M. Magana, M. Pushpanathan, A. L. Santos, L. Leanse, M. Fernandez et al., The value of antimicrobial peptides in the age of resistance, The Lancet Infectious Diseases, vol.20, issue.9, pp.e216-e230, 2020.

A. Ladram and P. Nicolas, Antimicrobial peptides from frog skin biodiversity and therapeutic promises, Frontiers in Bioscience, vol.21, issue.7, pp.1341-1371, 2016.

M. Torrent, D. Pulido, L. Rivas, and D. Andreu, Antimicrobial Peptide Action on Parasites, Current Drug Targets, vol.13, issue.9, pp.1138-1147, 2012.

M. L. Mangoni, A. D. Grazia, F. Cappiello, B. Casciaro, and V. Luca, Naturally occurring peptides from Rana temporaria: Antimicrobial properties and more, Curr. Top. Med. Chem, vol.16, pp.54-64, 2016.

A. B.-guimarães, F. J.q.-costa, O. R.p.-júnior, W. Fontes, and M. S.-castro, The Amazing World of Peptide Engineering: the Example of Antimicrobial Peptides from Frogs and Their Analogues, Protein & Peptide Letters, vol.23, issue.8, pp.722-737, 2016.

J. M. Conlon, J. Kolodziejek, and N. Nowotny, Antimicrobial peptides from ranid frogs: taxonomic and phylogenetic markers and a potential source of new therapeutic agents, Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, vol.1696, issue.1, pp.1-14, 2004.

G. Wang, X. Li, and Z. Wang, APD3: the antimicrobial peptide database as a tool for research and education, Nucleic Acids Research, vol.44, issue.D1, pp.D1087-D1093, 2015.

, Copper Voltameter, Scientific American, vol.17, issue.421supp, pp.6713-6713, 1884.

F. Abbassi, O. Lequin, C. Piesse, N. Goasdoué, T. Foulon et al., Temporin-SHf, a New Type of Phe-rich and Hydrophobic Ultrashort Antimicrobial Peptide, Journal of Biological Chemistry, vol.285, issue.22, pp.16880-16892, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00578813

M. L. Mangoni and Y. Shai, Short native antimicrobial peptides and engineered ultrashort lipopeptides: similarities and differences in cell specificities and modes of action, Cellular and Molecular Life Sciences, vol.68, issue.13, pp.2267-2280, 2011.

A. Giacometti, O. Cirioni, W. Kamysz, G. D'amato, C. Silvestri et al., In vitro activity and killing effect of temporin A on nosocomial isolates of Enterococcus faecalis and interactions with clinically used antibiotics, Journal of Antimicrobial Chemotherapy, vol.55, issue.2, pp.272-274, 2005.

D. Wade, J. Silberring, R. Soliymani, S. Heikkinen, I. Kilpeläinen et al., Antibacterial activities of temporin A analogs, FEBS Letters, vol.479, issue.1-2, pp.6-9, 2000.

R. Ghiselli, A. Giacometti, O. Cirioni, F. Mocchegiani, F. Orlando et al., Temporin A as a prophylactic agent against methicillin sodium-susceptible and methicillin sodium-resistant Staphylococcus epidermidis vascular graft infection, Journal of Vascular Surgery, vol.36, issue.5, pp.1027-1030, 2002.

F. Abbassi, B. Oury, T. Blasco, D. Sereno, G. Bolbach et al., Isolation, characterization and molecular cloning of new temporins from the skin of the North African ranid Pelophylax saharica, Peptides, vol.29, issue.9, pp.1526-1533, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00649680

Z. Raja, S. André, F. Abbassi, V. Humblot, O. Lequin et al., Insight into the mechanism of action of temporin-SHa, a new broad-spectrum antiparasitic and antibacterial agent, PLOS ONE, vol.12, issue.3, p.e0174024, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01517346

F. Abbassi, Z. Raja, B. Oury, E. Gazanion, C. Piesse et al., Antibacterial and leishmanicidal activities of temporin-SHd, a 17-residue long membrane-damaging peptide, Biochimie, vol.95, issue.2, pp.388-399, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01537172

A. C. Rinaldi, M. L. Mangoni, A. Rufo, C. Luzi, D. Barra et al., Temporin L: antimicrobial, haemolytic and cytotoxic activities, and effects on membrane permeabilization in lipid vesicles, Biochemical Journal, vol.368, issue.1, pp.91-100, 2002.

E. Urbán, E. Nagy, T. Pál, Á. Sonnevend, and J. M. Conlon, Activities of four frog skin-derived antimicrobial peptides (temporin-1DRa, temporin-1Va and the melittin-related peptides AR-23 and RV-23) against anaerobic bacteria, International Journal of Antimicrobial Agents, vol.29, issue.3, pp.317-321, 2007.

