

Methods comparison for molecular diagnosis of human herpesvirus 8 infections

Manon Corgiat, Vincent Calvez, Anne-Geneviève Marcelin, Aude Jary

▶ To cite this version:

Manon Corgiat, Vincent Calvez, Anne-Geneviève Marcelin, Aude Jary. Methods comparison for molecular diagnosis of human herpesvirus 8 infections. Journal of Clinical Virology, 2020, 126, pp.104308. 10.1016/j.jcv.2020.104308. hal-02995957

HAL Id: hal-02995957 https://hal.sorbonne-universite.fr/hal-02995957v1

Submitted on 9 Nov 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

1	TITLE: Methods comparison for molecular diagnosis of human herpesvirus 8 infections.
2	
3	Manon Corgiat ^a , Vincent Calvez ^a , Anne-Geneviève Marcelin ^a , Aude Jary ^a
4	
5	^a Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique
6	(iPLESP), AP-HP, Pitié Salpêtrière Hospital, Department of virology, F-75013 Paris, France
7	
8	
9	Corresponding author: Aude Jary, 47-83 boulevard de l'Hôpital, 75013 Paris, +33 1 42 17
10	74 01, <u>aude.jary@aphp.fr</u>
11	Alternate corresponding author: Pr Anne-Geneviève Marcelin, 47-83 boulevard de
12	l'Hopital, 75013 Paris, +33 1 42 17 74 01, anne-genevieve.marcelin@aphp.fr
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	

26 Highlights

27	-	HHV-8 DNA viral load in blood is an accurate marker for diagnosis and management
28		of HHV-8 associated diseases.
29	-	None of the commercial assays for HHV-8 diagnosis by real-time PCR were
30		comparable with the in-house PCR.
31	-	The HHV-8 R-gene TM assay overestimated by in median 0.46 \log_{10} copies/10 ⁶ cells
32		the results obtained by the in-house PCR
33	-	The HHV-8 Clonit [®] assay overestimated by in median 1.16 \log_{10} copies/10 ⁶ cells the
34		results obtained by the in-house PCR
35		
36		
37		
38		
39		
40		
41		
42		
43		
44		
45		
46		
47		
48		
49		
50		
) 1		

- 52 ABSTRACT
- 53

Background: Human herpesvirus 8 (HHV-8) virological diagnosis and monitoring relies
mainly on real-time PCR.

Study design. Twelve samples (3 undetectable and 9 detectable with viral load ranging from 10¹ to 10⁵ per reaction) were tested for HHV-8 detection and quantification with the 3 methods. Methods comparison was supported with regression curve and diagram presenting difference or ratio between commercial and in-house PCR results and plotted against the inhouse PCR results. Statistical analyses, specifically Student tests and Spearman correlation, were performed.

64 Results: In both cases, qualitative results obtained with commercial kit and in-house PCR were identical and HHV-8 quantitation results were significantly correlated (Clonit[®], $R_s = 1$, 65 p < 0.001 and R-geneTM R_s = 0.98, p < 0.001). However, Clonit® results were significantly 66 higher compared to the in-house results with an overestimation in median [IQR] of $1.16 \log_{10}$ 67 $copies/10^6$ cells [1.12–1.18] whereas R-GeneTM results were not significantly higher, and an 68 overestimation in median of 0.46 \log_{10} copies/10⁶ cells [0.37-0.52]. Otherwise, repeatability 69 and reproducibility tests of undetectable sample failed with Clonit® technique contrary to the 70 R-GeneTM. 71

Conclusions: HHV-8 R-geneTM assay seems to be the most suitable since it showed consistent
 qualitative results with in-house HHV-8 PCR, a good quantitative correlation, an
 overestimation not significantly different and inferior to 0.50 log₁₀ copies/10⁶ cells and a good
 repeatability.

