H. Schöneborn, F. Raudzus, M. Coppey, S. Neumann, and R. Heumann, Perspectives of RAS and RHEB GTPase Signaling Pathways in Regenerating Brain Neurons, International Journal of Molecular Sciences, vol.19, issue.12, p.4052, 2018.

W. K. Karunarathne, L. Giri, A. K. Patel, K. V. Venkatesh, and N. Gautam, Optical control demonstrates switch-like PIP3 dynamics underlying the initiation of immune cell migration, Proceedings of the National Academy of Sciences, vol.110, issue.17, pp.E1575-E1583, 2013.

P. R. O'neill and N. Gautam, Subcellular optogenetic inhibition of G proteins generates signaling gradients and cell migration, Molecular Biology of the Cell, vol.25, issue.15, pp.2305-2314, 2014.

P. R. O?neill, V. Kalyanaraman, and N. Gautam, Subcellular optogenetic activation of Cdc42 controls local and distal signaling to drive immune cell migration, Molecular Biology of the Cell, vol.27, issue.9, pp.1442-1450, 2016.

L. Valon, F. Etoc, A. Remorino, F. Di pietro, X. Morin et al., Predictive Spatiotemporal Manipulation of Signaling Perturbations Using Optogenetics, Biophysical Journal, vol.109, issue.9, pp.1785-1797, 2015.

W. K. Karunarathne, L. Giri, V. Kalyanaraman, and N. Gautam, Optically triggering spatiotemporally confined GPCR activity in a cell and programming neurite initiation and extension, Proceedings of the National Academy of Sciences, vol.110, issue.17, pp.E1565-E1574, 2013.

M. Endo, M. Hattori, H. Toriyabe, H. Ohno, H. Kamiguchi et al., Optogenetic activation of axon guidance receptors controls direction of neurite outgrowth, Scientific Reports, vol.6, issue.1, 2016.

S. Chen, A. Z. Weitemier, X. Zeng, L. He, X. Wang et al., Near-infrared deep brain stimulation via upconversion nanoparticle?mediated optogenetics, Science, vol.359, issue.6376, pp.679-684, 2018.

C. Monzel, C. Vicario, J. Piehler, M. Coppey, and M. Dahan, Magnetic control of cellular processes using biofunctional nanoparticles, Chemical Science, vol.8, issue.11, pp.7330-7338, 2017.

D. Liße, C. Monzel, C. Vicario, J. Manzi, I. Maurin et al., Engineered Ferritin for Magnetogenetic Manipulation of Proteins and Organelles Inside Living Cells, Advanced Materials, vol.29, issue.42, p.1700189, 2017.

F. Etoc, C. Vicario, D. Lisse, J. Siaugue, J. Piehler et al., Magnetogenetic Control of Protein Gradients Inside Living Cells with High Spatial and Temporal Resolution, Nano Letters, vol.15, issue.5, pp.3487-3494, 2015.

Y. Jin, J. Lee, E. Chung, K. Yang, J. Kim et al., Magnetic Control of Axon Navigation in Reprogrammed Neurons, Nano Letters, vol.19, issue.9, pp.6517-6523, 2019.

H. Schöneborn, F. Raudzus, E. Secret, N. Otten, A. Michel et al., Novel Tools towards Magnetic Guidance of Neurite Growth: (I) Guidance of Magnetic Nanoparticles into Neurite Extensions of Induced Human Neurons and In Vitro Functionalization with RAS Regulating Proteins, Journal of Functional Biomaterials, vol.10, issue.3, p.32, 2019.

T. J. Gahl and A. Kunze, Force-Mediating Magnetic Nanoparticles to Engineer Neuronal Cell Function, Frontiers in Neuroscience, vol.12, pp.1-16, 2018.

T. M. Svitkina, The Actin Cytoskeleton and Actin-Based Motility, Cold Spring Harbor Perspectives in Biology, vol.10, issue.1, p.a018267, 2018.

P. Lamoureux, R. E. Buxbaum, and S. R. Heidemann, Direct evidence that growth cones pull, Nature, vol.340, issue.6229, pp.159-162, 1989.

