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On completely multiplicative automatic sequences

In this article we prove that all completely multiplicative automatic sequences (an) n∈N defined on C, vanishing or not, can be written in the form an = bnχn where (bn) n∈N is an almost constant sequence, and (χn) n∈N is a Dirichlet character.

Introduction

In this article we give a decomposition of completely multiplicative automatic sequences, which will be referred as CMAS. In article [START_REF] Schlage-Puchta | Completely multiplicative automatic functions[END_REF], the author proves that a non-vanishing CMAS is almost periodic (defined in [START_REF] Schlage-Puchta | Completely multiplicative automatic functions[END_REF]). In article [START_REF] Allouche | Mock characters and the Kronecker symbol[END_REF], the authors give a formal expression to all non-vanishing CMAS and also some examples in the vanishing case (named as mock characters). In article [START_REF] Hu | Subword complexity and non-automaticity of certain completely multiplicative functions[END_REF], the author studies completely multiplicative sequences, which will be referred as CMS, taking values on a general field, which have finitely many prime numbers such that a p = 1, she proves that such CMS have complexity p a (n) = O(n k ) where k = # {p|p ∈ P, a p = 1, 0}. In this article we prove that all completely multiplicative sequences (a n ) n∈N defined on C, vanishing or not, can be written in the form a n = b n χ n where (b n ) n∈N is an almost constant sequence, and (χ n ) n∈N is a Dirichlet character.

Let us consider a CMAS (a n ) n∈N defined on C. We firstly prove that all CMAS are mock characters (defined in [START_REF] Allouche | Mock characters and the Kronecker symbol[END_REF]) with an exceptional case. Secondly, we study the CMAS satisfying the condition C :

p|ap =1,p∈P 1 p < ∞,
where P is the set of prime numbers, we prove that in this case, there is at most one prime p such that a p = 1 or 0. In the third part we prove that all CMAS are either Dirichlet-like sequence or strongly aperiodic sequences. Lastly we conclude by proving that a strongly aperiodic sequence can not be automatic.

Definition Let (a n ) n∈N be an infinite sequence and k ≥ 2 an integer, we say this sequence is k-automatic if there is a finite set of sequences containing (a n ) n∈N and closed under the maps

a n → a kn+i , i = 0, 1, ...k -1.
There is another definition of a k-automatic sequence (a n ) n∈N via an automaton. An automaton is an oriented graph with one state distinguished as initial state, and for each state there are exactly k edges pointing from this state to others, these edges are labeled as 0, 1, ..., k -1. There is an output function f which maps the set of states to a set U . For an arbitrary n ∈ N, the n-th element of the automatic sequence can be computed as follows: writing the k-ary expansion of n, starting from the initial state and moving from one state to another by taking the edge read in the k-ary expansion one by one until stop on some state. The value of a n is the evaluation of f on the stopping state. If we read the expansion from right to left, then we call this automaton a reverse automaton of the sequence, otherwise it is called a direct automaton.

In this article, all automata considered are direct automata.

Definition We define a subword1 of a sequence as a finite length string of the sequence. We let w l denote a subword of length l.

Definition Let (a n ) n∈N be an infinite sequence, we say this sequence is completely multiplicative if for any p, q ∈ N, we have a p a q = a pq .

It is easy to see that a CMAS can only take finite many values, either 0 or a k-th root of unity (see, for example, Lemma 1 [START_REF] Schlage-Puchta | Completely multiplicative automatic functions[END_REF]).

Definition Let (a n ) n∈N be a CMS, we say that a p is a prime factor of (a n ) n∈N if p is a prime number and a p = 1. Moreover, we say that a p is a non-trivial factor if a p = 0; and respectively, we say that a p is a 0-factor if a p = 0. We say that a sequence (a n ) n∈N is generated by a p1 , a p2 , ... if and only if a p1 , a p2 , ... are the only prime factors of the sequence.

Definition We say that a sequence is an almost-0-sequence if there is only one non-trivial factor a p and a q = 0 for all primes q = p.