76

77 BACKGROUND

Human herpesvirus 8 (HHV-8) is involved in all forms of Kaposi's sarcoma (KS) and in two lymphoid malignancies: some forms of multicentric Castleman disease and primary effusion lymphoma [1,2].

As others human herpesviruses, HHV-8 establishes latency after primary infection and can 81 provide symptomatic reactivations in immunocompromised patients [2]. Real-time 82 Polymerase Chain Reaction (PCR) is an effective diagnostic tool for the detection and the 83 quantification of HHV8-DNA and is based on the amplification of a conserved gene within 84 different HHV-8 subtypes [3–6]. In the peripheral compartment, HHV8-DNA viral load (VL) 85 monitoring was reported to be an accurate biomarker for assessment of the risk of further 86 disease progression [7–9], but also to evaluate response to therapy [10,11] and to distinguish 87 the three main HHV-8 pathologies at diagnosis [12]. Otherwise, whole blood seems to be the 88 89 best sample to evaluate HHV8-DNA VL rate since it allows quantifying latent HHV-8 (intracellular), replicating HHV-8 (intracellular) and free viral particles (extracellular). 90

91

92

93 OJECTIVES

In our virology department, HHV8-DNA detection and quantification is performed with an inhouse real time PCR amplifying ORF-73 [5]. This study aimed to evaluate two real time PCR
commercial kits for the detection and quantification of HHV8-DNA by comparing them with
the in-house PCR.

98

99

100 STUDY DESIGN

101 Samples

102 Twelve whole blood samples were selected [Supplementary Table 1]: 3 with undetectable 103 HHV8-DNA VL and 9 with detectable HHV8-DNA VL ranging from 10^1 to 10^5 per reaction 104 (or from 1.56 to 5.79 log₁₀ copies/ 10^6 cells). Before extraction, DICO (Biomérieux®) internal 105 control (IC) was added in each sample.

- 106
- 107

HHV-8 in-house real time PCR

108 HHV-8 in-house PCR was performed as previously reported [5]. Five quantitation 109 standards (QS): QS1, QS2, QS3, QS4 and QS5 corresponding respectively to 10, 100, 1000, 100 and 100 000 copies/reaction were used and results expressed in copies/10⁶ cells 111 through quantification of human albumin gene [13]. Each run was validating by a negative 112 (water RNAse-free) and two positive (QS2 and QS3) controls, and also by DICO IC amplified 113 in the same well as the HHV-8.

114

115 Clonit HHV-8 PCR (Eurobio Ingen®)

This technique is based on the detection of a gene coding a minor capsid protein. The kit enabled 48 reactions and was composed as follows: R1 reagent amplification mix, R2 primers and probes, and R6, R5, R4 and R3 quantitation standard corresponding respectively to 500, 5000, 50 000 and 500 000 copies/reaction. IC corresponding to the human beta-globin gene, was amplified concurrently with HHV-8. The same controls as the in-house PCR were used.

122

123 HHV-8 Premix R-geneTM (Biomérieux®)

This test is based on the amplification of a 146 base pairs long of ORF26 and allows carrying out 20 reactions [14]. The quantification was performed with a calibration range (Quanti HHV-8 QS R-geneTM) that included 4 QS: QS1, QS2, QS3 and QS4, corresponding to 50, 500, 5000 and 50 000 copies/reaction respectively. The amplification of HHV-8 and
DICO was done in two separate wells for each sample. The same controls as the in-house
PCR were used.

130

131 Results of the two commercial kits were converted in copies/millions cells through132 quantification of human albumin gene performed once on each extracted-DNA.

133

134 Methods verification

We supported our method comparison using the following graphs: a regression curve 135 presenting results of commercial kit compared to the in-house technique; a diagram 136 presenting difference between commercial and in-house PCR results and plotted against the 137 in-house PCR results; a diagram presenting ratio between commercial and in-house PCR 138 139 results and plotted against the in-house PCR results. GraphPad software was used to perform Student's t-test (risk at 5%) and Spearman rank-order correlation. Repeatability and 140 141 reproducibility were performed with 3 samples: each one was tested three times during the 142 same experiment (repeatability) or four times in different experiments (reproducibility).

