M. Colombo, S. Carregal-romero, M. F. Casula, L. Gutiérrez, M. P. Morales et al., Biological applications of magnetic nanoparticles, Chemical Society Reviews, vol.41, issue.11, p.4306, 2012.

A. K. Gupta and M. K. Gupta, Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications, Biomaterials, vol.26, issue.18, pp.3995-4021, 2005.

L. H. Reddy, J. L. Arias, J. Nicolas, and P. Couvreur, Magnetic Nanoparticles: Design and Characterization, Toxicity and Biocompatibility, Pharmaceutical and Biomedical Applications, Chemical Reviews, vol.112, issue.11, pp.5818-5878, 2012.

E. Cazares-cortes, S. Cabana, C. Boitard, E. Nehlig, N. Griffete et al., Recent insights in magnetic hyperthermia: From the ?hot-spot? effect for local delivery to combined magneto-photo-thermia using magneto-plasmonic hybrids, Advanced Drug Delivery Reviews, vol.138, pp.233-246, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02173371

B. V. Parakhonskiy, A. Abalymov, A. Ivanova, D. Khalenkow, and A. G. Skirtach, Magnetic and silver nanoparticle functionalized calcium carbonate particles?Dual functionality of versatile, movable delivery carriers which can surface-enhance Raman signals, Journal of Applied Physics, vol.126, issue.20, p.203102, 2019.

M. A. Dobrovolskaia and S. E. Mcneil, Immunological properties of engineered nanomaterials, Nature Nanotechnology, vol.2, issue.8, pp.469-478, 2007.

M. A. Dobrovolskaia, M. Shurin, and A. A. Shvedova, Current understanding of interactions between nanoparticles and the immune system, Toxicology and Applied Pharmacology, vol.299, pp.78-89, 2016.

C. Contini, M. Schneemilch, S. Gaisford, and N. Quirke, Nanoparticle?membrane interactions, Journal of Experimental Nanoscience, vol.13, issue.1, pp.62-81, 2017.

M. Schulz, A. Olubummo, and W. H. Binder, Beyond the lipid-bilayer: interaction of polymers and nanoparticles with membranes, Soft Matter, vol.8, issue.18, p.4849, 2012.

A. Lesniak, F. Fenaroli, M. P. Monopoli, C. Åberg, K. A. Dawson et al., Effects of the Presence or Absence of a Protein Corona on Silica Nanoparticle Uptake and Impact on Cells, ACS Nano, vol.6, issue.7, pp.5845-5857, 2012.

A. Lesniak, A. Salvati, M. J. Santos-martinez, M. W. Radomski, K. A. Dawson et al., Nanoparticle Adhesion to the Cell Membrane and Its Effect on Nanoparticle Uptake Efficiency, Journal of the American Chemical Society, vol.135, issue.4, pp.1438-1444, 2013.

F. Chen, G. Wang, J. I. Griffin, B. Brenneman, N. K. Banda et al., Complement proteins bind to nanoparticle protein corona and undergo dynamic exchange in vivo, Nature Nanotechnology, vol.12, issue.4, pp.387-393, 2016.

E. Rascol, J. Devoisselle, and J. Chopineau, The relevance of membrane models to understand nanoparticles?cell membrane interactions, Nanoscale, vol.8, issue.9, pp.4780-4798, 2016.

J. Zhao and M. H. Stenzel, Entry of nanoparticles into cells: the importance of nanoparticle properties, Polymer Chemistry, vol.9, issue.3, pp.259-272, 2018.

S. Ogawa, K. A. Tanaka, Y. Nakajima, Y. Nakayama, J. Takeshita et al., Fibrinogen Measurements in Plasma and Whole Blood, Anesthesia & Analgesia, vol.120, issue.1, pp.18-25, 2015.

F. W. Putnam, The Plasma Proteins (Structure, Function and Genetic Control) F. W. Putnam, Ed. Volume III, 2nd Edition, 613 pages, hardbound, Academic Press, N. Y., 1977, $49.50, Preparative Biochemistry, vol.8, issue.2-3, pp.227-228, 1978.

O. Vilanova, J. J. Mittag, P. M. Kelly, S. Milani, K. A. Dawson et al., Understanding the Kinetics of Protein?Nanoparticle Corona Formation, ACS Nano, vol.10, issue.12, pp.10842-10850, 2016.

F. Ye, G. Hu, D. Taylor, B. Ratnikov, A. A. Bobkov et al., Recreation of the terminal events in physiological integrin activation, Journal of Cell Biology, vol.188, issue.1, pp.157-173, 2010.

J. S. Bennett, Platelet-Fibrinogen Interactions, Annals of the New York Academy of Sciences, vol.936, issue.1, pp.340-354, 2006.

