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Probing the erosion and cohesion of a granular raft in motion

Antoine Lagarde and Suzie Protière*

Institut Jean Le Rond �’Alembert, CNRS, Sorbonne Université, UMR 7190, F-75005 Paris, France

Particles at a liquid interface can interact through capillarity, and depending on their
size, shape, or surface chemistry, it may lead to their aggregation. Yet the two-dimensional 
structures thus created can be eroded by strong enough flows or as described in this paper
via their own motion along a deformed interface. Here we experimentally highlight an 
unexpectedly high resistance of such a granular raft to erosion, which cannot be explained
by the usual linear calculation of the capillary interaction. To clarify this result, we 
develop a model experiment in which two particles are horizontally moved along the liquid 
interface at a chosen velocity until they separate. We deduce again a cohesive force that 
exceeds the capillary attraction expected by one or two orders of magnitude. A precise 
description of the geometry of the contact line around a sphere and of its vertical position

seems to account rather well for the experimental results.

I. INTRODUCTIONParticles placed in a Newtonian fluid may undergo attractive 
interactions and form aggregates. These aggregates under flow can break up or change shape [1,2]. 
This phenomenon is observed in many consumer products (cosmetics, food, and paint, for 
example). Since the work of Camoin et al. [3], some studies have focused on the behavior of two-
dimensional (2D) aggregates stuck at a liquid interface to understand their erosion and break-up. 
Indeed, in this case, reconfigurations are effortlessly observable as the object remains on the same 
plane throughout an experiment, and the hydrodynamic forces at play may then be investigated 
easily. With different external stresses, a monolayer of particles can undergo several types of 
structural changes, from a simple reorganization of its internal structure for low stresses [4,5] to the 
formation of cracks or folds [6,7] up to its break-up for strong enough external flows. Two break-up 
mechanisms have been identified: erosion, where the aggregate loses single particles, and 
fragmentation, during which the 2D structure breaks into several large pieces. Numerical 
simulations [8] along with experiments [9,10] have tried to  characterize the relative importance 
of both phenomena. Nevertheless, the mechanisms responsible for the resistance of an aggregate to 
erosion are still far from being understood.

In this paper, we focus on the erosion of a 2D dense aggregate at an oil-water interface, from an 
experimental perspective. The granular raft, formed by the aggregation of dense spherical beads into 
an axisymmetric object [11,12], moves along a curved interface in a quiescent liquid. As a 
consequence, unlike most previous studies, the drag experienced results from its own motion 
instead of an externally imposed flow. From the observation of its erosion, we measure the critical 
force needed to extract a particle from its edge and deduce a lower boundary for the cohesive force 
of a raft. We then develop a model experiment to investigate the force of cohesion between two 
beads in contact at a liquid interface. A quantitatively good agreement is found between our data 
and a theoretical description of the geometry of the contact line around a sphere. Finally, based on 
the
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FIG. 1. Erosion of a raft: experimental setup and visualization of a typical experiment. (a) Schematic 
representation of the experimental configuration. A cylinder of radius Rcyl deflects downwards an oil-water 
interface at a depth Hcyl, the interface being pinned at the perimeter of the cylinder. A granular raft of radius 
Rraft is formed far away from the cylinder and is attracted by the cylinder through the deflection of the interface.
(b) Time lapse of a granular raft experiencing erosion during its motion along a deformed oil-water interface. 
The raft is made of approximately 375 ceramic beads (ρs = 3800 kg m−3, Rpart = 0.125 mm), and is moving 
towards a cylinder of radius Rcyl = 15 mm at a depth Hcyl = 10 mm. The movie is taken from above. Time 
between two images: 0.15 s. Scale bar: 10 mm (see Supplemental Material Movie 1 [16]). Inset: Speed of the 
granular raft, as a function of its distance from the center of the cylinder L, nondimensionalized by the radius 
of a particle. Red curve: horizontal component of the speed. Black curve: Total speed of the raft. The arrow 
indicates the moment of the first detachment of a particle from the raft.

two-bead experiment, we bring some insight into the mechanisms responsible for a granular raft’s 
resistance to erosion.