143

144

145 **RESULTS**

146 *HHV-8 Clonit*® and in-house PCR

Qualitative results obtained by the two techniques were identical; samples 1, 2 and 3 were undetectable whereas samples 4 to 12 were detectable [Figure 1A]. HHV-8 quantitation results between the two methods were significantly correlated ($r_s=1$, p<0.001). However, Student's t-test showed that the slope was not significantly different from 1, but the intercept was from 0, suggesting that Clonit® results were significantly higher compared to the inhouse results [Fig 1B]. This observation was further confirmed by difference and ratio analysis: respectively, Clonit® results were (i) in median [IQR] $1.16 \log_{10} \text{ copies}/10^6$ cells [1.12-1.18] greater compared with the in-house PCR results [Fig 1C] and (ii) in median 1.34 [1.24-1.44] times higher than the in-house results [Fig 1D].

Repeatability and reproducibility tests were performed with an undetectable sample ($n^{0}2$), and two detectable samples ($n^{0}5$, Ct=32.87 and $n^{o}10$, Ct=24.23). For positive samples, both tests succeeded with a variation coefficient lower than the 5% accepted in our laboratory [Supplementary Table 2]. However, repeatability and reproducibility tests failed with sample which was detectable once and twice, respectively. In order to exclude a contamination, we tested the same extracted-DNA and a new extracted-DNA from the same sample with the inhouse PCR, and HHV8-DNA remained undetectable.

163

164 HHV-8 R-geneTM and in-house PCR

Qualitative results obtained by the two techniques were identical; samples 1, 2 and 3 were 165 undetectable whereas samples 4 to 12 were detectable [Figure 2A]. HHV-8 quantitation 166 results between the two methods were significantly correlated ($r_s=0.98$, p<0.001). Student's t-167 test performed found that the slope was significantly different from 1 but the intercept was not 168 from 0, suggesting that R-geneTM results were not significantly higher compared to the in-169 house results [Fig 2B]. Commercial test values were in median 0.46 \log_{10} copies/10⁶ cells 170 [0.37–0.52] greater compared with the in-house PCR results [Fig 2C], and thus less than 0.50 171 \log_{10} usually accepted. The ratio chart showed that R-geneTM results were in median 1.13 172 [1.12-1.14] times higher than the reference technique results [Fig 2D]. 173

174 Repeatability test was performed with the same positive samples (no5 and 10) but with a 175 different undetectable sample ($n^{\circ}1$). For all samples, repeatability tests succeeded with a variation coefficient lower than 5% [Supplementary Table 2]. R-geneTM reproducibility could
not be achieved due to a limited number of PCR-test.

- 178
- 179

180 **DISCUSSION**

In this study, we determined that none of the commercial assays were comparable with the in-181 house PCR. Indeed, although HHV-8 quantitation was correlated in both cases, there was an 182 overestimation of the values. This could be explained by a better sensitivity, with more 183 efficient amplifications and different molecular targets. However, this overestimation was less 184 than 0.5 log₁₀ with R-geneTM, as opposed to Clonit® results which overestimated by more 185 than 1 log₁₀. Clonit® results overestimation may be explained by two parameters: a non-186 specific amplification as seen with reproducibility and repeatability tests failures of 187 188 undetectable sample; the QS which ranged from 500 to 500 000 copies/reaction while the inhouse PCR QS ranged from 10 to 10 000 copies/reaction. Moreover, Clonit® lower limit of 189 190 quantification was high (45 000 copies/ml after correction of dilution factor) compared to the 191 VL levels usually found in HHV-8 associated pathologies. Indeed particularly in KS, HHV8-DNA values were reported to be in median $2 \log_{10} \text{ copies}/10^6 \text{ cells } [12].$ 192

193 Two limitations of this study are probably the number and the type of samples tested. 194 However, although other specimens as effusion liquid and biopsies could be tested, blood 195 sample remains the main specimen for diagnosis and management of HHV-8 associated 196 diseases. Moreover, although few samples were used, wide range of VL rates including those 197 found in the three main HHV-8 pathologies were tested.