I. D. Campbell and M. J. Humphries, Integrin Structure, Activation, and Interactions, Cold Spring Harbor Perspectives in Biology, vol.3, issue.3, pp.a004994-a004994, 2011.

F. Ye, C. Kim, and M. H. Ginsberg, Reconstruction of integrin activation, Blood, vol.119, issue.1, pp.26-33, 2012.

U. Janke, M. Kulke, I. Buchholz, N. Geist, W. Langel et al., Drug-induced activation of integrin alpha IIb beta 3 leads to minor localized structural changes, PLOS ONE, vol.14, issue.4, p.e0214969, 2019.

A. Elsaesser and C. V. Howard, Toxicology of nanoparticles, Advanced Drug Delivery Reviews, vol.64, issue.2, pp.129-137, 2012.

M. Mahmoudi, M. A. Shokrgozar, S. Sardari, M. K. Moghadam, H. Vali et al., Irreversible changes in protein conformation due to interaction with superparamagnetic iron oxide nanoparticles, Nanoscale, vol.3, pp.1127-1138, 2011.

E. Amstad, M. Textor, and E. Reimhult, Stabilization and functionalization of iron oxide nanoparticles for biomedical applications, Nanoscale, vol.3, issue.7, p.2819, 2011.

R. Massart, Preparation of aqueous magnetic liquids in alkaline and acidic media, IEEE Transactions on Magnetics, vol.17, issue.2, pp.1247-1248, 1981.

U. Martens, D. Böttcher, D. Talbot, U. Bornscheuer, A. Abou-hassan et al., Maghemite nanoparticles stabilize the protein corona formed with transferrin presenting different iron-saturation levels, Nanoscale, vol.11, issue.34, pp.16063-16070, 2019.

M. Peng, H. Li, Z. Luo, J. Kong, Y. Wan et al., Dextran-coated superparamagnetic nanoparticles as potential cancer drug carriers in vivo, Nanoscale, vol.7, issue.25, pp.11155-11162, 2015.

N. Giamblanco, G. Marletta, A. Graillot, N. Bia, C. Loubat et al., Serum Protein-Resistant Behavior of Multisite-Bound Poly(ethylene glycol) Chains on Iron Oxide Surfaces, ACS Omega, vol.2, issue.4, pp.1309-1320, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02342494

E. M. Erb, K. Tangemann, B. Bohrmann, B. Müller, and J. Engel, Integrin ?IIb?3 Reconstituted into Lipid Bilayers Is Nonclustered in Its Activated State but Clusters after Fibrinogen Binding?, Biochemistry, vol.36, issue.24, pp.7395-7402, 1997.

J. P. Frohnmayer, D. Brüggemann, C. Eberhard, S. Neubauer, C. Mollenhauer et al., Minimal Synthetic Cells to Study Integrin-Mediated Adhesion, Angewandte Chemie International Edition, vol.54, issue.42, pp.12472-12478, 2015.

C. Lemarchand, R. Gref, and P. Couvreur, Polysaccharide-decorated nanoparticles, European Journal of Pharmaceutics and Biopharmaceutics, vol.58, issue.2, pp.327-341, 2004.

S. L. Easo and P. V. Mohanan, Dextran stabilized iron oxide nanoparticles: Synthesis, characterization and in vitro studies, Carbohydrate Polymers, vol.92, issue.1, pp.726-732, 2013.

H. Unterweger, C. Janko, M. Schwarz, L. Dézsi, R. Urbanics et al., Non-immunogenic dextran-coated superparamagnetic iron oxide nanoparticles: a biocompatible, size-tunable contrast agent for magnetic resonance imaging, International Journal of Nanomedicine, vol.Volume 12, pp.5223-5238, 2017.

J. V. Jokerst, T. Lobovkina, R. N. Zare, and S. S. Gambhir, Nanoparticle PEGylation for imaging and therapy, Nanomedicine, vol.6, issue.4, pp.715-728, 2011.

B. Pelaz, P. Del-pino, P. Maffre, R. Hartmann, M. Gallego et al., Surface Functionalization of Nanoparticles with Polyethylene Glycol: Effects on Protein Adsorption and Cellular Uptake, ACS Nano, vol.9, issue.7, pp.6996-7008, 2015.

J. S. Suk, Q. Xu, N. Kim, J. Hanes, and L. M. Ensign, PEGylation as a strategy for improving nanoparticle-based drug and gene delivery, Advanced Drug Delivery Reviews, vol.99, pp.28-51, 2016.

R. M. Cornell and U. Schwertmann, The Iron Oxides, The Iron Oxides. Structure, Properties, Reactions, Occurences and Uses, 2003.

