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DOMINANCE ORDER AND MONOIDAL CATEGORIFICATION OF CLUSTER ALGEBRAS

We study a compatibility relationship between Qin's dominance order on a cluster algebra A and partial orderings arising from classifications of simple objects in a monoidal categorification C of A. Our motivating example is Hernandez-Leclerc's monoidal categorification using representations of quantum affine algebras. In the framework of Kang-Kashiwara-Kim-Oh's monoidal categorification via representations of quiver Hecke algebras, we focus on the case of the category R ´gmod for a symmetric finite type A n quiver Hecke algebra using Kleshchev-Ram's classification of irreducible finite-dimensional representations.

Introduction

Cluster algebras were introduced in [START_REF] Fomin | Cluster algebras I[END_REF] by Fomin and Zelevinsky in the 2000's to study total positivity and canonical bases of quantum groups. Cluster algebras are commutative Z-subalgebras of fields of rational functions over Q generated by certain distinguished generators, called cluster variables, satisfying relations called exchange relations. These cluster variables are grouped into overlapping finite sets of fixed cardinality (the rank of the cluster algebra) called clusters. A monomial in cluster variables of the same cluster is called a cluster monomial. Applying exchange relations to one variable of a cluster leads to another cluster and this procedure is called mutation. Any cluster can be reached from a given initial cluster by a finite sequence of mutations. Moreover, it is shown in [START_REF] Fomin | Cluster algebras IV: Coefficients[END_REF] that once an initial seed ppx 1 , . . . , x n q, Bq has been fixed, any cluster variable of any other seed ppx t 1 , . . . , x t n q, B t q can be related to the initial cluster variables in the following way:

x t l "
F l,t p ŷ1 , . . . , ŷn q F l,t |P py 1 , . . . , y n q x g l,t 1 1 ¨¨¨x g l,t n n where pg l,t 1 , . . . , g l,t n q is an n-tuple of integers called the g-vector of the cluster variable x t l and F l,t is a polynomial called the F -polynomial of x t l . The variables y j , ŷj , 1 ď j ď n are Laurent monomials in the initial cluster variables x 1 , . . . , x n which do not depend on l and t. Thus the combinatorics of a cluster algebra is entirely contained in the behaviour of g-vectors and F -polynomials.

In [START_REF] Berenstein | Quantum cluster algebras[END_REF], Berenstein and Zelevinsky defined quantum cluster algebras as quantizations of cluster algebras; these algebras are not commutative: cluster variables belonging to the same cluster q-commute, i.e. satisfy relations of the form x i x j " q λ ij x j x i for some integers λ ij .

The notion of monoidal categorification of a cluster algebra has been introduced by Hernandez and Leclerc in [START_REF] Hernandez | Cluster algebras and quantum affine algebras[END_REF]. The idea is to identify a given cluster algebra A with the Grothendieck ring of a monoidal category; more specifically, the categories involved in this procedure will be categories of modules over algebras such as quantum affine algebras. Monoidal categorification requires a correspondence between cluster monomials and real simple objects in the category (i.e. simple objects S such that S b C S is again simple) as well as between cluster variables and prime real simple objects (real simple objects that cannot be decomposed as tensor products of several non trivial objects). Given a cluster algebra A, the existence of a monoidal categorification of A can give some fruitful information about the category itself, such as the existence of decompositions of simple objects into tensor products of prime simple objects. In [START_REF] Hernandez | Cluster algebras and quantum affine algebras[END_REF], Hernandez and Leclerc define a sequence tC l , l P Nu of subcategories of modules over quantum affine algebras and conjecture that the category C 1 is a monoidal categorification of a cluster algebra. They prove this conjecture in types A n and D 4 and exhibit a remarkable link between the gvector (resp. F -polynomial) of each cluster variable and the dominant monomial (resp. the (truncated) q-character) of the corresponding simple module. In [START_REF] Hernandez | Monoidal categorification of cluster algebras of type A and D[END_REF], Hernandez-Leclerc introduce other subcategories of finite dimensional representations of quantum affine algebras and prove several monoidal categorification statements for these categories in types A n and D n .

Other examples of monoidal categorification of cluster algebras appeared in various contexts. For instance, in the study of categories of sheaves on the Nakajima varieties: these varieties were constructed by Nakajima in [START_REF] Nakajima | Quiver varieties and Kac-Moody algebras[END_REF] for the purpose of providing a geometric realization of quantum groups as well as their highest weight representations ( [START_REF] Nakajima | Quiver varieties and Kac-Moody algebras[END_REF][START_REF] Nakajima | Quiver varieties and finite dimensional representations of quantum affine algebras[END_REF]). In [START_REF] Nakajima | Quiver varieties and cluster algebras[END_REF], certain categories of perverse sheaves on these varieties are shown to be monoidal categorifications of cluster algebras. In particular, Nakajima used these constructions to study the category C 1 and proved Hernandez-Leclerc's conjecture in ADE-types. Recently, Cautis and Williams exhibited in [START_REF] Cautis | Cluster theory of the coherent Satake category[END_REF] a new example of monoidal categorification of cluster algebras using the G mequivariant coherent Satake category, i.e. the category of GpOq-equivariant perverse coherent sheaves on the affine Grassmannian Gr G . In the case of the general linear group GL n , they show that this category is a monoidal categorification of a quantum cluster algebra and construct explicitly an initial seed.

A large proportion of this paper will be devoted to another situation of monoidal categorification of (quantum) cluster algebras that came out of the works of Kang-Kashiwara-Kim-Oh [START_REF] Kang | Symmetric quiver Hecke algebras and R-matrices of quantum affine algebras[END_REF][START_REF] Kang | Simplicity of heads and socles of tensor products[END_REF][START_REF] Kang | Monoidal categorification of cluster algebras[END_REF], involving categories of representations of quiver Hecke algebras. Introduced by Khovanov and Lauda in [START_REF] Khovanov | A diagrammatic approach to categorification of quantum groups I[END_REF] and independently by Rouquier in [START_REF] Rouquier | Quiver Hecke algebras and 2-Lie algebras[END_REF], quiver Hecke algebras (or KLR algebras) are Z-graded algebras which categorify the negative part U q pnq of the quantum group U q pgq, where g is a symmetric Kac-Moody algebra and n the nilpotent subalgebra arising from a triangular decomposition. Khovanov-Lauda conjectured that this categorification provides a bijection between the canonical basis of U q pnq and the set of indecomposable projective modules over the quiver Hecke algebra corresponding to g. This was proved by Rouquier in [START_REF] Rouquier | Quiver Hecke algebras and 2-Lie algebras[END_REF] and independently by Varagnolo-Vasserot in [START_REF] Varagnolo | Canonical bases and KLR algebras[END_REF] using a geometric realization of quiver Hecke algebras. The category of finite-dimensional modules over quiver Hecke algebras can be given a monoidal structure using parabolic induction. In [START_REF] Kleshchev | Representations of Khovanov-Lauda-Rouquier algebras and combinatorics of Lyndon words[END_REF], Kleshchev and Ram give a combinatorial classification of simple finitedimensional modules over quiver Hecke algebras of finite types (i.e. associated with a finite type Lie algebra g) using Lyndon bases. More precisely, they introduce a certain class of simple modules, called cuspidal modules, which are in bijection with the set of positive roots of g. Then the simple modules are realized as quotients of products of cuspidal modules, and are parametrized by dominant words or root partitions (see Definition 3.25).

Fix a total order on the set of vertices of the Dynkin diagram of g. The corresponding lexicographic order is a total ordering on the set of dominant words. In Section 5, we use this framework for quiver Hecke algebras of finite type A n and exhibit an easy combinatorial way to compute the highest dominant word appearing in the decomposition of the product of classes of two simples into a sum of classes of simples. For n ě 1, consider g a Lie algebra of finite type A n . Denote by r n " npn `1q{2 the number of positive roots for the root system associated to g. Let R ´gmod denote the category of finite-dimensional representations of the quiver Hecke algebra arising from g and let M be the set of dominant words. For every µ P M we let Lpµq denote the unique (up to isomorphism) simple object in R ´gmod corresponding to µ. For any µ, µ 1 P M, we define µ d µ 1 as the highest word appearing in the decomposition of the product rLpµqs ¨rLpµ 1 qs as a sum of classes of simple objects in R ´gmod. This is well-defined as M is totally ordered.

Theorem 1.1 (cf. Theorem 5.5). The law d provides M with a monoid structure and there is an isomorphism of monoids pM, dq » pZ rn ě0 , `q. Moreover this isomorphism is explicitly constructed.

In [START_REF] Kang | Monoidal categorification of cluster algebras[END_REF], Kang, Kashiwara, Kim and Oh adapt the notion of monoidal categorification to the quantum setting (in particular they define a notion of quantum monoidal seed) and prove that the category R´gmod gives a monoidal categorification of the quantum cluster algebra structure on U q pnq. For this purpose, they introduce in [START_REF] Kang | Symmetric quiver Hecke algebras and R-matrices of quantum affine algebras[END_REF] some R-matrices for categories of finite dimensional representations of quiver Hecke algebras, which give rise to exact sequences corresponding to cluster mutations in the Grothendieck ring. The notion of admissible pair is introduced in [START_REF] Kang | Monoidal categorification of cluster algebras[END_REF] as a sufficient condition for a quantum monoidal seed to admit mutations in every exchange direction (see Definition 3.12). The main result of [START_REF] Kang | Monoidal categorification of cluster algebras[END_REF] consists in proving that given an initial seed coming from an admissible pair, the seeds obtained after any mutation again come from admissible pairs. Hence the existence of an admissible pair implies monoidal categorification statements. The main results of [START_REF] Kang | Monoidal categorification of cluster algebras[END_REF] ( [START_REF] Kang | Monoidal categorification of cluster algebras[END_REF]Theorems 11.2.2,11.2.3]) consist in constructing admissible pairs for certain subcategories C w (for each w in the Weyl group of g) of finite dimensional representations of quiver Hecke algebras. These categories thus provide monoidal categorifications of cluster algebra structures on the quantum coordinate rings A q pnpwqq introduced by Geiss, Leclerc and Schröer in [START_REF] Geiss | Cluster structures on quantum coordinate rings[END_REF]. We refer to Kashiwara's 2018 ICM talk [START_REF] Kashiwara | Crystal bases and categorifications[END_REF] for a survey on monoidal categorifications of cluster algebras and connections with the theory of crystal bases and in particular global bases of quantum coordinate rings.

In this framework, it is natural to consider the dominant word of the simple module corresponding to a cluster variable x t l and try to relate it to the dominant words of the simple modules belonging to an initial monoidal seed, for instance the seed arising from the construction of [START_REF] Kang | Monoidal categorification of cluster algebras[END_REF]Theorem 11.2.2]. As mentioned above, the theory of cluster algebras encourages us to look at the variables ŷj defined in [START_REF] Fomin | Cluster algebras IV: Coefficients[END_REF]. Using the above result on dominant words, we can associate in a natural way analogs of dominant words that we call generalized parameters to each of these variables ŷj (with respect to the initial seed constructed in [START_REF] Kang | Monoidal categorification of cluster algebras[END_REF]). It turns out that in the case of the category R ´gmod " C w 0 (where w 0 stands for the longest element of the Weyl group of g), these generalized parameters share some remarkable properties. In particular, it implies some correspondence between the lexicographic ordering on dominant words and the following ordering on Laurent monomials in the initial cluster variables: for any two such Laurent monomials x α " ś i x α i i and x β " ś i x β i i , one sets

x α ď x β ô Dpγ 1 , . . . , γ n q P Z n ě0 such that x β " x α . ź j ŷj γ j .
This ordering can be easily seen to coincide with the dominance order for the considered initial seed, introduced by Qin in [START_REF] Qin | Triangular bases in quantum cluster algebras and monoidal categorification conjectures[END_REF] as an ordering on multidegrees. As proven by Hernandez-Leclerc in [START_REF] Hernandez | Cluster algebras and quantum affine algebras[END_REF], this dominance order corresponds to the Nakajima order on monomials in the case of the monoidal categorification by the category C 1 (see Proposition 4.14). Geometrically, it is related to the partial ordering on subvarieties of Nakajima varieties, defined as inclusions of subvarieties into the closures of others (see [START_REF] Nakajima | Quiver varieties and cluster algebras[END_REF]).

Qin uses this order to introduce the notions of pointed elements and pointed sets (see Definition 4.1) and define triangular bases in a (quantum) cluster algebra. As an application, he proves that in the context of monoidal categorification of cluster algebras using representations of quantum affine algebras, cluster monomials correspond to classes of simple modules, which partly proves Hernandez-Leclerc's conjecture [START_REF] Hernandez | Cluster algebras and quantum affine algebras[END_REF].

In this paper we study this relationship between orderings in a more general setting; considering the data of a cluster algebra A together with a monoidal categorification C of A, we assume the simple objects in C are parametrized by elements of a partially ordered set M. Given a seed S in A, we define a notion of compatibility between the ordering on M and the dominance order ď associated to S and we say that S is a compatible seed if this compatibility holds (see Definition 4.7). Not all seeds are compatible and it even seems that most seeds are not. We conjecture that under some technical assumptions on the category C, there exists a compatible seed (Conjecture 4.10). The existence of such a seed S implies some combinatorial relationships between the g-vector with respect to S of any cluster variable on the one hand, and the parameter of the corresponding simple object in C on the other hand. The results of Hernandez-Leclerc in [START_REF] Hernandez | Cluster algebras and quantum affine algebras[END_REF] provide a beautiful example of such a relationship.

We then focus on the case of monoidal categorifications of cluster algebras via representations of quiver Hecke algebras of finite type A n . More precisely, we consider the category R ´gmod of finite-dimensional representations of a type A n quiver Hecke algebra. One of the main results of this paper consists in the explicit computation of the dominant words of the simple modules of the initial (quantum) monoidal seed constructed in [START_REF] Kang | Monoidal categorification of cluster algebras[END_REF] for this category. Theorem 1.2 (cf. Theorem 6.1). Let S n 0 be the initial seed constructed in [START_REF] Kang | Monoidal categorification of cluster algebras[END_REF] for the category R ´gmod associated with a Lie algebra of type A n . Then the cluster variables of the seed S n 0 can be explicitly described in terms of dominant words as follows: Using this description, we can deduce the main result of this paper: Theorem 1.3 (cf. Theorem 6.2). The seed S n 0 is compatible in the sense of Definition 4.7.

In particular, Conjecture 4.10 holds for the category of finite dimensional representations of a quiver Hecke algebra arising from a Lie algebra of type A n . This paper is organized as follows: in Section 2 we recall the definitions and main results of the theory of cluster algebras from [START_REF] Fomin | Cluster algebras IV: Coefficients[END_REF], as well as the notion of monoidal categorification of cluster algebras from [START_REF] Hernandez | Cluster algebras and quantum affine algebras[END_REF]. Section 3 is devoted to the representation theory of quiver Hecke algebras. After some reminders of their definitions and main properties, we recall the constructions of Kang-Kashiwara-Kim-Oh ( [START_REF] Kang | Symmetric quiver Hecke algebras and R-matrices of quantum affine algebras[END_REF][START_REF] Kang | Simplicity of heads and socles of tensor products[END_REF][START_REF] Kang | Monoidal categorification of cluster algebras[END_REF]) of renormalized R-matrices for modules over quiver Hecke algebras as well as their results on monoidal categorification of quantum cluster algebras. We also recall the construction of admissible pairs for the categories C w from [START_REF] Kang | Monoidal categorification of cluster algebras[END_REF]. We end the section with the results of Kleshchev-Ram [START_REF] Kleshchev | Representations of Khovanov-Lauda-Rouquier algebras and combinatorics of Lyndon words[END_REF] about the classification of irreducible finite-dimensional representations of finite type quiver Hecke algebras. In Section 4, we consider the general situation of monoidal categorifications of cluster algebras. We introduce a partial ordering on Laurent monomials in the cluster variables of a given seed and show that it coincides with the dominance order introduced by Qin in [START_REF] Qin | Triangular bases in quantum cluster algebras and monoidal categorification conjectures[END_REF]. Then we define the notion of admissible seed and state our main conjecture (Conjecture 4.10). We show that the results of Hernandez-Leclerc [START_REF] Hernandez | Cluster algebras and quantum affine algebras[END_REF] in the context of monoidal categorification of cluster algebras via quantum affine algebras provide an example where this conjecture holds. In Section 5 we focus on the case of monoidal categorifications of cluster algebras via finite type A n quiver Hecke algebras. Section 5.1 is devoted to the proof of Theorem 5.5. We use it in the framework of [START_REF] Kang | Monoidal categorification of cluster algebras[END_REF] to obtain a combinatorial rule of transformation of dominant words under cluster mutation. Then we study in detail the example of a quiver Hecke algebra of type A 3 and exhibit examples of compatible and non-compatible seeds in the corresponding category R ´gmod. In Section 6 we state and prove the two main results of this paper (Theorems 6.1 and 6.2). We conclude with some possible further developments.
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Cluster algebras and their monoidal categorifications

In this section, we recall the main results of the theory of cluster algebras from [START_REF] Fomin | Cluster algebras I[END_REF], [START_REF] Fomin | Cluster algebras II: Finite type classification[END_REF], [START_REF] Fomin | Cluster algebras IV: Coefficients[END_REF], as well as the notion of monoidal categorification from [START_REF] Hernandez | Cluster algebras and quantum affine algebras[END_REF].

Cluster algebras

Cluster algebras were introduced in [START_REF] Fomin | Cluster algebras I[END_REF] by Fomin and Zelevinsky. They are commutative Z-subalgebras of the field of rational functions over Q in a finite number of algebraically independent variables. They are defined as follows.

Let 1 ď n ă m be two nonnegative integers and let F be the field of rational functions over Q in m independent variables. The initial data is a couple ppx 1 , . . . , x m q, Bq called an initial seed and made out of a cluster i.e. m algebraically independent variables x 1 , . . . , x m generating F and a m ˆn matrix B :" pb ij q called the exchange matrix whose principal part (i.e. the square submatrix pb ij q 1ďi,jďn ) is skew-symmetric.

To the exchange matrix B one can associate a quiver, whose index set is t1, . . . , mu with b ij arrows from i to j if b ij ě 0, and ´bij arrows from j to i if b ij ď 0.

By construction, one can recover the exchange matrix from the data of a quiver without loops and 2-cycles in the following way: b ij " pnumber of arrows from i to jq ´pnumber of arrows from j to iq.

For any k P t1, . . . , nu one defines new variables :

x 1 j :" $ ' & ' % 1 x k ˜ś b lk ą0 x b lk l `ś b lk ă0 x ´blk l ¸if j " k, x j if j ‰ k, (1) 
as well as a new matrix B 1 : @i, j pB 1 q ij :"

# ´bij if i " k or j " k, b ij `|b ik |b kj `bik |b kj | 2 if i ‰ k and j ‰ k.
Note that the principal part of the matrix B 1 is again skew-symmetric.

The procedure producing the seed ppx 1 1 , . . . , x 1 m q, B 1 q out of the initial seed ppx 1 , . . . , x m q, Bq is called the mutation in the direction k of the initial seed ppx 1 , . . . , x m q, Bq. This procedure is involutive, i.e. the mutation of the seed px 1 1 , . . . , x 1 m q, B 1 q in the same direction k gives back the initial seed ppx 1 , . . . , x m q, Bq. Any seed can give rise to n new seeds, each of them obtained by a mutation in the direction k for 1 ď k ď n. Let T be the tree whose vertices correspond to the seeds and edges to mutations. There are exactly n edges adjacent to each vertex. This tree can have a finite or infinite number of vertices depending on the initial seed. Let ppx 1 , . . . , x m q, Bq be a fixed seed and t 0 the corresponding vertex in T. For any vertex t P T one denotes by ppx t 1 , . . . , x t m q, B t q the seed corresponding to the vertex t. It is obtained from the initial seed ppx 1 , . . . , x m q, Bq by applying a sequence of mutations following a path starting at t 0 and ending at t. Definition 2.1. The cluster algebra generated by the initial seed ppx 1 , . . . , x m q, Bq is the Zrx ˘1 n`1 , . . . , x ˘1 m ssubalgebra of F generated by all the variables x t 1 , . . . , x t n for all the vertices t P T.

For any seed ppx 1 , . . . , x m q, Bq, the variables x 1 , . . . , x m are called the cluster variables, x 1 , . . . , x n are the unfrozen variables and x n`1 , . . . , x m are the frozen variables. These last variables do not mutate and are present in every cluster.