198 In conclusion, R-geneTM technique seems to be the most suitable commercial kit since it 199 showed consistent qualitative results with in-house HHV-8 PCR [14], a good quantitative

200	correlation, an overestimation not significantly different and inferior to $0.50 \log_{10} \text{ copies}/10^6$
201	cells and a good repeatability.
202	
203	
204	
205	
206	
207	
208	
209	
210	
211	
212	
213	
214	
215	
216	
217	
218	
219	
220	
221	
222	
223	
224	

225	Acknowledgement: This work was supported by Agence Nationale de Recherche sur le
226	SIDA et les Hépatites virale (ANRS) AC43. We also thank Biomérieux® and Eurobio® for
227	providing commercial kits for this study.
228	
229	Declarations of interest: none
230	
231	
232	
233	
234	
235	
236	
237	
238	
239	
240	
241	
242	
243	
244	
245	
246	
247	
248	
249	

250 **REFERENCES**

- P.H. Goncalves, J. Ziegelbauer, T.S. Uldrick, R. Yarchoan, Kaposi sarcoma herpesvirusassociated cancers and related diseases, Curr. Opin. HIV AIDS. 12 (2017) 47–56. https://doi.org/10.1097/COH.0000000000330.
- P.H. Gonçalves, T.S. Uldrick, R. Yarchoan, HIV-associated Kaposi sarcoma and related diseases, AIDS Lond. Engl. (2017). https://doi.org/10.1097/QAD.00000000001567.
- [3] D.J. Speicher, N.W. Johnson, Detection of human herpesvirus 8 by quantitative
 polymerase chain reaction: development and standardisation of methods, BMC Infect.
 Dis. 12 (2012) 210. https://doi.org/10.1186/1471-2334-12-210.
- [4] J. Goudsmit, N. Renwick, N.H. Dukers, R.A. Coutinho, S. Heisterkamp, M. Bakker, T.F.
 Schulz, M. Cornelissen, G.J. Weverling, Human herpesvirus 8 infections in the
 Amsterdam Cohort Studies (1984-1997): analysis of seroconversions to ORF65 and
 ORF73, Proc. Natl. Acad. Sci. U. S. A. 97 (2000) 4838–4843.
- [5] F. Lallemand, N. Desire, W. Rozenbaum, J.C. Nicolas, V. Marechal, Quantitative analysis of human herpesvirus 8 viral load using a real-time PCR assay, J. Clin.
 Microbiol. 38 (2000) 1404–1408.
- [6] I.E. White, T.B. Campbell, Quantitation of cell-free and cell-associated Kaposi's
 sarcoma-associated herpesvirus DNA by real-time PCR, J. Clin. Microbiol. 38 (2000)
 1992–1995.
- [7] A.S. Laney, M.J. Cannon, H.W. Jaffe, M.K. Offermann, C.-Y. Ou, K.W. Radford, M.M.
 Patel, T.J. Spira, C.J. Gunthel, P.E. Pellett, S.C. Dollard, Human herpesvirus 8 presence
 and viral load are associated with the progression of AIDS-associated Kaposi's sarcoma,
 AIDS Lond. Engl. 21 (2007) 1541–1545.
- 273 https://doi.org/10.1097/QAD.0b013e3282202b7d.
- [8] J. Stebbing, C. Adams, A. Sanitt, S. Mletzko, M. Nelson, B. Gazzard, T. Newsom-Davis,
 M. Bower, Plasma HHV8 DNA predicts relapse in individuals with HIV-associated
 multicentric Castleman disease, Blood. 118 (2011) 271–275.
 https://doi.org/10.1182/blood-2011-02-335620.
- [9] F. Broccolo, C. Tassan Din, M.G. Viganò, T. Rutigliano, S. Esposito, P. Lusso, G.
 Tambussi, M.S. Malnati, HHV-8 DNA replication correlates with the clinical status in
 AIDS-related Kaposi's sarcoma, J. Clin. Virol. Off. Publ. Pan Am. Soc. Clin. Virol. 78
 (2016) 47–52. https://doi.org/10.1016/j.jcv.2016.02.019.
- [10] R. Tedeschi, M. Enbom, E. Bidoli, A. Linde, P. De Paoli, J. Dillner, Viral load of human herpesvirus 8 in peripheral blood of human immunodeficiency virus-infected patients with Kaposi's sarcoma, J. Clin. Microbiol. 39 (2001) 4269–4273. https://doi.org/10.1128/JCM.39.12.4269-4273.2001.
- [11] A.-G. Marcelin, L. Aaron, C. Mateus, E. Gyan, I. Gorin, J.-P. Viard, V. Calvez, N.
 Dupin, Rituximab therapy for HIV-associated Castleman disease, Blood. 102 (2003)
 2786–2788. https://doi.org/10.1182/blood-2003-03-0951.
- [12] A. Jary, V. Leducq, R. Palich, A. Gothland, D. Descamps, V. Joly, S. Lambert-Niclot, C.
 Amiel, A. Canestri, A. Mirand, E. Gault, A. Vabret, M.-A. Valantin, C. Katlama, V.
 Calvez, N. Dupin, J.-P. Spano, A.-G. Marcelin, Usefulness of Kaposi's SarcomaAssociated Herpesvirus (KSHV) DNA Viral Load in Whole Blood for Diagnosis and
 Monitoring of KSHV-Associated Diseases, J. Clin. Microbiol. 56 (2018).
 https://doi.org/10.1128/JCM.00569-18.
- [13] I. Bièche, M. Olivi, M.H. Champème, D. Vidaud, R. Lidereau, M. Vidaud, Novel
 approach to quantitative polymerase chain reaction using real-time detection: application
 to the detection of gene amplification in breast cancer, Int. J. Cancer. 78 (1998) 661–
 666.