M. L. Mangoni, J. M. Saugar, M. Dellisanti, D. Barra, M. Simmaco et al., Temporins, Small Antimicrobial Peptides with Leishmanicidal Activity, Journal of Biological Chemistry, vol.280, issue.2, pp.984-990, 2004.

G. A. Eggimann, K. Sweeney, H. L. Bolt, N. Rozatian, S. L. Cobb et al., The Role of Phosphoglycans in the Susceptibility of Leishmania mexicana to the Temporin Family of Anti-Microbial Peptides, Molecules, vol.20, issue.2, pp.2775-2785, 2015.

V. G. Chinchar, L. Bryan, U. Silphadaung, E. Noga, D. Wade et al., Inactivation of viruses infecting ectothermic animals by amphibian and piscine antimicrobial peptides, Virology, vol.323, issue.2, pp.268-275, 2004.

M. E. Marcocci, D. Amatore, S. Villa, B. Casciaro, P. Aimola et al., The Amphibian Antimicrobial Peptide Temporin B InhibitsIn VitroHerpes Simplex Virus 1 Infection, Antimicrobial Agents and Chemotherapy, vol.62, issue.5, pp.2367-2384, 2018.

M. Roy, L. Lebeau, C. Chessa, A. Damour, A. Ladram et al., Comparison of Anti-Viral Activity of Frog Skin Anti-Microbial Peptides Temporin-Sha and [K3]SHa to LL-37 and Temporin-Tb against Herpes Simplex Virus Type 1, Viruses, vol.11, issue.1, p.77, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02066789

F. Abbassi, C. Galanth, M. Amiche, K. Saito, C. Piesse et al., Solution Structure and Model Membrane Interactions of Temporins-SH, Antimicrobial Peptides from Amphibian Skin. A NMR Spectroscopy and Differential Scanning Calorimetry Study?, Biochemistry, vol.47, issue.40, pp.10513-10525, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01537179

F. Abbassi, C. Piesse, T. Foulon, P. Nicolas, and A. Ladram, Effects of residue 5-point mutation and N-terminus hydrophobic residues on temporin-SHc physicochemical and biological properties, Molecular and Cellular Biochemistry, vol.394, issue.1-2, pp.91-99, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01558876

, Copper Voltameter, Scientific American, vol.17, issue.421supp, pp.6713-6713, 1884.

A. Carotenuto, S. Malfi, M. R. Saviello, P. Campiglia, I. Gomez-monterrey et al., A Different Molecular Mechanism Underlying Antimicrobial and Hemolytic Actions of Temporins A and L, Journal of Medicinal Chemistry, vol.51, issue.8, pp.2354-2362, 2008.

G. Malgieri, C. Avitabile, M. Palmieri, L. D. D?andrea, C. Isernia et al., Structural Basis of a Temporin 1b Analogue Antimicrobial Activity against Gram Negative Bacteria Determined by CD and NMR Techniques in Cellular Environment, ACS Chemical Biology, vol.10, issue.4, pp.965-969, 2015.

M. L. Mangoni and Y. Shai, Temporins and their synergism against Gram-negative bacteria and in lipopolysaccharide detoxification, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1788, issue.8, pp.1610-1619, 2009.

A. K. Mahalka and P. K. Kinnunen, Binding of amphipathic ?-helical antimicrobial peptides to lipid membranes: Lessons from temporins B and L, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1788, issue.8, pp.1600-1609, 2009.

S. André, S. K. Washington, E. Darby, M. M. Vega, A. D. Filip et al., Structure?Activity Relationship-based Optimization of Small Temporin-SHf Analogs with Potent Antibacterial Activity, ACS Chemical Biology, vol.10, issue.10, pp.2257-2266, 2015.

B. Mishra, T. Lushnikova, R. M. Golla, X. Wang, and G. Wang, Design and surface immobilization of short anti-biofilm peptides, Acta Biomaterialia, vol.49, pp.316-328, 2017.

A. Crépin, J. F. Jégou, S. André, F. Ecale, A. Croitoru et al., In vitro and intracellular activities of frog skin temporins against Legionella pneumophila and its eukaryotic hosts, Scientific Reports, vol.10, issue.1, p.3978, 2020.

A. Lombana, Z. Raja, S. Casale, C. M. Pradier, T. Foulon et al., Temporin-SHa peptides grafted on gold surfaces display antibacterial activity, Journal of Peptide Science, vol.20, issue.7, pp.563-569, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01044512

Y. P. Zhang, R. N. Lewis, and R. N. Mcelhaney, Calorimetric and Spectroscopic Studies of the Thermotropic Phase Behavior of the n-Saturated 1,2-Diacylphosphatidylglycerols, Biophysical Journal, vol.72, issue.2, pp.779-793, 1997.

