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Abstract: The recent integration of Acoustic Doppler Current Profilers (ADCPs) onto underwater
gliders changes the way current and sediment dynamics in the coastal zone can be monitored.
Their endurance and ability to measure in all weather conditions increases the probability of capturing
sporadic meteorological events, such as storms and floods, which are key elements of sediment
dynamics. We used a Slocum glider equipped with a CTD (Conductivity, Temperature, Depth),
an optical payload, and an RDI 600 kHz phased array ADCP. Two deployments were carried
out during two contrasting periods of the year in the Rhone River region of freshwater influence
(ROFI). Coastal absolute currents were reconstructed using the shear method and bottom tracking
measurements, and generally appear to be in geostrophic balance. The responses of the acoustic
backscatter index and optical turbidity signals appear to be linked to changes of the particle size
distribution in the water column. Significantly, this study shows the interest of using a glider-ADCP
for coastal zone monitoring. However, the comparison between suspended particulate matter
dynamics from satellites and gliders also suggests that a synoptic view of the processes involved
requires a multiplatform approach, especially in systems with high spatial and temporal variability,
such as the Rhone ROFI area.

Keywords: glider; optics; acoustics; satellite; coastal hydrodynamics; suspended particulate matter;
particulate fluxes; Gulf of Lions; Mediterranean

1. Introduction

Sediment dynamics on continental margins play an essential role in marine habitats and ecosystems
dynamics, in the dispersion and sequestration of land-derived chemical elements (e.g., carbon,
contaminants) and, in the long term, the evolution of continental shelf morphology [1]. This dynamic
is influenced by multiple forcings (river discharges, currents, wind, waves), which strongly affect
the spatio-temporal variability of suspended particulate matter (SPM) distribution. Operational
monitoring of SPM is thus necessary to improve sediment transport and ecosystem modelling, with a
final goal to prevent long-term damage to coastal waters [2].
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Over the past decade, technological advances in ocean color satellite observation have made it
possible to describe the variability of SPM dynamics in the surface layer of the coastal zone on large
spatial and temporal scales [2–4]. However, satellite data cannot provide information on the vertical
structure of SPM dynamics in the water column. Until recently, most in-situ observations of SPM
transport in the water column were gathered at a few fixed locations over the shelves. However, in-situ
monitoring throughout the water column is essential to characterize the spatio-temporal variability
of the processes involved in sediment transport and deposition in coastal areas [5]. Autonomous
underwater vehicles (AUVs), such as gliders, appear to be useful tools for the monitoring of coastal
hydrodynamics, sediment transport, and coastal ecosystems, especially during extreme events such as
floods and storms, which are critical elements of sediment dynamics and particulate transport in the
coastal zone [5–8].

Gliders driven by variable buoyancy [9] can measure a large number of environmental variables
at the same time, collecting data which they transmit in near real-time. Glider-based monitoring
allows sampling of the entire water column and continental shelf over long periods. Gliders markedly
supplement the fixed measurements of buoys and moorings, as well as data collected during shipborne
surveys, which are shorter, potentially less frequent, and weather-sensitive. They are becoming
increasingly important for the collection of oceanographic measurements in observing programs [10–12].
Several recent studies have dealt with the integration of Acoustic Doppler Current Profilers (ADCPs)
on gliders for applications in the open ocean as well as the coastal zone [13–16]. However, few of
them have dealt with sediment transport [6,7]. The sampling strategy for most of the latter studies
was based on high-frequency measurements over short periods (a few hours to a week). Endurance
deployments to monitor currents and turbidity are necessary in order to fill the gap in measurements
concerning SPM dynamics at the regional scale, and to validate hydro-sedimentary models [17].

In this study, a Slocum glider equipped with a CTD, optical sensors, and an ADCP was tested
in conjunction with ocean color satellite images to evaluate its capacity to monitor the interplay
of hydrographic features, water circulation, and particulate matter distribution in the coastal zone.
The study area is located in the region of freshwater influence (ROFI) of the Rhone River in the Gulf
of Lions (NW Mediterranean), and measurements encompass two different seasons with stratified
and non-stratified hydrological conditions. The sampling strategy was adapted to target a continuous
observation period of several weeks so as to capture sporadic events, such as storms or floods.
The objectives of this work are (i) to evaluate the performance of current estimations by ADCP with
reduced sampling frequency allowing endurance deployment, (ii) to evaluate the complementarity
between the evaluation of turbidity derived from acoustic backscattering of an ADCP and optical
measurements, (iii) to estimate SPM fluxes at the scale of a continental shelf, and (iv) to assess the
complementarity between the glider and satellite platforms to monitor the turbidity in the Rhone’s ROFI.

2. Materials and Methods

2.1. Deployment Strategy

A glider equipped with an ADCP was deployed within the Rhone ROFI during two measuring
campaigns (Figure 1a,b). The first one lasted for 30 days (from 26 October to 21 November 2016),
in autumnal conditions of thermal stratification, with a pycnocline at around 50–60 m depth. The second
campaign lasted for 35 days (from 30 January to 3 March 2017) and took place in winter during
unstratified conditions. However, for both deployments, haline stratification conditions could be
observed along some sections up to 40 m depth, depending on the Rhone River inflow. In total, 14 and
17 cross-shelf sections were carried out in 2016 and 2017, respectively, among which were six and
12 complete sections from the river mouth to the shelf edge (40 km offshore to 120 m depth). Each section
was generally performed in 1.5–2 days. During these two glider deployments, no significant flood or
storm was recorded.
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obtained from the Moderate Resolution Imaging Spectroradiometer (MODIS) on the Aqua satellite 

Figure 1. Moderate Resolution Imaging Spectroradiometer (MODIS) Aqua images of suspended
particulate matter (SPM) concentration for (a) November 11th 2016, with a flow from the Rhone River
of about 1500 m3 s−1 and (b) March 2nd 2017, with a flow of about 1590 m3 s−1. Clouds are shown as
white patches and wind speed (in m s−1) and direction are specified. Depth contours are shown in gray
and represent the 10 m isobaths from the coast. The glider track and sections of interest are shown as
thick black and blue lines, respectively, for each deployment.

