Y. Wang, P. Miska, D. Pilloud, D. Horwat, F. Mücklich et al., Transmittance enhancement and optical band gap widening of Cu2O thin films after air annealing, Journal of Applied Physics, vol.115, issue.7, p.073505, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01284785

Y. S. Jung, H. W. Choi, and K. H. Kim, Properties of p-type N-doped Cu2O thin films prepared by reactive sputtering, Japanese Journal of Applied Physics, vol.53, issue.11S, p.11RA10, 2014.

H. Siddiqui, M. R. Parra, P. Pandey, N. Singh, M. S. Qureshi et al., A Review: Synthesis, Characterization and Cell Performance of Cu2O Based Material for Solar Cells, Oriental Journal Of Chemistry, vol.28, issue.3, pp.1533-1545, 2012.

Y. Wang, J. Ghanbaja, D. Horwat, L. Yu, and J. F. Pierson, Nitrogen chemical state in N-doped Cu2O thin films, Applied Physics Letters, vol.110, issue.13, p.131902, 2017.

P. M. Sberna, I. Crupi, F. Moscatelli, V. Privitera, F. Simone et al., Sputtered cuprous oxide thin films and nitrogen doping by ion implantation, Thin Solid Films, vol.600, pp.71-75, 2016.

M. R. Mitroi, V. Ninulescu, and L. Fara, Tandem Solar Cells Based on Cu2O and c-Si Subcells in Parallel Configuration: Numerical Simulation, International Journal of Photoenergy, vol.2017, pp.1-6, 2017.

Y. Takiguchi and S. Miyajima, Device simulation of cuprous oxide heterojunction solar cells, Japanese Journal of Applied Physics, vol.54, issue.11, p.112303, 2015.

O. Nordseth, L. Fara, R. Kumar, S. E. Foss, C. Dumitru et al., Electro-optical modeling of a ZnO/Cu 2 O subcell in a silicon-based tandem heterojunction solar cell, Proceedings of the 33rd European Photovoltaic Solar Energy Conference and Exhibition, pp.172-177, 2017.

O. Nordseth, H. Haug, R. Kumar, K. Bergum, F. Dr?gan et al., Performance optimization of a four-terminal Cu 2 O/c-Si Tandem heterojunction solar cell, Proceedings of the 35th European Photovoltaic Solar Energy Conference and Exhibition, pp.29-34, 2018.

C. Dumitru, L. Fara, O. Nordseth, I. Chilibon, R. Kumar et al., Electro-Optical Analysis and Numerical Modeling of Cu<inf>2</inf>O as the Absorber Layer in Advanced Solar Cells, 2018 International Conference on Photovoltaic Science and Technologies (PVCon), vol.13, p.4667, 2018.

I. Chilibon, L. Fara, O. Nordseth, R. Kumar, B. G. Svensson et al., Structural and electrical analysis of Cu 2 O layers for solar cell application, Ann. Acad. Rom. Sci, vol.11, pp.53-60, 2018.

I. Chilibon, L. Fara, O. Nordseth, R. Kumar, B. G. Svensson et al., Characterization of Cu 2 O thin films used in solar cells by fluorescence and FTIR spectroscopy, Ann. Acad. Rom. Sci. Ser. Sci, vol.11, pp.61-68, 2018.

M. A. Lloyd, S. C. Siah, R. E. Brandt, J. Serdy, S. W. Johnston et al., Intrinsic defect engineering of cuprous oxide to enhance electrical transport properties for photovoltaic applications, 2014 IEEE 40th Photovoltaic Specialists Conference (PVSC) Volume 2, vol.2016, pp.3443-3445, 2014.

Y. Tolstova, S. T. Omelchenko, R. E. Blackwell, A. M. Shing, and H. A. Atwater, Polycrystalline Cu2O photovoltaic devices incorporating Zn(O,S) window layers, Solar Energy Materials and Solar Cells, vol.160, pp.340-345, 2017.

T. Minami, Y. Nishi, and T. Miyata, High-Efficiency Cu2O-Based Heterojunction Solar Cells Fabricated Using a Ga2O3Thin Film as N-Type Layer, Applied Physics Express, vol.6, issue.4, p.044101, 2013.

J. Robertson and B. Falabretti, Band offsets of high K gate oxides on III-V semiconductors, Journal of Applied Physics, vol.100, issue.1, p.014111, 2006.

R. E. Brandt, M. Young, H. H. Park, A. Dameron, D. Chua et al., Band offsets of n-type electron-selective contacts on cuprous oxide (Cu2O) for photovoltaics, Applied Physics Letters, vol.105, issue.26, p.263901, 2014.