The first main result of the theory of cluster algebras is the Laurent phenomenon :

Theorem 2.2 ([7, Theorem 3.1]). Let ppx 1 , . . . , x m q, Bq be a fixed seed in a cluster algebra A. Then for any seed ppx t 1 , . . . , x t m q, B t q in A and any 1 ď j ď n, the cluster variable x t j is a Laurent polynomial in the variables x 1 , . . . , x m .

Let P be the multiplicative group of all Laurent monomials in the frozen variables x n`1 , . . . , x m . One can endow it with an additional structure given by

ź i x α i i ' ź i x β i i :" ź i x minpα i ,β i q i
making P a semifield. Any substraction-free rational expression F pu 1 , . . . , u k q with integer coefficients in some variables u 1 , . . . , u k can be specialized on some elements p 1 , . . . , p k in P. This will be denoted by F |P pp 1 , . . . , p k q.

The mutation relation (1) can be rewritten as Thus the frozen variables x n`1 , . . . , x m play the role of coefficients and the cluster algebra A can be viewed as the ZP algebra generated by the (exchange) variables x t 1 , . . . , x t n for all the vertices t of the tree T. Here ZP denotes the group ring of the multiplicative group of the semifield P. This group is always torsion-free and hence the ring ZP is a domain.

x k x
The notion of isomorphism of cluster algebras is introduced in [START_REF] Fomin | Cluster algebras II: Finite type classification[END_REF]: two cluster algebras A Ă F and A 1 Ă F 1 with the same coefficient part P are said to be isomorphic if there exists a ZP algebras isomorphism F Ñ F 1 sending a seed in A onto a seed in A 1 . In particular the set of seeds of A is in bijection with the set of seeds of A 1 and A and A 1 are isomorphic as algebras.

The second important result is the classification of finite type cluster algebras, i.e. the ones with a finite number of seeds.

Theorem 2.3 ([8, Theorem 1.4]).

There is a canonical bijection between isomorphism classes of cluster algebras of finite type and Cartan matrices of finite type.

Let A be a cluster algebra and let us fix ppx 1 , . . . , x m q, Bq an initial seed. In [START_REF] Fomin | Cluster algebras IV: Coefficients[END_REF], Fomin and Zelevinsky define, for any 1 ď j ď n: y j :"

ź n`1ďiďm x b ij i
and ŷj :"

ź 1ďiďm x b ij i .
Theorem 2.4 ([9, Corollary 6.3]). Let ppx t 1 , . . . , x t n , x n`1 , . . . , x m q, B t q be any seed in A. Then for any 1 ď l ď n, the cluster variable x t l can be expressed in terms of the initial cluster variables x 1 , . . . , x m in the following way:

x t l "
F l,t p ŷ1 , . . . , ŷn q F l,t |P py 1 , . . . , y n q

x g l,t 1 1 ¨¨¨x g l,t n n . (2) 
In this formula F l,t is a polynomial called the F -polynomial associated to the variable x t l and the g l,t i are integers. We write for short x g l,t for x g l,t 1 1 ¨¨¨x g l,t n n and g l,t " pg l,t 1 , ¨¨¨, g l,t n q is called the g-vector associated to the variable x t l . The F -polynomial associated to any cluster variable satisfies several important and useful properties, which have been conjectured by Fomin-Zelevinsky in [START_REF] Fomin | Cluster algebras IV: Coefficients[END_REF] and proved by Derksen-Weyman-Zelevinsky in [START_REF] Derksen | Quivers with potential and their representations II: Applications to cluster algebras[END_REF] using the theory of quivers with potentials. We recall here some of these results, which we will use in Section 4 in the study of compatible seeds. Theorem 2.5 ([5, Theorem 1.7]). Let ppx t 1 , . . . , x t n , x n`1 , . . . , x m q, B t q be any seed in A. Let 1 ď l ď n, and F l,t be the F -polynomial associated to the cluster variable x t l . Then (i) There is a unique monomial in F l,t that is strictly divisible by any other monomial in F l,t . This monomial has coefficient 1.

(ii) The polynomial F l,t has constant term 1.

Monoidal categorification of cluster algebras

The notion of monoidal categorification of a cluster algebra was introduced by Hernandez and Leclerc in [START_REF] Hernandez | Cluster algebras and quantum affine algebras[END_REF]. Recall that, if C is a monoidal category, a simple object M in C is said to be real if the tensor product M b C M is simple. It is said to be prime if it is not invertible in C cannot be decomposed as M " M 1 b C M 2 with M 1 and M 2 two simple non invertible modules neither trivial nor equal to M itself. We denote by K 0 pCq the Grothendieck ring of the category C. Recall that for any objects A, B, C in C, the relation rBs " rAs `rCs holds in K 0 pCq if there is a short exact sequence 0 Ñ A Ñ B Ñ C Ñ 0 in C. The ring structure on K 0 pCq is directly inherited from the monoidal structure of C: rM s ¨rM 1 s " rM b C M 1 s for any objects M, M 1 in C.

Remark 2.6. In the category R ´gmod that we will mostly be studying in this paper, all the simple objects are non-invertible. However in other categories, simple objects may be invertible. This happens for instance in categories of modules over Borel subalgebras of quantum affine algerbras in the work of Hernandez-Leclerc [START_REF] Hernandez | Cluster algebras and category O for representations of Borel subalgebras of quantum affine algebras[END_REF].

Definition 2.7 (Monoidal categorification of a cluster algebra). A monoidal category C is a monoidal categorification of a cluster algebra A if the following conditions simultaneously hold:

(i) There is a ring isomorphism K 0 pCq » A.

(ii) Under this isomorphism, classes of simple real objects in C correspond to cluster monomials in A and classes of simple real prime objects in C correspond to cluster variables in A.

Several examples of monoidal categorifications of cluster algebras appeared more recently in various contexts: on the one hand using categories of (finite dimensional) representations of quiver Hecke algebras through the works of Kang-Kashiwara-Kim-Oh [START_REF] Kang | Symmetric quiver Hecke algebras and R-matrices of quantum affine algebras[END_REF][START_REF] Kang | Simplicity of heads and socles of tensor products[END_REF][START_REF] Kang | Monoidal categorification of cluster algebras[END_REF]; on the other hand, via the coherent Satake category studied by Cautis-Williams in [START_REF] Cautis | Cluster theory of the coherent Satake category[END_REF]. Let us point out that these examples use a slightly different notion of monoidal categorification: Definition 2.8 (Monoidal categorification of a cluster algebra in the sense of [START_REF] Kang | Monoidal categorification of cluster algebras[END_REF][START_REF] Cautis | Cluster theory of the coherent Satake category[END_REF]). A monoidal category C is a monoidal categorification of a cluster algebra A if:

(i) There is a ring isomorphism K 0 pCq » A.

(ii) Under this isomorphism, any cluster monomial in A is the class of a simple real object in C.

See for instance Definition 3.11 for a precise definition in the context of quiver Hecke algebras.

Example: representations of quantum affine algebras

Let g be a finite-dimensional semisimple Lie algebra of type A n , D n , or E n and ĝ the corresponding Kac-Moody algebra. The quantum affine algebra U q pĝq can be defined as a quantization of the universal enveloping algebra of ĝ (see [START_REF] Drinfeld | A new realization of Yangians and of quantum affine algebras[END_REF] or [START_REF] Chari | A Guide to Quantum Groups[END_REF] for precise definitions). Consider the category C of finite dimensional U q pĝq-modules. In [START_REF] Chari | A Guide to Quantum Groups[END_REF], Chari and Pressley proved that simple objects in this category are parametrized by their highest weights. More precisely, let I be the set vertices of the Dynkin diagram of g and, for each i P I and a P C ˚, let Y i,a be some indeterminate. The notion of q-character of a finite dimensional U q pĝq-module was introduced by Frenkel and Reshetikhin in [START_REF] Frenkel | The q-characters of representations of quantum affine algebras and deformations of W -algebras[END_REF] as a an injective ring homomorphism

χ q : K 0 pCq Ñ ZrY ˘1 i,a , i P I, a P C ˚s.
Let M be the set of Laurent monomials in the variables Y i,a . For any i P I and a P C ˚, set

A i,a :" Y i,aq Y i,aq ´1 ź j‰i Y a ji j,a P M.
One defines a partial ordering (the Nakajima order) on M in the following way:

m ď m 1 ô m 1 m is a monomial in the A i,a
for any monomials m, m 1 P M.

A monomial m P M is called dominant if it does not contain negative powers of the variables Y i,a . Let M `denote the subset of M of all dominant monomials. For any simple object V of C, the set of monomials occurring in the q-character of V has a unique maximal element µ V for the above order, and this monomial is always dominant. Conversely, it is possible to associate a simple finite dimensional U q pĝqmodule to any dominant monomial in the variables Y i,a , providing a bijection between the set of simple objects in C and M `. For any dominant monomial m, we let Lpmq denote the unique (up to isomorphism) simple object in C corresponding to m via this bijection. In the case where m is reduced to a single variable Y i,a for some i P I and a P C ˚, the simple module Lpmq " LpY i,a q is called a fundamental representation.

The Dynkin diagram of g is a bipartite graph hence its vertex set I can be decomposed as I " I 0 \ I 1 such that every edge connects a vertex of I 0 with one of I 1 . Then for any i P I set:

ξ i :" # 0 if i P I 0 , 1 if i P I 1 .
Hernandez and Leclerc introduce a subcategory C 1 of C whose Grothendieck ring is generated (as a ring) by the classes of the fundamental representations LpY i,q ξ i q, LpY i,q ξ i `2 qpi P Iq. One of the main results of [START_REF] Hernandez | Cluster algebras and quantum affine algebras[END_REF] can be stated as follows:

Theorem 2.9 ([13, Conjecture 4.6]). The category C 1 is a monoidal categorification of a (finite type) cluster algebra of the same Lie type as the Lie algebra g.

They prove this conjecture for g of types A n (n ě 1) and D 4 ([13, Sections 10,[START_REF] Fujita | Affine highest weight categories and quantum affine Schur-Weyl duality of Dynkin quiver types[END_REF]). In [START_REF] Nakajima | Quiver varieties and cluster algebras[END_REF], Nakajima proved this conjecture in types ADE using geometric methods involving graded quiver varieties. Note that this geometric construction is valid for any orientation of the Dynkin graph of g. In [START_REF] Hernandez | Monoidal categorification of cluster algebras of type A and D[END_REF], Hernandez-Leclerc exhibit other examples of monoidal categorifications of cluster algebras via categories of representations of quantum affine algebras in types A n and D n ([14, Theorem 4.2, Theorem 5.6]).

Quiver Hecke algebras

The works of Kang-Kashiwara-Kim-Oh [START_REF] Kang | Symmetric quiver Hecke algebras and R-matrices of quantum affine algebras[END_REF][START_REF] Kang | Simplicity of heads and socles of tensor products[END_REF][START_REF] Kang | Monoidal categorification of cluster algebras[END_REF] provide many examples of monoidal categorifications of cluster algebras arising from certain categories of modules over quiver Hecke algebras. In this section, we recall the main definitions and properties of quiver Hecke algebras; then we recall the constructions of renormalized R-matrices from [START_REF] Kang | Symmetric quiver Hecke algebras and R-matrices of quantum affine algebras[END_REF] as well as the statements of monoidal categorification from [START_REF] Kang | Monoidal categorification of cluster algebras[END_REF]. We also recall the classification of simple finite dimensional representations of quiver Hecke algebras of finite type using combinatorics of Lyndon words from [START_REF] Kleshchev | Representations of Khovanov-Lauda-Rouquier algebras and combinatorics of Lyndon words[END_REF].

Definition and main properties

In this subsection we recall the definitions and main properties of quiver Hecke algebras, as defined in [START_REF] Khovanov | A diagrammatic approach to categorification of quantum groups I[END_REF] and [START_REF] Rouquier | Quiver Hecke algebras and 2-Lie algebras[END_REF].

Let g be a Kac-Moody algebra, P the associated weight lattice and Π " tα i , i P Iu the set of simple roots. We also define the coweight lattice as P _ " HompP, Zq and we let Π _ denote the set of simple coroots. We also denote by A the generalized Cartan matrix, W the Weyl group of g, and p¨, ¨q a Winvariant symmetric bilinear form on P . Let k be a base field.

The root lattice is defined as Q :" À i Zα i . We also set Q `:"

À i Z ě0 α i and Q ´:" À i Z ď0 α i .
For any β P Q that we write ř i m i α i , its length is defined as

ř i |m i |. When β P Q `,
we denote as in [START_REF] Khovanov | A diagrammatic approach to categorification of quantum groups I[END_REF] by Seqpβq the set of all finite sequences (called words) of the form i 1 , . . . , i n (where n is the length of β) with m i occurrences of the integer i for all i. For the sake of simplicity, we identify letters with simple roots. In particular, for any i, j P t1, . . . , nu, pi, jq stands for pα i , α j q and if µ " i 1 , . . . , i n and ν " j 1 , . . . , j m are two words in Seqpβq, pµ, νq stands for ř p,q pi p , j q q.

To define quiver Hecke algebras, we fix a nonnegative integer n and a family tQ i,j , 1 ď i, j ď nu of twovariables polynomials with coefficients in k. These polynomials are required to satisfy certain properties, in particular Q i,j " 0 if i " j and Q i,j pu, vq " Q j,i pv, uq for any i, j (see for instance [18, Section 2.1] for more details). In the case of finite type A n symmetric quiver Hecke algebras (which we will focus on in Sections 5 and 6), the polynomials Q i,j are the following (see [START_REF] Kleshchev | Representations of Khovanov-Lauda-Rouquier algebras and combinatorics of Lyndon words[END_REF]):

Q i,j pu, vq " $ ' ' ' ' & ' ' ' ' % pu ´vq if j " i `1, pv ´uq if j " i ´1, 0 if i " j, 1 
otherwise.

Definition 3.1. For any β in Q `of length n, the quiver Hecke algebra Rpβq at β associated to the Kac-Moody algebra g and the family tQ i,j , 1 ď i, j ď nu is the k-algebra generated by operators tepνqu νPSeqpβq , tx i u iPt1,...,nu , and tτ k u kPt1,...,n´1u satisfying the following relations :

epνqepν 1 q " δ ν,ν 1 epνq, ÿ νPSeqpβq epνq " 1, x i x j " x j x i , x i epνq " epνqx i , τ k epνq " eps k pνqqτ k , τ k τ l " τ l τ k if |k ´l| ą 1, τ 2 k epνq " Q ν k ,ν k`1 px k , x k`1 qepνq, pτ k x i ´xs k piq τ k qepνq " $ ' & ' % ´epνq if i " k, ν k " ν k`1 , epνq if i " k `1, ν k " ν k`1 0 otherwise , pτ k`1 τ k τ k`1 ´τk τ k`1 τ k qepνq " # Qν k ,ν k`1 px k ,x k`1 q´Qν k ,ν k`1 px k`2 ,x k`1 q x k ´xk`2 epνq if ν k " ν k`2 , 0 otherwise,
where for any ν P Seqpβq, ν k stands for the kth letter of the word ν.

The quiver Hecke algebra Rpβq is called symmetric when the polynomials Q i,j are polynomials in u´v.

The first main property of quiver Hecke algebras is that they naturally come with a Z-grading by setting deg epνq " 0, deg

x k epνq " 2, deg τ i epνq " ´pν i , ν i`1 q.
For any β and γ in Q `of respective lengths m and n, let M be a Rpβq module and N a Rpγq module. One defines the convolution product of M and N via parabolic induction (see [START_REF] Khovanov | A diagrammatic approach to categorification of quantum groups I[END_REF][START_REF] Kang | Symmetric quiver Hecke algebras and R-matrices of quantum affine algebras[END_REF]). Set epβ, γq :"

ÿ νPSeqpβq λPSeqpγq epνλq P Rpβ `γq.
It is an idempotent in Rpβ `γq. Consider the homomorphism of k-algebras

Rpβq b Rpγq Ñ epβ, γqRpβ `γqepβ, γq
given by epνq b epλq Þ Ñ epνλq, ν P Seqpβq, λ P Seqpγq

x k b 1 Þ Ñ x k epβ, γq, 1 ď k ď m, 1 b x l Þ Ñ x m`l epβ, γq, 1 ď l ď n τ k b 1 Þ Ñ τ k epβ, γq, 1 ď k ă m, 1 b τ l Þ Ñ τ m`l epβ, γq, 1 ď l ă n.
Then one defines M ˝N :" Rpβ `γq b RpβqbRpγq M b N .

For any β P Q `, let Rpβq ´pmod be the category of (left) graded finite type projective Rpβq modules, Rpβq ´gmod the category of left finite dimensional graded Rpβq-modules, and also

R ´pmod :" à βPQ `Rpβq ´pmod, R ´gmod :" à βPQ `Rpβq ´gmod.
Convolution product induces a monoidal structure on the categories R ´gmod and R ´pmod. The grading on quiver Hecke algebras also yields shift functors for these categories: decompose any object M as

M " à nPZ M n and define qM as qM " à nPZ M n´1 .
The natural Zrq ˘1s action q ¨rM s :" rqM s

gives rise to Zrq ˘1s-algebras structures on the Grothendieck rings of the categories R´pmod and R´gmod.

The following definition introduces a notion of graded character for representations of quiver Hecke algebras.

Definition 3.2 ([20, 21]

). Let M be a finite dimensional graded Rpβq-module. For any ν P Seqpβq, set M ν :" epνq ¨M . The module M can be decomposed as

M " à ν M ν .
Define ch q pM q :" ÿ ν pdim q M ν q.ν where for any graded vector space V " À nPZ V n , dim q pV q :" ř nPZ q n dimV n . This is a formal series in words belonging to Seqpβq with coefficients in Zrq, q ´1s. One can put a ring structure on the image set of ch q by defining a "product" of two words called quantum shuffle product. For any nonnegative integer n, let S n denote the symmetric group of rank n. Definition 3.3 (Quantum shuffle product). Let i " i 1 , . . . , i r and j " j 1 , . . . , j s be two words. We set i r`1 :" j 1 , i r`s :" j s so that we can consider the concatenation ij " i 1 ¨¨¨i r`s .

Define the quantum shuffle product of i and j :

i ˝j :" ÿ σPSr,s
q ´epσq pi σ ´1p1q , . . . , i σ ´1pr`sq q where S r,s denotes the subset of S r`s defined as: S r,s :" tσ P S r`s | σp1q ă ¨¨¨ă σprq and σpr `1q ă ¨¨¨ă σpr `squ and, for any element σ P S r,s , epσq :"

ÿ 1ďkďrălďr`s σpkqąσplq pi k , i l q.
By linearity one can also define quantum shuffle products of two formal series in elements of Seqpβq with coefficients in Zrq, q ´1s (for any β P Q `). Proposition 3.4 ([20,Lemma 2.20]). For any β, γ P Q `, and any M P Rpβq´gmod and N P Rpγq´gmod, we have: ch q pM ˝N q " ch q pM q ˝ch q pN q.

One can now state the main property of quiver Hecke algebras, which is to categorify the negative part of the quantum group U q pgq in a way that makes correspond the basis of indecomposable objects in R ´pmod with the canonical basis of U q pnq. In the following we will mostly consider the category R ´gmod hence we give here the dual statements, involving the category R ´gmod and the quantum coordinate ring A q pnq (the precise definition of which can be found in [START_REF] Geiss | Cluster structures on quantum coordinate rings[END_REF] or [START_REF] Kang | Monoidal categorification of cluster algebras[END_REF]). The first theorem was proved by Khovanov-Lauda [START_REF] Khovanov | A diagrammatic approach to categorification of quantum groups I[END_REF] and Rouquier [START_REF] Rouquier | Quiver Hecke algebras and 2-Lie algebras[END_REF]. The second was conjectured by Khovanov-Lauda, and proved by Rouquier [START_REF] Rouquier | Quiver Hecke algebras and 2-Lie algebras[END_REF] and Varagnolo-Vasserot [START_REF] Varagnolo | Canonical bases and KLR algebras[END_REF] using geometric methods. Theorem 3.5 (Khovanov-Lauda, Rouquier). The map ch q induces a Zrq, q ´1s-algebra isomorphism K 0 pR ´gmodq » A q pnq. Theorem 3.6 (Rouquier, Varagnolo-Vasserot). The map ch q (see Definition 3.2) induces a bijection between the canonical basis of the quantum coordinate ring A q pnq and the set of isomorphism classes of self-dual simple modules in the category R ´gmod.