II. EROSION OF A GRANULAR RAFT

In a typical experiment, as represented in Fig. 1(a), a circular metal cylinder (radius Rcyl = 15 
mm) is placed at an oil-water interface (kinematic viscosity of the silicone oil ν = 50 × 10−3 m2 s
−1, density ρo = 960 kg m−3, oil-water surface tension γ = 38 mN m−1). Elsewhere in the water 
tank, particles are sprinkled from above and start to aggregate once they reach the oil water 
interface due to capillarity [13]. They thus form a large axisymmetric monolayer of particles. Two 
types of ceramic beads are used in the experiment, with different densities and sizes ({ρpart; 
Rpart} = {3800 kg m−3; 0.125 mm} or {6000 kg m−3; 0.1  mm}). Their high-density results in a 
strong gravitational interaction. Once the granular raft is formed, the cylinder is moved downwards 
until the desired depth Hcyl, and because the curvature of the interface acts as an external field 
[14,15], the granular raft naturally follows the slope until it reaches the cylinder. The experiment is 
recorded from above at 100 frames per second, for different numbers nraft of particles and different 
cylinder depths. For low vertical deflections, the granular raft moves towards the cylinder without 
any internal motion of its constitutive elements. As Hcyl is increased, slight rearrangements of the 
particles inside the raft may be observed, leading in some cases to erosion, as illustrated in Fig. 
1(b)(see also Supplemental Material Movie 1 [16]). Because this erosion process depends not only 
on the parameters we can control, but also on the specific geometrical arrangement of the particles 
inside the raft during the aggregation process, the same experiment is reproduced several times for 
each pair of parameters (Rraft, Hcyl).



We can now investigate the erosion process and describe the force exerted by a raft on its
constitutive element. From the top view, we have access only to the horizontal component of the
speed. However, the vertical projection is accessible through the knowledge of the vertical position
of the interface, which is obtained by an equilibrium between the hydrostatic pressure and the
pressure jump due to the curvature, leading to the following system of equations (for cylindrical
coordinates centered in the middle of the cylinder):

γ

(
h′′

1 + h′2 + h′

r

)
− (ρw − ρo)gh

√
1 + h′2 = 0

h(r → ∞) = 0

h(r = Rcyl ) = Hcyl (1)

with r the radial coordinate, h the height of the interface (h = 0 for a flat interface), h′ the derivative
of h with respect to r, and ρw the density of water. From the radial position of the raft measured in
the experiment, we can therefore calculate its vertical position, and finally deduce the total speed V ,
as illustrated in the inset of Fig. 1(b). The curves have to be read from right to left, with an increase
of the speed as the raft gets closer to the cylinder, until a maximum from which it decreases shortly.
As demonstrated in the inset, it is crucial to take into account the vertical speed of the raft in order
to avoid an error that can go up to 50%.

Particles at the edge of the raft are subjected to three forces: the force exerted by the raft itself
Fraft , which we wish to determine, the force exerted by the cylinder Fcyl, through the slope of the
interface, and finally the hydrodynamic forces resulting from the motion of the raft Fdrag, which we
deduce from the experiment. Experimentally, we observe that the erosion mostly takes place at the
rear of the raft. Indeed, from a purely geometrical point of view, a particle strictly at the rear of
the raft is free to detach very easily, whereas a particle on either side of the raft is blocked by the
presence of neighboring particles and is more likely to slide and rearrange along the raft than to
detach. As a consequence, we will write the equilibrium for the farthest particle from the cylinder
[see the particle encircled in red in Fig. 1(a)], for which all forces are aligned.

First, following the linear approach described in Refs. [17,18], and assuming small deformations
and small particles in regard to the capillary length �c = √

γ /[(ρw − ρo)g] (where g is the
acceleration of gravity), we can roughly estimate Fcyl as the product of the weight of the particle
with the slope of the interface:

Fcyl = 4

3
πR3

part

(
ρs − ρw + ρo

2

)
g

dh

dr
(r = L + Rraft ), (2)

where h stands for the depth of the interface perturbed by the cylinder but without the presence of
the raft.

The hydrodynamic forces Fdrag need a careful treatment. By considering the flow around
the red particle in Fig. 1(a), we can calculate a Reynolds number based on the particle radius
Repart = RpartVraft/ν � 1 for all our experiment, and a second one based on the raft radius Reraft =
RraftVraft/ν ≈ 1 when the speed is maximum (for instance, Reraft ≈ 3 for the maximum speed of
Fig. 1). We thus typically expect the flow field to be completely laminar and the Stokes law to be
valid.