Concomitant sea surveys were carried out on board the R/V Tethys II at the same location from
2–11 November 2016 for the autumnal conditions, and from 24 January to 3 February 2017 for the
winter conditions. During these surveys, water samples were collected at specific depths for the
determination of SPM concentration in the water column.

2.2. Environmental Data

Satellite data: spatial maps of daily SPM concentrations (Figure 1a,b), with 1 km resolution,
were obtained from the Moderate Resolution Imaging Spectroradiometer (MODIS) on the Aqua satellite
(Level-2 reflectance products). Products, analysis, and calibrations used were provided by IFREMER,
and OC5 IFREMER algorithms for SPM concentrations estimations were obtained from [3].

Rhone River discharge time-series: hourly water discharges of the Rhone River were measured at
the Beaucaire-Tarascon gauging station (code V7200015) and were provided by the French national data
bank “HYDRO” (http://www.hydro.eaufrance.fr). Solid discharges were estimated using a calibration
established for the Rhone River [18], based on the fitting of rating curves to existing SPM-flow data pairs.

Meteorological time-series: hourly (10-min burst average) wind speed and direction were
measured at the Météo-France station of Cap-Couronne (43◦20.23′N; 5◦01.38′E). Data were provided
by the Publithèque database.

2.3. Glider Data

2.3.1. Glider System, CTD, and Optical Sensors

The autonomous underwater glider (depth range 30–200 m) used for this work is a Teledyne
Webb Research Slocum G1 [9]. It uses a variable buoyancy engine to move in a saw-tooth pattern from
the surface (0–1 m depth) to typically 2 m above-bottom. For this experiment, the glider was carefully
ballasted to enter into and measure both the low-density waters (<27.5 kg m−3) of the Rhone ROFI and

http://www.hydro.eaufrance.fr
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the denser outer shelf waters (>29 kg m−3). The chosen settings allowed the glider to descend and
ascend through the water column with a pitch angle of approximately 26◦, and horizontal and vertical
speeds of 0.4 and 0.2 m s−1, respectively. The glider surfaced every six down- and up-casts (yos) in
order to obtain GPS fixes so as to transfer data to land and to receive any new information about
its route or configuration. For the subsequent data analyses, the glider’s surfacings were removed
because of very noisy data, likely due to bubbles or provoked by rapid changes in heading and
attitude on the surface. Conductivity, temperature, and pressure measurements were made using a
pumped SeaBird 41cp CTD. Conductivity and temperature measurements were corrected for thermal
lag effects [19]. Salinity, density, Brunt–Väisälä frequency, and dynamic-height anomaly were derived
using the TEOS-10 equation [20]. An optical backscatter sensor (Wetlabs BB2FLS) provided light
scattering measurements (expressed in m sr−1) at a wavelength of 700 nm for turbidity, and at 695 nm
for fluorescence of chlorophyll-a. The sampling frequency was 4 s for CTD and optical sensors and
10 s for ADCP sensors. CTD and optical data were synchronized with ADCP data and interpolated to
the same periodicity (10 s).

2.3.2. Optical Data Processing

Optical signal calibration: the BB2FLS sensor provided light scattering measurements (β(θ, λ))
at specific angles θ = 124◦ in the backward direction [21]. The particulate backscattering coefficients
(bbp700, in m−1) were derived using the following equation:

bbp(λ)) = 2π·X·(βp(θ,λ), (1)

where X is an adjustment factor provided by the manufacturer according to particle type (1.077),
and βp(θ, λ) is the volume scattering function of the particles. The light backscattering measurements
at 700 nm (bbp700) from the ship- and glider-based Wetlabs instruments were used to derive SPM
concentrations from in situ gravimetric SPM measurements. Data were binned into classes of 0.005 m−1

to improve the calibration. The outliers of each bin, above and below 1.5 times the upper and lower
quartile, were removed. Then, a least squares regression method was used to estimate the relationship
between the SPM concentration (mg L−1) and the turbidity at 700 nm (Equation (2)).

[SPM]OPT = (104.2 +/− 9.1)*bbp700 + (0.81 +/− 0.3) (r2 = 0.88) (2)

Schlieren effects: the stratified water column shows varying refractive indices associated with
density gradient that can cause light scattering, resulting in optical artefacts known as Schlieren
effects [22]. The refraction index of seawater, n, is a function of temperature, salinity, pressure,
and wavelength of the optical backscattering. The empirical equation of [23] was used to calculate
n at 700 nm. For both seasons (autumn and winter), the hydrological profiles (temperature, salinity,
density, Brunt–Väisälä frequency) and the refraction index of seawater profiles (Figure 2a,b,d,e) were
compared with the optical backscattering signal to assess the presence of Schlieren effects.