Renormalized R-matrices for quiver Hecke algebras

Recall from Section 3.1 that the weight lattice associated to the Kac-Moody algebra g is given with a symmetric bilinear form p¨, ¨q. Denoting by A the symmetrizable generalized Cartan matrix of g, this bilinear form is entirely determined by its values on simple roots, namely: @i, j, pα i , α j q " s i a ij where the s i are the entries of a diagonal matrix D such that DA is symmetric.

One also defines another symmetric bilinear form p¨, ¨qn on the root lattice Q as in [START_REF] Kang | Symmetric quiver Hecke algebras and R-matrices of quantum affine algebras[END_REF]:

@i, j, pα i , α j q n :" # 1 if i " j, 0 otherwise. 
Let β P Q `of length m and 1 ď k ă m; the following operators ϕ k are introduced in [START_REF] Kang | Symmetric quiver Hecke algebras and R-matrices of quantum affine algebras[END_REF]:

@ν P Seqpβq, ϕ k epνq :" # pτ k px k ´xk`1 q `1qepνq if ν k " ν k`1 , τ k epνq otherwise.
These operators satisfy the braid relation, hence for any permutation σ, ϕ σ :" ϕ i 1 ¨¨¨ϕ i l does not depend on the choice of a reduced expression σ " s i 1 ¨¨¨s i l .

For any m, n P Z ě0 , let wrm, ns be the element of

S m`n sending k on k `n if 1 ď k ď m and on k ´m if m ă k ď m `n.
Consider a non-zero Rpβq-module M and a non-zero Rpγq-module N . The following map is defined in [START_REF] Kang | Symmetric quiver Hecke algebras and R-matrices of quantum affine algebras[END_REF]:

M b N ÝÑ N ˝M u b v Þ ÝÑ ϕ wrn,ms pv b uq.
It is Rpβq b Rpγq linear and hence induces a homomorphism of Rpβ `γq-modules

R M,N : M ˝N ÝÑ N ˝M.
The map R M,N satisfies the Yang-Baxter equation (see [START_REF] Kang | Symmetric quiver Hecke algebras and R-matrices of quantum affine algebras[END_REF]).

Let z be an indeterminate, homogeneous of degree 2. For any β P Q `and any non-zero module M in Rpβq ´gmod, one defines M z :" krzs b M with the following krzs b Rpβq-module structure: It is shown in [START_REF] Kang | Symmetric quiver Hecke algebras and R-matrices of quantum affine algebras[END_REF] that for any β, γ P Q `and any non-zero Rpβq-module M and non-zero Rpγq-module N , the map R Mz,N is polynomial in z and does not vanish. Let s be the largest non-negative integer such that the image of R Mz,N is contained in z s N ˝Mz . One defines R-matrices in the category R ´gmod in the following way:

Definition 3.7. Let β, γ P Q `.
For any non zero Rpβq-module M and non zero Rpγq-module N , define a homomorphism of Rpβ `γq-modules

r M,N : M ˝N ÝÑ N ˝M by setting r M,N :" pz ´sR Mz,N q |z"0
where s is the integer defined above.

Proposition 3.8 ([16]

). The homomorphism r M,N does not vanish and satisfies the Yang-Baxter equation.

Thus the maps r M,N are R-matrices for the category R ´gmod. They are called renormalized Rmatrices. As in the case of categories of representations of quantum affine algebras, these R-matrices are in general not invertible and thus yield (graded) short exact sequences in the category R ´gmod. Consequently this produces some relations in the Grothendieck ring K 0 pR ´gmodq » A q pnq. In the context of monoidal categorifications of (quantum) cluster algebras (see Section 3.3 below), the exchange relations in A q pnq will be identified with some of these relations.

The corresponding relations in the Grothendieck ring K 0 pR ´gmodq will be identified with exchange relations For any non-zero modules M and N , we denote by ΛpM, N q the homogeneous degree of the morphism r M,N . It is given by ΛpM, N q " ´pβ, γq `2pβ, γq n ´2s.

The next statement gives a criterion for the renormalized R-matrix r M,N to be an isomorphism. It will be particularly useful for the proof of Theorem 6.1 (see for instance Corollary 6.6). Lemma 3.9 ([18, Lemma 3.2.3]). Let M and N be two simples in the category R ´gmod and assume one of them is real. Then the following are equivalent : (i) ΛpM, N q `ΛpN, M q " 0.

(ii) r M,N and r N,M are inverse to each other up to a constant multiple.

(iii) M ˝N and N ˝M are isomorphic up to grading shift.

(iv) M ˝N is simple in the category R ´gmod.

One says that M and N commute if they satisfy these properties.

Monoidal categorification via representations of quiver Hecke algebras

In this subsection we focus on the case where C is a full subcategory of R ´gmod stable under convolution products, subquotients, extensions, and grading shifts. C can be decomposed as

C " à βPQ `Cβ
with C β :" C X Rpβq ´gmod for every β P Q `, so that the tensor product in C sends C β ˆCγ onto C β`γ for any β, γ P Q `.

Kang-Kashiwara-Kim-Oh [START_REF] Kang | Monoidal categorification of cluster algebras[END_REF] adapt the notion of monoidal categorification to the setting of quantum cluster algebras. In the classical setting, a monoidal seed in C is defined as a triple ptM i u 1ďiďn , B, Dq where tM i u 1ďiďn is a collection of simple objects in C such that for any i 1 , . . . , i t in t1, . . . , nu , the object M i 1 ˝¨¨¨˝M it is simple in C, B is an integer-valued matrix with skew-symmetric principal part and D is a diagonal matrix encoding the weights of the modules M i (i.e. the elements

β i P Q `such that M i P C β i ).
Cluster mutations correspond to some (ungraded) short exact sequences in the category C. These exact sequences come from the failure of the renormalized R-matrices (see Definition 3.7) to be isomorphisms. The cluster mutations being involutive imposes some relations between the entries of the matrices B and D.

In the framework of [START_REF] Kang | Monoidal categorification of cluster algebras[END_REF], one takes into account the natural grading of quiver Hecke algebras defined in Section 3.1: objects in C are graded as well. A quantum monoidal seed is the data of such a triple ptM i u, B, Dq with the further assumption that there exist integers λ ij and isomorphisms of graded modules M i b M j » q λ ij M j b M i for any i, j P t1, . . . , nu. The matrix L " pλ ij q 1ďi,jďn is a skew-symmetric matrix and is assumed to satisfy some compatibility relations with the matrix B as in [START_REF] Berenstein | Quantum cluster algebras[END_REF]. See [18, Section 6.2.1] for a precise definition.

In the quantum setting, cluster mutations correspond to some graded short exact sequences.

Definition 3.10 ([18, Definition 6.2.3]). Let k P t1, . . . , ru fixed. A quantum monoidal seed S " ptM i u 1ďiďn , L, B, Dq admits a mutation in the direction k if there exists a simple object M 1 k of C such that:

(a) M 1 k P C d 1 k with d 1 k :" ´dk `řb ik ą0 b ik d i .
(b) One has the following short exact sequences in C :

0 ÝÑ qM b 1 ÝÑ q m k M k b M 1 k ÝÑ M b 2 ÝÑ 0 0 ÝÑ qM b 2 ÝÑ q m 1 k M 1 k b M k ÝÑ M b 1 ÝÑ 0
where m k and m 1 k are some integers.

(c) S 1pkq :" ptM i u i‰k Y tM 1 k u, L 1pkq , B 1pkq , D 1pkq q is again a quantum monoidal seed in C, where L 1pkq and B 1pkq are defined as in [1, Definition 3.5] and D 1pkq is the diagonal matrix whose entries are the d i for i ‰ k and d 1 k for i " k.

Definition 3.11. The category C is a monoidal categorification of a quantum cluster algebra A if:

(a) There is an isomorphism of graded rings Zrq ˘1 2 s b Zrq ˘1s K 0 pCq » A.

(b) There exists a quantum monoidal seed S :" ptM i u, L, B, Dq in C such that rSs :" ptq

´pd i ,d i q 4 rM i su, L, Bq is a quantum seed in A.
(c) The quantum monoidal seed S admits arbitrary sequences of mutations in all directions.

In this setting, the existence of a monoidal categorification implies that any (quantum) cluster monomial is the class of some real simple object in C. Recall from Section 2.2 that this notion is slightly different from the notion of monoidal categorification initially defined by Hernandez-Leclerc [START_REF] Hernandez | Cluster algebras and quantum affine algebras[END_REF].

The following definition provides a sufficient condition for producing quantum monoidal seeds.

Definition 3.12. A pair ptM i u, Bq is admissible if:

(i) tM i u 1ďiďn is a family of self-dual real simple modules commuting with each other.

(ii) The matrix B is defined as above.

(iii) For each 1 ď k ď r there exists a self-dual simple module M 1 k such that M 1 k commutes with the M i for i ‰ k and there is a short exact sequence of graded objects in C

0 ÝÑ qM b 1 ÝÑ q ΛpM k ,M 1 k q M k ˝M 1 k ÝÑ M b 2 ÝÑ 0.
where ΛpM, N q is defined as 1 2 pΛpM, N q `pβ, γqq for M P Rpβq ´gmod and N P Rpγq ´gmod. The data of an admissible pair naturally gives rise to a quantum monoidal seed in C. More precisely, if ptM i u 1ďiďn , Bq is an admissible pair in C, M 1 k as in the previous definition, then one defines a r ˆr skew-symmetric matrix L and a diagonal matrix D of size n by setting L ij :" ΛpM i , M j q and D " Diagpd 1 , . . . , d n q where d i stands for the weight of the module M i . Then ([18, Proposition 7.1.2]) the quadruple S :" ptM i u 1ďiďn , ´L, B, Dq is a quantum monoidal seed in C which admits mutations in every direction k (for

1 ď k ď r).
The main result of [START_REF] Kang | Monoidal categorification of cluster algebras[END_REF] can now be stated as follows:

Let ptM i u 1ďiďn , Bq be an admissible pair in C and S :" ptM i u 1ďiďn , ´L, B, Dq the corresponding quantum monoidal seed. Set rSs :" ptq ´pwtpM i q,wtpM i qq 4 rM i su 1ďiďn , ´L, B, Dq.

Theorem 3.13 ([18, Theorem 7.1.3]). Assume there is a Qpq

1 2 q-algebras isomorphism Qpq 1 2 q b Zrq ˘1s K 0 pCq » Qpq 1 2 q b Zrq ˘1s A q 1 2 prSsq.
Then for each 1 ď k ď r the pair ptM i u i‰k Y tM 1 k u, B 1pkq q is again an admissible pair in the category C.

Quantum monoidal seeds for C w

In this subsection we recall from [START_REF] Kang | Monoidal categorification of cluster algebras[END_REF] the definition of the subcategories C w of R ´gmod as well as the construction of admissible pairs for these categories.

For any element w of the Weyl group W associated to g, Geiss, Leclerc and Schröer defined algebras A q pnpwqq as subalgebras of the quantum coordinate rings A q pnq ([12, Section 7.2]). They show ([12, Theorem 12.3]) that it is possible to put a quantum cluster algebra structure on A q pnpwqq for every w P W . In [START_REF] Kang | Monoidal categorification of cluster algebras[END_REF], Kang-Kashiwara-Kim-Oh introduce, for each w P W , a subcategory C w of R ´gmod such that the Grothendieck ring K 0 pC w q is the preimage of A q pnpwqq under the isomorphism given by Theorem 3.5: M P C w if and only if ch q pM q P A q pnpwqq. In [START_REF] Kang | Monoidal categorification of cluster algebras[END_REF], Kang-Kashiwara-Kim-Oh prove the following: Theorem 3.14 ([18, Theorem 11.2.3]). For each element w of the Weyl group W , the category C w is a monoidal categorification of the quantum cluster algebra A q 1{2 pnpwqq.

Thus the categories C w provide many examples of monoidal categorifications of (quantum) cluster algebras.

Remark 3.15. The category R ´gmod corresponds C w 0 where w 0 stands for the longest element of the Weyl group of g. When w is the square of a well chosen Coxeter element c in W , the quantum cell A q 1{2 pnpwqq is also categorified by the category C 1 defined in [START_REF] Hernandez | Cluster algebras and quantum affine algebras[END_REF]. The category C w 0 (resp. C c 2 ) is related to the category C Q (resp. C 1 ) introduced by Hernandez-Leclerc in [START_REF] Hernandez | Monoidal categorification of cluster algebras of type A and D[END_REF] (resp. [START_REF] Hernandez | Cluster algebras and quantum affine algebras[END_REF]) via a functor called generalized quantum affine Schur-Weyl duality defined in [START_REF] Kang | Symmetric quiver Hecke algebras and R-matrices of quantum affine algebras[END_REF]. In the case of C w 0 Fujita [START_REF] Fujita | Affine highest weight categories and quantum affine Schur-Weyl duality of Dynkin quiver types[END_REF] proved that this functor is an equivalence of categories.

Note that Geiss-Leclerc-Schröer defined categories Cw which provide additive categorifications of the quantum coordinate rings A q pnpwqq for each w P W ([12, Theorem 12.3]). The categories Cw are defined as subcategories of the preprojective algebra of certain quivers. The categories C w as defined in [START_REF] Kang | Monoidal categorification of cluster algebras[END_REF] can be seen as monoidal analogs of the categories Cw of [START_REF] Geiss | Cluster structures on quantum coordinate rings[END_REF] in terms of representations of quiver Hecke algebras. However, Theorem 3.14 provides a monoidal categorification statement and is thus of different nature than the results of [START_REF] Geiss | Cluster structures on quantum coordinate rings[END_REF].

In order to prove Theorem 3.14, Kang-Kashiwara-Kim-Oh construct an admissible pair (see Definition 3.12) in the category C w for each w P W . We now recall this construction. By the results of [START_REF] Kang | Monoidal categorification of cluster algebras[END_REF], the existence of such a pair implies Theorem 3.14.

First one defines unipotent quantum minors as some distinguished elements of A q pnq: for any dominant weight λ in the weight lattice P and any couple pµ, ζq of elements of W λ, the unipotent quantum minor Dpµ, ζq is an element of A q pnq which is either a member of the canonical basis of A q pnq or zero ([18, Lemma 9.1.1]). The following statement gives a necessary and sufficient condition so that Dpµ, ζq is non zero. First recall some notation from [START_REF] Kang | Monoidal categorification of cluster algebras[END_REF]: Definition 3.16. Let λ P P `, µ, ζ P W λ. We write µ À ζ if there exists a finite sequence pβ 1 , . . . , β l q such that, setting λ 0 :" ζ, λ k " s β k λ k´1 p1 ď k ď lq one has λ l " µ and @1 ď k ď l, pβ k , λ k´1 q ě 0. The following statement is a direct consequence of Theorem 3.6 and of the previous lemma: Corollary 3.18. Let λ P P `, µ, ζ P W λ such that µ À ζ. There exists a unique self-dual simple module M pµ, ζq P R ´gmod whose image under the character map ch q is Dpµ, ζq. Moreover, M pµ, ζq is real.

This module is called determinantial module ([18, Definition 10.2.1]). Its weight is equal to ζ ´µ, i.e. M pµ, ζq P Rpζ ´µq ´gmod.

Remark 3.19. This is one of the key points that we will use to compute the dominant words of the modules corresponding to the frozen variables in R ´gmod in Section 6.

One can now construct an admissible seed for the category C w . Fix some element w in the Weyl group W and a reduced expression w " s i 1 ¨¨¨s ir . For s P t1, . . . , ru, set

s `:" minptk | s ă k ď r, i k " i s u Y tr `1uq s ´:" maxptk | 1 ď k ă s, i k " i s u Y t0uq For 1 ď k ď r, set λ k :" s i 1 ¨¨¨s i k ω i k .
For 0 ď t ď s ď r, set Dps, tq :"

$ ' & ' % Dpλ s , λ t q if 0 ă t, Dpλ s , ω is q if 0 " t ă s ď r, 1 if t " s " 0.
Definition 3.20 ([18]). As in Corollary 3.18, consider M ps, tq the unique simple real module (up to shift and isomorphism) such that chpM ps, tqq " Dps, tq for any 0 ď s ď t ď r.

Set J " t1, . . . , ru, J f r " tk P J | k `" r `1u and J ex " JzJ f r . The initial quiver is set to have J " t1, . . . , ru as set of vertices with the following arrows:

s ÝÑ t if 1 ď s ă t ă s `ă t `ď r `1 s ÝÑ s ´if 1 ď s ´ă s ď r
Denoting by B the corresponding exchange matrix, the main result of [START_REF] Kang | Monoidal categorification of cluster algebras[END_REF] can be stated in the following way: Theorem 3.21 ([18, Theorem 11.2.2]). The pair ptM pk, 0qu 1ďkďr , Bq is admissible in the category C w .

Irreducible representations of quiver Hecke algebras

In this subsection we recall from [START_REF] Kleshchev | Representations of Khovanov-Lauda-Rouquier algebras and combinatorics of Lyndon words[END_REF] the classification of simple finite-dimensional modules over finite type quiver Hecke algebras. The main result (Theorem 3.31 below) is that simple objects in the category R ´gmod are parametrized in a combinatorial way by dominant words, which are analogs of Zelevinsky's multisegments in the classification of simple representations of affine Hecke algebras of type A. As for Lie algebras, simple modules over quiver Hecke algebras are constructed as quotients of tensor products of some distinguished irreducible representations, called cuspidal modules in [START_REF] Kleshchev | Representations of Khovanov-Lauda-Rouquier algebras and combinatorics of Lyndon words[END_REF].

Choose a labeling of the vertices of the Dynkin diagram of g by I " t1, . . . , nu. A word is a finite set of elements of I. We fix a total order on I by setting 1 ă ¨¨¨ă n. The set of all words is a totally ordered set with respect to the lexicographic order induced by ă.

For i :" pi 1 , . . . , i d q, set |i| :" α 1 `¨¨¨`α d P Q `. Recall from Section 3.1 that for any β P Q `, Seqpβq " ti, |i| " βu. µ " pi p1q q n 1 ¨¨¨pi prq q nr with i p1q , . . . , i prq Lyndon words satisfying i p1q ą ¨¨¨ą i prq and n 1 , . . . , n r nonnegative integers. This is called the canonical factorization of the word µ. Recall from Section 3.1 (Definition 3.2) that for β P Q `, any Rpβq-module M decomposes as a direct sum of vector spaces M " À νPSeqpβq M ν with M ν :" epνqM . Definition 3.25. A word µ is dominant if there is an Rpβq-module M such that µ is the highest word among the words ν such that M ν is not zero: M " M µ ' À νăµ M ν and M µ ‰ 0.

Dominant words play the same role as highest weights in the representation theory of finite dimensional semisimple Lie algebras (see [START_REF] Chari | A Guide to Quantum Groups[END_REF]). The next statement provides a very useful combinatorial criterion to determine whether a word is dominant or not. In particular it shows that a dominant word can be seen as a collection (or a sum with positive coefficients) of positive roots, which is why the terminology root partitions is sometimes used (see [START_REF] Mcnamara | Representations of Khovanov-Lauda-Rouquier algebras III: symmetric affine type[END_REF]).

Theorem 3.26 ([21]). (i)

There is a bijection between the set of dominant Lyndon words and the set ∆ `of positive roots of g, given by i Þ Ñ |i|.

(ii) A word µ is dominant if and only if all the Lyndon words appearing in the canonical factorization of µ are dominant.

Example 3.27. In type A 4 , 24 is Lyndon but not dominant Lyndon, and 123 is dominant Lyndon. The word 12312 is dominant but the word 3213 is not.

Remark 3.28. Dominant Lyndon words already appear in the work of Leclerc [START_REF] Leclerc | Dual canonical bases, quantum shuffles and q-characters[END_REF] as good Lyndon words in the study of dual canonical basis for quantum groups and quantum coordinate rings.

The next Proposition introduces the notion of cuspidal modules. The existence of cuspidal modules follows from results of Varagnolo-Vasserot [START_REF] Varagnolo | Canonical bases and KLR algebras[END_REF] in simply-laced cases and Rouquier [START_REF] Rouquier | Quiver Hecke algebras and 2-Lie algebras[END_REF] in the general case. Cuspidal modules can be seen as analogs of fundamental representations for Lie algebras. Proposition 3.29 ([21, Proposition 8.4]). For any dominant Lyndon word i in Seqpβq, there is a unique (up to isomorphism and shift) irreducible Rpβq-module of highest weight i. We denote it by Lpiq.