This leads to a Stokes drag that can be expressed as follows:

Fdrag = 6πμkRpartVraft (3)

with μ the dynamic viscosity of the oil phase, and k a coefficient that accounts both for the fact that 
the particle moves along an interface, and as a consequence is immersed in two phases, and for the 
screening of the drag experienced by the bead because of the rest of the granular raft. We assume 
the coefficient k is of the order of 0.5. In reality, the combined effects of the screening and the 
presence of two phases will lead to a lower coefficient, but the screening being complex to 
evaluate, we choose to keep k = 0.5 for all our experiments. In Ref. [10], where a similar approach



FIG. 2. Critical force needed to erode a granular raft and detach a particle, as a function of the radius of
the raft. The force is calculated from experimental measurements of the raft speed at the exact moment of
the first detachment of a bead, as defined in Eq. (5), during an experiment such as the one represented in
Fig. 1. The colors stand for the depth of the cylinder (Rcyl = 15 mm) in the corresponding experiment (purple:
Hcyl = 6 mm, red: Hcyl = 7 mm, green: Hcyl = 8 mm, light blue: Hcyl = 9 mm, dark blue: Hcyl = 10 mm, black:
Hcyl = 11 mm).

is developed, the coefficient k is taken as a fitting coefficient and is found to remain in the interval
[0.2,0.3] for the oil-water interface. Moreover, as illustrated by Fig. 1, the raft does not move at a
constant speed. The transient nature of its motion could influence the erosion. Yet, by measuring
the acceleration of the raft, we can estimate the amplitude of the inertial forces, which appear to
be more than one order of magnitude lower than the Stokes drag, and as a consequence can be
neglected. One last assumption made here is that the velocity remains the same for every particle
forming the raft. However, since the local curvature of the interface increases as the raft gets closer
to the cylinder, we could expect the front of the raft to go faster than its rear, leading to an additional
tangential stress that could stretch the raft. To address this issue, we measure the length of a raft Lraft

as a function of L, Lraft being defined as the distance between the particle closest to the cylinder and
the farthest one. Here again, we solve numerically Eq. (1) to deduce from top views of the raft its
arclength along the curved interface. We measured Lraft for several sizes of rafts and several depths
of the cylinder (for situations where erosion was observed). For low deflections of the interface, Lraft

is globally constant. For the highest Hcyl, Lraft changes by no more than the size of one particle, even
for the longest raft. As a consequence, considering the axisymmetric rafts studied in the present
paper we believe we can neglect the differential velocity across the area of the raft.

Keeping in mind that the drag force may be slightly overestimated, we write the balance of forces
at the exact moment of detachment of the particle tcrit , when the three forces are at equilibrium:

Fraft = Fdrag(t = tcrit ) − Fcyl(t = tcrit ), (4)

Fraft ≈ Fdrag(t = tcrit ), (5)

where we simplify Eq. (4) into (5) by using the fact that experimentally, we always have Fdrag(t = 
tcrit ) � Fcyl(t = tcrit ). For every experiment where a detachment is observed, we calculate Fdrag(t = 
tcrit ), and plot it as a function of Rraft, as represented in Fig. 2. We get a lot of points for any given 
x-axis coordinate, since we explore a large range of values for Hcyl, and because the same experiment 
is reproduced several times for each given depth. For each set of parameters (Rraft, Hcyl) the critical



FIG. 3. Minimal cohesion force of a raft (circles), compared to the theoretical capillary force a raft should
exert on a particle at its edge, as defined in Eqs. (2) and (6) (stars), as a function of the radius of the raft,
for two different types of ceramic beads (black: ρs = 3800 kg m−3, Rpart = 0.125 mm, red: ρs = 6000 kg m−3,
Rpart = 0.1 mm). The circles are obtained by taking for each raft radius the minimal value of Fcrit in Fig. 2 for
the black circles (and of a similar set of data for the other type of particles).

speed at which erosion occurs varies significantly from one experiment to the other, as emphasized
by the great dispersion of the data of a given color at a fixed x-axis coordinate. Moreover, the speed
a raft increases with its size, as demonstrated in previous work [19]. As a consequence, a bead
belonging to the smallest raft will never experience a drag force as high as a particle inside a larger
raft, leading to a smaller scattering of the data.