Spike analyses: spikes were recorded by all optical measurements as rapid, transient, and often
large increases in optical signals. Spikes result from the interception by optical instruments of coarse
particles, such as aggregates and biological debris [24], which are scarce relative to the fine particles
that induce most of the turbidity signal. We used a similar spikes analysis on our data to characterize
the presence of large particles (Figure 2c–f). A 5-point running minimum filter followed by a 5-point
running maximum was applied on the raw optical backscattering data at 700 nm (one measurement
every meter depth) for the determination of the background (baseline) at each profile (Figure 2c–f).
Then, spike height was calculated by subtracting the baseline from the raw optical profile.
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Figure 2. (a,d) Water-column profiles of salinity (S), temperature (T), and density (σθ); (b,e) index of
refraction of seawater (n) and Brunt–Väisälä frequency profiles (N); and (c,f) backscattering profiles of
bbp700 of Wetlabs BBFL2 (raw-signal) and the baseline extract from a filter 5-point running minimum
followed by a 5-point running maximum applied on the bbp700 measurements. The top panels
correspond to the autumnal season (November, 2016) showing a seasonal thermocline around 50 m
depth characteristic of the coastal area surrounding the Rhone region of freshwater influence (ROFI)
area. The lower panels correspond to the winter season, with a homogeneous water column (15–80 m
depth), except in subsurface waters due to the Rhone River plume.

2.3.3. ADCP Settings

An Explorer Doppler Velocity Log with Acoustic Doppler Current Profiling capacity (Explorer
ADCP) was integrated into a special payload bay on the Slocum glider. It allowed to measure echo
intensity and velocity profiles in the water column. The Explorer ADCP has a downward-facing
transducer which was tilted forward by 11◦, enabling to compensate for the pitch of the glider during
downcasts. The inclination of the transducer optimized the three-beam measurements on the 26◦

pitched glider downcasts with the three forward ADCP beams oriented 15◦ from vertical, and with the
fourth, 45◦ aft relative to the glider. This fixed forward configuration rendered the instrument unsuitable
for collecting velocity profile data during upcasts [25], so for this reason, only downcasts measurements
were used in this study. Dedicated high accuracy attitude and compass sensors were used by the
ADCP to monitor the beam orientation and were carefully calibrated before deployment. Velocities
used in this work were associated with Earth coordinates using dead reckoning and were bin-mapped.

During a glider descent, the ADCP periodically recorded echo intensity and relative water
velocities along water profiles (WP). A sampling frequency of 0.1 Hz was set to optimize the duration
of the glider deployment. This sampling frequency (ensemble of 1 ping every 10 s) allowed sampling
of WPs spaced on average every 4 m along the glider trajectory and 1.7 m vertically. The maximum
range of each WP was 40 m. Results were thus organized along a diagonal swath, with overlapping
measurements at each depth (Figures 3a and 4a). A blanking distance of 2 m close to the transducer
was generally observed for this ADCP and data were vertically averaged into 1 m cell sizes. For echo
intensity measurements, a correction was applied on cell depths to avoid the effect of the pitched
transducer [26]. The real depth of each cell was thus calculated, taking into account the pitch and roll
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effects, the blanking distance, and the depth of the glider. Finally, to properly estimate the backscatter
index and the relative water velocities, the factory threshold of 64 counts of the correlation signal [27]
was used to discard erroneous values. This threshold generally reduced the usable part of the profiles
to about 20 me from the transducer (Figures 3b and 4b).Remote Sens. 2020, 12, x FOR PEER REVIEW 7 of 24 
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Figure 4. Example of measurements carried out by the ADCP during a descent of the glider. (a) Swath of
the counts signal for each cell of successive water profiles. The empirical threshold of 64 counts used to
discard erroneous velocity values is shown in black. (b) Filtered raw northward velocity measurements
(m s−1). Discarded values are shown in gray. The black line shows bottom detection. (c) Mean profile
reconstructed after stacking the successive profiles of the vertical derivatives of measured currents.
(d) Integrated relative velocity profile. (e) Absolute velocity profile (black line) after adjustment with
near-bottom current measurements derived from bottom tracking (red line); dashed lines indicate
uncertainties (standard deviation) for each variable.

2.4. ADCP Data Processing

2.4.1. Estimation of Backscatter Index

The received level (RL) of the acoustic return along each beam was converted into the backscatter
index (BI, in dB) (Equation (3)) [28–30]:

BI = 10log10(10(Kc*(RL − Er)/10)
− 1) + TLw + TLg, (3)
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where Kc is the count to dB factor (0.61 for the ADCP used in this work), RL the received level in counts,
Er the noise in counts (50 counts for the ADCP used in this work), TLw the loss due to absorption by
seawater [31], and TLg the loss due to geometrical spreading. The computation of the speed of sound
was based on the Explorer temperature sensor and an average salinity value of 38.

The successive profiles of the backscatter index were stacked (bins of 1 m) to reconstruct the
profile over the entire water column from the median values of the overlapping data at each level.
The number of overlapping data ranged between 1 for the first bin at the surface and 12 on average
over most of the profile. The associated uncertainty corresponds to the standard deviation of the
stacked values for each 1 m depth bin. A final three-point centered moving-average filter was applied
to eliminate the high-frequency noise (Figure 3c).

2.4.2. Water Velocity Estimates

ADCP measurements combine glider motion with current velocity. In order to derive current
velocities, several methods are available. For the “direct” method, the glider motions are estimated
by a steady-state flight model [32,33], and then subtracted from the ADCP data. For the velocity
inversion method [34], a set of linear equations is solved to estimate absolute water velocities from a
combination of velocity-referencing constraints (navigational data, shipboard ADCP measurements,
bottom tracking, etc.). The shear method [35–37] is based on the assumption that glider speed is
constant for each profile and can, therefore, be eliminated. After reconstructing the shear of the
current over the whole water column, its integration allows to obtain a relative water velocity profile.
Integrated relative velocities do not include glider motion bias but require an integration constant
corresponding to a barotropic velocity component (profile referencing from a single constraint) in order
to derive absolute water velocities profiles. In this study, the shear method was preferred over the
velocity inversion method since bottom tracking was the only constraint that could be used to reference
the profile. The “direct” method gives similar results except for the first 10 m, where data cannot be
estimated. This is the depth by which the glider has traveled several body lengths after its inflexion
point and for which acceleration terms can be reasonably neglected (steady-state flight model) [32].