A. K. Thottoli and A. K. Unni, Effect of trisodium citrate concentration on the particle growth of ZnS nanoparticles, Journal of Nanostructure in Chemistry, vol.3, issue.1, p.56, 2013.

M. C. Bautista, O. Bomati-miguel, M. Del-puerto, C. J. Morales, S. Serna et al., Surface characterisation of dextran-coated iron oxide nanoparticles prepared by laser pyrolysis and coprecipitation, J. Magn. Magn. Mater, vol.293, pp.20-27, 2005.

A. M. Predescu, E. Matei, A. C. Berbecaru, C. Pantilimon, C. Dr?gan et al., Synthesis and characterization of dextran-coated iron oxide nanoparticles, Royal Society Open Science, vol.5, issue.3, p.171525, 2018.

D. Kothari and A. Goyal, Structural characterization of enzymatically synthesized dextran and oligosaccharides from Leuconostoc mesenteroides NRRL B-1426 dextransucrase, Biochemistry (Moscow), vol.78, issue.10, pp.1164-1170, 2013.

A. Banerjee, B. Blasiak, E. Pasquier, B. Tomanek, and S. Trudel, Synthesis, characterization, and evaluation of PEGylated first-row transition metal ferrite nanoparticles as T2contrast agents for high-field MRI, RSC Advances, vol.7, issue.61, pp.38125-38134, 2017.

E. K. Larsen, T. Nielsen, T. Wittenborn, L. M. Rydtoft, A. R. Lokanathan et al., Accumulation of magnetic iron oxide nanoparticles coated with variably sized polyethylene glycol in murine tumors, Nanoscale, vol.4, issue.7, p.2352, 2012.

C. Lu, P. Dong, L. Pi, Z. Wang, H. Yuan et al., Hydroxyl?PEG?Phosphonic Acid-Stabilized Superparamagnetic Manganese Oxide-Doped Iron Oxide Nanoparticles with Synergistic Effects for Dual-Mode MR Imaging, Langmuir, vol.35, issue.29, pp.9474-9482, 2019.

H. Zhang, P. Wu, Z. Zhu, and Y. Wang, Interaction of ?-Fe 2 O 3 nanoparticles with fibrinogen, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol.151, pp.40-47, 2015.

C. D. Walkey and W. C. Chan, Understanding and controlling the interaction of nanomaterials with proteins in a physiological environment, Chem. Soc. Rev., vol.41, issue.7, pp.2780-2799, 2012.

P. Aggarwal, J. B. Hall, C. B. Mcleland, M. A. Dobrovolskaia, and S. E. Mcneil, Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy, Advanced Drug Delivery Reviews, vol.61, issue.6, pp.428-437, 2009.

D. Radziuk, A. Skirtach, G. Sukhorukov, D. Shchukin, and H. Möhwald, Stabilization of Silver Nanoparticles by Polyelectrolytes and Poly(ethylene glycol), Macromolecular Rapid Communications, vol.28, issue.7, pp.848-855, 2007.

M. Cie?la, Z. Adamczyk, J. Barbasz, and M. Wasilewska, Mechanisms of Fibrinogen Adsorption at Solid Substrates at Lower pH, Langmuir, vol.29, issue.23, pp.7005-7016, 2013.

C. Lu, L. R. Bhatt, H. Y. Jun, S. H. Park, and K. Y. Chai, Carboxyl?polyethylene glycol?phosphoric acid: a ligand for highly stabilized iron oxide nanoparticles, Journal of Materials Chemistry, vol.22, issue.37, p.19806, 2012.

A. Henschen, F. Lottspeich, M. Kehl, and C. Southan, COVALENT STRUCTURE OF FIBRINOGEN, Annals of the New York Academy of Sciences, vol.408, issue.1 Molecular Bio, pp.28-43, 1983.

Z. J. Deng, M. Liang, M. Monteiro, I. Toth, and R. F. Minchin, Nanoparticle-induced unfolding of fibrinogen promotes Mac-1 receptor activation and inflammation, Nature Nanotechnology, vol.6, issue.1, pp.39-44, 2010.

J. Deng, M. Sun, J. Zhu, and C. Gao, Molecular interactions of different size AuNP?COOH nanoparticles with human fibrinogen, Nanoscale, vol.5, issue.17, p.8130, 2013.

H. Derakhshankhah, A. Hosseini, F. Taghavi, S. Jafari, A. Lotfabadi et al., Molecular interaction of fibrinogen with zeolite nanoparticles, Scientific Reports, vol.9, issue.1, p.1558, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02047597

B. Kharazian, S. E. Lohse, F. Ghasemi, M. Raoufi, A. A. Saei et al., Bare surface of gold nanoparticle induces inflammation through unfolding of plasma fibrinogen, Scientific Reports, vol.8, issue.1, 2018.