In [START_REF] Kleshchev | Representations of Khovanov-Lauda-Rouquier algebras and combinatorics of Lyndon words[END_REF], Kleshchev-Ram give explicit constructions of cuspidal modules for each finite type. For instance, in type A n , the set of positive roots is ∆ `" tα i `¨¨¨`α j , 1 ď i ď j ď nu and the cuspidal module Lpk . . . lq corresponding to the positive root α k `¨¨¨`α l is the one dimensional vector space spanned by a vector v with action of Rpα k `¨¨¨`α l q given by:

x i ¨v " 0, τ j ¨v " 0, epνq ¨v "

# v if ν " k . . . l 0 otherwise.
Recall from Section 3.1 that the graded character of a finite dimensional Rpβq-module M is a (finite) formal sum of elements of Seqpβq with coefficients in Zrq, q ´1s. For any such formal sum S :" ř λ P λ pqqλ, we let maxpSq denote the greatest word appearing in this sum (for the lexicographic order). In particular, for any finite dimensional Rpαq-module M , we set maxpM q :" maxpch q pM qq. The word maxpM q is called the highest weight of the module M in [START_REF] Kleshchev | Representations of Khovanov-Lauda-Rouquier algebras and combinatorics of Lyndon words[END_REF].

The next statement shows that any word (not necessarily dominant) always appears as the highest word in the quantum shuffle product of the Lyndon words appearing in its canonical factorization. Proposition 3.30 ([21, Lemma 5.3]). Let µ be a word, and µ " i p1q ¨¨¨i prq its canonical factorization. Then we have maxpi p1q ˝¨¨¨˝i prq q " µ.

One can now state the main result of [START_REF] Kleshchev | Representations of Khovanov-Lauda-Rouquier algebras and combinatorics of Lyndon words[END_REF]. It shows that finite dimensional irreducible representations of finite type quiver Hecke algebras are parametrized by dominant words. Theorem 3.31 ([21, Theorem 7.2]). Let µ be a dominant word, and µ " pi p1q q n 1 ¨¨¨pi prq q nr its canonical factorization. Set ∆pµq :" Lpi p1q q ˝n1 ˝¨¨¨˝Lpi prq q ˝nr xspµqy where spµq :" ř r k"1 pi k .i k qn k pn k ´1q{4. Then :

(i) ∆pµq has an irreducible head, denoted Lpµq.

(ii) The highest weight of Lpµq is µ: maxpLpµqq " µ.

(iii) The set tLpµqu for µ dominant words in Seqpβq is a complete and irredundant set of irreducible graded Rpβq-modules up to isomorphism and shift.

Moreover for µ of the form j n with j dominant Lyndon, one has Lpµq " Lpjq ˝n.

Example 3.32. Here are some examples of characters of some simple modules: ch q pLp1qq " p1q ch q pLp12qq " p12q ch q pLp21qq " p21q ch q pLp312q " p312q `p132q ch q pLp11qq " pq `q´1 qp11q.

Dominance order and compatible seeds

In this section we define a partial ordering on the set of Laurent monomials in the cluster variables of a cluster algebra A. This ordering coincides with the dominance order introduced by Qin in [START_REF] Qin | Triangular bases in quantum cluster algebras and monoidal categorification conjectures[END_REF]. In the context of monoidal categorification of a cluster algebra, we use this dominance order to introduce the notion of compatible seed and state the main conjecture of this work (Conjecture 4.10). We end this section with a discussion of monoidal categorifications of cluster algebras via representations of quantum affine algebras following the work of Hernandez-Leclerc [START_REF] Hernandez | Cluster algebras and quantum affine algebras[END_REF], which provides a first example where Conjecture 4.10 holds.

Partial ordering on monomials

Consider a cluster algebra A and choose a seed ppx 1 , . . . , x n , x n`1 , . . . , x m q, Bq, where x 1 , . . . , x n are the unfrozen variables and x n`1 , . . . , x m are the frozen variables. Let M x be the monoid of all monomials in the x i and G x the abelian group of all Laurent monomials in the x i . Recall from Section 2.1 the variables ŷj defined as ŷj :"

ź 1ďiďm x b ij i for any 1 ď j ď n.
In what follows we write x α for ś i x α i i for any integers α i . One now defines a partial preorder on G x in the following way: given two Laurent monomials x α " ś i x α i i and x β "

ś i x β i i in G x , we set x α ď x β
if and only if there exist non-negative integers γ j , 1 ď j ď n such that

x β " x α . ź j ŷj γ j .
We denote by ě the opposite preorder. Assume that the initial exchange matrix B has full rank n. Then the preorder ď becomes an order on G x . This order is the same as the dominance order as defined by F. Qin [START_REF] Qin | Triangular bases in quantum cluster algebras and monoidal categorification conjectures[END_REF]Definition 3.1.1]. Indeed, by definition, the relation

ś i x α i i ď ś i x β i i is equivalent to the existence of nonnegative integers γ j , 1 ď j ď n such that @i, β i " α i `ÿ j b ij γ j .
In vector notation this can be rewritten as

β " α `Bγ
and thus the order ď coincides with Qin's dominance order on multi-indices. Following [START_REF] Qin | Triangular bases in quantum cluster algebras and monoidal categorification conjectures[END_REF], one can use this dominance order to introduce the notions of pointed elements and pointed sets. ). Fix a seed ppx 1 , . . . , x n , x n`1 , . . . , x m q, Bq in A and assume B has full rank n.

(i) Let P be a Laurent polynomial in the cluster variables x 1 , . . . , x m . One says that P is pointed with respect to the seed ppx 1 , . . . , x m q, Bq if among the monomials of P , there is a unique monomial which is a maximal element (for the dominance order ď) and has coefficient 1. This monomial is called the leading term of P in [START_REF] Qin | Triangular bases in quantum cluster algebras and monoidal categorification conjectures[END_REF].

(ii) Let L be any set of Laurent polynomials in the cluster variables x 1 , . . . , x m . One says that L is pointed with respect to the seed ppx 1 , . . . , x m q, Bq if all the elements of L are pointed and two distinct elements of L have different leading terms.

One can associate a degree to each of the cluster variables x i (see [START_REF] Qin | Triangular bases in quantum cluster algebras and monoidal categorification conjectures[END_REF]). If P is a pointed element with respect to the seed ppx 1 , . . . , x m q, Bq, then the degree of its leading term can be seen as a generalization of the notion of g-vector.

Generalized parameters

Let us consider an Artinian monoidal category C and assume we are given a classification of simple objects in C. That is, suppose we are given a poset pM, ďq together with a bijection ψ between M and the set S :" trV s, V simple in Cu. Let Lpµq denote a representative of the isomorphism class in K 0 pCq corresponding to µ P M via this bijection.

ψ : S ÝÑ M rLpµqs Þ ÝÑ µ.
In what follows, µ will be referred to as the parameter of the simple object Lpµq in C. We will also assume that the identity object is simple in C.

From now on we assume that the category C satisfies the following property:

Assumption A (Decomposition property). let µ, µ 1 P M and Lpµq, Lpµ 1 q the corresponding simple objects in C; then the following equality holds in the Grothendieck ring K 0 pCq rLpµqs ¨rLpµ 1 qs "

ÿ νPN µ,µ 1 ĂM a ν rLpνqs
where N µ,µ 1 is a finite subset of M such that there exists a unique maximal element in N µ,µ 1 and ta ν , ν P N µ,µ 1 u is a family of nonzero integers. The maximal element of N µ,µ 1 is denoted by µ d µ 1 .

Remark 4.2.

In various examples of categories satisfying this property (for instance categories of modules over quiver Hecke algebras or quantum affine algebras), the integer a µdµ 1 happens to be equal to 1 for any µ, µ 1 P M, but we will not need this assumption here.

In what follows we will need the additional assumption that the law d is compatible with the partial ordering on M in the following sense: Assumption B. @µ, ν P M, µ ď ν ñ @λ P M, pλ d µ ď λ d ν and µ d λ ď ν d λq.

Combining Assumptions A and B leads to the following: Proof. First note that for any µ, µ 1 P M, the set N µ,µ 1 is finite and has a unique maximal element by Assumption A, hence this element (namely µdµ 1 ) is a greatest element in N µ,µ 1 . Now let µ,µ 1 and µ 2 in M and decompose in two different ways the product rLpµqsrLpµ 1 qsrLpµ 2 qs. On the one hand, Assumption A gives rLpµqsrLpµ 1 qsrLpµ 2 qs " rLpµqs ¨ÿ νPN µ 1 ,µ 2 a ν rLpνqs with ν ď µ 1 d µ 2 for every ν P N µ 1 ,µ 2 . For any ν P N µ 1 ,µ 2 , the parameters appearing in the decomposition of rLpµqs ¨rLpνqs into classes of simples are all smaller than µ d ν; as ν ď µ 1 d µ 2 , Assumption B implies µ d ν ď µ d pµ 1 d µ 2 q. Hence all the parameters involved in the decomposition of rLpµqsrLpµ 1 qsrLpµ 2 qs into classes of simples are smaller than µ d pµ 1 d µ 2 q.

On the other hand, one can write rLpµqsrLpµ 1 qsrLpµ 2 qs " ÿ νPN µ,µ 1 a ν rLpνqs.rLpµ 2 qs and the same arguments show that all the parameters involved in the decomposition of rLpµqsrLpµ 1 qsrLpµ 2 qs into classes of simples are smaller than pµ d µ 1 q d µ 2 . In particular we get µ d pµ 1 d µ 2 q ď pµ d µ 1 q d µ 2 and µ d pµ 1 d µ 2 q ě pµ d µ 1 q d µ 2 and hence µ d pµ 1 d µ 2 q " pµ d µ 1 q d µ 2 .

Thus the operation

M ˆM Ñ M pµ, µ 1 q Þ Ñ µ d µ 1
provides M with a monoid structure. The neutral element 1 M is the image via ψ of the class of the identity object of C. By Assumption B, the monoid pM, dq is an ordered monoid with respect to ď.

We now assume that C is a monoidal categorification of a cluster algebra A. Let φ be a ring isomorphism

φ : K 0 pCq » Ý Ñ A.
As K 0 pCq is isomorphic to A, it is in particular commutative which implies that the monoid pM, dq is commutative as well. Hence it can be canonically embedded into its Grothendieck group GpMq, which is defined as follows (see [START_REF] Bourbaki | Algebra I. Chapters[END_REF]): The group GpMq is an abelian group. We denote it by G in what follows.

The inverse in G of an element µ P M will be denoted by µ d´1 . Similarly g d´1 stands for the inverse in G of any element g of G. We will refer to elements of M as parameters and elements of G as generalized parameters.

Proposition 4.5. The ordering ď on M naturally extends to a partial ordering on G that we also denote by ď.

Proof. One defines a partial ordering on M ˆM by setting

pµ, νq ď pµ 1 , ν 1 q ô Dλ P M, λ d µ d ν 1 ď λ d µ 1 d ν.
Using the assumption B, one can check that if pµ, νq " pµ 1 , ν 1 q then for any pµ 2 , ν 2 q P M ˆM, one has pµ, νq ď pµ 2 , ν 2 q ô pµ 1 , ν 1 q ď pµ 2 , ν 2 q. Thus ď naturally gives rise to a well-defined partial ordering on G.

Let us now fix a seed ppx 1 , . . . , x m q, Bq in A and choose for each 1 ď i ď m a representative Lpµ i q of the isomorphism class φ ´1px i q P S corresponding to the cluster variable x i . Recall that M x stands for the monoid of all monomials in the x i and G x for the abelian group of all Laurent monomials in the x i . For any m-tuple of integers pα 1 , . . . , α m q, we let µ α denote the element Ä 1ďiďm µ i α i of G. Of course µ α belongs to M if all the α i are nonnegative.

Let us consider the subset P of K 0 pCq consisting of nonzero classes rM s such that there is a unique maximal element among the parameters of the simples appearing in the Jordan-Hölder series of M . Let Ψ be the map

Ψ : P ÝÑ G rM s " a 1 rM 1 s `¨¨¨`a r rM r s Þ ÝÑ max ď pψprM k sq, 1 ď k ď rq .
Here the a k are integers and the M i are the simples of the Jordan-Hölder series of M . Note that P contains 1, whose image by Ψ is the neutral element of M. The set S of classes of simples in C is a basis of K 0 pCq hence the writing a 1 rM 1 s `¨¨¨`a r rM r s of an element of P is unique up to reordering the terms and thus the map Ψ is well-defined.

Let P be the subset of F racpAq defined in the following way:

P :" tx α φppq, α P Z m , p P Pu.

In particular P contains G x . Let Ψ be the map

Ψ : P ÝÑ G x α φppq Þ ÝÑ µ α d Ψppq.
Proposition 4.6. The map Ψ is well defined and satisfies the following properties:

(i) Ψ ˝φ coincides with ψ on S.

(ii) Ψ defines an abelian group morphism from G x (for the natural multiplication) to pG, dq.

Proof. In order to show that the map Ψ is well-defined, we need to check that if α, β are two m-tuples of integers and p, q two elements of P such that x α φppq " x β φpqq, then the equality µ α d Ψppq " µ β d Ψpqq holds in G. Let us write p " a 1 rM 1 s `¨¨¨`a r rM r s and q " b 1 rN 1 s `¨¨¨`b s rN s s, with r, s ě 0, a 1 , . . . a r , b 1 , . . . , b s P Z and rM 1 s, . . . rM r s, rN 1 s, . . . , rN s s P S. Let γ be an m-tuple of nonnegative integers such that x γ x α and x γ x β are monomials in the x i . One can write x α φppq " x β φpqq ô x γ x α φppq " x γ x β φpqq ô φ ˜ź i rLpµ i qs γ i `αi p ¸" φ ˜ź i rLpµ i qs γ i `βi q ô rLpµ γ`α qs.pa 1 rM 1 s `¨¨¨`a r rM r sq " rLpµ γ`β qs.pb 1 rN 1 s `¨¨¨`b s rN s sq as φ is an isomorphism. Let us set µ :" µ γ`α and ν :" µ γ`β ; they are elements of M. By Assumption A, for every 1 ď i ď r the product rLpµqs.rM i s decomposes as a sum of classes of simples and µ d ψprM i sq is maximal among the corresponding parameters. As p P P, the finite set of parameters ψprM 1 sq, . . . ψprM r sq has a unique maximal element. For simplicity let us assume it is ψprM 1 sq. Then Assumption B implies that µ d ψprM 1 sq is maximal among the parameters appearing in the decompositions of rLpµqs.rM i s, 1 ď i ď r into classes of simples. The same arguments of course hold for the right hand side rLpνqs.q. As S is a basis of K 0 pCq, one gets µ d ψprM 1 sq " ν d ψprN 1 sq.

Now by definition of Ψ, one has ψprM 1 sq " Ψppq and ψprN 1 sq " Ψpqq. Hence we can write in G:

µ α d Ψppq " µ ´γ d µ d Ψppq " µ ´γ d µ d ψprM 1 sq " µ ´γ d ν d ψprN 1 sq " µ ´γ d ν d Ψpqq " µ β d Ψpqq
which is the desired equality. Thus Ψ is well-defined. For any µ P M, φprLpµqsq belongs to P with α being zero and p " rLpµqs. Hence by definition one has Ψ pφprLpµqsqq " ΨprLpµqsq " µ " ψprLpµqsq which proves (i). Taking elements of P for which p is the empty sum, one gets

Ψpx α q " µ α " ä 1ďiďm µ i α i " ä 1ďiďm Ψ pφprLpµ i qsqq α i by (i) " ä 1ďiďm Ψpx i q α i
which proves (ii).

Compatible seeds

In this subsection, we introduce the notion of compatible seed, state our main conjecture (Conjecture 4.10) and explain some consequences.

Definition 4.7 (Compatible seed). Let S :" ppx 1 , . . . , x m q, Bq be a seed in A, G x the group of Laurent monomials in the cluster variables x 1 , . . . , x m , and ď the corresponding dominance order on G x . Let Ψ be the map given by Proposition 4.6. For any 1 ď j ď n, set μj :" Ψp ŷj q " ä 1ďiďm µ

db ij i .
We say that the seed S is compatible if the restriction Ψ|Gx : pG x , ďq ÝÑ pG, ďq is either increasing or decreasing.

Remark 4.8. By construction, the restriction of Ψ to G x is increasing if and only if for any Laurent monomials ś i x α i i and

ś i x β i i one has ź i x α i i ď ź i x β i i ñ ä i µ dα i i ď ä i µ dβ i i .
This is equivalent to the following: @1 ď j ď n, @µ P M, µ ď μj d µ.

In the same way, Ψ is decreasing on G x if and only if @1 ď j ď n, @µ P M, µ ě μj d µ.

In many examples of monoidal categorifications of cluster algebras, for instance via quantum affine algebras or quiver Hecke algebras, we will check this condition to prove that a seed is compatible.

Remark 4.9. Note that if the seed S " ppx 1 , . . . , x m q, Bq is compatible with Ψ increasing on G x , then P contains all the Laurent polynomials in the x i that are pointed with respect to S, i.e. P Ě PT p0q with the notations of [START_REF] Qin | Triangular bases in quantum cluster algebras and monoidal categorification conjectures[END_REF].

One can now state the main conjecture of this paper: Conjecture 4.10. Let A be a cluster algebra and C an Artinian monoidal categorification of A. Assume there exists a poset pM, ďq as above such that Assumptions A and B hold. Then there exists a compatible seed in A.

The next statements provide some useful consequences of the existence of a compatible seed. In particular we combine it with the results of [START_REF] Fomin | Cluster algebras IV: Coefficients[END_REF] and [START_REF] Derksen | Quivers with potential and their representations II: Applications to cluster algebras[END_REF] recalled in Section 2.1 to relate parameters of simple objects in C to some cluster algebra invariants, such as g-vectors and F -polynomials.

Let C be a Artinian monoidal categorification of a cluster algebra A and assume Conjecture 4.10 holds. Let ppx 1 , . . . , x n , x n`1 , . . . , x m q, Bq be a compatible seed. Consider x t l a cluster variable in A belonging to another cluster and let F l,t be its F -polynomial. Let X a l,t 1 1 ¨¨¨X a l,t n n be the monomial given by Theorem 2.5(i).

Corollary 4.11. One has F l,t p ŷ1 , . . . , ŷn q P P and

Ψ ´F l,t p ŷ1 , . . . , ŷn q ¯" # Ä j μj da l,t j if Ψ is increasing on G x , 1 G
in the other case.

Here 1 G denotes the neutral element of G.

Proof. By Theorem 2.4, F l,t p ŷ1 , . . . , ŷn q is the product of a Laurent monomial in the x i with the cluster variable x l,t . As C is a monoidal categorification of A, x l,t is the image by φ of the class of a simple object in C. Hence F l,t p ŷ1 , . . . , ŷn q P P. By Theorem 2.5 (i) and (ii), any monomial of F l,t can be written as X b 1 1 ¨¨¨X bn n with 0 ď b j ď a l,t j for all 1 ď j ď n. As the seed ppx 1 , . . . , x m q, Bq is compatible, evaluating on the ŷj and considering the corresponding generalized parameters μj yields

ä j μj a l,t j ě ä j μj b j if Ψ is increasing on G x and ä j μj a l,t j ď ä j μj b j if Ψ is decreasing G x .
Hence among all the generalized parameters appearing in the term F l,t p ŷ1 , . . . , ŷn q, there is one which is greater than the others, namely

Ä j μj da l,t j if Ψ is increasing G x , 1 G in the other case.
The following Corollary shows that the existence of a compatible seed in A implies relations between the g-vector (with respect to this initial (compatible) seed) of any cluster variable in A and the parameter of the corresponding simple object in C. |P py 1 , . . . , y n q in the right hand side of equation ( 2). Note that, in view of the definition of the semifield P, the c l,t i are negative integers, as the F -polynomial F l,t has constant term equal to 1 by Theorem 2.5(ii). Corollary 4.12. Let µ l,t be the parameter of the simple module corresponding to the cluster variable x l,t , i.e. x l,t " φprLpµ l,t qsq. Then

µ l,t " $ & % Ä 1ďjďn μj da l,t j d Ä 1ďiďm´n µ dp´c l,t i q n`i d Ä 1ďiďn µ dg l,t i i if Ψ is increasing on G x , Ä 1ďiďm´n µ dp´c l,t i q n`i d Ä 1ďiďn µ dg l,t i i if Ψ is decreasing on G x .
Proof. We give the proof only in the case where the restriction of Ψ to G x is increasing, the other case being analogous.