Proposition 1 Let (a n ) n∈N be a k-CMAS and q be the number of states of a direct automaton generating (a n ) n∈N then for any m, y ∈ N. We have equality between the sets a n |mk q! ≤ n < (m + 1)k q! = a n |mk yq! ≤ n < (m + 1)k yq! .

Proof In article [START_REF] Schlage-Puchta | Completely multiplicative automatic functions[END_REF](Lemma 3 and Theorem 1), the author proves that in an automaton, every state which can be reached from a specific state, say s, with q! steps, can be reached with yq! steps for every y ≥ 1; and conversely, if a state can be reached with yq! steps for some y ≥ 1, then it can already be reached with q! steps. This proves the proposition.

Let us consider (a n ) n∈N a CMS taking values in a finite Abelian group G, we define exists.

E =    g|g ∈ G, ap=g,p∈P 1 p = ∞    and
Proposition 2 Let (a n ) n∈N be a CMS taking values in a finite Abelian group G, then for all elements g ∈ G, the sequence a -1 (g) = {n : a n = g} has a non-zero natural density. Furthermore, this density depends only on the coset rG 1 on which the element g lies. The statement is still true in the case that G is a semi-group generated by a finite group and 0, under the condition that there are finitely many primes p such that a p = 0.

Proof When G is an Abelien group the proposition is proved in Theorem 3.10, [START_REF] Ruzsa | General multiplicative functions[END_REF], and when G is a semi-group, the Theorem 7.3, [START_REF] Ruzsa | General multiplicative functions[END_REF] shows that all elements in G have a natural density. To conclude the proof, it is enough to consider the following fact: let f 0 be a CMS such that there exists a prime p with a p = 0, let f 1 be another CMS such that

f 1 (q) = f 0 (q) if q ∈ P, q = p 1 otherwise, if d 0 (g), d 1 (g)
denote respectively the natural density of g in the sequence (f 0 (n)) n∈n and (f 1 (n)) n∈N , then we have the equality

d 1 (g) = d 0 (g) + 1 p d 0 (g) + 1 p 2 d 0 (g)... = p p -1 d 0 (g).
Doing this regressively until a non-vanishing sequence, we can conclude by the first part of the proposition.

3 Finiteness of the numbers of 0-factors

In this section we will prove that a CMAS is either a mock character, which means it has only finitely many 0-factors, or an almost-0-sequence, that is to say a m = 0 for all m which is not a power of p and a p k = δ k for some δ, where δ is a root of unity or 0 and p is a prime number.

Proposition 3 Let (a n ) n∈N be a p-CMAS, then it is either a mock character or an 0-almostsequence.

Proof If (a n ) n∈N is not a mock character, then it contains infinitely many 0-factors. Here we prove that, in this case, if there is some a m = 0 then m must be a power of p and p must be a prime number. Let us suppose that there are q states on automaton generating the sequence. As there are infinitely many 0-factors, it is easy to find a subword of length p 2q! such that all its elements are 0: It is equivalent to find some m ∈ N and p 2q! 0-factors, say a p1 , a p2 , ..., a p p 2q! , such that

           m ≡ 0 (mod p 1 ) m + 1 ≡ 0 (mod p 2 ) m + 2 ≡ 0 (mod p 3 ) ... m + p 2q! -1 ≡ 0 (mod p p 2q! )
If m is a solution of the above system, then the subword a m a m+1 ...a m+p 2q! -1 is constant to 0. So there exists a m such that m ≤ m p q! < (m + 1)p q! ≤ m + p 2q! . Because of Proposition 1, for any y ∈ N, a k = 0 for all k such that m p yq! ≤ k < (m + 1)p yq! . Taking an arbitrary prime r, if r and p are not multiplicatively dependent, then a r = 0 because there exists a power of r satisfying m p yq! ≤ r t < (m + 1)p yq! , this inequality holds because we can find some integer t and y such that: log p m ≤ t log p r -yq! < log p (m + 1).