The different steps of the shear method were applied independently to E–W and N–S components
to (i) calculate single-ensemble shear by vertically differentiating ADCP velocity profiles (Figure 4c);
(ii) grid the resulting shear estimates in depth space (median values of shear current per 1 m cell);
(iii) vertically integrate shear to yield the relative velocity profile (Figure 4d), and (iv) estimate absolute
velocities by adjusting relative velocity profiles to the current velocities measured by bottom tracking.
Estimation of velocity started at a depth of 3 m, due to the position of the ADCP under the glider and a
blanking distance of 2 m.

Uncertainties regarding absolute water velocities vary depending on the ADCP settings (mainly
cell size, instrument frequency, pulse length, and number of pings per ensemble [27]). The standard
deviation of single ping measurements for 1 m cell size at 614 kHz is about 0.066 m s−1. To estimate
the uncertainty of the relative velocity estimates, we performed a Monte-Carlo simulation based
on 500 iterations, with initial velocity values sampled randomly according to a normal distribution
centered on the measured value for each bin of each WP during the downcast. The probability
distribution of the resulting outcomes for all the downcasts collected during the two surveys yielded
an average standard deviation of 0.04 m s−1. In addition, the uncertainty concerning the near-bottom
current velocity determined by bottom tracking was estimated as the average standard deviation
after stacking the data, and amounted to 0.12 m s−1. Finally, an average standard deviation of the
absolute velocity—calculated from the sum of the variances of the relative velocities and the absolute
near-bottom current—was estimated at 0.13 m s−1.

Geostrophic velocities were estimated using the observed density field. This allowed to determine
the degree to which the flow perpendicular to the glider track (generally in the E–W direction during
this experiment) can be associated with the horizontal density gradient. The cross-track component
of the velocities is thus derived by adjusting the integrated geostrophic velocities in the water
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column—calculated from the dynamic-height anomaly differences between each pair of downcasts
and with a subsurface reference level (5 m, i.e., minimum depth common to each profile)—to the
corresponding depth-averaged velocities from ADCP measurements.

3. Results

3.1. Observations Context

Six and 12 complete cross-shelf sections were carried out from the river mouth to the shelf
edge, respectively, for the autumnal and winter periods. Analyses (depth-averaged current
(DAC) comparison vs. ADCP integrated mean current, geostrophy, and optic vs. acoustic) were
done on all sections. For convenience and clarity, we chose one section for each deployment
(Section 2 on 11–13 November 2016, and Section 3 on 5–7 February 2017) to illustrate key
hydrological, hydrodynamical, and biogeochemical features. The high variability of hydrological and
hydrodynamical structures is also addressed in Section 4.

During both deployments, variable wind conditions were observed. Several south-easterly
(i.e., marine) wind events of 5–10 m s−1 occurred during both seasons. North-westerly (i.e., continental)
winds were observed during the two selected sections (Figure 5a,b), with maximum wind speeds of
21 m s−1 in February 2017. For both deployments, the Rhone River discharges fluctuated between
650–1950 m3 s−1 and 800–2100 m3 s−1, respectively, in autumnal and winter conditions. River discharges
were around 1500 and 1900 m3 s−1 for the selected sections, i.e., close to the mean annual flow of the
Rhone River (1700 m3 s−1).
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Figure 5. Time-series of atmospheric conditions at Cap-Couronne station (40◦20.23′N; 5◦01.38′E) for
(a) autumnal and (b) winter conditions. Black lines correspond to hourly (10-min burst average) wind
speed and direction. By convention, wind direction indicates its origin. The shaded area corresponds
to the sections chosen to illustrate hydrological, hydrodynamical, and biogeochemical features.

The shallowest part of the Rhone River submarine delta was not sampled because the glider was
unable to make dives in water depths of less than 30 m. Subsequently, glider sections were divided
into two parts: the mid-shelf (4–20 km) and the outer-shelf (>20 km).

3.2. Hydrological Conditions

Observations along the selected sections (Figure 6) revealed the offshore extension of the Rhone
River surface plume with fresher, colder, and lighter water. During the two study periods, the plume
was pushed offshore by continental N–NW winds. The plume extended as far as the shelf break
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(Figure 6c,d) with a thickness of less than 10 m near the coast, and a thickening up to 15 m offshore.
These continental inputs resulted in saline stratification, as shown by the Brunt–Väisälä frequency
(N2 > 1.3 × 10−3 s−1) in the upper water layer (< 30 m depth) (Figure 6g,h).
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Figure 6. Hydrological variables: (a,b) temperature, (c,d) absolute salinity, (e,f) density anomalies,
and (g,h) the Brunt–Väisälä frequency. The isopycnals are superimposed on all plots and indicated by
black or white lines. The left panels correspond to autumnal conditions, from 11–13 November 2016.
The right panels correspond to winter conditions, from 5–7 February 2017. The black arrow at the top
of each panel indicates the direction of the glider’s motion.

During the autumnal period, thermal stratification around 50–60 m depth was observed
(Figure 6a,c,e, left panel). Colder (<15.5 ◦C), saltier (>38.3 g kg−1), and denser water (>28.5 kg m−3) was
covered by warmer (≈15.5–18 ◦C), fresher (≈37.8–38.3 g kg−1), and lighter water (≈27.8–28.5 kg m−3).
This seasonal stratification was characterized by Brunt–Väisälä frequencies between 0.8 and
1.3 × 10−3 s−1 (Figure 6g).