By Proposition 4.6 (i), Ψpx t l q " ψprLpµ l,t qsq " µ l,t . On the other hand, one can use the previous Corollary and apply Ψ to both sides of equation ( 2):

ä j μj da l,t j " Ψ ´F l,t p ŷ1 , . . . , ŷn q ¯" Ψ ¨xc l,t 1 n`1 ¨¨¨x c l,t m´n m x g l,t 1 1 ¨¨¨x g l,t n n .x l,t ' " µ l,t d ä 1ďiďm´n µ dc l,t i n`i d ä 1ďiďn µ dp´g l,t i q i by Proposition 4.6(ii).
Finally one can conclude:

µ l,t " ä 1ďjďn μj da l,t j d ä 1ďiďm´n µ dp´c l,t i q n`i d ä 1ďiďn µ dg l,t i i .

First example: the category C 1

The first example of compatible seed appears in the work of Hernandez-Leclerc [START_REF] Hernandez | Cluster algebras and quantum affine algebras[END_REF] and is one of the main motivations for this work.

Recall from Section 2.3 the definition of the category C 1 . This category was introduced by Hernandez-Leclerc in [START_REF] Hernandez | Cluster algebras and quantum affine algebras[END_REF] as a (monoidal) subcategory of the category of finite dimensional representations of the quantum affine algebra U q pĝq. For g of types ADE, the category C 1 is a monoidal categorification of a cluster algebra of the same cluster type (in the classification of [START_REF] Fomin | Cluster algebras II: Finite type classification[END_REF]) than the Lie type of g ( [START_REF] Hernandez | Cluster algebras and quantum affine algebras[END_REF][START_REF] Nakajima | Quiver varieties and cluster algebras[END_REF]). As explained in Section 2.3, the simple finite dimensional U q pĝq-modules are parametrized by dominant monomials. The monoid M parametrizing simple objects in the category C 1 is a submonoid of the set of dominant monomials involving only the variables Y i,a , i P I, a P q Z . The monoid law d is simply the natural multiplication of monomials. The ordering ď on M is the restriction of the Nakajima order on dominant monomials (see Section 2.3). Assumptions A and B are obviously satisfied for the category C 1 .

In [START_REF] Hernandez | Cluster algebras and quantum affine algebras[END_REF], Hernandez-Leclerc give explicitly an initial seed in the category C 1 :

Theorem 4.13 ([13]). Each seed has n " |I| unfrozen variables and n frozen variables. These frozen variables are given by the classes of the modules LpY i,q ξ i Y i,q ξ i `2 q, i P I.

Moreover, an initial seed in this cluster algebra is given by the following classes: rLpY i,q ξ i `2 qs rLpY i,q ξ i Y i,q ξ i `2 qs i P I together with the exchange matrix B " pb ij q whose columns are indexed by I and rows by I \ I 1 " r1, ns \ rn `1, 2ns, and whose entries are given by

b ij :" $ ' ' ' ' & ' ' ' ' %
p´1q ξ j a ij if i, j P I and i ‰ j, ´1 if j P I and i " j `n P I 1 , ´akj if j P J 0 and i " k `n P I 1 with k ‰ j, 0 otherwise.

Here the a ij are the entries of the Cartan matrix associated to g.

The cluster algebra A is the cluster algebra (in the classification of [START_REF] Fomin | Cluster algebras II: Finite type classification[END_REF]) generated by the initial seed ppx 1 , . . . , x n , x n`1 , . . . , x 2n q, Bq where B is the matrix above. Following [START_REF] Hernandez | Cluster algebras and quantum affine algebras[END_REF], we denote by ι the unique ring isomorphism ι : A » / / K 0 pC 1 q such that ιpx i q " rLpY i,q ξ i `2 qs ιpx n`i q " rLpY i,q ξ i Y i,q ξ i `2 qs 1 ď i ď n.

The isomorphism ι is the inverse of the isomorphism φ in Section 4.2. Using the map Ψ associated to the seed ppx 1 , . . . , x n , x n`1 , . . . , x 2n q, Bq above, one can compute the generalized parameters μj corresponding to this seed. This is done by the following statement, as a direct consequence of Theorem 4.13:

Proposition 4.14 ([13, Lemma 7.2]). With the notations of Section 4.2, one has:

@1 ď j ď n, μj " A ´1 j,q ξ j `1 .
Corollary 4.15. Conjecture 4.10 holds for the category C 1 .

Proof. By definition of the Nakajima ordering on monomials (see Section 2.3), Proposition 4.14 implies that for any dominant monomial m, one has @1 ď j ď n, m ě μj m.

By Remark 4.8, this implies that the map Ψ associated to the seed ppx 1 , . . . , x n , x n`1 , . . . , x 2n q, Bq is decreasing. Hence this seed is compatible in the sense of Definition 4.7 and Conjecture 4.10 holds.

We conclude this section with an illustration of the relationships between g-vectors and highest weights for quantum affine algebras that occur as a consequence of the initial seed of [START_REF] Hernandez | Cluster algebras and quantum affine algebras[END_REF] being compatible. The cluster structure on K 0 pC 1 q is a finite type cluster algebra; thus one can use the results of [START_REF] Fomin | Cluster algebras II: Finite type classification[END_REF] and label the cluster variables by almost positive roots, i.e. positive roots together with the opposite of the simple roots. Let xrαs denote the cluster variable associated to the almost positive root α with respect to the above initial seed.

Following [START_REF] Fomin | Cluster algebras II: Finite type classification[END_REF], one defines piece-wise linear involutions τ ( P t´1, 1u) of the root lattice Q of g: for any γ P Q, rτ pγq : α i s "

# ´rγ : α i s ´řj‰i a ij maxp0, rγ, α j sq if i " rγ : α i s if i ‰
where rγ : α i s stands for the coefficient of α i in the expansion of γ on simple roots. 

ź iPI 0 Y b i i,1 . ź iPI 1 Y b i i,q 3 .
It is known from [START_REF] Fomin | Cluster algebras IV: Coefficients[END_REF] that in the case of a cluster algebra of finite type, the g-vector of the variable xrαs is given by gpαq " Eτ ´pαq where E is the automorphism of the root lattice of g which sends the simple root α i onto p´1q ξ i `1α i . Thus the previous corollary can be reformulated in the following way:

Corollary 4.17. Let α be an almost positive root and let gpαq be the g-vector of the cluster variable xrαs with respect to the above initial seed. The highest weight of the simple module corresponding to xrαs is given by ź iPI 0

Y ´gi i,1 . ź iPI 1 Y g i i,q 3 .

A mutation rule for parameters of simple representations of quiver Hecke algebras

In this section, we consider the category C " R ´gmod of finite dimensional representations of symmetric quiver Hecke algebras of finite type A n . The set M is the set of dominant words (see Section 2) and the order ď is the natural lexicographic order; it is a total ordering hence Assumption A obviously holds. Moreover, with the notations of Section 3.5, one has µ d ν " maxpLpµq ˝Lpνqq for any dominant words µ and ν. We begin by describing explicitly the monoid operation d for dominant words. In particular it can be easily computed using canonical factorizations of dominant words (see Proposition 3.24). We apply this in the context of monoidal categorifications of cluster algebras via quiver Hecke algebras following the works of Kang-Kashiwara-Kim-Oh ( [START_REF] Kang | Symmetric quiver Hecke algebras and R-matrices of quantum affine algebras[END_REF][START_REF] Kang | Monoidal categorification of cluster algebras[END_REF]). We obtain a combinatorial rule for the transformation of dominant words under cluster mutation.

Convolution product of simple modules

This subsection is devoted to the description of the monoid structure d on the monoid M of dominant words in the case of a symmetric quiver Hecke algebra of type A n . First we restrict to the case where the canonical factorizations of two words µ, µ 1 are ordered with respect to each other. We show that in this case, Proposition 3.30 implies that the monoidal product µ d µ 1 is simply the concatenation of µ and µ 1 (Corollary 5.3). Then we state the main result of this section (Proposition 5.4) which gives a combinatorial expression for µ d µ 1 for any µ, µ 1 . Our proof involves ideas similar to the ones used in [START_REF] Kleshchev | Representations of Khovanov-Lauda-Rouquier algebras and combinatorics of Lyndon words[END_REF] for the proof of Proposition 3.30, but here we use the specific form of dominant Lyndon words (in bijection with positive roots) in type A n . Recall (see Proposition 3.24) that any word µ can be written in a unique way as a concatenation of Lyndon words in the decreasing order. This is called the canonical factorization of µ. Moreover, if the word µ is dominant, then all the Lyndon words involved in the canonical factorization of µ are dominant as well (Theorem 3.26(ii)). By Theorem 3.26(i), the canonical factorization of a dominant word µ can be seen as a sum of positive roots in the decreasing order. In particular, in type A n these positive roots correspond to words of the form kpk `1q . . . l with k ď l.

We begin by recalling a technical result from [START_REF] Kleshchev | Representations of Khovanov-Lauda-Rouquier algebras and combinatorics of Lyndon words[END_REF].

Lemma 5.1 ([21, Lemma 5.1]). Let i p1q , . . . , i prq , j p1q , . . . , j prq be words such that for each k P t1, . . . , ru, i pkq and j pkq have same length. Assume that i p1q ě j p1q , . . . , i prq ě j prq . Then maxpi p1q ˝. . . ˝iprq q ě maxpj p1q ˝. . . ˝jprq q. Moreover, this inequality is an equality if and only if all the inequalities i pkq ě j pkq are equalities.

The next Proposition states that the product µ d µ 1 of two dominant words µ and µ 1 coincides with the highest word in the quantum shuffle product of µ and µ 1 . Proposition 5.2. Let µ, ν be dominant words. Then µ d ν " maxpµ ˝νq.

Proof. By Theorem 3.31, we can write ch q pLpµqq " P pqq.µ `ÿ µ 1 ăµ a µ 1 pqq.µ 1 and ch q pLpνqq " Qpqq.ν `ÿ ν 1 ăν b v pqq.ν 1

where P, Q, a, b are Laurent polynomials in q (P and Q non zero). By definition µ d ν " maxpLpµq ˝Lpνqq " maxpch q pLpµq ˝Lpνqqq " maxpch q pLpµqq ˝ch q pLpνqqq.

In conclusion, we have shown that the permutations we are seeking fix the block i p1q if i p1q ą i 1 p1q , send the block i 1 p1q to the left of the block i p1q if i p1q ă i 1 p1q , and send either i p1q or i 1 p1q to the beginning of the resulting word if i p1q " i 1 p1q . The desired result follows by induction on r `r1 .

A mutation rule for dominant words

We now use Theorem 5.5 (or equivalently Proposition 5.4) to obtain a mutation rule on the parameters of simple modules corresponding to cluster variables in the setting of [START_REF] Kang | Monoidal categorification of cluster algebras[END_REF]. We express it in a vector setting, i.e. in terms of the images of dominant words under the isomorphism [START_REF] Chari | A Guide to Quantum Groups[END_REF]. Recall that the image of any dominant word µ under the isomorphism (4) is the vector Ý Ñ µ whose ith coordinate is equal to the multiplicity of the Lyndon word corresponding to the ith positive root (in the decreasing order (3)) in the canonical factorization of µ. Such vectors are of size r n , the number of positive roots in type A n (r n " npn `1q{2q).

Example 5.6. In type A 2 , there are three positive roots: α 2 ą α 1 `α2 ą α 1 . The word 21 will be represented by the vector t p1, 0, 1q.

In type A 3 there are six positive roots:

α 3 ą α 2 `α3 ą α 2 ą α 1 `α2 `α3 ą α 1 `α2 ą α 1 .
The word 2312 will be represented by the vector t p0, 1, 0, 0, 1, 0q and the word 321 by the vector t p1, 0, 1, 0, 0, 1q.

Let us consider a quantum monoidal seed S :" ptM i u iPI , B, Λ, Dq in the sense of [START_REF] Kang | Monoidal categorification of cluster algebras[END_REF]. Recall that I splits into I " J ex Y J f r with the trM i su iPJex corresponding to unfrozen variables and the trM i su iPJ f r corresponding to frozen variables. For every i P I, let µ i be the parameter of the simple module M i and Ý Ñ µ i the corresponding vector.

Remark 5.7.

1. The abelian monoid isomorphism (4) naturally extends to an abelian group isomorphism between the respective Grothendieck groups of pM, dq and pZ rn ě0 , `q, namely pG, dq » pZ rn , `q.

(5)

Under this isomorphism, the inverse in G of a parameter µ P M corresponds to the opposite vector in Z rn . For instance the vector corresponding to the generalized parameter μj is

Ý Ñ μj " ÿ 1ďiďn`m b ij Ý Ñ µ i .
2. The lexicographic order ď on M and G also turns into a (total) ordering on Z rn through the above isomorphism: a vector Ý Ñ µ 1 is strictly greater than a vector Ý Ñ µ 2 if and only if the first non zero component of Ý Ñ

µ 1 ´Ý Ñ µ 2 is positive.
Let k be fixed in J ex and let us look at the mutation in direction k of the seed S. It leads to a new seed S 1 with the same variables except M k that has turned into M 1 k such that we have a short exact sequence of graded modules:

0 Ñ q ä b ik ą0 M ˝bik i Ñ q ΛpM k ,M 1 k q M k ˝M 1 k Ñ ä b ik ă0 M ˝p´b ik q i Ñ 0. (6) 
The next statement shows that one can deduce the parameter of the simple module M 1 k from the knowledge of the parameters µ i and the exchange matrix B of the seed S. Proposition 5.8. Let µ 1 k be the parameter of the simple module M 1 k and Ý Ñ µ 1 k be the corresponding vector. Then we have:

Ý Ñ µ 1 k " ´Ý Ñ µ k `max ˜ÿ b ik ą0 b ik Ý Ñ µ i , ÿ b ik ă0 p´b ik q Ý Ñ µ i ¸.
Proof. As the real simple modules M i commute, the modules Ä b ik ą0 M i ˝bik and Ä b ik ă0 M i ˝p´b ik q are simple. Thus they correspond to some dominant words µ `and µ ´. Using Theorem 3.31 (ii), one can write

µ `" maxpLpµ `qq " max ˜ä b ik ą0 Lpµ i q ˝bik ¸" ä b ik ą0 µ db ik i .
Under the isomorphism (4) we get

Ý Ñ µ `" ÿ b ik ą0 b ik Ý Ñ µ i .
Now the short exact sequence (6) gives the relation

q ΛpM k ,M 1 k q rM k srM 1 k s " q ź b ik ą0 rM i s b ik `ź b ik ă0 rM i s ´bik
in the Grothendieck ring of the category R ´gmod. Taking the characters we get q ΛpM k ,M 1 k q ch q pM k q ˝ch q pM 1 k q " qch q pLpµ `qq `ch q pLpµ ´qq.

Looking at the highest weight on both sides of this equality we get

µ k d µ 1
k " max `ch q pM k q ˝ch q pM 1 k q " max pmax pch q pLpµ `qqq , max pch q pLpµ ´qqqq .

Applying isomorphism (4), we get

Ý Ñ µ k `Ý Ñ µ 1 k " maxp Ý Ñ µ `, Ý Ñ µ ´q " max ˜ÿ b ik ą0 b ik Ý Ñ µ i , ÿ b ik ă0 p´b ik q Ý Ñ µ i which
is the desired statement in the image of isomorphism (5).

An example in type A 3

In this subsection we apply Proposition 5.8 to the example of the category R ´gmod for a Lie algebra of type A 3 . This example provides an illustration of Theorem 6.2 which will be proved in general type A n in Section 6. The category R ´gmod corresponds to C w with w " w 0 the longest element of the Weyl group of g (see Section 3.4). In type A 3 this element can be written as:

w 0 " s 1 s 2 s 3 s 1 s 2 s 1 .
Theorem 3.21 provides an admissible pair (in the sense of Definition 3.12), which gives rise to a quantum monoidal seed for this category. We denote this seed by S 3 0 . Firstly, one can see that J ex " t1, 2, 3u and J f r " t4, 5, 6u (see Section 3.4). The simple modules whose classes are the cluster variables of the seed S 3 0 can be computed directly using [START_REF] Kang | Monoidal categorification of cluster algebras[END_REF]Proposition 10.2.4].

Lemma 5.9. The seed S 3 0 for the category R ´gmod in type A 3 is given by three unfrozen variables rLp1qs, rLp12qs, rLp21qs and three frozen variables rLp123qs, Lp2312qs, rLp321qs together with the following exchange matrix:

B 0 " ¨0 1 ´1 ´1 0 1 1 ´1 0 0 ´1 0 0 1 ´1 0 0 1 ‹ ‹ ‹ ‹ ‹ ‹ ' .
Proof. By definition of the modules M pk, 0q defining the underlying admissible pair of the seed S 3 0 (see Section 3.4), one has

M p1, 0q " M ps 1 ω 1 , ω 1 qq M p2, 0q " M ps 1 s 2 ω 2 , ω 2 q M p3, 0q " M ps 1 s 2 s 1 ω 1 , ω 1 q M p4, 0q " M ps 3 s 1 s 2 s 1 ω 1 , ω 1 q M p5, 0q " M ps 2 s 3 s 1 s 2 s 1 ω 1 , ω 1 q M p6, 0q " M ps 1 s 2 s 3 s 1 s 2 s 1 ω 1 , ω 1 q.
Using [18, Proposition 10.2.4], one gets M p1, 0q " Lp1q, M p2, 0q " hdpLp1q ˝Lp2qq " Lp12q, M p3, 0q " hdpLp2q ˝Lp1qq " Lp21q. The computations are similar for M pk, 0q, k P t4, 5, 6u.

The (ungraded) short exact sequences corresponding to the mutations in each of the three exchange directions can be written as follows:

0 Ñ Lp21q Ñ Lp1q ˝L Ñ Lp12q Ñ 0. 0 Ñ Lp1q ˝Lp2312q Ñ Lp12q ˝M Ñ Lp21q ˝Lp123q Ñ 0. 0 Ñ Lp12q ˝Lp321q Ñ Lp21q ˝N Ñ Lp1q ˝Lp2312q Ñ 0.
Let λ (resp. µ, ν) be the parameters of the simple module L (resp. M , N ). We can compute these parameters using Proposition 5.8. For instance consider the second of the above exact sequences. Then with the notations of Remark 5.7, a straightforward computation gives the parameter of M as Ý Ñ µ " t p0, 1, 0, 0, 0, 1q. Hence M " Lp231q.

In the same way one can compute L " Lp2q and N " Lp312q.

Let S 1 be the seed obtained from the seed S 0 by mutation in the first direction. One can now show that S 0 is compatible in the sense of Definition 4.7 and S 1 is not.

First we write the exchange matrix for S 1 :

B 1 " ¨0 ´1 1 1 0 0 ´1 0 0 0 ´1 0 0 1 ´1 0 0 1 ‹ ‹ ‹ ‹ ‹ ‹ '
.

Then for S 0 , the images under isomorphism (5) of the generalized parameters μj are :

Ý Ñ μ1 " t p0, 0, 1, 0, 1, 1q Ý Ñ μ2 " t p0, 1, ´1, 1, 1, 0q Ý Ñ μ3 " t p1, ´1, 1, 0, 0, 0q
and for S 1 we get:

Ý Ñ μ1 " t p0, 0, ´1, 0, 1, ´1q Ý Ñ μ2 " t p0, 1, ´1, ´1, 1, 0q Ý Ñ μ3 " t p1, ´1, 2, 0, ´1, 1q.

Combining Remark 5.7(2) and Remark 4.8, one can see that S 0 is compatible in the sense of Definition 4.7 but it is not the case for S 1 .

More generally, given an initial quantum monoidal seed ptM i u i , Bq, Proposition 5.8 allows us to compute explicitly the parameters of the simple modules appearing when mutating the initial seed an arbitrary number of times in any directions.