The above argument shows that if (a n ) n∈N is not a sequence such that a m = 0 for all m > 1, then p must be a power of a prime number p . Otherwise, as p is not multiplicatively dependent with any prime numbers, a m = 0 for all m > 1. Furthermore, the sequence (a n ) n∈N can have at most one non-zero prime factor, and if it exists, it should be a p . Using the automaticity, we can replace p with p.

CMAS satisfying condition C

From this section, we consider only the CMAS with finitely many 0-factors.

In this section we prove that all CMAS satisfying C can have at most one non-trivial factor, and we do this in several steps.

Proposition 4 Let (a n ) n∈N be a non-vanishing CMS taking values in the set G = {ζ r |r ∈ N}, where ζ is a non-trivial k-th root of unity, having u prime factors a p1 , a p2 , ...a pu , then there exist g ∈ G (where a p1 = g) and a subword w u appearing periodically in the sequence (a n ) n∈N such that all its letters are different from g. Furthermore, the period does not have any other prime factor than p 1 , p 2 , ..., p u .

Proof We prove it by induction, for u = 1, the above statement is trivial. It is easy to check that the sequence (a np k+1

1 +p k 1
) n∈N is a constant sequence of 1, the period is p k+1 1 and g = a p1 . Supposing the statement is true for some u = n 0 , let us consider the case u = n 0 + 1. We firstly consider the the sequence (a n ) n∈N defined as

a n = a n p vp n 0 +1 (n) n 0 +1
, a sequence having n 0 prime factors, where v p (n) denotes the largest integer r such that p r |n. Using the hypothesis of induction we get a subword w n0 satisfying the statement. Let us suppose that the first letter of this subword appears in the sequence (a mn 0 n+ln 0 ) n∈N . We can extract from this sequence a sequence of the form (a m n 0 n+ln 0 ) n∈N such that m n 0 = m n0 n0 j=1 p dj j for some d j ∈ N + and v pj (m n 0 n + l n0 + n 0 ) = v pj (l n0 + n 0 ) for all j ≤ n 0 . In this case the sequence (a m n 0 n+ln 0 +n0 ) n∈N is a constant sequence, say all letters equal C.

Here we consider two residue classes N 1 (n), N 2 (n) satisfying separately the conditions :

m n 0 N 1 (n) ≡ -l n0 -n 0 mod p n0+1 m n 0 N 1 (n) ≡ -l n0 -n 0 mod p 2 n0+1 and m n 0 N 2 (n) ≡ -l n0 -n 0 mod p 2 n0+1 m n 0 N 2 (n) ≡ -l n0 -n 0 mod p 3 n0+1
In these two cases we have respectively a m n 0 N1(n)+ln 0 +n0 = Ca pn 0 +1 and a m n 0 N2(n)+ln 0 +n0 = Ca 2 pn 0 +1 for all n ∈ N. As a pn 0 +1 = 1, there is at least one element of Ca pn 0 +1 , Ca 2 pn 0 +1 not equal to g.

If N i (n) is the associated residue class, then N i (n) = p i+1
n0+1 n + t for all integer n with t ∈ N, i = 1 or 2. Now let us choose m n0+1 = m n 0 p i+1 n0+1 and l n0+1 = l n0 + tm n 0 , so that the sequence (a mn 0 +1n+ln 0 +1 ) n∈N is a subsequence of (a mn 0 n+ln 0 ) n∈N , thus the subword a mn 0 +1n+ln 0 +1 a mn 0 +1n+ln 0 +1+1 ...a mn 0 +1n+ln 0 +1+n0-1 is constant and none of its letters equals g because of the hypothesis of induction. Furthermore, a mn 0 +1n+ln 0 +1+n0 = a mn 0 Ni(n)+ln 0 +n0 is independent of n and different from g because of the choice of residue class. The properties saying that the prime number p n0+1 is larger than n 0 + 1 and p n0+1 |m n 0 N i (n) + l n0 + n 0 by construction imply the fact that for all j such that 0 ≤ j ≤ n 0 -1, p n0+1 m n0+1 n + l n0+1 + j. So we conclude that for all n, j ∈ N such that 0 ≤ j ≤ n 0 -1, v pn 0 +1 (m n0+1 n + l n0+1 + j) = 0. This means that the subword a mn 0 +1n+ln 0 +1 a mn 0 +1n+ln 0 +1+1 ...a mn 0 +1n+ln 0 +1+n0 is a subword of length n 0 + 1 independent of n and none of its letters equals g, what is more m n0+1 does not have any prime factor other than p 1 , p 2 ...p n0 .