D. M. Suter and K. E. Miller, The emerging role of forces in axonal elongation, Progress in Neurobiology, vol.94, issue.2, pp.91-101, 2011.

C. Lo, H. Wang, M. Dembo, and Y. Wang, Cell Movement Is Guided by the Rigidity of the Substrate, Biophysical Journal, vol.79, issue.1, pp.144-152, 2000.

B. C. Isenberg, P. A. Dimilla, M. Walker, S. Kim, and J. Y. Wong, Vascular Smooth Muscle Cell Durotaxis Depends on Substrate Stiffness Gradient Strength, Biophysical Journal, vol.97, issue.5, pp.1313-1322, 2009.

P. Lamoureux, G. Ruthel, R. E. Buxbaum, and S. R. Heidemann, Mechanical tension can specify axonal fate in hippocampal neurons, Journal of Cell Biology, vol.159, issue.3, pp.499-508, 2002.

E. Schnell, K. Klinkhammer, S. Balzer, G. Brook, D. Klee et al., Guidance of glial cell migration and axonal growth on electrospun nanofibers of poly-?-caprolactone and a collagen/poly-?-caprolactone blend, Biomaterials, vol.28, issue.19, pp.3012-3025, 2007.

E. J. Berns, S. Sur, L. Pan, J. E. Goldberger, S. Suresh et al., Aligned neurite outgrowth and directed cell migration in self-assembled monodomain gels, Biomaterials, vol.35, issue.1, pp.185-195, 2014.

C. Liverani, L. Mercatali, L. Cristofolini, E. Giordano, S. Minardi et al., Investigating the Mechanobiology of Cancer Cell?ECM Interaction Through Collagen-Based 3D Scaffolds, Cellular and Molecular Bioengineering, vol.10, issue.3, pp.223-234, 2017.

J. C. Rose, M. Cámara-torres, K. Rahimi, J. Köhler, M. Möller et al., Nerve Cells Decide to Orient inside an Injectable Hydrogel with Minimal Structural Guidance, Nano Letters, vol.17, issue.6, pp.3782-3791, 2017.

M. Antman-passig and O. Shefi, Remote Magnetic Orientation of 3D Collagen Hydrogels for Directed Neuronal Regeneration, Nano Letters, vol.16, issue.4, pp.2567-2573, 2016.

P. Tseng, J. W. Judy, and D. Di-carlo, Magnetic nanoparticle?mediated massively parallel mechanical modulation of single-cell behavior, Nature Methods, vol.9, issue.11, pp.1113-1119, 2012.

M. Bradshaw, T. D. Clemons, D. Ho, L. Gutiérrez, F. J. Lázaro et al., Manipulating directional cell motility using intracellular superparamagnetic nanoparticles, Nanoscale, vol.7, issue.11, pp.4884-4889, 2015.

E. E. White, A. Pai, Y. Weng, A. K. Suresh, D. Van-haute et al., Functionalized iron oxide nanoparticles for controlling the movement of immune cells, Nanoscale, vol.7, issue.17, pp.7780-7789, 2015.

N. Alon, T. Havdala, H. Skaat, K. Baranes, M. Marcus et al., Magnetic micro-device for manipulating PC12 cell migration and organization, Lab on a Chip, vol.15, issue.9, pp.2030-2036, 2015.

X. Bing, L. Huang, L. Zhu, Z. Liu, T. Ma et al., Manipulation of Schwann cell migration across the astrocyte boundary by polysialyltransferase-loaded superparamagnetic nanoparticles under magnetic field, International Journal of Nanomedicine, vol.Volume 11, pp.6727-6741, 2016.

J. N. Fass and D. J. Odde, Tensile Force-Dependent Neurite Elicitation via Anti-?1 Integrin Antibody-Coated Magnetic Beads, Biophysical Journal, vol.85, issue.1, pp.623-636, 2003.

A. Kunze, P. Tseng, C. Godzich, C. Murray, A. Caputo et al., Engineering Cortical Neuron Polarity with Nanomagnets on a Chip, ACS Nano, vol.9, issue.4, pp.3664-3676, 2015.