Figure 2 gives information on the cohesion force of a raft (Fraft ≈ 0.5–2×10−6 N), since it
represents the force needed to extract a particle from the raft. However no clear trend can be
extracted from this data, especially knowing that for each x-axis coordinate, erosion was sometimes
not observed, meaning the raft speed was not high enough to generate a drag force greater than the
cohesion force. In other words, these experiments correspond to data points in Fig. 2 which may
go beyond the limit of the y axis and that we cannot observe with the experimental setup described
here. The arrangements of the particles inside each raft may differ greatly from one experiment to
the other and thus lead to strong differences in the global cohesion force. Because of this limitation,
it would make no sense to average the critical force for each raft radius. But by taking the minimum
value for each x-axis coordinate, we deduce a lower boundary for the cohesion force of a granular
raft as a function of its radius, as represented in Fig. 3 for two types of particles, with a slight
increase of Fcohesion with Rraft.

To account for these experimental points, we can estimate the capillary force a raft exerts on
a particle at its edge. This force can be estimated similarly to Eq. (2), as the product between the
weight of a particle and the slope of the interface at the edge of a raft. This slope can either be
measured on side views of the rafts or by solving a linearized version of Eq. (1), leading to the
following result [19]:

dhraft

dr
(r = Rraft ) = hraft/�c

K0(Rraft/�c)
K1

(
Rraft

�c

)
, (6)

where dhraft (r = Rraft ) is the slope of the interface at the edge of the raft (without the deflection
dr

caused by the cylinder), hraft the depth of the edge of the raft, and Ki the modified Bessel function 
of
the second kind of order i. The slope remaining rather small for the sizes explored 
experimentally,



FIG. 4. Force of cohesion between two particles at an interface: experimental setup and visualization of a 
typical experiment. (a) Schematic representation of the experimental configuration. A metallic wire is glued 
on a bead which is then placed at the interface and attracts another particle. The two aggregated particles are 
then translated at a constant speed V . (b) Time lapse of the translation of a couple of plastic particles (ρs = 
1420 kg m−3, Rpart = 1.5 mm) at an oil-water interface, at the critical speed of detachment Vcrit = 6 mm/s. The 
red arrow indicates the separation between the two particles. The movie is taken from the side. Time between 
two images: 1.6 s. Scale bar: 5 mm (see Supplemental Material Movie 2 [16]).

the theoretical slope predicted by Eq. (6) and its experimental value differ by less than 10%. The 
corresponding force is represented by red and black stars in Fig. 3.

We find a strong disagreement between the experiments and the theoretical results for the 
measured cohesion force. As pointed out previously, the force is probably overestimated but the 
screening is not sufficient to account for the two orders of magnitude of difference between the 
theory and the experiment for the smallest raft. Indeed, the screening derived in Ref. [10] would 
lower our data only by a factor 2 or 3, which would be far from sufficient to conciliate the experiment 
with the theory. Unfortunately, our experimental setup does not allow us either to go further in the 
understanding of what seems to be an unexpectedly high cohesion or to undoubtedly exclude the 
possibility of a screening higher than expected. Moreover, friction due to the solid-solid contact 
between the spheres as well as jamming phenomena preventing particles from moving can be 
observed and should be included to completely describe the cohesion of a raft.

III. COHESION OF A PAIR OF PARTICLES AT AN INTERFACE

To circumvent these issues we now focus on the characterization of the cohesion between 
two spheres at an oil-water interface. In that model situation, the capillary interaction can be 
described more finely, the screening will be less important a priori, and no jamming due to the 
specific arrangement of the beads is possible. Moreover, for two particles, the linear approximation 
is completely valid, giving more credibility to the capillary force calculated. With the current 
experimental device, the speed a two-bead aggregate can reach during its interaction with a cylinder 
is too low to separate the particles. In order to play directly on the drag experienced instead of 
applying an external force field to change indirectly the speed, the experimental setup of Fig. 4(a) 
is developed.

A metallic wire with a diameter of 0.3 mm is glued on a bead and connected to a vertical manual 
translation stage, itself fixed on a horizontal Thorlabs linear translation stage mounted with a stepped 
motor, that can reach a speed V = 30 mm/s along a travel range of 150 mm. The particle is then 
placed at an oil-water interface, at the depth of a freely floating pair of particles (which is determined 
experimentally), and another identical bead is added not far and aggregates with the wire-connected 
particle. Due to this procedure, the pair of particles has the same vertical position it would have had