299 300 301 302 303	 [14] C. Deback, F. Agbalika, C. Scieux, A.G. Marcelin, A. Gautheret-Dejean, J. Cherot, L. Hermet, O. Roger, H. Agut, Detection of human herpesviruses HHV-6, HHV-7 and HHV-8 in whole blood by real-time PCR using the new CMV, HHV-6, 7, 8 R-gene kit, J. Virol. Methods. 149 (2008) 285–291. https://doi.org/10.1016/j.jviromet.2008.01.026.
304	
305	
306	
307	
308	
309	
310	
311	
312	
313	
314	
315	
316	
317	
318	
319	
320	
321	
322	
323	
324	
325	

- 326 Figure 1: Results of methods comparison between HHV-8 Clonit[®] kit (Eurobio Ingen[®])
- **and HHV-8 in-house PCR.** *HHV-8 DNA viral load levels obtained by the two techniques are*
- 328 listed in figure 1A. Correlation curve (y=0.9586x+1.3375) between results obtained by the
- 329 two techniques is represented in figure 1B and theirs differences and ratio respectively in
- *figure 1C and 1D.*

- 351 Figure 2: Results of methods comparison between HHV-8 R-geneTM kit (Biomérieux[®])
- and HHV-8 in-house PCR. HHV-8 DNA viral load levels obtained by the two techniques are
- listed in figure 2A. Correlation curve (y=1.0738+0.1928) between results obtained by the two
- techniques is represented in figure 2B and theirs differences and ratio respectively in figure
- 355 *2C and 2D*.
- 356
- 357
- 358

Supplementary Table 1: Characteristics of the samples selected for methods comparison