Initial seed for R ´gmod

For n ě 1, we consider a Lie algebra g of type A n . We let tα 1 , . . . , α n u denote the simple roots and Q n `:" À i"1..n Nα i . We also denote ∆ n `the set of positive roots, R ´gmod n the category of (graded) finite dimensional representation of the quiver Hecke algebras associated with g, and M n the set of dominant words in bijection with the set of simple objects in R ´gmod n (up to isomorphism). There is a canonical embedding ι m n of M n into M m for any m ě n. In particular the set of simple objects in R ´gmod n is naturally included into the set of simple objects in R ´gmod m . We again denote ι m n this inclusion. Let J n ex (resp. J n f r ) denote the index set of the unfrozen variables (resp. frozen variables) of the seed S n 0 for every n ě 1. We also set J n :" J n ex Y J n f r . In order to prove Theorem 6.1, we begin by determining the sets J n ex and J n f r . We point out an inductive property of this seed: the set tM i , i P J n ex u coincides with the set tι n n´1 pM i q, i P J n´1 u.

Proposition 6.3. The cluster variables of the seed S n 0 split into the following exchange and frozen sets:

1. There are n frozen variables in S n 0 , which correspond to the classes of the last n modules M pr n´1 1, 0q, . . . , M pr n , 0q.

2. The set tM i , i P J n ex u coincides with the union of the sets tι n k pM i q, i P J k f r u, 1 ď k ď n ´1.

Proof. For the first statement, write w 0 " ps 1 . . . s n qps 1 . . . s n´1 q ¨¨¨ps 1 s 2 qps 1 q " s rn ¨¨¨s 1 . Then for any l P t1, . . . , r n´1 u, the letter s l is in t1, . . . , n ´1u and this letter obviously appears again in the word w 0 as s l 1 for some l 1 ą l. In other words, l `ď r n and thus l P J n ex . Conversely, if l P tr n´1 `1, r n u, then all the letters s l 1 , l 1 ą l are distinct from s l and thus l `" r `1. Hence one has J n ex " t1, . . . , r n´1 u and J n f r " tr n´1 `1, . . . , r n u.

In particular the modules corresponding to the frozen variables of the seed S n 0 can be written as M pr n´1 `1, 0q " M ps 1 ps 2 s 1 q ¨¨¨ps n´1 . . . s 1 qs n .ω n , ω n q . . . . . . . . . M pr n , 0q " M ps 1 ps 2 s 1 q ¨¨¨ps n´1 . . . s 1 qps n . . . s 1 q.ω 1 , ω 1 q . The second statement follows from the first one applied to the seeds S k 0 , 1 ď k ď n ´1. Indeed, one can write in the same way the modules M i , i P J n´1 f r as: M ps 1 ps 2 s 1 q ¨¨¨ps n´2 . . . s 1 qs n´1 .ω n´1 , ω n´1 q . . .

M ps 1 ps 2 s 1 q ¨¨¨ps n´2 . . . s 1 qps n´1 . . . s 1 q.ω 1 , ω 1 q . The images via ι n n´1 of these modules respectively coincide with the modules M pr n´2 `1, 0q, . . . , M pr n´1 , 0q, whose classes are exactly the last n ´1 unfrozen variables of the seed S n 0 . Iterating this, we conclude that the set tM l , l P J n ex u is the union of the sets tι n k pM l q, l P J k f r u , 1 ď k ď n ´1.

As a direct consequence of the previous Proposition, it suffices to compute the parameters of the modules corresponding to the frozen variables of the seed S n 0 . This is what we focus on in the next two subsections.

6.3 Weights of the simple modules M pr n´1 `k, 0q, 1 ď k ď n From now on, the integer n is fixed. We write J f r for J n f r . By Proposition 6.3, the simple modules corresponding to the frozen variables of the seed S n 0 are the M pr n´1 `k, 0q, 1 ď k ď n. For simplicity we set M k :" M pr n´1 `k, 0q for any 1 ď k ď n. This subsection is devoted to the computation of the weights of the simple modules M k , i.e. the elements β k such that M k P Rpβ k q ´gmod for every 1 ď k ď n. Our main tool is the definition of the modules M pl, 0q from [START_REF] Kang | Monoidal categorification of cluster algebras[END_REF] (see Definition 3.20).

Let us now fix 1 ď k ď n and consider the parameter µ k of the simple module M k . Let m k be the length of µ k . Since k and n ´k `1 play symmetric roles, we assume from now on that k ď n{2.

The following statement is a direct consequence of the previous proposition.

Corollary 6.5. For any 1 ď i ď n,

pµ k , iq " # 1 if i " k or i " n ´k `1, 0 otherwise. 
Proof. For 1 ď i ď k ´1 or n ´k `2 ď i ď n, by Proposition 6.4 there are i ´1 (resp. i, i `1) occurrences of the letter i ´1 (resp. i, i `1) in the word µ k and hence pµ k , iq " 2i ´pi ´1q ´pi `1q " 0. If k `1 ď i ď n ´k then by Proposition 6.4 each of the letters i ´1, i, i `1 appears k times and hence pµ k , iq " 2i ´i ´i " 0.

Finally if i " k then by Proposition 6.4 there are k occurrences of the letters k, k`1 and k´1 occurrences of the letter k ´1 which gives pµ k , iq " 2k ´k ´pk ´1q " 1. If i " n ´k `1 then there are k occurrences of the letters i ´1, i and k ´1 occurrences of the letter i `1 and thus pµ k , iq " 2k ´k ´pk ´1q " 1.

In particular, one can compute the quantities ΛpM k , Lpiqq for any 1 ď i ď n: Corollary 6.6. For any 1 ď i ď n, let N i be the number of occurrences of the letter i in the word µ k . Let s i and s 1 i be the integers such that (see Remark 6.7)

ΛpLpiq, M k q " ´pµ k , iq `2N i ´2s i and ΛpM k , Lpiqq " ´pµ k , iq `2N i ´2s 1 i .

Then one has s

i " s 1 i " N i if i R tk, n ´k `1u and either s i " N i , s 1 i " N i ´1 or s i " N i ´1, s 1 i " N i if i P tk, n ´k `1u.
Proof. By Corollary 6.5, the quantity ΛpLpiq, M k q can be written as

ΛpLpiq, M k q " # 2N i ´1 ´2s i if i " k or i " n ´k `1, 2N i ´2s i otherwise.
and similarly for ΛpM k , Lpiqq with s 1 i . As M k commutes with Lpiq, one has by Lemma 3.9:

s i `s1 i " # 2N i ´1 if i " k or i " n ´k `1, 2N i otherwise.
As the integers s i and s 1 i are always smaller than N i , one gets the desired result.

Remark 6.7. In the following we will make several computations of some ΛpM, N q for various simple real objects M, N in R ´gmod in order to check commutation between these modules. For any

β P Q `,
any simple (left) Rpβq-module M is cyclic, i.e. is isomorphic to Rpβq.u for some u P M . We will refer to any such vector u in M as a generating vector in M . Now let β, γ P Q `, M a simple Rpβq-module, and N a simple Rpγq-module. As the morphism

M b N ÝÑ N ˝M u b v Þ ÝÑ ϕ wrn,ms pv b uq
is RpβqbRpγq-linear, computing the map R M,N is equivalent to computing the action of ϕ wrn,ms P Rpβ `γq on the tensor product of generating vectors u and v for M and N . Now let u z :" 1bu P M z and let s be the valuation of the polynomial in z given by ϕ wrn,ms .pv bu z q. As the actions of the generators x i , τ k and epνq can only make the degree in z increase, the image of the map R Mz,N is contained in z sN ˝Mz . Moreover, by definition of s, ϕ wrn,ms .pv b u z q contains a nonzero term of degree s hence it does not belong to z k N ˝Mz for any k ą s. Hence s coincides with s in Definition 3.7. Thus in what follows, for any simple Rpβq-module M and any simple Rpγq-module N , we will always fix some choices of generating vectors u P M and v P N and write ΛpM, N q " ´pβ, γq `2pβ, γq n ´2s with s being the valuation of the polynomial in z given by ϕ wrn,ms .pv b u z q.

Dominant words associated to frozen variables in R ´gmod

In this subsection, we compute the dominant words associated to the frozen variables for the category R ´gmod in type A n . As in the previous subsection, we fix k such that 1 ď k ď n{2 and we consider M k " M pr n´1 `k, 0q the simple module whose isomorphism class is the kth frozen variable in the seed S n 0 constructed in [START_REF] Kang | Monoidal categorification of cluster algebras[END_REF]. We use the fact that M k commutes with all the simple modules in R ´gmod. In particular, it commutes with all the cuspidal modules Lpiq, 1 ď i ď n. Together with the form of the weight of M k given by Proposition 6.4 and Corollay 6.6, this leads to only n possible dominant words. As there are exactly n frozen variables in the seed S n 0 (see Proposition 6.3), we get a bijection between the possible parameters and the frozen variables for R ´gmod.

For every 1 ď i ď n, the algebra Rpα i q is generated by one generator x i and one generator epiq commuting with each other (with the notation of Section 3.1, the set Seqpα i q is a singleton consisting in the word reduced to a single letter i). Recall from Section 3.5 that for every 1 ď i ď n, the cuspidal module Lpiq is a one dimensional vector space spanned by a generating vector v i with action of Rpα i q given by:

x i ¨vi " 0, epiq ¨vi " v i .

It is the only simple object in the category Rpα i q ´mod. As above we let µ k denote the parameter of the simple module M k and m k the length of µ k . In what follows we will write the word µ k as µ k " h 1 , . . . , h m k .

Note that in this setting the h j are the letters of the word µ k , whereas we use bold letters i l to refer to Lyndon words in the canonical factorization of µ k (see after Remark 6.11 below).

As the module M k is simple and real, Lemma 3.9 shows that checking its commutation with any other simple module L is equivalent to computing the quantities ΛpL, M k q and ΛpM k , Lq. When L " Lpiq for some i P t1, . . . , nu, these quantities are given by Corollary 6.6. Thus as explained in Remark 6.7 above, once fixed a generating vector u for M k , we will compute the valuations s i (resp.s 1 i ) of the polynomial functions ϕ wrm k ,1s pu b pv i q z q " ϕ 1 ¨¨¨ϕ m k pu b pv i q z q (resp. ϕ wr1,m k s pv i b u z q " ϕ m k ¨¨¨ϕ 1 pv i b u z q) for various choices of i P t1, . . . , nu. We fix once for all a generating vector u (resp.

v i , 1 ď i ď n) for M k (resp. Lpiq, 1 ď i ď n).
We begin by showing that there are only two possibilities for the first letter of µ k .

Lemma 6.8. Let p " h 1 denote the first letter of µ k . The letter p is equal either to k or n ´k `1.

Proof. With the same notations as in Corollary 6.6, we show that s p ď N p ´1.

ϕ 1 ¨¨¨ϕ m k .pu b pv p q z q " ϕ 1 ¨¨¨ϕ m k eph 1 , . . . , h m k , pq.pu b pv p q z q " ϕ 1 eph 1 , p, h 2 , . . . , h m k qϕ 2 ¨¨¨ϕ m k .pu b pv p q z q " pτ 1 px 1 ´x2 q `1qϕ 2 ¨¨¨ϕ m k .pu b pv p q z q.

The operator x 1 commutes with ϕ 2 , . . . , ϕ m k and acts trivially on u. Moreover,

x 2 ϕ 2 ¨¨¨ϕ m k " ϕ 2 ¨¨¨ϕ m k x m k `1
(see for example [START_REF] Kang | Symmetric quiver Hecke algebras and R-matrices of quantum affine algebras[END_REF]Lemma 1.3.1]) and x m k `1 ¨pu b pv p q z q " zpu b pv p q z q. Hence we get ϕ 1 ¨¨¨ϕ m k .pu b pv p q z q " ´z.τ 1 .ϕ 2 ¨¨¨ϕ m k .pu b pv p q z q `ϕ2 ¨¨¨ϕ m k .pu b pv p q z q.

The operator ϕ 2 ¨¨¨ϕ m k acts non-trivially on pu b pv p q z q (as the renormalized R-matrix r Lppq,M k never vanishes). Thus ϕ 2 ¨¨¨ϕ m k .u is a non zero polynomial function, and the above equality implies that s p is equal to its valuation. This polynomial function has degree less than N p ´1, as the only operators ϕ j that can make the degree rise are the ones corresponding to an occurrence of p in µ k . This implies s p ď N p ´1. Hence by Corollary 6.6, p P tk, n ´k `1u. Remark 6.9. With the same proof, one can show that the last letter of the word µ k is either k or n ´k `1 as well. Lemma 6.10. (i) For each 1 ď k 1 ď k, there is exactly one Lyndon word ending with n ´k1 `1 in the canonical factorization of µ k .

(ii) Moreover, denoting by j n´k 1 `1 the unique Lyndon word ending with n ´k1 `1 (for each 1 ď k 1 ď k), one has j n ą ¨¨¨ą j n´k`1 .

Proof. We prove the first statement by induction on k 1 . We know that the letter n appears exactly once; thus there is a unique Lyndon word j n containing (and thus ending with) n, which proves the statement for k 1 " 1. Suppose k ě 2 and (i) holds for 1 ď k 1 ă k. Denote by j n , . . . , j n´k 1 `1 the Lyndon words respectively ending with n, . . . , n ´k1 `1. Their first letters are all smaller than p and in particular smaller than n ´k `1 by Lemma 6.8. Hence they all contain the letter n ´k1 , which makes k 1 occurrences of this letter. By Proposition 6.4, n ´k1 has to appear k 1 `1 times in the word µ k . Hence there is a unique Lyndon word j n´k 1 containing n´k 1 but none of the letters n, . . . , n´k 1 `1, which means that this Lyndon word ends with n ´k1 . Thus the first statement holds by induction.

For the second statement, let m P tn ´k `1, . . . , nu such that j m is the smallest of the j l ; this is equivalent to saying that it is the last (among the j l ) to appear in the canonical factorization of µ k .

Note that the first statement implies that, for each 1 ď k 1 ď k, the letter n ´k1 `1 appears k 1 times among the Lyndon words j n , . . . , j n´k`1 : once in each of j n , . . . , j n´k 1 `1, and none in the others. Together with Proposition 6.4, this implies that the letters n ´k1 `1 (1 ď k 1 ď k) do not appear in any other Lyndon word of the canonical factorization of µ k . Hence denoting by i the position of the last letter of j m in the word µ k , one has h i " m and h i`1 , . . . , h m k ă m. Thus one has

ϕ m k ¨¨¨ϕ 1 .pv m b u z q " τ m k ¨¨¨τ i`1 pτ i px i ´xi`1 q `1qϕ i´1 ¨¨¨ϕ 1 .pv m b u z q " τ m k ¨¨¨τ i`1 ϕ i´1 ¨¨¨ϕ 1 .pv m b u z q ˘z.τ m k ¨¨¨τ i`1 τ i ϕ i´1 ¨¨¨ϕ 1 .pv m b u z q. (7) 
We denote Qpzq the first term τ m k ¨¨¨τ i`1 ϕ i´1 ¨¨¨ϕ 1 .pv m b u z q.

We show that if m ě n ´k `2, then Qpzq is non zero. As the renormalized R-matrix r M k ,Lpmq does not vanish, the action of the operator ϕ i´1 ¨¨¨ϕ 1 on pv m b u z q is a non zero polynomial function in z of degree less than N m ´1. Consider now the action of τ m k on Qpzq:

τ m k .Qpzq " τ m k .τ m k ¨¨¨τ i`1 ϕ i´1 ¨¨¨ϕ 1 .pv m b u z q " τ m k .τ m k ¨¨¨τ i`1 ϕ i´1 ¨¨¨ϕ 1 .epmµ k q.pv m b u z q " τ m k .τ m k eps m k ´1 ¨¨¨s i`1 s i´1 ¨¨¨s 1 .mµ k q.τ m k ´1 ¨¨¨τ i`1 ϕ i´1 ¨¨¨ϕ 1 .pv m b u z q " τ 2 m k .eph 1 , . . . , h m k ´1, m, h m k q.τ m k ´1 ¨¨¨τ i`1 ϕ i´1 ¨¨¨ϕ 1 .pv m b u z q " eph 1 , . . . , h m k ´1, m, h m k q.τ m k ´1 ¨¨¨τ i`1 ϕ i´1 ¨¨¨ϕ 1 .pv m b u z q as h m k ď m ´2 " τ m k ´1 ¨¨¨τ i`1 ϕ i´1 ¨¨¨ϕ 1 .pv m b u z q
Similarly, all the letters in position i `1, . . . , m k are less than n ´k and in particular they are less than m ´2. The same argument can be applied to τ m k ´1, . . . , τ i`1 and thus we get

τ i`1 ¨¨¨τ m k .Qpzq " τ i`1 ¨¨¨τ m k .pτ m k ¨¨¨τ i`1 ϕ i´1 ¨¨¨ϕ 1 .pv m b u z qq " ϕ i´1 ¨¨¨ϕ 1 .pv m b u z q
which is not zero. A fortiori Qpzq itself is non zero. It is thus a non zero polynomial function of degree less than N m ´1 and the equality ( 7) above shows that s 1 m is necessarily equal to its valuation. This implies s 1 m ď N m ´1, and in particular m P tk, n ´k `1u by Corollary 6.6. This contradicts the hypothesis m ě n ´k `2. Thus we have shown m " n ´k `1.

By iterating this we conclude that the Lyndon words j n , . . . , j n´k`1 appear in this order in the canonical factorization of µ k , which is the desired statement.

From now on we write the canonical factorization of µ k as µ k " i 0 ¨¨¨i r with i 0 ě ¨¨¨ě i r . For each 0 ď j ď r we denote by p j the first letter of the Lyndon word i j .The sequence pp j q 0ďjďr is decreasing, with p 0 " p and p r " 1 (the letter 1 appears once, necessarily in the smallest of the i j ). We also denote by a j the position of the letter p j in the word µ k . Remark 6.11. Note that as an immediate consequence of the previous lemma, one has r ě k ´1.

With these notations we can make the following observation, as a straightforward consequence of Lemma 6.10. Corollary 6.12. The Lyndon word i 0 ends with the letter n. In other words i 0 " j n .

Proof. As i 0 is greater than any other Lyndon word appearing in the canonical factorization of µ k , in particular it is greater than j n . Hence by Lemma 6.10(ii), one can write

i 0 ě j n ą ¨¨¨ą j n´k`1 . (8) 
Thus all of the Lyndon words j n , . . . , j n´k`1 begin with a letter smaller than p 0 " p. By definition they end with letters greater than or equal to n´k `1 which is greater than p by Lemma 6.8 (recall that we assumed k ď n ´k `1 at the beginning of this section). Hence each of the Lyndon words j n , . . . , j n´k`1 contains the letter p which makes k occurences of p. From Lemma 6.8 and Proposition 6.4, we conclude that no other Lyndon word contains p. Thus the Lyndon word i 0 has to be one of the j l and the inequalities (8) impose i 0 " j n . Lemma 6.13. For any 1 ď j ď r, if p j ‰ k, then p j´1 ´pj ď 1.

Proof. Assume there exists j P t1, . . . , ru such that p j ‰ k and p j´1 ´pj ě 2. We set q :" p j and show that s q ď N q ´1. Let i denote the position of q in the word µ k . Then h i " q; on the other hand all the letters in position 1, . . . , i ´1 are greater than q `2 (as they are greater than p j´1 ), hence ϕ 1 ¨¨¨ϕ m k .pu b pv q q z q " τ 1 ¨¨¨τ i´1 pτ i px i ´xi`1 q `1qϕ i`1 ¨¨¨ϕ m k .pu b pv q q z q.

By similar arguments as in the proof of Lemma 6.10 (ii), this implies s q ď N q ´1. Hence by Corollary 6.6, q P tk, n ´k `1u. Now by hypothesis q ď p j´1 ´2 ď p 0 ´2 ă p 0 and p 0 ď n ´k `1 by Lemma 6.8. In particular q ă n ´k `1. As by assumption q " p j ‰ k, we get the desired contradiction.

Proposition 6.14. With the previous notations, one has:

(i) p 1 ă p 0 .

(ii) For all j ě 1, if p j ‰ k then p j`1 ă p j .

Proof. Assume p 1 " p 0 " p and let i denote the position of the letter p 1 in the word µ k , i.e. h i " p 1 . First note that this implies 2 ď p ď n ´1 (as the letters 1 and n appear only once in the word µ k ). In particular i 0 is of length strictly greater than 2, as i 0 " pp . . . nq by Corollary 6.12. In other words i ą 2.

One has:

ϕ 1 ¨¨¨ϕ m k .pu b pv p q z q " pτ 1 px 1 ´x2 q `1qτ 2 ¨¨¨τ i´1 pτ i px i ´xi`1 q `1qϕ i`1 ¨¨¨ϕ m k .pu b pv p q z q.

