, ∂tρa = αcρq − δρa and ∂tρi = −β f ρi + δρa. In our example, we choose v ∼ ∮

ρa∇c so that
the phoretic velocity is averaged on the surface of the particle, and the active area has more weight
in the averaging. The parameters in the simulation are α = 5 s−1, β f = 0.01 s−1, and δ = 0.1 s−1,
similar to previous studies [37].

The run-and-tumble model measures the concentration profile c(s) along the particle trajectory,
where s is the arc length measured from the particle center. The run-and-tumble particles move
straight with a random amount of time that is a Poisson process with rate function ω, after which
the particles tumble to a random direction and resume running towards the new direction. We used
the model in [40], where the rate function is determined by a convolution between the measured
concentration profile c(s) and a memory kernel K , such that ω = τ−1[1 − ∫ t K (t − s)c(s)ds] and
τ−1 = 1 s−1 is an intrinsic tumble rate. This mechanism detects the concentration gradient through
the distribution of c(s), which results in low tumbling rate when the particle moves along ∇c. We
performed simulations for τ−1 = 0.1 − 2 s−1 without significant change of selectivity at the junction
(see the Supplemental Material [41]). For particles with size, we use the average concentration on
the particle surface as the signal c(s), which, due to MVP, is simply the value of salt concentration
measured at the particle center. We further tested the selectivity of run-and-tumble models at
different parameters τ and β and show that the selectivity at the junction is not sensitive to the
choice of parameters (see the Supplemental Material [41]).

The run-and-whirl particle runs straight for a random period of time that is Poisson distributed
with rate β, and it makes either a left- or a right-hand turn to complete a full circle of whirling with
radius rt . With the value of ∇c known on this circle, its value at the center can be determined as the
average (via the MVP property). Upon completing the loop, the particle continues to run straight in
the same direction as ∇c. Upon finishing the loop, the particle averages ∇c along the circular path,
allowing one to determine the harmonic function through boundary integrals.
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