Patient	Samples	HHV8-DNA viral load (log ₁₀ copies/10 ⁶ cells)	HHV-8 serology	HIV status	Clinical context
1	Whole blood	<10	Negative	Negative	Liver transplantation No signs suggestive of HHV8-associated diseases
2	Whole blood	<10	Negative	Positive	HIV-infected patient with inflammatory syndrome No signs suggestive of HHV8-associated diseases
3	Whole blood	<10	Positive	Negative	Liver transplantation No signs suggestive of HHV8-associated diseases
4	Whole blood	1.56	NA	NA	Unknown
5	Whole blood	1.98	NA	Positive	Macrophage activation syndrome No signs suggestive of HHV8-associated diseases
6	Whole blood	2.48	Positive	Positive	Cutaneous, ganglionic and splenic KS in patient under effective ARVs.
7	Whole blood	3.20	NA	Positive	Multicentric Castleman disease
8	Whole blood	3.27	NA	NA	Unknown
9	Whole blood	3.87	NA	NA	Unknown
10	Whole blood	4.68	NA	Positive	Cutaneous KS and multicentric Castleman disease
11	Whole blood	4.97	Negative	Positive	Multicentric Castleman disease
12	Whole blood	5.79	NA	Positive	Multicentric Castleman disease

ARV: antiretroviral; KS: Kaposi's sarcoma; HHV-8: human herpesvirus 8; HIV: Human Immunodeficiency virus; NA: not available

Supplementary Table 2: Repeatability and reproducibility results of HHV-8 Clonit®

and HHV-8 R-GeneTM PCR assay

HHV-8 Clonit®				
	SAMPLES	2	5	10
	Ct 1	Undetectable	32.87	24.23
	Ct 2	Undetectable	33	24.29
	Ct 3	Undetectable	32.78	24.19
Repeatability	Ct 4	36.94	33.17	24.17
	Mean	NA	32.95	24.22
	Standard deviation	NA	0.17	0.053
	Variation coefficient (%)	NA	0.51	0.22
	Ct 1	Undetectable	33.54	24.51
	Ct 2	36.94	33.17	24.36
	Ct 3	37.03	33.42	24.63
Reproducibility	Ct 4	NR	32.88	24.25
	Mean	NA	33.25	24.43
	Standard deviation	NA	0.29	0.17
	Variation coefficient (%)	NA	0.88	0.68
	HHV-8 R-Ge	ne TM		
	SAMPLES	1	5	10
	Ct 1	Undetectable	33.39	23.92
	Ct 2	Undetectable	33.14	23.78
Donastability	Ct 3	Undetectable	33.03	24.03
Repeatability	Mean	NA	33.18	23.91
	Standard deviation	NA	0.18	0.13
	Variation coefficient (%)	NA	0.56	0.52

NA: not applicable; NR: not realized

Patients [HHV8] In-house (log ₁₀ copies/10 ⁶ cells)		[HHV8] Clonit [®] (log ₁₀ copies/10 ⁶ cells)	
1	Undetectable	Undetectable	
2	Undetectable	Undetectable	
3	Undetectable	Undetectable	
4	1.56	2.94	
5	1.98	3.36	
6	2.48	3.56	
7	3.20	4.30	
8	3.27	4.43	
9	3.87	5.01	
10	4.68	5.80	
11	4.97	6.13	
12	5.79	6.97	

Patients [HHV8] In-house (log ₁₀ copies/10 ⁶ cells)		[HHV8] R-gene TM (log ₁₀ copies/10 ⁶ cells)	
1	Undetectable	Undetectable	
2	Undetectable	Undetectable	
3	Undetectable	Undetectable	
4	1.56	1.77	
5	1.98	2.50	
6	2.48	2.89	
7	3.20	3.63	
8	3.27	3.53	
9	3.87	4.35	
10	4.68	5.21	
11	4.97	5.56	
12	5.79	6.42	