FIG. 5. Experimental cohesion force of a pair of particles calculated due to Eq. (3) (colored stars), 
compared with the theoretical capillary force between two beads (dotted lines), as defined in Eq. (7), as a 
function of the radius of the beads, for different types of particles (black: ceramic beads ρs = 3800 kg m−3, 
red: high-density ceramic beads ρs = 6000 kg m−3, blue: plastic beads ρs = 1420 kg m−3, green: glass beads 
ρs = 2500 kg m−3). The black diamond at Rpart = 0.45 mm corresponds to an experiment done with a larger 
wire (diameter of 1.1 mm).

without the presence of the wire. The pair of beads is then moved horizontally at a given constant 
speed V . If no detachment is observed, the speed is increased gradually from one experiment to the 
next until the two beads separate. The horizontality of the translation stage being fundamental to 
keep the particles at the same level along their motion, a highly sensitive spirit level with a precision 
of 0.1 mrad is used. No clear influence of the acceleration ramp was noted: for any given experiment, 
the detachment velocity is the same whatever the acceleration needed to reach this velocity is, in the 
range [0 15] mm/s2.

Several types of particles are used in this experiment: plastic beads (ρs = 1420 kg m−3, Rpart ∈ 
[2.5, 2, 1.5] mm), ceramic beads (ρs = 3800 kg m−3, Rpart ∈ [0.45, 0.35, 0.25] mm), high-density 
ceramic beads (ρs = 6000 kg m−3, Rpart ∈ [0.5, 0.25, 0.2, 0.15, 0.1] mm), and finally glass beads 
(ρs = 2500 kg m−3, Rpart = 0.17 mm). A typical experiment is shown in Fig. 4(b), where two plastic 
beads are moved horizontally at the critical detachment speed. The freely floating particle slowly 
detaches from the wire-connected one, a behavior which was not observed for a lower speed. No 
detachment was observed for the biggest plastic bead, for which the experimental device could not 
reach high enough velocities.

The drag force experienced by the detaching particle is estimated by Eq. (3), exactly as before, 
with the same coefficient k = 0.5. At detachment, since only the drag and the attractive cohesive 
forces are present, this estimation directly gives us the cohesion force between the two beads. The 
results are displayed in Fig. 5. The error bars of our data are determined by reproducing several 
times the experiment first in the same conditions, then with slightly different depths of the beads 
(the depth was changed by no more than 10%), in order to determine lower and upper boundaries 
of this critical speed.

These experimental points need to be compared to the theoretical prediction of the capillary force 
between two particles. In the limit of small deformations, small spherical particles, and isotropy of 
the meniscus around a sphere, the capillary force between two identical spheres in contact at an



interface can be expressed as follows [18,20]:

Fcap = 2πγ RpartBo5/2�2K1

(
2Rpart

�c

)
(7)

with Bo = (Rpart/�c)2 the Bond number, � = 2D−1
3 − 1

2 cos θ + 1
6 cos3 θ , θ the oil-water-particle

contact angle, and D = ρs−ρo

ρw−ρo
. This theoretical cohesion force is represented in dotted lines in

Fig. 5. For the biggest particles, this linear theory perfectly accounts for our results, and the
experimental cohesion force strictly corresponds to the capillary attraction between the two beads.
However, as the radius of the beads decreases, the disagreement greatly increases, up to two orders
of magnitude for the smallest beads used. This result is consistent with the previous experiment
with a granular raft, where the same small particles were used (red points of Fig. 3), and a similar
disagreement was found between the classic linear capillary theory and the experimental cohesion
force measured. However, in the situation presented here, the assumptions needed to derive Eq. (7)
are even more valid. Furthermore, contrary to the erosion experiment, no jamming between particles
is possible, and the screening of the drag created by the other particle cannot account for two orders
of magnitude.

The last source of error in the interpretation of the experiment could come from the presence of
the metallic wire, which could have an influence on the flow. A priori the larger the wire is with
respect to the particle, the more it will affect the drag experienced. In order to probe its influence,
we used two diameters of wire for one of the experiment (ρs = 3800 kg m−3, Rpart = 0.45 mm): the
usual wire with a diameter of 0.3 mm, and a larger one with a diameter of 1.1 mm, whose size is
comparable to the particle. There is only a factor 2 of difference between the two cohesion forces
deduced from these two experiments (black star and black diamond at Rpart = 0.45 mm). This tends
to prove that even though the wire does affect the detachment, it cannot explain the two orders of
magnitude found for the smallest bead.