Proposition 5 Let (a n ) n∈N be a non-vanishing CMS defined on a finite set G satisfying condition C, and let (a n ) n∈N be another CMS generated by the first r prime factors of (a n ) n∈N , say a p1 , a p2 , ..., a pr . If there is a subword w r appearing periodically in (a n ) n∈N , and the period does not have any other prime factors than p 1 , p 2 , ..., p r , then this subword appears at least once in (a n ) n∈N .

Proof Let us denote by p 1 , p 2 ... the sequence of prime numbers such that a pi = 1. Supposing that the first letter of the subword w r belongs to the sequence (a mrn+lr ) n∈N for some m r ∈ N, l r ∈ N, by hypothesis, m r does not have any other prime factor than p 1 , p 2 , ..., p r . So the total number of such subwords in the sequence (a n ) n∈N can be bounded by the inequality:

# {a k |k ≤ n, a k , a k+1 , ..., a k+r-1 = wr} ≥ # a k |k ≤ n, k = mrk + lr, k ∈ N; pi k + j, ∀(i, j) with 0 ≤ j ≤ r -1, i > r (1)
Let us consider the sequence defined as

N (t) = t j=1 p r+j , we have # a k |k ≤ N (t)m r + l r , k = m r k + l r , k ∈ N; p i k + j, ∀(i, j) with 0 ≤ j ≤ r -1, r < i ≤ r + t = t j=1 (p r+j -r)
(2) This equality holds because of Chinese reminder theorem, and the fact that p r+j m r and p r+j > r for all j ≥ 1.

So we have

# a k |k ≤ N (t)m r + l r , k = m r k + l r , k ∈ N; p i k + j, ∀(i, j) with 0 ≤ j ≤ r -1, i > r ># a k |k ≤ N (t)m r + l r , k = m r k + l r , k ∈ N; p i k + j, ∀(i, j) with 0 ≤ j ≤ r -1, r < i ≤ r + t -# a k |k ≤ N (t)m r + l r , k = m r k + l r , k ∈ N; p i | k + j, ∀(i, j) with 0 ≤ j ≤ r -1, i > r + t ># a k |k ≤ N (t)m r + l r , k = m r k + l r , k ∈ N; p i k + j, ∀(i, j) with 0 ≤ j ≤ r -1, r < i ≤ r + t - i>r+t # a k |k ≤ N (i)m r + l r , k = m r k + l r , k ∈ N; p i | k + j, ∀j with 0 ≤ j ≤ r -1 > t j=1 (p r+j -r) -r i>r+t,pi<N (t)+r [ N (t) p i ] > t j=1 (p r+j -r) -r i>r+t,pi<N (t)+r N (t) p i -rπ(N (t) + r).
(3) where [a] represents the smallest integer larger than a and π is the prime counting function. However,

t j=1 (p r+j -r) = t j=1 p r+j -r p r+j N (t) ≥ ∞ j=1 p r+j -r p r+j N (t). (4) 
The last formula can be approximates as

∞ j=1 pr+j -r pr+j = exp( ∞ j=1 log( pr+j -r pr+j )) = exp(-Θ( ∞ j=1 r pr+j
)), the last equality holds because log(1 -x) ∼ x when x is small. Because of C, the above quantity does not diverge to 0, We conclude that, if t is large enough, there exists a c with 0 < c < 1 such that t j=1 (p r+j -r) > cN (t). On the other hand, we remark that for all i > r + t, p t i > t j=1 p r+j = N (t), so p i > N (t)

