
HAL Id: hal-02996137
https://hal.sorbonne-universite.fr/hal-02996137

Submitted on 9 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Interactively shaping robot behaviour with unlabeled
human instructions

Anis Najar, Olivier Sigaud, Mohamed Chetouani

To cite this version:
Anis Najar, Olivier Sigaud, Mohamed Chetouani. Interactively shaping robot behaviour with
unlabeled human instructions. Autonomous Agents and Multi-Agent Systems, 2020, 34 (2),
�10.1007/s10458-020-09459-6�. �hal-02996137�

https://hal.sorbonne-universite.fr/hal-02996137
https://hal.archives-ouvertes.fr

Noname manuscript No.
(will be inserted by the editor)

Interactively shaping robot behaviour with unlabeled
human instructions

Anis Najar · Olivier Sigaud · Mohamed

Chetouani

Received: date / Accepted: date

Abstract In this paper, we propose a framework that enables a human teacher to
shape a robot behaviour by interactively providing it with unlabeled instructions.
We ground the meaning of instruction signals in the task-learning process, and
use them simultaneously for guiding the latter. We implement our framework
as a modular architecture, named TICS (Task-Instruction-Contingency-Shaping)
that combines different information sources: a predefined reward function, human
evaluative feedback and unlabeled instructions. This approach provides a novel
perspective for robotic task learning that lies between Reinforcement Learning and
Supervised Learning paradigms. We evaluate our framework both in simulation
and with a real robot. The experimental results demonstrate the effectiveness
of our framework in accelerating the task-learning process and in reducing the
number of required teaching signals.

Keywords Interactive Machine Learning · Human-Robot Interaction · Shaping ·
Reinforcement Learning · Unlabeled Instructions

1 Introduction

Over the last few years, substantial progress has been made in both machine learn-
ing [31,32,40] and robotics [10]. However, applying machine learning methods to
real-world robotic tasks still raises several challenges. One important challenge is to
reduce training time, as state-of-the-art machine learning algorithms still require

This work was supported by the Romeo2 project.

A. Najar
Laboratoire de Neurosciences Cognitives Computationnelles (LNC2), INSERM U960, Paris.
E-mail: anis.najar@ens.fr

O. Sigaud
Sorbonne Université, Institute for Intelligent Systems and Robotics, CNRS UMR 7222, Paris.

M. Chetouani
Sorbonne Université, Institute for Intelligent Systems and Robotics, CNRS UMR 7222, Paris.

2 Anis Najar et al.

millions of iterations for solving real-world problems [31,32,40]. Two complemen-
tary approaches for task learning in Robotics are usually considered: autonomous
learning and interactive learning.

Autonomous learning frameworks, such as Reinforcement Learning [22] or Evo-
lutionary Approaches [9], rely on a predefined evaluation function that enables the
robot to autonomously evaluate its performance on the task. The main advantage
of this approach is the autonomy of the learning process. The evaluation function
being integrated on board, the robot is able to optimize its behaviour without
requiring help from a supervisor. However, when applied to real-world problems,
this approach suffers from several limitations. First, designing an appropriate eval-
uation function can be difficult in practice [22]. Second, autonomous learning is
based on autonomous exploration which results in slow convergence of the learn-
ing process, and thus limits the feasibility of such approach in complex real-world
problems. Moreover, autonomous exploration may lead to dangerous situations
where the robot can damage itself or other objects, or even harm surrounding
humans. Safety is an important issue that has to be considered when designing
such autonomous learning systems [11].

By contrast, interactive learning relies on human teaching signals for guiding
the robot throughout the learning process [6]. Several types of teaching signals can
be provided, such as demonstrations [1], instructions [35] and evaluative feedback
[18]. Interactive learning methods overcome the limitations of autonomous learn-
ing by ensuring faster convergence rates and safer exploration. However, they come
at the cost of human burden during the teaching process, and the cost of predeter-
mining the meaning of teaching signals [50]. Encoding the meaning of a teaching
signal requires engineering skills, which limits the usability of such methods for
non expert users. Also, predefined teaching signals constrain the users in the way
they can interact with the robot. So, a twofold challenge for interactive learning
methods is to minimize their interaction load, and to provide more freedom to non
expert users in choosing their own preferred signals for interacting with the robot.

In this paper, we propose a novel framework for robotic task learning that
combines the benefits of both autonomous learning and interactive learning ap-
proaches. First, we consider reinforcement learning with a predefined reward func-
tion for ensuring the autonomy of the learning process. Second, we consider two
types of human-provided teaching signals, evaluative feedback and instructions,
for accelerating the learning process. Moreover, we relax the constraint of prede-
termining the meaning of instruction signals by making the robot incrementally
interpret their meaning during the learning process. Our main contribution is to
show that instructions can effectively accelerate the learning process, even without
predetermining their meaning.

We consider interactively provided instruction signals (e.g. pointing to the
left/to the right) that indicate to the robot which action it has to perform in
a given situation (e.g. turn left/turn right). Our main idea is to use instruction
signals as a means for transferring the information about the optimal action be-
tween several task states: all states associated with the same instruction signal
collectively contribute to interpreting the meaning of that signal; and in turn, an
interpreted signal contributes to learning the optimal action in all task states to
which it is associated. This scheme serves as a bootstrapping mechanism that re-
duces the complexity of the learning process; and constitutes a novel perspective
for robotic task learning that lies between Reinforcement Learning and Supervised

Interactively shaping robot behaviour with unlabeled human instructions 3

(a) The learning process under
standard RL framework.