As the renormalized R-matrix r Lppq,M k does not vanish, the operator ϕ i`1 ¨¨¨ϕ m k acts as a non zero polynomial function on pu b pv p q z q . We set Qpzq :" ϕ i`1 ¨¨¨ϕ m k .pu b pv p q z q. Note that degpQq ď N p ´2. Let P pzq denote the polynomial function given by the term τ 2 ¨¨¨τ i´1 ϕ i`1 ¨¨¨ϕ m k .pu b pv p q z q " τ 2 ¨¨¨τ i´1 .Qpzq from the above equality and let us consider the action of the operator τ i´1 ¨¨¨τ 1 on P pzq. Recall that i ą 2. We first write τ 2 τ 1 .P pzq " τ 2 τ 1 .pτ 2 ¨¨¨τ i´1 qQpzq " pτ 1 τ 2 τ 1 `1q.τ 3 ¨¨¨τ i´1 ϕ i`1 ¨¨¨ϕ m k .pu b pv p q z q using the braid relation. The operator τ 1 commutes with τ 3 ¨¨¨τ i´1 as well as with ϕ i`1 , . . . , ϕ m k . As i 0 is of length greater than 2, the action of τ 1 on pu b pv p q z q is the same as its action on the cuspidal module Lpi 0 q which is trivial. Hence we get τ 2 τ 1 .P pzq " τ 3 ¨¨¨τ i´1 ϕ i`1 ¨¨¨ϕ m k .pu b pv p q z q.

The letters h 3 , . . . , h i´1 are greater than p `2 hence by arguments similar to the proof of Lemma 6.10 (ii), we get τ i´1 ¨¨¨τ 3 .pτ 3 ¨¨¨τ i´1 q.Qpzq " Qpzq.

Finally we get τ i´1 ¨¨¨τ 1 .P pzq " ϕ i`1 ¨¨¨ϕ m k .pu b pv p q z q " Qpzq which is not zero. A fortiori P pzq itself is a non zero polynomial function. All the other terms in equation ( 9) are either zero, either of valuation strictly greater than the valuation of Qpzq. This implies that s p is equal to the valuation of Qpzq. In particular s p ď N p ´2. This contradicts Corollary 6.6. Hence p 1 ă p 0 .

For the second statement assume we have j ě 1 such that q :" p j`1 " p j ‰ k and consider j minimal for this property. For the sake of simplicity, we only deal with the case where only the two Lyndon words i j and i j`1 begin with the letter q i.e. p j´1 ą q, p j " p j`1 " q and p j`2 ď q ´1. The proof is analogous if there are several words i j 1 beginning with q.

As by hypothesis q ‰ k, Lemma 6.13 implies p j´1 P tq, q `1u and hence p j´1 " q `1 as p j´1 ą q. Moreover by minimality of j, q `1 appears exactly once in the subsequence pp i q iăj . Set a :" a j´1 , b :" a j and c :" a j`1 . As above N q denotes the number of occurrences of q in the word w k . We write ϕ 1 ¨¨¨ϕ m k .pu b pv q q z q " τ 1 ¨¨¨τ b´1 pτ b px b ´xb`1 q `1qτ b`1 ¨¨¨τ c´1 pτ c px c ´xc`1 q `1qQpzq [START_REF] Frenkel | The q-characters of representations of quantum affine algebras and deformations of W -algebras[END_REF] where Qpzq :" ϕ c`1 ¨¨¨ϕ m k .pu b pv q q z q. As the renormalized R-matrix r Lpqq,M k does not vanish, Q is a nonzero polynomial function. Its degree is equal to N q ´2. Now we prove that Qpzq is in fact a monomial in z. Indeed, any occurrence of q in a position i P tc `1, . . . , m k u appears inside a Lyndon word i j 1 (with j 1 ą j `1) beginning with a letter strictly smaller than q. Then the operator τ i´1 commutes with any ϕ h , h ą i and acts by zero on pu b pv q q z q . Thus τ i´1 ϕ i ϕ i`1 ¨¨¨ϕ m k .pu b pv q q z q " τ i´1 pτ i px i ´xi`1 q `1q ϕ i`1 ¨¨¨ϕ m k .pu b pv q q z q " τ i´1 τ i px i ´xi`1 qϕ i`1 ¨¨¨ϕ m k .pu b pv q q z q " z.τ i´1 τ i ϕ i`1 ¨¨¨ϕ m k .pu b pv q q z q up to some sign. This is valid for any occurrence of q between the positions c `1 and m k and hence Qpzq " ϕ c`1 ¨¨¨ϕ m k .pu b pv p q z q " z Nq´2 τ c`1 ¨¨¨τ m k .pu b pv p q z q is a monomial in z of degree N q ´2.

The term τ 1 ¨¨¨τ b´1 τ b`1 ¨¨¨τ c´1 Qpzq coming from equation ( 10) is necessarily zero: if it was not, then equation [START_REF] Frenkel | The q-characters of representations of quantum affine algebras and deformations of W -algebras[END_REF] implies that s q would be equal to N q ´2, which contradicts Corollary 6.6. There are two terms of degree N q ´1 in equation ( 10): τ 1 ¨¨¨τ c´1 Qpzq and τ 1 ¨¨¨τ b´1 τ b`1 ¨¨¨τ c Qpzq. Denote them respectively by Apzq and Bpzq.

We show that the operator τ c´1 ¨¨¨τ 1 acts nontrivially on Apzq and trivially on Bpzq. This implies that Apzq `Bpzq cannot be zero and therefore there is a nonzero term of degree N q ´1 in equation [START_REF] Frenkel | The q-characters of representations of quantum affine algebras and deformations of W -algebras[END_REF].

Action of τ c´1 ¨¨¨τ 1 on Apzq. Let us first look at the action of the operators τ 1 , ¨¨¨, τ a´1 on Apzq; if j " 1 this is of course not necessary as a " a 0 " 1. Otherwise one has j ě 2 and this action is easy to compute: for instance for τ 1 one has: τ 1 .Apzq " τ 1 2 τ 2 ¨¨¨τ c´1 Qpzq " τ 1 2 eph 1 , h c , h 2 , . . . , h c´1 , q, h c`1 , . . . , h m k qτ 2 ¨¨¨τ c´1 Qpzq " τ 2 ¨¨¨τ c´1 Qpzq as h c " q and h 1 " p 0 ą p 1 ą q by minimiality of j ě 2.

Simmilarly h 2 , . . . , h a´1 ě q `2 and thus one gets τ a´1 ¨¨¨τ 1 .Apzq " τ a ¨¨¨τ c´1 .Qpzq.

Let us now look at the action of τ a : τ a .pτ a ¨¨¨τ c´1 .Qpzqq " τ a 2 eph 1 , . . . , h a , h c , h a`1 , . . . , h c´1 , q, h c`1 , . . . , h m k qτ a`1 ¨¨¨τ c´1 Qpzq " px a ´xa`1 qτ a`1 ¨¨¨τ c´1 Qpzqas h a " p j´1 " q `1 and h c " p j`1 " q

The operator x a commutes with τ a`1 , ¨¨¨τ c´1 and acts trivially on the generating vector hence one gets τ a .pτ a ¨¨¨τ c´1 .Qpzqq " ´xa`1 τ a`1 ¨¨¨τ c´1 .Qpzq " ´xa`1 τ a`1 ¨¨¨τ b eph 1 , . . . , h b , h c , h b`1 , . . . , h c´1 , . . .qτ b`1 ¨¨¨τ c´1 Qpzq " ´τa`1 ¨¨¨τ b´1 x b τ b eph 1 , . . . , h b , h c , h b`1 , . . .qτ b`1 ¨¨¨τ c´1 .Qpzq (h c " q, h a`1 , . . . , h b´1 ě q `2)

" ´τa`1 ¨¨¨τ b´1 pτ b x b`1 `1qτ b`1 ¨¨¨τ c´1 .Qpzq(h b " h c " q)

" ´τa`1 ¨¨¨τ b´1 τ b τ b`1 ¨¨¨τ c´1 x c .Qpzq ´τa`1 ¨¨¨τ b´1 τ b`1 ¨¨¨τ c´1 .Qpzq.

The operator x c acts trivially on pu b pv q q z q hence the first term of the right hand side in the last equality is zero. Now as h a`1 , . . . , h b´1 ě q `2 and h b " q, the action of the operator τ b´1 ¨¨¨τ a`1 on the surviving term is similar to the action of τ a´1 ¨¨¨τ 1 computed above. Hence we get τ b´1 ¨¨¨τ a .pτ a ¨¨¨τ c´1 .Qpzqq " ´τb`1 ¨¨¨τ c´1 .Qpzq.

The situation is now similar to (i): using the braid relation, one can see that the action of τ b`1 τ b on τ b`1 ¨¨¨τ c´1 .Qpzq will give two terms, the only non-trivial one being τ b`2 ¨¨¨τ c´1 .Qpzq. The letters h b`2 , . . . , h c´1 are all greater than q `2 and hence one concludes as before that τ c´1 ¨¨¨τ b`2 .pτ b`2 ¨¨¨τ c´1 .Qpzqq " Qpzq.

Finally we have shown that τ c´1 ¨¨¨τ 1 acts by identity on Apzq (up to some sign).

First consider the positive roots ending with the letter n. It follows from Theorem 6.1 that these Lyndon words do not appear in the dominant words associated to the unfrozen variables of the seed S n 0 . Hence the g-vectors will not be involved. Moreover, for any 1 ď j ď n, the Lyndon word pj . . . nq appears in exactly one of the dominant words corresponding to the frozen variables of S n 0 namely pj . . . nq ¨¨¨p1 . . . n ´j `1q. If 2 ď j ď n ´1, then the Lyndon word pj . . . nq appears in exactly two of the μj namely μr n´1 `j´1 and μr n´1 `j . The relations are the following: m pj...nq " a r n´2 `j´1 ´ar n´2 `j ´cj .

For positive roots of the form pj . . . n ´1q with 2 ď j ď n ´2, similar arguments show that m pj...n´1q " a r n´2 `j ´ar n´2 `j`1 ´cj`1 ´ar n´2 `j´1 `ar n´2 `j`1 `ar n´3 `j´1 ´ar n´3 `j `gr n´2 `j which simplifies as m pj...n´1q " a r n´2 `j ´cj`1 ´ar n´2 `j´1 `ar n´3 `j´1 ´ar n´3 `j `gr n´2 `j .

The coherent Satake category

Recently, Cautis-Williams [START_REF] Cautis | Cluster theory of the coherent Satake category[END_REF] exhibited a new example of monoidal categorification of cluster algebras, using the coherent Satake category. In this subsection we focus on the case of the general linear group GL n . We begin by checking that Assumptions A and B hold in the framework of [START_REF] Cautis | Cluster theory of the coherent Satake category[END_REF].

The simple objects in the coherent Satake category are parametrized (up to G m -equivariant shift) by couples of a coweight and a weight, modulo action of the Weyl group. Equivalently they can be parametrized by dominant pairs, i.e. couples of a dominant coweight λ _ together with a weight µ dominant for the Levi factor of P λ _ . Denote by P λ _ ,µ the simple perverse coherent sheaf corresponding to a dominant pair pλ _ , µq P P _ ˆP . Then the following statement shows that Assumption A holds: Proposition 7.1 ([3, Proposition 2.6]). Let P λ _ 1 ,µ 1 and P λ _ 2 ,µ 2 be two simple objects in the coherent Satake category. Then in its Grothendieck ring K GpOq¸Gm pGr G q one has: Taking the lexicographic order on (dominant) pairs pλ _ , µq P P _ ˆP , the monoid structure on the set of dominant pairs can be simply taken as pλ _ 1 , µ 1 q d pλ _ 2 , µ 2 q " pλ _ 1 `λ_ 2 , µ 1 `µ2 q.

rP λ _ 1 ,
It is then clear that Assumption B also holds.

In the case of the general linear group GL n , Cautis-Williams explicitly describe a monoidal seed in the coherent Satake category. However, this seed is not compatible in the sense of Definition 4.7 above. For instance, for GL 2 , this seed can be written as pprP 1,0 s, rP 1,1 s, rP 2,0 s, rP 2,1 sq, Bq where the first two classes are the unfrozen variables and the last two are the frozen variables, and the exchange matrix B is given by:

B " ¨0 ´2 2 0 0 1 ´1 0 ‹ ‹ ' .
Recall from [3, Section 2.2] that P k,l stands for P ω _ k ,lω k for any 1 ď k ď 2 and any l P t0, 1u. One can now compute the generalized parameters μ1 and μ2 for this seed. A straightforward computation gives μ1 " p2ω _ 1 ´ω_ 2 , 2ω 1 ´ω2 q and μ2 " pω _ 2 ´2ω _ 1 , 0q. The coweight 2ω _ 1 ´ω_ 2 is exactly the coroot α _ 1 , and hence for any dominant pair pλ _ , µq one has μ1 d pλ _ , µq ě pλ _ , µq. However, the coweight part of μ2 is obviously the opposite of α _ 1 and thus μ2 d pλ _ , µq ď pλ _ , µq for any dominant pair pλ _ , µq. We conclude that this seed is not compatible.

It would be interesting to see if Conjecture 4.10 holds in the coherent Satake category of the general linear group. Note that as the ordering on dominant pairs in partial, it is not clear that one can formulate mutation rules for parameters as in Section 5. Indeed, we crucially used the fact that the ordering on dominant words parametrizing simple modules over quiver Hecke algebras is total. This mutation rule allows to compute explicitly as many seeds as we want from the data of an initial seed. In the case of a partial ordering, we cannot do so a priori.

  rLp1 . . . kqs rL pp2 . . . kqp1 . . . k ´1qqs ¨¨¨rLppkq ¨¨¨p1qqs . . . . . . rLp1 . . . nqs rL pp2 . . . nqp1 . . . n ´1qqs ¨¨¨¨¨¨rLppnq ¨¨¨p1qqs. The set of frozen variables corresponds to the last line and the set of unfrozen variables consists in the union of lines 1, . . . , n ´1.

  epνq.pP b mq :" P b pepνqmq x k .pP b mq :" pzP q b m `P b px k mq τ k .pP b mq :" P b pτ k mq for any ν P Seqpβq, P P krzs and m P M .
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By Lemma 5.1, for any µ 1 ă µ, maxpµ 1 ˝νq ă maxpµ ˝νq. Similarly, maxpµ ˝ν1 q ă maxpµ ˝νq and maxpν 1 ˝νq ă maxpµ ˝νq for any µ 1 ă µ and ν 1 ă ν. So the highest word of ch q pLpµqq ˝ch q pLpνqq can only come from the shuffle product µ ˝ν. Hence µ d ν " maxpµ ˝νq.

More generally, the same proof shows that for any finite formal series R and S on W with coefficients in Zrq, q ´1s, one has maxpR ˝Sq " max pmaxpRq ˝maxpSqq. The following Corollary is then a direct consequence of Proposition 3.30.

Corollary 5.3. Let µ, µ 1 two dominant words. Write their canonical factorizations µ " pi p1q q n 1 ¨¨¨pi prq q nr and µ 1 " pi 1 p1q q n 1 1 ¨¨¨pi 1 pr 1 q q n 1 r 1 with i p1q ą ¨¨¨ą i prq and i 1 p1q ą ¨¨¨ą i 1 pr 1 q . Assume i prq ě i 1 p1q . Then µ d µ 1 " pi p1q q n 1 ¨¨¨pi prq q nr pi 1 p1q q n 1 1 ¨¨¨pi 1 pr 1 q q n 1 r 1 .

Proof. Setting R :" pi p1q q n 1 ˝¨¨¨˝pi prq q nr and R 1 :" pi 1 p1q q n 1 1 ˝¨¨¨˝pi 1 prq q n 1 r 1 , Proposition 3.30 implies µ " maxpRq and µ 1 " maxpR 1 q. Then by Proposition 5.2, one has: µ d µ 1 " maxpµ ˝µ1 q by Proposition 5.2

" maxpmaxpRq ˝maxpR 1 qq " maxpR ˝R1 q by Proposition 5.2

" max ´pi p1q q n 1 ˝¨¨¨˝pi prq q nr ˝pi 1 p1q q n 1 1 ˝¨¨¨˝pi 1 prq q n 1 r 1

¯.

The assumption i prq ě i 1 p1q implies that pi p1q q n 1 ¨¨¨pi prq q nr pi 1 p1q q n 1 1 ¨¨¨pi 1 prq q n 1 r 1 is the canonical factorization of the concatenation µµ 1 . Hence by Proposition 3.30, we get µ d µ 1 " µµ 1 " pi p1q q n 1 ¨¨¨pi prq q nr pi 1 p1q q n 1 1 ¨¨¨pi 1 pr 1 q q n 1 r 1 .

One can now state the main result of this section. It can be seen as a generalization of Corollary 5.3, as we now drop the hypothesis i prq ě i 1 p1q . Proposition 5.4. Let µ, µ 1 two dominant words. Write their canonical factorizations µ " pi p1q q n 1 ¨¨¨pi prq q nr and µ 1 " pi 1 p1q q n 1 1 ¨¨¨pi 1 pr 1 q q n 1 r 1 .

Let tj p1q , . . . , j psq u be the set of all the words i p1q , . . . , i prq , i 1 p1q , . . . , i 1 pr 1 q ranged in the decreasing order. Let m 1 , . . . , m s , m 1 1 . . . m 1 s the positive integers uniquely determined by µ " pj p1q q m 1 ¨¨¨pj psq q ms , µ 1 " pj p1q q m 1 1 ¨¨¨pj psq q m 1 s .

Then µ d µ 1 " pj p1q q m 1 `m1 1 ¨¨¨pj psq q ms`m 1 s .

Using Theorem 3.31, one can reformulate this statement in the following way: write the positive roots in the decreasing order

and let r n " npn `1q{2 denote the number of these positive roots. Define a map pM, dq ÝÑ pZ rn ě0 ,

such that the ith coordinate of the vector Ý Ñ µ is equal to the multiplicity of the Lyndon word corresponding to the ith positive root (in the above decreasing order) in the canonical factorization of µ.

Theorem 5.5. The map (4) is an isomorphism of abelian monoids.

Proof of Proposition 5.4. For simplicity we use a slight change of notation for the proof: we write µ " i p1q ¨¨¨i prq and µ 1 " i 1 p1q ¨¨¨i 1 pr 1 q with i p1q ě ¨¨¨ě i prq and i 1 p1q ě ¨¨¨ě i 1 pr 1 q dominant Lyndon words not necessarily distinct. Let n (resp. n 1 ) be the length of µ (resp. µ 1 ). The starting point is the word µ.µ 1 which is the concatenation of the words µ and µ 1 and we consider permutations σ P S r,s , i.e. whose restrictions to r|1; n|s and r|n`1; n`n 1 |s are increasing (see Definition 3.3). First note that the word µ d µ 1 indeed appears in the quantum shuffle product of µ with µ 1 : consider the permutation σ simply defined by rearranging the blocks pi p1q q, . . . , pi prq q, pi 1 p1q q, . . . , pi 1 pr 1 q q of the concatenation µ.µ 1 and put them in the decreasing order. We write µ " h 1 , . . . , h n and µ 1 " h 1 1 , . . . , h 1 n 1 . The concatenation of µ and µ 1 is then µ.µ 1 " h 1 , . . . , h n , h 1 1 , . . . , h 1 n 1 . As in Definition 3.3, we set h n`1 :" h 1 1 , . . . , h n`n 1 :" h 1 n 1 and thus µ.µ 1 " h 1 , . . . , h n`n 1 . We set σpµ.µ 1 q :" h σ ´1p1q , . . . , h σ ´1pn`n 1 q for any permutation σ P S r,s . From now on we fix σ P S r,s and we assume that the word σpµ.µ 1 q is greater than or equal to µ d µ 1 (for the lexicographic order). We show that under this assumption, one necessarily has σpµ.µ 1 q " µ d µ 1 .

The proof is based on an induction on r `r1 or equivalently on the sum of the lengths of µ and µ 1 .

We first look at the action of σ on the Lyndon words i p1q and i 1 p1q and show that σ necessarily rearranges these two blocks so that in the word σpµ.µ 1 q they will appear in the decreasing order. Then, considering the restriction of the action of σ on the other Lyndon words, we find ourselves considering a shuffle of parameters μ and μ1 , one of them being of length strictly smaller than the corresponding initial parameter.