This result indicates that a more fundamental explanation has to be found. The answer could lie
within the assumptions needed for the calculation of Eq. (7), and especially under the hypothesis of
isotropy, which is not clear for two particles in contact.

In 2017 Cooray et al. [21] calculated the capillary forces for a pair of particles without assuming
axisymmetry around a particle, precisely by taking into account the tilting of the contact line around
each sphere. By doing so, two components of the force arise:

(1) A hydrostatic force Fhyd, due to the difference of depth of the two phases around the sphere,
when integrating the pressure

(2) A surface tension force Fst, resulting from the integration of surface tension along the
nonplanar contact line.

Both forces have vertical and horizontal components, but here we will focus only on the
horizontal ones. Following the calculations detailed in Refs. [21,22], we end up with expressions for
F (x)

hyd and F (x)
st that depend only on the contact angle θ , the position of the contact line for an isolated

sphere ϕs, the radius of the particle Rpart, and the fluid parameters (for the exact expressions, see
Supplemental Material [16]), as defined in Fig. 6(a). The resultant horizontal force is

F (x) = F (x)
hyd + F (x)

st . (8)

To calculate F (x), we need the values of θ , ϕs, and Rpart. θ is measured on side views of a floating
particle, while ϕs can be either calculated or measured, as represented in Fig. 6(b). The calculation
comes from a vertical balance of the three forces acting on a particle: the weight, the buoyancy, and
the surface tension force. Without any assumptions, this leads to [21]

4

3
D = 2

3
− cos ϕs + 1

3
cos3 ϕs − ξs

Bo1/2�c
sin2 ϕs

− 2

Bo
sin ϕs sin(ϕs + θ ) (9)



FIG. 6. (a) Schematic representation of a particle at an oil-water interface, along with some important
parameters that we need to take into account for the calculation of the capillary forces. (b) Theoretical depth
angle ϕs theo as a function of the experimental one ϕs exp, for different types of particles (black: ceramic beads
ρs = 3800 kg m−3, red: high-density ceramic beads ρs = 6000 kg m−3, blue: plastic beads ρs = 1420 kg m−3).
The dotted line of slope one is only a guideline for the eye.

with ξs the depth of the contact line, as defined in Fig. 6(a). In the limit of small deformations, the
equation of the interface we need to solve in order to deduce ξs is the following:

∇2h = h

�2
c

h′(r = R sin ϕs) = tan(ϕs + θ )

h(+∞) = 0. (10)

Applying the result in r = R sin ϕs, we end up with Eq. (11):

ξs = − tan(ϕs + θ )�c
K0(R sin ϕs/�c)

K1(R sin ϕs/�c)
. (11)

Equation (9) can then be solved numerically, and the value of ϕs can then be deduced for any
given pair of parameters (Rpart, θ ), with a good agreement with the experiment as demonstrated by
Fig. 6(b). For all our measurements, the mean difference between the experimental value of ϕs and
the theoretical one is �ϕs = 〈ϕs exp − ϕs theo〉 ≈ 3◦.

From there, the value of F (x) can be computed only as a function of (Rpart, θ ) and compared to
our experimental measurement of Fcohesion. The corresponding result is plotted in Fig. 7 with black
squares, along with the previous experimental result with colored stars, and the first theoretical
model of Eq. (7) with a plain line. The rescaling of the x axis comes from the asymptotic analysis
of Eq. (7) for small radii [see Eq. (12)], which indicates that Bo5/2�2 is the good rescaling
parameter:

Fcap ∼
R→0

γ �cBo5/2�2. (12)

Because there is a strong hysteresis of the contact angle (up to 40◦ between its minimal and 
maximal value), we measure θ with different beads for each radius, and calculate as a consequence 
several cohesion forces for each radius, depending on θ . Yet the values obtained are almost not 
affected by this hysteresis. The force obtained differs only slightly from the simple calculation of 
Eq. (7) (not more than 10% of difference, which is consistent with the results reported in Ref. [21]). 
As a consequence, this approach does not explain our experimental result.