During the winter season, the water column became homogeneous below the river plume with
temperatures around 13.5–14 ◦C, salinity around 38–38.5 g kg−1, and density anomalies around
28.5–28.8 kg m−3 (Figure 6b,d,f, right panel). The Rhone River plume offshore extension varied
significantly during the winter deployment due to wind variability.

3.3. Hydrodynamical Conditions

3.3.1. Validation of Current Measurements

After multiple yos (about six), the glider used GPS positioning to estimate the difference between
the expected surface location as calculated through underwater dead reckoning, and the actual
new position. Such position difference, relative to the time of dive, allowed the glider to estimate
the depth-averaged current (DAC) between two surfacings [9]. To assess the quality of the ADCP
measurements compared to this independent estimate of the currents, we contrasted the residual
current velocities and direction computed from the downcast ADCP data between two surfacings with
the corresponding DAC estimates (see the example on a section in Figure 7a,b). The two estimates of
the integrated average current over the water column were broadly comparable and reproduced the
main inversions and intensifications of the currents for both periods.
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Figure 7. Comparison of depth-averaged current (DAC) vs. ADCP-derived residual current on sections
of interest, respectively (a) from 11–13 November 2016 and (b) from 5–7 February 2017. Taylor’s
diagram comparing the DACs (Vx, Vy) and ADCP-derived residual current (U,V)—respectively for
each component of eastward and northward velocity—across an entire deployment, for (c) the autumn
(November 2016) and (d) winter seasons (February 2017).

This comparison was also carried out for all sections of each deployment, with the eastward
and northward components considered separately (Figure 7c,d). The Taylor diagrams showed a
good agreement between the DAC (used as a reference) and the ADCP-derived residual currents.
The correlation coefficient for the 2016 and 2017 surveys, respectively, was 0.69 and 0.78 for u, and 0.68
and 0.84 for v. Furthermore, the average standard deviation was 0.06 and 0.05 m s−1, while the average
RMSD was around 0.06 and 0.04 m s−1, respectively, for the 2016 and 2017 deployments.

3.3.2. Characteristics of Observed Coastal Currents

Figure 8 shows the components of the cross-shelf (N–S) and along-shelf (E–W) currents derived
from ADCP measurements for the selected sections. For the E–W and N–S components, current velocity
(starting at 3 m under the surface) was generally homogeneous throughout the water column, with a
maximum intensity of 0.5 m s−1. However, strong northward subsurface currents were sometimes
observed on the outer-shelf, as in the section dating from 5 to 7 February 2017 (Figure 8b). A westerly
coastal current (v ≈ -0.4 m s−1) was often observed during autumnal conditions on the mid-shelf (up to
13 km) (Figure 8c). During winter conditions, the inner part of the slope current was observed at the
shelf edge (not shown here).
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top of each panel indicates the direction of the glider’s motion.

3.4. Cross-Shelf Variability of Biogeochemical Variables

Optical and acoustic turbidity sections observed for the two selected periods are presented
in Figure 9. Surface optical turbidity (Figure 9a,b) and, incidentally, suspended particulate matter
concentrations (Figure 9c,d) decreased rapidly seaward from 6 mg L−1 next to the river mouth to
1 mg L−1 at the shelf break for both periods. Highest concentrations were observed in the plume.
However, on some sections, a thin bottom nepheloid layer was observed with an SPM concentration
around 2 mg L−1. Finally, from 11–13 November 2016 an intermediate nepheloid layer extended over
the mid-shelf from 5 to 50 m depth, with a concentration of around 3 mg L−1.

The concentration of chlorophyll-a was maximum in the surface layer, and its depth distribution
was limited by the stratification. A chlorophyll-a rich layer (1–2 µg L−1), with maximum thickness
on the mid-shelf (10–20 km offshore), was visible in November 2016 (Figure 9e). During February
2017, chlorophyll-a concentration was both low (<0.5 µg L−1) and homogeneous in the water column
(Figure 9f).

Observations show that the acoustical backscatter index (Figure 9g,h) and optical spikes (Figure 9i,j)
were higher on the mid-shelf for both deployments. An increase in the intensity of the spike signal was
observed at the base of the intermediate nepheloid layer along the seasonal pycnocline (around 50–60 m
depth) from 11–13 November 2016 (Figure 9i). During the autumnal deployment, the strong density
stratification of the water column induced a significant change of the refractive index (Figure 2a,b).
The absence of a turbidity anomaly on either side of this interface indicates there was no Schlieren effect.
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Figure 9. Turbidity measurements: (a,b) optical backscattering, (c,d) suspended particulate matter,
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correspond to the autumnal season, from 11–13 November 2016. The right panels correspond to the
winter season, from 5–7 February 2017. The black arrow at the top of each panel indicates the direction
of the glider’s motion.

4. Discussion

4.1. Currents Observation by Glider-Mounted ADCP

Validation of absolute water velocities: differences are observed between the DAC computed using
glider drift and dead reckoning, and the ADCP sensor. The ADCP samples neither during upcasts
(transducer misalignment) nor at the surface (blanking distance close to the transducer and downward
position), which may explain the main differences. However, the correlation coefficients between both
components of the residual currents computed from glider drift and the ADCP range between 0.69
and 0.84. These highly significant correlations (p-value < 0.001), with a mean bias between 0.05 and
0.06 m s−1, give us some confidence in the method used for the estimation of absolute velocities.