1 t i>r+t,pi<N (t)+r N (t) p i < N (t) N (t) 1 t <p<N (t)+r 1 p . (5) 
And the term N (t)

1
t can be bounded by

N (t) 1 t = ( t j=1 p r+j ) 1 t ≥ t t j=1 1 pr+j > t t j=1 1 qj . (6) 
where q j is the j-th prime number in N. For any x ∈ N, # {p i |p i ≤ x} ∼ x log(x) and pi≤x 1 pi ∼ log log(x), so N (t) 1 t tends to infinity when t tends to infinity, because of C, we can conclude that there exists some t 0 ∈ N such that for all t > t 0 ,

N (t) 1 t <p<N (t)+r 1 p < 1 2r c.
To conclude, for all t > t 0 ,

# {a k |k ≤ N (t)m r + l r , k = m r k + l r , k ∈ N; k + j p i , ∀(i, j) with 0 ≤ j ≤ r -1, ∀i > r} > t j=1 (p r+j -r) -r k>r+t N (t) p k -rπ(N (t) + r) >cN (t) - 1 2 cN (t) -rπ(N (t) + r). (7) 
Definition A sequence (a n ) n∈N is said to be (trivial) Dirichlet-like if and only if there exists a (trivial) Dirichlet character X(n) n∈N such that there exists at most one prime number p satisfying a p = X(p).

Proposition 7 Let (a n ) n∈N be a CMAS, then either there exists a Dirichlet character (X(n)) n∈N such that the sequence (a n X(n)) n∈N is a trivial Dirichlet-like character, or it is strongly aperiodic.

Proof Firstly, it is easy to check that, there is an integer r such that a p is r-th root of unity for all but finitely many primes p ( see Lemma 1 [START_REF] Schlage-Puchta | Completely multiplicative automatic functions[END_REF]). If (a n ) n∈N is not strongly aperiodic, then because of Proposition 6.1 in [START_REF] Frantzikinakis | An Averaged Chowla and Elliott Conjecture Along Independent Polynomials[END_REF], there exists a Dirichlet character (X(n)) n∈N such that lim

N →∞ D(a, X, N ) < ∞( * ).
However, the sequence (a n X(n)) n∈N is also CMAS and satisfies condition C, the last fact is from ( * ). Because of Proposition 6, (a n X(n)) n∈N is a trivial Dirichlet-like character.

Proposition 8 Let (a n ) n∈N be a CMAS and X t (n) n∈N a Dirichlet character (mod t). If the sequence (a n X t (n)) n∈N is the trivial Dirichlet-like character (mod t) then (a n ) n∈N is either a Dirichlet character (mod t), or a Dirichlet-like character a n = vp(n) X( n p vp(n) ), where p is a prime divisor of t and is a root of unity.

Proof Let (a n ) n∈N be a CMAS satisfying the above hypothesis, then all possibilities for such (a n ) n∈N are the sequences of the form:

a n = m i=1 vp i (n) i X n m i=1 p vp i (n) i
, for each n, where i are all non zero complex numbers and p i are all prime factors of t.

Let us consider the Dirichlet sequence f (s) associated with the sequence (a n ) n∈N , which can be written

f (s) = L(s, X t ) m i=1 1 -1 p s i 1 - ap i p s i .
So all the poles of f (s) can be found on s = log a pi + 2imπ log p i , for all i such that 1 ≤ i ≤ m and n ∈ N.

But on the other hand, if (a n ) n∈N is a k-automatic sequence for some integer k, then the poles should be located at points

s = log λ log k + 2imπ log k -l + 1,
where λ is any eigenvalue of a certain matrix defined from the sequence (χ n ) n∈N , and m ∈ Z, l ∈ N, and log is a branch of the complex logarithm [START_REF] Allouche | Automatic Dirichlet series[END_REF]. By comparing the two sets of possible location of poles for the same function, we can see that there is at most one a pi = 0.

Conclusion

In this section we conclude this article by proving that strongly aperiodic CMAS does not exist. To do so, we give a definition of the block complexity of sequences.