As pointed out before, ϕs exp differs from its theoretical value by �ϕs ≈ 3◦. We can therefore 
shift all depth angles by a constant value �ϕs and calculate F (x)(Rpart, θmean, ϕs theo + �ϕs ). The 
corresponding result is plotted in dotted lines in Fig. 7 (we also use one single value of θmean for 
each material).
Surprisingly, considering the small value of �ϕs, both the general trend and the order of magnitude 

are now consistent with the experiments: for small radii, we recover an enhanced



FIG. 7. Experimental cohesion force of a pair of particles calculated due to Eq. (3) (colored stars), 
compared with three theoretical predictions: the classical capillary force between two beads Fcap (plain line), 
as defined in Eq. (7), the full solving of the force F (x) from Eq. (8), taking into account the tilting of the 
contact line, with the theoretical depth angle ϕs theo given by Eq. (9) (black squares), and finally with dotted 
lines the same horizontal force F (x) but with a depth angle of ϕs theo + 3◦. The data are plotted as a function of 
the dimensionless number Bo5/2�2, as defined in Eq. (7), for different types of particles (black: ceramic beads 
ρs = 3800 kg m−3, red: high-density ceramic beads ρs = 6000 kg m−3, blue: plastic beads ρs = 1420 kg m−3, 
green: glass beads ρs = 2500 kg m−3). The colored arrows show which three points have been selected for the 
inset. Inset: Theoretical horizontal force between two ceramic beads, as a function of the slope of the interface 
ψs, for three different radii (magenta: Rpart = 0.5 mm, light blue Rpart = 0.25 mm, orange Rpart = 0.1 mm).  The  
dotted lines indicate the theoretical slopes ψs theo for each radius (the corresponding theoretical force can be 
read in ordinate).

capillary force, whereas when the radius of the particle increases, both calculations lead to the same 
result. This suggests that the small variations of ϕs have a strong effect on F (x) for small particles, 
an interpretation that needs some backup.

Up to now, we have considered F (x) for fixed values of ϕs. As represented in the inset of Fig. 7, 
we investigate how F (x) varies with the angle ψs = ϕs + θ − π , with ψs defined in Fig. 6(a) (simple 
geometrical considerations lead to this relation). The three curves correspond to three different radii 
of particles, and the dotted lines indicate the theoretical angles ψs theo = ϕs theo + θ − π for each 
radius. As illustrated, F (x) ∝ ψs

2 for small angles. As a consequence, a variation of �ϕs in the x axis 
for the bigger radius in pink would result in only a factor two or three for the force, while the very 
same variation on the x axis for the smallest particle in green would result in more than one order of 
magnitude in ordinate. Thus, as ψs gets smaller, the tiniest variation of its value has an increasing 
effect on F (x).

The last remaining question concerns the differences between ϕs exp and ϕs theo. The approxima-
tion made in the calculation of ϕs theo is perfectly valid for the smallest particles considered. Yet it is 
well known that for small particles, capillary forces between objects are produced via geometrical 
details such as the object’s shape or surface roughness [23,24]. Such undulations of the contact line 
may also be present for larger particles, leading to an effective depth angle ϕs exp different from the 
theoretical one by only a few degrees. However, as demonstrated earlier, these few degrees can lead 
to very strong variations of the capillary force between two spheres in contact. The tilting of the 
contact line as the two particles come into contact also plays an essential role in the observed large 
increase of the capillary forces. It is the combination of these two effects that leads to an enhanced 
cohesion force for small particles.



This result for the cohesive force between two beads can be extrapolated to explain qualitatively
the cohesion of a whole raft, which is higher than the capillary force estimated theoretically. This
unexpectedly high cohesive force thus means these aggregates are far more resistant than expected
and can resist far stronger flows.

IV. CONCLUSIONS AND OUTLOOK

In conclusion, we have investigated the cohesion inside an assembly of large dense particles
at an interface and between two aggregated beads at a liquid interface. The erosion a granular raft
experiences during its motion occurs for unexpectedly high speeds. This enhanced cohesion appears
to result from the precise description of the meniscus around each particle, as demonstrated by the
two-bead experiment. For small particles, the attractive force between two beads in contact exceeds
by two orders of magnitude the force expected by the classic theory, whereas no significant effect is
observed for large particles. The tilting of the contact line as well as small variations in the pinning
of the contact line seem to explain this enhanced force.

The small differences between the theoretical depth angle of a freely floating particle and
the experimental one requires some further investigation. In particular, the role of roughness,
nonspherical shapes, and surface inhomogeneity on the effective depth angle deserves to be
investigated further. The present study could also be extended to the capillary forces between smaller
particles or to the erosion of particle-covered droplets under flow. A theoretical description of the
geometry of the contact line when more than two beads are in contact along a curved interface would
help us to understand this phenomenon.
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