The average uncertainty of the absolute current profile derived from the shear method is estimated
at 13 cm s−1, mainly due to the bottom tracking uncertainty which is about 12 cm s−1. The ADCP
sampling rate is likely the main parameter affecting the quality of the bottom tracking measurements,
as our sampling frequency (0.1 Hz—1 ping per ensemble) was 10 times lower than that used in other
studies (1 Hz—10 pings per ensemble) [6,13]. Nevertheless, in yet another study, the total uncertainty
estimated from the shear method and a similar instrument (DVL mounted on a Slocum glider)—but
with a higher temporal resolution (1 Hz sampling frequency, ensembles averaging every 3.5 s)—was
also close to 10 cm s−1 [26]. An error velocity of 6 cm s−1 has previously been achieved using the
inverse method with several constraints (DAC, surface current, and modelled velocity) and a high
sampling frequency (1 Hz) [13]. In spite of a higher uncertainty in current measurement, the chosen
sampling strategy in our study allows deployments of several weeks. This choice was motivated by
our intention to capture sporadic events, which are key elements of sediment dynamics in the coastal
zone. Future deployments using different optimizations of sampling parameters (increasing the size
of the bins, reducing the number of bins, increasing the acquisition frequency [27], and doubling the
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bottom tracking pings [25]) should be investigated in order to assess the reduction of uncertainty in
current estimations, while continuing to maintain autonomy.

Coastal current dynamics: the geostrophic component of the along-shelf flow (Figure 8e,f) shows
that the main structures of the ADCP-derived absolute currents were preserved. A least squares
regression method was used to estimate the relationship between the geostrophic and absolute
velocities, for all sections (Table 1). Coefficients of determination (r2) were highly variable (0.02–0.99)
from one section to another for both seasons. Coefficients of determination of all the data were high,
between 0.69 and 0.8, respectively, in the autumn and winter seasons (Table 1). The local density field,
which is affected by the freshwater input from the Rhone River, appears to play a major role in the
coastal current dynamics.

Table 1. Results of linear regression analysis of eastward geostrophic currents with eastward ADCP
currents for both deployments. Asterisks in the table indicate the sections of interest.

Observation
Time No. of Data r2

1 Nov to
12 Nov 2016

Section 1 10,738 0.15
Section 2 * 10,399 0.59
Section 3 10,023 0.35
Section 4 10,156 0.02
Section 5 9752 0.68
Section 6 10,256 0.72

Total 61,324 0.69

30 Jan to
3 Mar 2017

Section 1 10,343 0.84
Section 2 10,214 0.75

Section 3 * 10,661 0.61
Section 4 10,307 0.68
Section 5 10,615 0.74
Section 6 10,221 0.79
Section 7 9507 0.99
Section 8 10,184 0.61
Section 9 10,444 0.64
Section 10 10,146 0.4
Section 11 10,433 0.47

Total 113,075 0.8

However, wind may be a cause of non-geostrophic motion. The intense NW gusts of 5–7 February
2017 (shaded area on Figure 5b), with speeds up to 21 m s−1, pushed the fresh surface (0–3 m depth)
water offshore inducing a strong northward subsurface counter-current (3–30 m depth) (Figure 8b).
Satellite measurements of sea surface temperature in summer [38], and hydrodynamic modeling
studies [39–42] have, indeed, described the presence of coastal upwelling in this region under the effect
of N–NW winds. Moreover, near-inertial currents are recurrent on the Gulf of Lions shelf, where they
tend to be triggered by windy events [43,44]. They appear as rotational movements with characteristic
diameters of a few kilometers and currents of about 10 cm s−1. Using the method of unwrapping the
phase of the shear vector of the current [45], between 3 and 40 m depth on glider sections, we were able
to isolate periods when currents had a rotating component with a frequency close to the local Coriolis
frequency (17.5 h) (Figure 10a). Figure 10b shows the clockwise near-inertial current component of a
few cm s−1 superimposed on a baroclinic mean current. These inertial currents were observed at the
end of the section on the outer-shelf following a strong NW wind episode that lasted several days.
Current data collection ceases while the glider negotiates the half turn necessary for changing direction.
Unfortunately, these data gaps prevent from observing the integrality of an inertial period.
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Gliders thus appear to be unique tools for high resolution characterization of such transient
phenomena throughout the entire water column and across the continental shelf.

4.2. Turbidity Observation by Glider Optical and ADCP Sensors

Optical and acoustic signals vary significantly with respect to particle concentration and to particle
properties such as size, nature, and shape [46,47]. In addition, particle abundance in the Rhone River
ROFI decreased by six orders of magnitude, ranging between particles of a few µm and those of 300 µm
in size [48]. In this study, we hypothesize that optical spikes and acoustic backscatter sample a similar
size range of particles.

Optical backscatter sensors that sample a small volume (approximately 1.10−6 m3) are preferentially
sensitive to fine particles. Indeed, measured optical turbidity for a given concentration of suspended
particles increases with decreasing particle size, due to both increased abundance and to light scattering
from smaller particles. Although not very abundant, aggregates with sizes between a few tens and a
few hundreds of microns [48] often appear as spikes on the optical signal.

For acoustical measurements, the ADCP used in this work, with a frequency of 614.4 kHz, has
a peak sensitivity for particles of 775 µm in diameter [49], which represents the upper limit of the
observed aggregates. Its sensitivity is 10–170 times lower for particles of 200 and 50 µm in diameter,
respectively. Finally, the ADCP samples large insonified volumes—e.g., considering bins of 1 m and an
acoustic beam width of 2◦, the volume derived from the “footprint” of a single beam ranges between
1.10−3 m3 at 2 m and about 1 m3 at 20 m from the transducer—which may contain a significant number
of aggregates.