. Pv-lighthouse, LAS VEGAS SANDS CORP., a Nevada corporation, Plaintiff, v. UKNOWN REGISTRANTS OF www.wn0000.com, www.wn1111.com, www.wn2222.com, www.wn3333.com, www.wn4444.com, www.wn5555.com, www.wn6666.com, www.wn7777.com, www.wn8888.com, www.wn9999.com, www.112211.com, www.4456888.com, www.4489888.com, www.001148.com, and www.2289888.com, Defendants., Gaming Law Review and Economics, vol.20, issue.10, pp.859-868, 2016.

S. C. Baker-finch and K. R. Mcintosh, OPAL 2: Rapid optical simulation of silicon solar cells, Proceedings of the 38th IEEE Photovoltaic Specialists Conference, pp.265-271, 2012.

C. Dumitru, V. Muscurel, Ø. Nordseth, L. Fara, and P. Sterian, Optimization of Electro-Optical Performance and Material Parameters for a Tandem Metal Oxide Solar Cell, Computational Science and Its Applications ? ICCSA 2018, pp.573-582, 2018.

D. S. Murali, S. Kumar, R. J. Choudhary, A. D. Wadikar, M. K. Jain et al., Synthesis of Cu2O from CuO thin films: Optical and electrical properties, AIP Advances, vol.5, issue.4, p.047143, 2015.

J. M. Bennett and L. Mattson, Introduction to Surface Roughness and Scattering, 1989.

Ø. Nordseth, R. Kumar, K. Bergum, I. Chilibon, S. E. Foss et al., Nitrogen-Doped Cu2O Thin Films for Photovoltaic Applications, Materials, vol.12, issue.18, p.3038, 2019.

S. W. Lee, Y. S. Lee, J. Heo, S. C. Siah, D. Chua et al., Improved Cu2O-Based Solar Cells Using Atomic Layer Deposition to Control the Cu Oxidation State at the p-n Junction, Advanced Energy Materials, vol.4, issue.11, p.1301916, 2014.

, JCPDS ? International Centre for Diffraction Data Task Group on Cell Parameter Refinement, Powder Diffraction, vol.1, issue.1, pp.66-76, 1986.

Y. Nakano, S. Saeki, and T. Morikawa, Optical bandgap widening of p-type Cu2O films by nitrogen doping, Applied Physics Letters, vol.94, issue.2, p.022111, 2009.

M. H. Reddy, J. F. Pierson, and S. Uthanna, Structural, surface morphological, and optical properties of nanocrystalline Cu 2 O and CuO films formed by RF magnetron sputtering: Oxygen partial pressure effect, Phys. Status Solidi A, vol.209, pp.1279-1286, 2012.

A. A. Ogwu and T. H. Darma, A reactive magnetron sputtering route for attaining a controlled core-rim phase partitioning in Cu2O/CuO thin films with resistive switching potential, Journal of Applied Physics, vol.113, issue.18, p.183522, 2013.

J. Su, Y. Zhang, L. Liu, R. Sun, and Q. Niu, Variation of structure and band gap for N doped Cu2O films deposited with ceramic target, Thin Solid Films, vol.651, pp.67-70, 2018.

J. B. Gong, W. L. Dong, R. C. Dai, Z. P. Wang, Z. M. Zhang et al., Thickness dependence of the optical constants of oxidized copper thin films based on ellipsometry and transmittance, Chinese Physics B, vol.23, issue.8, p.087802, 2014.

J. Gan, V. Venkatachalapathy, B. G. Svensson, and E. V. Monakhov, Influence of target power on properties of CuxO thin films prepared by reactive radio frequency magnetron sputtering, Thin Solid Films, vol.594, pp.250-255, 2015.

J. Li, Z. Mei, L. Liu, H. Liang, A. Azarov et al., Probing Defects in Nitrogen-Doped Cu2O, Scientific Reports, vol.4, issue.1, 2014.

V. Sharma and S. S. Chandel, Performance and degradation analysis for long term reliability of solar photovoltaic systems: A review, Renewable and Sustainable Energy Reviews, vol.27, pp.753-767, 2013.

D. Guo, D. Brinkman, A. R. Shaik, C. Ringhofer, and D. Vasileska, Metastability and reliability of CdTe solar cells, Journal of Physics D: Applied Physics, vol.51, issue.15, p.153002, 2018.

L. Fara and D. Craciunescu, Reliability Analysis of Photovoltaic Systems for Specific Applications, Reliability and Ecological Aspects of Photovoltaic Modules, pp.79-92, 2020.

F. Ye, J. J. Zeng, Y. B. Qiu, X. M. Cai, B. Wang et al., Deposition-rate controlled nitrogen-doping into cuprous oxide and its thermal stability, Thin Solid Films, vol.674, pp.44-51, 2019.

, Figure 2?figure supplement 1. Representative images used in the experiment, sampled from http://commons.wikimedia.org/wiki/Main_Page under the Creative Commons Attribution 4.0 International Public License https://creativecommons.org/licenses/by/4.0/., © 2020 by the authors. Licensee MDPI