S. Rex, Pore formation induced by the peptide melittin in different lipid vesicle membranes, Biophysical Chemistry, vol.58, issue.1-2, pp.75-85, 1996.

Y. Shai, Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by ?-helical antimicrobial and cell non-selective membrane-lytic peptides, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1462, issue.1-2, pp.55-70, 1999.

A. Giangaspero, L. Sandri, and A. Tossi, Amphipathic ? helical antimicrobial peptides., European Journal of Biochemistry, vol.268, issue.21, pp.5589-5600, 2001.

G. W. Seto, S. Marwaha, D. M. Kobewka, R. N. Lewis, F. Separovic et al., Interactions of the Australian tree frog antimicrobial peptides aurein 1.2, citropin 1.1 and maculatin 1.1 with lipid model membranes: Differential scanning calorimetric and Fourier transform infrared spectroscopic studies, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1768, issue.11, pp.2787-2800, 2007.

R. F. Epand, M. A. Schmitt, S. H. Gellman, and R. M. Epand, Role of membrane lipids in the mechanism of bacterial species selective toxicity by two ?/?-antimicrobial peptides, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1758, issue.9, pp.1343-1350, 2006.

H. W. Huang, Action of Antimicrobial Peptides: Two-State Model?, Biochemistry, vol.39, issue.29, pp.8347-8352, 2000.

H. T. Chou, T. Y. Kuo, J. C. Chiang, M. J. Pei, W. T. Yang et al., Design and synthesis of cationic antimicrobial peptides with improved activity and selectivity against Vibrio spp., International Journal of Antimicrobial Agents, vol.32, issue.2, pp.130-138, 2008.

M. Dathe, T. Wieprecht, H. Nikolenko, L. Handel, W. L. Maloy et al., Hydrophobicity, hydrophobic moment and angle subtended by charged residues modulate antibacterial and haemolytic activity of amphipathic helical peptides, FEBS Letters, vol.403, issue.2, pp.208-212, 1997.

A. Hollmann, M. Martínez, M. E. Noguera, M. T. Augusto, A. Disalvo et al., Role of amphipathicity and hydrophobicity in the balance between hemolysis and peptide?membrane interactions of three related antimicrobial peptides, Colloids and Surfaces B: Biointerfaces, vol.141, pp.528-536, 2016.

A. Di-grazia, V. Luca, L. Segev-zarko, Y. A. Shai, and M. L. Mangoni, Temporins A and B Stimulate Migration of HaCaT Keratinocytes and Kill Intracellular Staphylococcus aureus, Antimicrobial Agents and Chemotherapy, vol.58, issue.5, pp.2520-2527, 2014.

A. Golda, P. Kosikowska-adamus, A. Kret, O. Babyak, K. Wójcik et al., The Bactericidal Activity of Temporin Analogues Against Methicillin Resistant Staphylococcus aureus, International Journal of Molecular Sciences, vol.20, issue.19, p.4761, 2019.

M. Simmaco, D. De-biase, C. Severini, M. Aita, G. Falconieri-erspamer et al., Purification and characterization of bioactive peptides from skin extracts of Rana esculenta, Biochimica et Biophysica Acta (BBA) - General Subjects, vol.1033, issue.3, pp.318-323, 1990.

M. F. Ali, F. C. Knoop, H. Vaudry, and J. M. Conlon, Characterization of novel antimicrobial peptides from the skins of frogs of the Rana esculenta complex, Peptides, vol.24, issue.7, pp.955-961, 2003.

J. M. Conlon, Reflections on a systematic nomenclature for antimicrobial peptides from the skins of frogs of the family Ranidae, Peptides, vol.29, issue.10, pp.1815-1819, 2008.

X. Wang, S. Ren, C. Guo, W. Zhang, X. Zhang et al., Identification and functional analyses of novel antioxidant peptides and antimicrobial peptides from skin secretions of four East Asian frog species, Acta Biochimica et Biophysica Sinica, vol.49, issue.6, pp.550-559, 2017.

C. Guo, Y. Hu, J. Li, Y. Liu, S. Li et al., Identification of multiple peptides with antioxidant and antimicrobial activities from skin and its secretions of Hylarana taipehensis, Amolops lifanensis, and Amolops granulosus, Biochimie, vol.105, pp.192-201, 2014.

Z. Raja, S. André, C. Piesse, D. Sereno, P. Nicolas et al., Structure, Antimicrobial Activities and Mode of Interaction with Membranes of Bovel Phylloseptins from the Painted-Belly Leaf Frog, Phyllomedusa sauvagii, PLoS ONE, vol.8, issue.8, p.e70782, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01537173