A comparison of the different optical turbidity and acoustic backscatter index sections during the
two deployments reveals both similarities (e.g., sections 5 and 6 in November 2016; Figure 11) and
dissimilarities (e.g., sections 2, 3, and 4 in February 2017; Figure 12). For sections with similarities,
mainly in the autumnal season, the distribution of optical spikes reproduces the main structures of both
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optical turbidity and acoustic backscatter index (Figure 9a,g,i; Figure 11). This concordance suggests
that both instruments perceive signals from a narrower particle size distribution, mostly consisting
of fine and micro-aggregate particles, in an equivalent manner. The presence of the intermediate
nepheloid layer can thus be explained by the accumulation along the pycnocline of fine particles and
micro aggregates that are insufficiently dense to move across this density interface.
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Figure 11. Surface turbidity from MODIS images (a–c) and glider measurements in the autumnal
season: (d–f) suspended particle matter, (g–i) optical backscattering, (j–l) acoustic backscatter index,
and (m–o) optical backscatter spikes. The left panels are estimates for Section 4, from 15–17 November
2016. The center panels are estimates for Section 5, from 17–18 November 2016. The right panels are
estimates for Section 6, from 19–21 November 2017. The black arrows indicate the glider’s direction.
For the top panels, the glider’s location at the time the satellite image was taken is shown by the red
circle, and clouds and land are shown as white patches and gray areas, respectively.

For sections with substantial dissimilarities, mainly during the winter season, it can be seen that
the distribution of optical spikes differs from optical turbidity structures, but strongly corresponds to
acoustic backscatter index structures (Figure 9b,h,j; Figure 12). This suggests that there are indeed
two distinct (fine vs. large), relatively abundant particle size populations. The optical backscatter
sensor detects these two populations through the base signal on one hand and the spikes on the other
hand (Figure 9b,j; Figure 12), while the ADCP mainly senses the coarser fraction. This interpretation
is in agreement with observations on particle size distribution in the Rhone ROFI area completed at
the beginning of the February 2017 deployment [48]. Using LISST-100 and LISST-HOLO in situ grain
sizers, those authors showed the concomitant abundance of fine particles (<30 µm), micro aggregates
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(between 30 and 100 µm), and large aggregates (up to 400 µm) on the proximal part of the mid-shelf,
at both the surface and the bottom. They revealed the presence of large particles—both aggregates
and planktonic organisms (e.g., copepods)—in the surface layer further offshore, where we observe an
increase in acoustic backscatter index, corresponding to the increase in chlorophyll-a concentration
(Figure 9e–g).
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Figure 12. Surface turbidity from MODIS images (a–c) and glider measurements in the winter
season: (d–f) suspended particle matter, (g–i) optical backscattering, (j–l) acoustic backscatter index,
and (m–o) optical backscatter spikes. The left panels are estimates for Section 3, from 4–5 February 2017.
The center panels are estimates for Section 4, from 5–7 February 2017. The right panels are estimates for
Section 5, from 7–9 February 2017. The black arrows indicate the glider’s direction. For the top panels,
the glider’s location at the time the satellite image was taken is shown by the red circle, and clouds and
land are shown as white patches and gray areas, respectively.

Our study illustrates the complementarity between concomitant optical and acoustic backscatter
measurements from a glider to characterize the dynamics of different particle size populations.
These results are consistent with observations made on the New Jersey shelf [18], which focused on
intercomparison of acoustic and optical sensors to estimate sediment resuspension and transport.
However, this information remains qualitative in nature, and there is currently no single glider-based
instrument for the accurate description of variability and size of SPM in the water column. Recent
technological advances have made it possible to integrate a Sequoia LISST-Glider [50] or a Hydroptics
UVP6-LP (www.hydroptic.com/index.php/public/Page/product_item/UVP6-LP), and more quantitative
estimates can legitimately be expected soon.

www.hydroptic.com/index.php/public/Page/product_item/UVP6-LP
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4.3. Estimates of SPM Fluxes

Sediment transport plays a key role in the dynamics of coastal areas. However, the quantification
of these fluxes on the continental shelf is still poorly documented, as over the last two decades
measurements have been carried out mainly in a single given location, using bottom-mounted
instruments [51–54]. In the Rhone ROFI area, quantitative studies have been derived solely from
modelling [55,56]. However, the combined measurement of currents and particle concentration along
a glider’s trajectory has allowed us to estimate along- and cross-shore SPM fluxes. We calculated
the integrated SPM fluxes throughout the water column by considering homogeneous currents and
SPM concentrations in the surface and bottom layers not sampled by the glider. The fluxes were
then cumulated over the entire length of each section. We estimated the uncertainty on cumulative
SPM fluxes by propagating the average relative uncertainties related to the currents (≈70%) and SPM
concentrations (≈35%). Relative error was seen to increase with decreasing SPM and water fluxes,
ranging from 20% to 600%.

The along-shelf (E–W) and cross-shelf (N–S) SPM fluxes for the different glider sections are variable
but generally remain lower than ±5 kg s−1 (Figure 13). The highest value (8 kg s−1) corresponds
to the period from 5–7 February 2017, during which a strong NW wind induced an upwelling on
the shelf, with the highest subsurface current (up to 0.5 m s−1) and SPM concentration (≈6 mg L−1)
(Figures 8b and 9d).
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In the absence of storm or flood events, however, estimated SPM fluxes remain low, about
one order of magnitude lower than the SPM fluxes from the Rhone River during the same periods
(10–130 kg s−1). This suggests a significant deposition next to the river mouth in line with [57–59].
Estimated SPM fluxes are also three orders of magnitude lower than those observed on the Catalan
shelf in the Gulf of Lions during stormy conditions [5]. We see here the difficulty of estimating SPM
flows with a reasonable level of certainty because this requires accurate conversion of optical turbidity
or acoustic backscatter index signals into SPM concentration. This step therefore remains challenging
because of the great variability in the nature of the suspended particulate material, especially in coastal
areas and during storms or flood events.