Definition Let (a n ) n∈N be a sequence, the the block complexity of (a n ) n∈N is a sequence, which will be denoted by (p(k)) k∈N , such that p(k) is the number of subwords of length k that occur (as consecutive values) in (a n ) n∈N Proposition 9 If (a n ) n∈N is a CMAS then it is not strongly aperiodic.

Proof From Theorem 2 in ( [START_REF] Frantzikinakis | Furstenberg Systems of Bounded Multiplicative Functions and Applications[END_REF]) and the following remark, the block complexity of sequence (a n ) n∈N should satisfy the propriety that lim n→∞ p(n) n = ∞, which contradicts to the fact that the block complexity of an automatic sequence is bounded by a linear function [START_REF] Cobham | Uniform tag sequences[END_REF]. So the non-existence of strongly aperiodic CMAS.

Theorem 1 Let (a n ) n∈N be a CMAS, then it can be written in the form: -either there is at most one prime p such that a p = 0 and a q = 0 for all other primes q; -or a n = vp(n) X( n p vp (n) ), where (X(n)) n∈N is a Dirichlet character.
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  W (a, b) = lim sup N →∞ sup l≥1 1 N | {l ≤ n < l + N : a(n) = b(n)} |.

  G 1 the subgroup of G generated by E.

	Definition We say that an element ζ of a sequence (a n ) n∈N has a natural density if and only if
	lim N →∞	{n|an=ζ,0≤n≤N } N +1	exists, and we say that the sequence (a n ) n∈N has a mean value if and
	only if lim N →∞	N n=0 an N +1

Definitions, notation and basic propositionsLet us recall the definition of automatic sequences and complete multiplicativity:

what we call subword here is also called factor in the literature, but we use factor with a different meaning.

When t tends to infinity, the set # {a k |k ≤ n, a k , a k+1 , ..., a k+r-1 = w r } is not empty.

Proposition 6 Let (a n ) n∈N be a p-CMAS, vanishing or not, satisfying condition C, then there exists at most one prime number k such that a k = 1 or 0.

Proof Supposing that the sequence (a n ) n∈N has infinitely many prime factors not equal to 0 or 1. Let us consider firstly the sequence (a n ) n∈N defined as follows:

, where Z = {p|p ∈ P, a p = 0}, because of Proposition 3, this set is finite.

Using the Proposition 4 and 5, there exists a subword of length p 2q! , say v p 2q! , appearing in (a n ) n∈N such that none of its letters equals g = a p1 = a p1 , where q is the number of states of the automaton generating (a n ) n∈N . Then, by construction, there is a subword of same length, say w p 2q! , appearing at the same position on the sequence (a n ) n∈N such that none of its letters equals g. Extracting a subword w p q! contained in w p 2q! of the form a up q! a up q! +2 ...a (u+1)p q! -1 for some u ∈ N and using the Proposition 1, we have for every y such that y ≥ 1 and every m such that 0 ≤ m ≤ p yq! -1, a up yq! +m = g. In particular, lim y→∞ 1 p yq! # a s = g|up yq! ≤ s < (u + 1)p yq! -1 = 0. which contradicts the fact that g has a non-zero natural density proved by Proposition 2.

So we have proved that the sequence (a n ) n∈N must have finitely many prime factors. However, Corollary 2 of [START_REF] Hu | Subword complexity and non-automaticity of certain completely multiplicative functions[END_REF] proves that, in this case, the sequence (a n ) n∈N can have at most one prime k such that a k = 1 or 0.

Classification of CMAS

In this section we will prove that a CMAS is either strongly aperiodic or a Dirichlet-like sequence.

Definition A sequence (a n ) n∈N is said to be aperiodic if and only if for any couple of integers (s, r), we have lim

Definition Let M be the set of completely multiplicative functions, let D : M×M×N → [0, ∞] be given by:

and M : M × N → [0, ∞) be given by:

A sequence (a n ) n∈N is said to be strongly aperiodic if and only if M (f χ, N ) → ∞ as N → ∞ for every Dirichlet character χ.