S. Song, K. Ravensbergen, A. Alabanza, D. Soldin, and J. Hahm, Distinct Adsorption Configurations and Self-Assembly Characteristics of Fibrinogen on Chemically Uniform and Alternating Surfaces including Block Copolymer Nanodomains, ACS Nano, vol.8, issue.5, pp.5257-5269, 2014.

Q. Chen, S. Xu, Q. Liu, J. Masliyah, and Z. Xu, QCM-D study of nanoparticle interactions, Advances in Colloid and Interface Science, vol.233, pp.94-114, 2016.

D. Di-silvio, M. Maccarini, R. Parker, A. Mackie, G. Fragneto et al., The effect of the protein corona on the interaction between nanoparticles and lipid bilayers, Journal of Colloid and Interface Science, vol.504, pp.741-750, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01876388

M. Gianneli, Y. Yan, E. Polo, D. Peiris, T. Aastrup et al., Novel QCM-based Method to Predict in Vivo Behaviour of Nanoparticles, Procedia Technology, vol.27, pp.197-200, 2017.

R. P. Richter, R. Bérat, and A. R. Brisson, Formation of Solid-Supported Lipid Bilayers: An Integrated View, Langmuir, vol.22, issue.8, pp.3497-3505, 2006.

B. D. Adair and M. Yeager, Three-dimensional model of the human platelet integrin IIb 3 based on electron cryomicroscopy and x-ray crystallography, Proceedings of the National Academy of Sciences, vol.99, issue.22, pp.14059-14064, 2002.

P. Decuzzi and M. Ferrari, The role of specific and non-specific interactions in receptor-mediated endocytosis of nanoparticles, Biomaterials, vol.28, issue.18, pp.2915-2922, 2007.

C. Auría-soro, T. Nesma, P. Juanes-velasco, A. Landeira-viñuela, H. Fidalgo-gomez et al., Interactions of Nanoparticles and Biosystems: Microenvironment of Nanoparticles and Biomolecules in Nanomedicine, Nanomaterials, vol.9, issue.10, p.1365, 2019.

R. J. Alsop, R. Maria-schober, and M. C. Rheinstädter, Swelling of phospholipid membranes by divalent metal ions depends on the location of the ions in the bilayers, Soft Matter, vol.12, issue.32, pp.6737-6748, 2016.

B. Seantier and B. Kasemo, Influence of Mono- And Divalent Ions on the Formation of Supported Phospholipid Bilayers via Vesicle Adsorption, Langmuir, vol.25, issue.10, pp.5767-5772, 2009.

J. A. Baird, R. Olayo-valles, C. Rinaldi, and L. S. Taylor, Effect of Molecular Weight, Temperature, and Additives on the Moisture Sorption Properties of Polyethylene Glycol, Journal of Pharmaceutical Sciences, vol.99, issue.1, pp.154-168, 2010.

A. L. Guildford, T. Poletti, L. H. Osbourne, A. Di-cerbo, A. M. Gatti et al., Nanoparticles of a different source induce different patterns of activation in key biochemical and cellular components of the host response, Journal of The Royal Society Interface, vol.6, issue.41, pp.1213-1221, 2009.

M. Zhu, W. Feng, B. Wang, T. Wang, Y. Gu et al., Comparative study of pulmonary responses to nano- and submicron-sized ferric oxide in rats, Toxicology, vol.247, issue.2-3, pp.102-111, 2008.

N. K. Hante, C. Medina, and M. J. Santos-martinez, Effect on Platelet Function of Metal-Based Nanoparticles Developed for Medical Applications, Frontiers in Cardiovascular Medicine, vol.6, p.139, 2019.

E. Fröhlich, Action of Nanoparticles on Platelet Activation and Plasmatic Coagulation, Current Medicinal Chemistry, vol.23, issue.5, pp.408-430, 2016.

U. Martens, U. Janke, S. Möller, D. Talbot, A. Abou-hassan et al., Interaction of fibrinogen?magnetic nanoparticle bioconjugates with integrin reconstituted into artificial membranes, Nanoscale, vol.12, issue.38, pp.19918-19930, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02989828

, ????? ????? ???????????? ROYAL SOCIETY OF CHEMISTRY, ?????? ????????????? ?????, vol.75, issue.10, pp.954-954, 2020.

P. C. Calder and A. Yngve, Open Access, the Creative Commons Attribution Licence, and the Nutrition Society journals, British Journal of Nutrition, vol.108, issue.11, pp.1913-1914, 2012.