C. Riggio, M. P. Calatayud, M. Giannaccini, B. Sanz, T. E. Torres et al., The orientation of the neuronal growth process can be directed via magnetic nanoparticles under an applied magnetic field, Nanomedicine: Nanotechnology, Biology and Medicine, vol.10, issue.7, pp.1549-1558, 2014.

V. Raffa, F. Falcone, S. De-vincentiis, A. Falconieri, M. P. Calatayud et al., Piconewton Mechanical Forces Promote Neurite Growth, Biophysical Journal, vol.115, issue.10, pp.2026-2033, 2018.

M. Marcus, M. Karni, K. Baranes, I. Levy, N. Alon et al., Iron oxide nanoparticles for neuronal cell applications: uptake study and magnetic manipulations, Journal of Nanobiotechnology, vol.14, issue.1, 2016.

L. Toraille, K. Aïzel, É. Balloul, C. Vicario, C. Monzel et al., Optical Magnetometry of Single Biocompatible Micromagnets for Quantitative Magnetogenetic and Magnetomechanical Assays, Nano Letters, vol.18, issue.12, pp.7635-7641, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02350740

A. P. Sangnier, A. B. Van-de-walle, A. Curcio, R. Le-borgne, L. Motte et al., Impact of magnetic nanoparticle surface coating on their long-term intracellular biodegradation in stem cells, Nanoscale, vol.11, pp.16488-16498, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02409311

M. Safi, J. Courtois, M. Seigneuret, H. Conjeaud, and J. Berret, The effects of aggregation and protein corona on the cellular internalization of iron oxide nanoparticles, Biomaterials, vol.32, issue.35, pp.9353-9363, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02422243

F. Gazeau and C. Wilhelm, Magnetic labeling, imaging and manipulation of endothelial progenitor cells using iron oxide nanoparticles, Future Medicinal Chemistry, vol.2, issue.3, pp.397-408, 2010.

P. Maiuri, E. Terriac, P. Paul-gilloteaux, T. Vignaud, K. Mcnally et al., The first World Cell Race, Current Biology, vol.22, issue.17, pp.R673-R675, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00744751

F. C. De-anda, G. Pollarolo, J. S. Da-silva, P. G. Camoletto, F. Feiguin et al., Centrosome localization determines neuronal polarity, Nature, vol.436, issue.7051, pp.704-708, 2005.

P. Lamoureux, S. R. Heidemann, N. R. Martzke, and K. E. Miller, Growth and elongation within and along the axon, Developmental Neurobiology, vol.70, issue.3, pp.135-149, 2009.

P. L. Lamoureux, M. R. O'toole, S. R. Heidemann, and K. E. Miller, Slowing of axonal regeneration is correlated with increased axonal viscosity during aging, BMC Neuroscience, vol.11, issue.1, p.140, 2010.

J. Falk, F. A. Konopacki, K. H. Zivraj, and C. E. Holt, Rab5 and Rab4 Regulate Axon Elongation in the Xenopus Visual System, Journal of Neuroscience, vol.34, issue.2, pp.373-391, 2014.

B. J. Pfister, D. P. Bonislawski, D. H. Smith, and A. S. Cohen, Stretch-grown axons retain the ability to transmit active electrical signals, FEBS Letters, vol.580, issue.14, pp.3525-3531, 2006.

J. L. Goldberg, How does an axon grow?, Genes & Development, vol.17, issue.8, pp.941-958, 2003.

B. J. Pfister, A. Iwata, D. F. Meaney, and U. H. Smith, Extreme Stretch Growth of Integrated Axons, Journal of Neuroscience, vol.24, issue.36, pp.7978-7983, 2004.

M. B. Steketee, S. N. Moysidis, X. Jin, J. E. Weinstein, W. Pita-thomas et al., Nanoparticle-mediated signaling endosome localization regulates growth cone motility and neurite growth, Proceedings of the National Academy of Sciences, vol.108, issue.47, pp.19042-19047, 2011.

, Figure 2?figure supplement 1. Representative images used in the experiment, sampled from http://commons.wikimedia.org/wiki/Main_Page under the Creative Commons Attribution 4.0 International Public License https://creativecommons.org/licenses/by/4.0/., © 2020 by the authors. Licensee MDPI