First case: i 1 p1q ą i p1q . Then the word µ d µ 1 begins with i 1 p1q . The two words i p1q and i 1 p1q are dominant Lyndon words so we write them i p1q " pk, k `1, . . . , k `d1 q and i 1 p1q " pk 1 , k 1 `1, . . . , d 1 1 q with either k 1 ą k or k 1 " k and d 1 1 ą d 1 . We first show that the assumption σpµ.µ 1 q ě µ d µ 1 implies σpn `1q " 1. Indeed, if σpn `1q ě d 1 `1 then, as the restrictions of σ to r|1; n|s and r|n`1; n`n 1 |s are increasing, we have σp1q " 1, . . . , σpd 1 q " d 1 . The word σpµ.µ 1 q then begins with pk, . . . k `d1 , l, . . .q, where l is equal to k if σpn `1q ą d 1 `1 and to k 1 if σpn `1q " d 1 `1. If k ă k 1 then k, . . . , k `d1 ă i 1 p1q and hence σpµ.

and the conclusion is the same.

If σpn `1q P t2, 3, . . . , d 1 u, then σpµ.µ 1 q begins with pk, k `1, . . . , k `p, k 1 , . . .q where p is some integer such that 0 ď p ă d 1 . If k ă k 1 then k, k `1, . . . , k `p, k 1 ă i 1 p1q and hence σpµ.

and the conclusion is the same. Thus σpn `1q " 1.

As the restrictions of σ to r|1; n|s and r|n `1; n `n1 |s are increasing, σ ´1p2q is either equal to 1 or to n `2; but the first possibility gives a word beginning with k 1 k which is obviously strictly smaller than µdµ 1 . Hence σpn`2q " 2. Then by iterating this, we see that necessarily σpn`1q " 1, . . . , σpn`d 1 1 q " d 1 1 . In other words σ sends the blocks i 1 p1q on the left of the blocks i p1q , i.e. at the beginning of the word σpµ.µ 1 q.

Second case: i 1 p1q ă i p1q . Then µ d µ 1 begins with pi p1q q and with the previous notations, one has either

We show that the assumption σpµ.µ 1 q ě µ d ν implies σpn `1q ą d 1 . Indeed, if σpn `1q P t2, . . . , d 1 u, then σpµ.µ 1 q begins with pk, . . . , k `p, k 1 q where p is some integer such that 0 ď p ă d 1 . But then

and hence σpµ.

. But then it is easy to see that necessarily σpn `2q " 2, . . . , σpn `d1 1 q " d 1 1 , i.e. σpµ.µ 1 q begins with pk, . . . , k `d1 1 , . . .q. The letter coming after k `d1

1 is either the first letter of i p1q (if σp1q " d 1 1 `1) or the first letter of i 1 p2q (if σpn `d1

1 `1q " d 1 1 `1); in both cases it is smaller than k and in particular smaller than k `d1 1 `1 and hence σpµ.µ 1 q ă µ d µ 1 . Thus σpn `1q ą d 1 .

In particular, σp1q " 1, . . . , σpd 1 q " d 1 (in other words, σ fixes the block i p1q , i.e. leaves it at the beginning of the resulting word.

Third case: i 1 p1q " i p1q . Then the word µ d µ 1 begins with pi p1q q 2 . We show that under the assumption σpµ.µ 1 q ě µdµ 1 , one has either σpn`1q " 1, . . . , σpn`d 1 q " d 1 (i.e. σ sends the block i p1q coming from µ 1 to the left of the block i p1q coming from µ) or σp1q " 1, . . . , σpd 1 q " d 1 (i.e. σ fixes the block i p1q coming from µ).

Indeed, as the restrictions of σ to r|1; n|s and r|n `1; n `n1 |s are increasing, σ ´1p1q is either equal to 1 or to n `1.

If σp1q " 1, then σpn `1q is necessarily strictly greater than d 1 , otherwise σpµ.µ 1 q would begin with pk, k `1, . . . , k `p, k, . . .q (where p is some integer such that 0 ď p ă d 1 ) and would be strictly smaller than µ d µ 1 . Hence in this case we get σp1q " 1, . . . , σpd 1 q " d 1 .

If σpn `1q " 1, then the same argument shows that σp1q is necessarily strictly greater than d 1 , and hence we get σpn `1q " 1, . . . , σpn `d1 q " d 1 .

6 A compatible seed for R ´gmod in type A

In this section we compute in type A n the parameters of the simple modules of the monoidal seed S n 0 arising from the construction of [START_REF] Kang | Monoidal categorification of cluster algebras[END_REF] (see Subsection 3.4) for the category R ´gmod.

Statements of the main theorems

In this subsection we state the two main results of this paper, Theorems 6.1 and 6.2. Recall that A q pnq " A q pnpw 0 qq where w 0 is the longest element of the Weyl group of g. The category R ´gmod coincides with the category C w 0 (see Section 3.4). In type A n we have w 0 " p1 . . . nqp1 . . . pn ´1qq ¨¨¨p12qp1q.

Recall that r n :" npn `1q{2 stands for the length of w 0 . In the category R ´gmod " C w 0 in type A n , Theorem 3.21 provides an admissible pair (in the sense of Definition 3.12), which gives rise to a quantum monoidal seed for this category. We denote this seed by S n 0 . Our first main result is the following: The three following sections are devoted to some intermediate steps for the proof of Theorem 6.1. Recall from Section 3.4 that J f r denotes the index set of the frozen variables of the monoidal seed S n 0 . In Section 6.2, we prove that |J f r | " n. We show that the knowledge of the dominant words of the M j , j P J f r is sufficient to recover the whole seed S n 0 . Section 6.3 is devoted to the computation of the weights of the M j , j P J f r . These weights are determined by the construction of [START_REF] Kang | Monoidal categorification of cluster algebras[END_REF] (see Section 3.4). In Section 6.4, we use the fact that for any j P J f r , the module M j necessarily commutes with any other simple module in R ´gmod. This strongly constrains the form of the corresponding dominant word. Together with the weights obtained in Section 6.3, we find at most n possible dominant words, which is exactly the number of frozen variables computed in Section 6.2. Hence we get a bijection between these parameters and the set of modules tM j , j P J f r u.

We complete the proof in Section 6.5 by determining which parameter corresponds to every simple module, which is more precise than just a global bijection. The key argument is provided by Theorem 5.8.

The following statement is our second main result. We deduce it from Theorem 6.1. Theorem 6.2. The seed S n 0 is compatible in the sense of Definition 4.7.

In particular Conjecture 4.10 holds for the category R ´gmod in type A n .

Proposition 6.4. For each 1 ď k ď n{2, the two modules M k and M n´k`1 both belong to the subcategory Rpα n `2α n´1 `¨¨¨`kα n´k`1 `¨¨¨`kα k `¨¨¨`2α 2 `α1 q ´mod.

Proof. For 1 ď l ď n, we have M l " M pr n´1 `l, 0q " M ps 1 ps 2 s 1 q ¨¨¨ps n´1 . . . s 1 qps n . . . s k qω k , ω k q where k :" n ´l `1.

One computes ζ k :" s 1 ps 2 s 1 q ¨¨¨ps n´1 . . . s 1 qps n . . . s k qω k . The weight of M l is given by ω k ´ζk (see Corollary 3.18).

If 2k ď n then by iterating we get

but ω k ´pα n `2α n´1 `¨¨¨`kα n´k`1 `¨¨¨`kα k `¨¨¨`2α 2 `α1 q is invariant under the action of s 1 , . . . , s n´k . Hence

If 2k ą n then by iterating we get ζ k " s 1 ps 2 s 1 q ¨¨¨ps k . . . s 1 qpω k ´pα n `2α n´1 `¨¨¨`pn ´kqα k`1

`pn ´kqα k `¨¨¨`2α 2 `α2k´n`1 qq " s 1 ps 2 s 1 q ¨¨¨ps k´1 . . . s 1 q.pω k ´pα n `2α n´1 `¨¨¨`pn ´kqα k`1

`pn ´k `1qα k `pn ´kqα k´1 ¨¨¨`2α 2 `α2k´n qq " . . . " s 1 ps 2 s 1 q ¨¨¨ps n´k . . . s 1 q.pω k ´pα n `2α n´1 `¨¨¨`pn ´kqα k`2

`pn ´k `1qα k`1 `¨¨¨`pn ´k `1qα n´k`1 `¨¨¨`2α 2 `α1 qq and ω k ´pα n `2α n´1 `¨¨¨`pn ´k `1qα k`1 `¨¨¨pn ´k `1qα n´k`1 `¨¨¨`2α 2 `α1 q is invariant under the action of s 1 , . . . , s n´k . Hence we get

Hence for each 1 ď k ď n{2, the two modules M k and M n´k`1 both belong to the subcategory Rpα n 2α n´1 `¨¨¨`kα n´k`1 `¨¨¨`kα k `¨¨¨`2α 2 `α1 q ´mod. Action of τ c´1 ¨¨¨τ 1 on Bpzq. One again has: τ a´1 ¨¨¨τ 1 .Bpzq " τ a´1 ¨¨¨τ 1 .pτ 1 ¨¨¨τ b´1 τ b`1 ¨¨¨τ c Qpzqq " τ a ¨¨¨τ b´1 τ b`1 ¨¨¨τ c Qpzq.

But then τ a .pτ a ¨¨¨τ b´1 τ b`1 ¨¨¨τ c Qpzqq " px a ´xa`1 qτ a`1 ¨¨¨τ b´1 τ b`1 ¨¨¨τ c Qpzq " τ a`1 ¨¨¨τ b´1 x b τ b`1 ¨¨¨τ c Qpzq up to some sign, then the operator x b commutes with τ b`1 , . . . , τ c , ϕ c`1 , . . . , ϕ m k and acts by zero on pu b pv q q z q.

Finally we have shown that the operator τ 1 ¨¨¨τ c´1 acts nontrivially on Apzq `Bpzq and in particular Apzq `Bpzq ‰ 0. Therefore s q " N q ´1. Now, q ă p 0 ď n ´k `1 by Lemma 6.8 and by assumption q ‰ k hence q R tk, n ´k `1u. By Corollary 6.6, this contradicts the inequality s q ď N q ´1.

In conclusion (ii) holds.

Corollary 6.15. The sequence pp j q takes exactly once every value 1, . . . , k ´1 and at least once the value k.

Proof. The last term of the sequence pp j q is p r " 1. Recall that r ě k ´1 (Remark 6.11). By (finite) induction on t P t0, . . . , k ´1u one shows that p r´t " t `1. Indeed, if k " 1 there is nothing to prove. If k ě 2, assume p r " 1, . . . , p r´t " t `1 with t ă k ´1; then p r´t ď k ´1 and Lemma 6.13 implies p r´t´1 ď p r´t `1. If p r´t´1 ‰ k then Proposition 6.14 (ii) implies p r´t´1 ą p r´t and thus p r´t´1 " p r´t `1 which gives p r´pt`1q " t `1. If p r´t´1 " k then as p r´t ď k ´1, necessarily one has p r´t " t " k ´1 and p r´t´1 " k which again gives p r´pt`1q " t `1. This implies that the sequence pp j q takes exactly once each value 1, . . . , k ´1 (and at least once the value k). Corollary 6.16. In the case p " k, the parameter µ k of M k is given by µ k " pk . . . nqpk ´1 . . . n ´1q ¨¨¨p1 . . . n ´k `1q.

Proof. By Proposition 6.14 (i), the sequence pp j q takes exactly once the value k. Together with Corollary 6.15, we deduce that the word µ k has the form µ k " pk . . .qpk ´1 . . .q ¨¨¨p1 . . .q.

Combining this with Lemma 6.10 (i) and (ii), we get the desired statement.

One can now focus on the case p 0 " n ´k `1. Proposition 6.17. The sequence pp j q 0ďjďr takes exactly once every value between n ´k `1 and 1. In other words, r " n ´k `1 and p j " n ´k `1 ´j for all 1 ď j ď n ´k `1.

Proof. By Corollary 6.15, we already know that that the values 1, . . . , k ´1 are taken exactly once and the value k at least once.

Values k `1, . . . , n ´k `1. Let i :" maxtj, p j ą ku (it exists as p 0 " n ´k `1 ą k) and m :" p i . Assume m ě k `2. Then the commuting of M k with Lpkq implies that i i`1 is the only Lyndon word beginning with k (equivalently p i`1 " k, p i`2 " k ´1, . . . , p r " 1). Indeed, all the letters in position strictly smaller than a i`1 are greater than k `2 hence ϕ i 1 " τ i 1 for all i 1 ă a i`1 and

Then the same proof as for Proposition 6.14(i) shows that necessarily k " p i`1 ą p i`2 .

Thus there is exactly one Lyndon word i j beginning with every letter 1, . . . , k. The letter m ´1 does not appear in any of the words i j for j ď i (all these words begin with letters greater than m) and appears exactly k times in the word µ k (as n ´k ě m ´1 ě k `1) hence it appears exactly once in each of the words i i`1 , . . . , i r . This implies that the last letters of all of these words are greater than m ´1 and in particular so is k (last letter of i r ), i.e. m ď k `1 which contradicts the hypothesis.

Hence m " k `1 i.e. the sequence pp j q takes all the values n ´k `1, . . . , 1. By Proposition 6.14(ii) the values n ´k `1, . . . , k `1 appear exactly once in the sequence pp j q.

Value k. If there are more than two Lyndon words i j beginning with the letter k then the same proof as for Proposition 6.14(ii) (it can be applied as m " k `1) implies s k ď N k ´1. But as the last letter of the word µ k is k, the same proof as for Lemma 6.8 shows that s 1 k is also smaller than N k ´1. Hence both s k and s 1 k are less than N k ´1 which contradicts Corollary 6.6. Therefore the sequence pp j q takes exactly once every value n ´k `1, . . . , 1. Corollary 6.18. For any 0 ď j ď n ´k, the Lyndon word i j is pn ´k `1 ´j . . . n ´jq.

Proof. We show it by induction on j. In fact we prove the following properties:

(i) For every 0 ď j ď n ´k there is exactly one Lyndon word ending with each of the letters n j, . . . , n ´k `1 ´j.

(ii) The Lyndon word ending with n ´j begins with the letter n ´k `1 ´j.

For j " 0 it follows from Corollary 6.12. Assume (i) and (ii) hold until the rank j. By hypothesis the Lyndon words ending with the letters n, n ´1 . . . , n ´j respectively begin with the letters n ´k `1, . . . , n ´k `1 ´j and in particular do not contain n ´k `j. As by Proposition 6.17 there is exactly one Lyndon word beginning with each of the letters n ´k `1, . . . , 1, the Lyndon words ending with letters n ´1 ´j, . . . , n ´k `1 ´j begin with letters less than n ´k ´j and hence contain n ´k ´j. This gives k ´1 Lyndon words containing the letter n ´k ´j. As this letter appears exactly k times in the word µ k , there exists a Lyndon word that contains n ´k ´j but is not one of the previous words, i.e. does not end with any of the letters n, . . . , n ´j. Hence it does not contain n ´k ´j `1 (as n ´k ´j `1 appears k times, once in each of the k words ending with n ´j, . . . , n ´k ´j `1). This means there is a unique Lyndon word ending with the letter n ´k ´j, which proves (i) at the rank j `1. Now (ii) at rank j and (i) at rank j `1 together with Proposition 6.17 easily imply (ii) at rank j `1.

From Corollary 6.16 and Corollary 6.18, one concludes that among the two simple modules M k and M n´k`1 , one of them has a parameter whose first letter is k, namely pk . . . nqpk ´1 . . . n ´1q ¨¨¨p1 . . . n ḱ `1q, and the other has a parameter whose first letter is n ´k `1, namely pn ´k `1 . . . nq ¨¨¨p1 . . . kq.

Proofs of main theorems

At this stage, one only has bijections between pairs of modules and pairs of dominant words: for each 1 ď k ď n{2, the set of modules tM k , M n´k`1 u is in one-to-one correspondence with the set tpk . . . nqpk 1 . . . n ´1q ¨¨¨p1 . . . n ´k `1q, pn ´k `1 . . . nq ¨¨¨p1 . . . kqu. A priori this yields two possibilities for each k. To complete the proof of Theorem 6.1, we need to show that for every 1 ď k ď n{2, one has M k " L ppk . . . nqpk ´1 . . . n ´1q ¨¨¨p1 . . . n ´k `1qq and M n´k`1 " L ppn ´k `1 . . . nqpn ´k . . . n ´1q ¨¨¨p1 . . . kqq .

The key argument is the mutation rule for dominant words given by Proposition 5.8.

Proof of Theorem 6.1. We prove by induction on k P t1, . . . , nu that M r k´1 `1 " Lp1 . . . kq M r k´1 `2 " L pp2 . . . kqp1 . . . k ´1qq . . . . . . . . . M r k " Lpk ¨¨¨1q. The result already holds for k " 1 and k " 2. Consider 1 ď k ď n and assume the result holds at the rank k.

Let j P tr k´1 `2, . . . , r k ´1u and let us write the (ungraded) short exact sequence corresponding to the mutation in direction j:

Let p :" j ´rk´1 . By the induction hypothesis, one has M j " L ppp . . . kq ¨¨¨p1 . . . k ´p `1qq M j´1 " L ppp ´1 . . . kq ¨¨¨p1 . . . k ´p `2qq M j`1 " L ppp `1 . . . kq ¨¨¨p1 . . . k ´pqq The Lyndon word pp . . . kq appears in the parameter of M j hence in the parameter of M j ˝M 1 j . Hence by Proposition 5.8, it necessarily appears either in µ j `d µ j´1 d µ j ´`1 or in µ j ´d µ j`1 d µ j `´1 . Obviously, it does not appear in µ j´1 nor in µ j`1 . Moreover, µ j ´and µ j ´`1 do not contain the letter k hence pp . . . kq does not appear in the canonical factorizations of these parameters either. Now by Proposition 6.4, µ j `is either pp `1 . . . k `1q ¨¨¨p1 . . . k ´pq or pk ´p `1 . . . k `1q ¨¨p 1 . . . p `1q and µ j `´1 is either pp . . . k `1q ¨¨¨p1 . . . k ´p `2q or pk ´p `2 . . . k `1q ¨¨¨p1 . . . pq. The only of these words in which the Lyndon pp . . . kq appears is pp `1 . . . k `1q ¨¨¨p1 . . . k ´pq and thus µ j `" µ r k `p`1 " pp `1 . . . k `1q ¨¨¨p1 . . . k ´pq.

One can do this for any j P tr k´1 `2, . . . , r k ´1u, and the same arguments hold for j " r k´1 `1 and j " r k . Thus the desired result holds at rank k `1.

One can now prove Theorem 6.2.

Proof of Theorem 6.2. We begin by describing the exchange matrix corresponding to the quiver given in [START_REF] Kang | Monoidal categorification of cluster algebras[END_REF]Definition 11.1.1]. For any 1 ď k ď n ´1 define the following matrices: This exactly means μr n´2 `j d µ ą µ in G for any µ P M. The computations for any other index s P t1, . . . , r n´1 u are similar. Using Remark 4.8 we conclude that the seed S n 0 is compatible.

Possible further developments

In this section we mention a couple of situations where interesting consequences may arise from the study of compatible seeds in various contexts of monoidal categorifications of cluster algebras.

Dominant words and g-vectors

By Theorem 6.2, the seed S n 0 for the category R ´gmod in type A n is compatible in the sense of Definition 4.7. As explained in Subsection 4.3, this yields some interesting combinatorial relationships between dominant words and g-vectos.

More precisely, consider as in Subsection 4.3 x t l any cluster variable in A, M t l the simple module in R ´gmod such that rM t l s " x t l and µ t l the dominant word associated to M t l . For simplicity, we will write x (resp. M, µ) for x t l (resp. M t l , µ t l ) without ambiguity as we will focus here on this module. For any dominant Lyndon word (i.e. any positive root in type A n ) pk . . . lq, we let m pk...lq denote the multiplicity of the Lyndon word pk . . . lq in the canonical factorization of µ. As in Section 2.1, we consider F and g " pg 1 , . . . , g r n´1 q the F -polynomial and the g-vector associated to x. We also let a 1 , . . . , a r n´1 denote the exponents of the unique monomial of maximal degree of F (see Theorem 2.5(i)), and c 1 , . . . , c n the (negative) integers such that F |P py 1 , . . . , y n q " x c 1 r n´1 `1 ¨¨¨x cn rn (see Subsection 4.3).