4.4. SPM Dynamics from Glider vs. Satellite Observations

Several studies have emphasized the value of combining satellite and glider measurements to
accurately characterize SPM dynamics in coastal areas, especially during extreme events [5,6,60].
We compared satellite images of surface SPM concentrations with those observed by the glider close to
the surface in order to assess their complementarity in terms of monitoring turbidity in the Rhone’s
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ROFI. The relationship between SPM derived from glider/MODIS measurements can be expressed
as SPMMODIS = 2.6 × SPMGlider, with a coefficient of determination of 0.87, which is very similar to
observations already made in this area [61].

The Rhone’s ROFI is a complex system in which the high spatial and temporal variability of the
river plume can shift by several kilometers in a few hours, depending on wind and river discharge
conditions. For stable conditions, or when satellite data are partial (Figure 11a,c) or lacking (Figure 12a,c)
due to cloud cover, glider measurement near the surface ensures some continuity between daily satellite
snapshots. The complementarity of the glider as a tool resides primarily in the fact that gliders make it
possible to describe the vertical extension of superficial structures in the water column, such as the
turbid plumes of rivers.

Conversely, when conditions are very changeable it is more difficult to correlate the surface
structures as seen by satellites with the glider’s observations that couple space and time. Figure 14
shows a glider section and the associated satellite images of 8–10 November 2016. Daily satellite images
(Figure 14a–c) show significant variability of the Rhone River plume which the glider observations
(Figure 14d) fail to capture. Throughout the section, which was covered in two days, the glider was
in the plume on the first day only (Figure 14a), when the plume was located near the river mouth.
The plume was then deflected by the wind on the following days and moved offshore (Figure 14b,c),
away from the glider.Remote Sens. 2020, 12, x FOR PEER REVIEW 20 of 24 
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Figure 14. (a–c) Surface turbidity from MODIS images, for the glider’s Section 1 in November 2016.
Clouds and land are shown as white patches and gray areas, respectively. (d) Glider turbidity
observations in the water column along the cross-shelf track. The black line indicated the glider’s path
and the white arrow shows its direction. The glider’s location at the time the satellite image was taken
is shown by the red circle and by dashed black lines in the upper and lower panels, respectively.

This example shows the limits of agreement between these two observation platforms in a system
with high spatial and temporal variability. However, the above-mentioned complementarity proves
useful in systems where variability is lower and compatible with the time it takes the glider to traverse
the monitoring section.

5. Conclusions

In this study, we successfully deployed a glider equipped with a CTD, an optical payload, and a
600 KHz phased array ADCP to monitor currents and turbidity in the Rhone River ROFI during
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two contrasted periods (autumn and winter). The major outcomes and conclusions of this study are
as follows:

• In line with previous studies, our comparison of currents estimated from ADCP data with the DAC
confirms that this system is suitable for measuring currents in coastal areas, with an uncertainty
of 0.13 m s−1. The repeated glider transects across the shelf show the importance of freshwater
input from the Rhone River as one of the main drivers of local hydrodynamics.

• In order to qualify the results by comparison with the DAC, we employed the shear method to
determine absolute currents. We applied the bottom track constraint to near-bottom currents.
Unfortunately, this constraint was seen to have a fairly high uncertainty due to the low ADCP
sampling frequency.

• Coincident optical and acoustic backscatter measurements show complementarity in the
characterization of small and large suspended particles, respectively. Analysis of optical spikes
and acoustic backscatter indicates the presence of coarse particles on the proximal part of the
mid-shelf close to the river mouth, where hydrological conditions likely favor the formation of
macro flocs.

• The calculated SPM fluxes and their uncertainties (20–600%) are highly variable. Furthermore,
the SPM fluxes on the shelf are one order of magnitude lower than the concomitant SPM fluxes
from the nearby Rhone River, which suggests a significant deposition of particulate matter at the
river mouth.

• The combination of both satellite and glider SPM measurements is important for monitoring both
surface and subsurface parts of the river plume.

• The sampling strategy used in this study showed that the monitoring of currents and turbidity
in the coastal zone over periods ranging from several weeks to several months is feasible.
This technique enables the capture of difficult to monitor sporadic events such as storms or floods,
which is essential both for improving existing knowledge of coastal circulation and sediment
transport, and for the validation of hydro-sedimentary regional models.

In future work we plan to continue estimating currents using the inverse method, simultaneously
using independent estimates of current velocities using bottom tracking, a flight model, and the DAC.
This should enable to reduce the uncertainty in current estimates and to extend the study area beyond
the continental shelf, where bottom tracking is inoperative. We also intend to optimize sampling
(by increasing the size of the bins, reducing the number of bins, increasing the acquisition frequency)
so as to reduce uncertainties while maintaining a large autonomy. For the estimation of SPM fluxes,
we foresee improving the calibration of the optical sensor (by increasing the number of measurements
and triplicates) and carrying out an independent calibration of the acoustic sensor, which may allow
us to discriminate coarse particle (acoustic) and fine particle (optic) fluxes. Future use of glider-based
direct measurements of particle size will allow to better characterize the entire spectrum of suspended
particles and their dynamics.
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