(b) The learning process under our framework.

Fig. 1 In our framework, unlabeled instructions are used for accelerating the learning process,
by dividing it into two sub-problems: interpretation and shaping. Interpretation consists in
mapping low-level instruction signals into actions and shaping consists in using the interpreted
instructions for accelerating the learning process. Instructions are interpreted by reinforcement
learning (RL) and used for shaping in a supervised learning (SL) way.

Learning paradigms. Under this scheme, unlabeled instructions (cf. definition in
Section 2.1) are interpreted through a reinforcement learning process, and used
for labeling task states in a supervised learning way (Fig. 1).

We implement our framework as a modular architecture, named TICS (Task-
Instruction-Contingency-Shaping), which combines different information sources: a
predefined reward function, human evaluative feedback and unlabeled instructions.
We first evaluate our framework on two simulated tasks: object sorting and maze
navigation. Simulations allow us to systematically evaluate the performance of
our system under different hypotheses about the teaching conditions, and to test
its limits under worst case scenarios. For instance, we evaluate the robustness of
our framework against various levels of sparse and erroneous teaching signals. We
then evaluate the framework on a real robotic platform. The experimental results,
obtained both in simulation and with the real robot, demonstrate the effectiveness
of our framework in accelerating the task-learning process and in reducing the
number of required teaching signals.

This paper is organized as follows. In the remainder of this section, we formu-
late our research question, provide some definitions, specify our assumptions and
highlight the challenges we are facing. In Section 3, we provide some background
about robotic task learning. We present our framework in Section 4. The simula-
tion protocol is presented in Section 5, and the results are reported in Section 6.
In Section 7, we evaluate our framework with a real robot. The limitations of our
work are discussed in Section 8 before we conclude in Section 9.

2 Research question

We consider a robot learning a task (e.g. maze navigation) using an evaluation
function such as a predefined reward function and/or evaluative feedback provided

4 Anis Najar et al.

by a human teacher. In some situations, the teacher can provide the robot with an
instruction that indicates which action it has to perform in the current situation
(e.g. turn left/turn right). The robot is able to detect the low-level signals by which
instructions are communicated (e.g. pointing to the left/to the right). However,
it does not know the meaning of each specific signal (i.e. the action to which
the signal refers). The question we raise in this paper is how can the robot use
these unlabeled instructions for learning the task? We refer to this question as
“interactively shaping robot behaviour with unlabeled human instructions”.

2.1 Definitions

We now define the terms that we use in this paper:

– Behaviour: The sequence of actions that the robot performs in order to achieve
a predefined task.

– Shaping: The mechanism by which a robot is influenced towards a desired
behaviour.

– Instruction: Communicating an action to be performed in a given task state.
– Instruction signal: The perceptual support through which an instruction is

conveyed, for example a pointing gesture or a spoken word. In this work, we
consider non-verbal instruction signals, namely human gestures.

– Meaning of an instruction signal: The action to which the signal refers.
– Unlabeled instruction: An instruction signal whose meaning is unknown to

the robot.
– Evaluative feedback: Communicating the correctness of a performed action.

Also called critique. In this paper, we only consider binary feedback (cor-
rect/wrong). We also do not consider corrective feedback (instruction about
past actions).

2.2 Assumptions

In this work, we consider the following assumptions:

– Elementary actions: The robot is endowed with a set of predefined action
primitives that are necessary for performing the task.

– Observable task states: We consider a sequential task defined over a set of
observable states. For each task state, there is an optimal action that has to
be performed by the robot in order to complete the task.

– Evaluation function: The robot has access to an evaluation function that
allows it to find the optimal action for every task state. In this work, we
consider a robot learning from a predefined reward function and/or from human
evaluative feedback, using a reinforcement learning process.

– Discrete signals: The robot is able to detect a predefined set of instruction
signals.

– Unlabeled instructions: In some states, the robot can receive an instruction
signal. It knows that it is an instruction. However, it does not know its meaning.

Interactively shaping robot behaviour with unlabeled human instructions 5

2.3 Main challenges

Our research question raises several challenges. First, we have different sources of
information that need to be combined: the reward function, evaluative feedback
and instructions. These information sources are of different nature, so they may
not be used computationally in exactly the same way. In addition, they can be in
contradiction with each other. For instance, the information carried by the reward
function can be different from the one communicated by the teacher. Consequently,
these information sources must be combined properly.

Second, we need to take into account that the teacher is not perfect. For ex-
ample, (s)he may not provide instructions for every situation or feedback for every
performed action and (s)he can make mistakes and provide erroneous information.
Consequently, we must evaluate the robustness of our solution against sparse and
erroneous teaching signals.

Finally, as the interpretation of instructions is made interactively in the context
of a task-learning process, we do not want to make the learning process longer
than without using instructions, nor to put more burden on the teacher in using
unlabeled instructions. Consequently, we must evaluate the cost of our method
both in terms of convergence rate and interaction load.

3 Background and Related work

3.1 Reinforcement Learning

The Markov Decision Process (MDP) framework is a standard formalism for rep-
resenting sequential decision-making problems [39]. An MDP is defined as a tuple
< S,A, T,R, γ > where S is the state-space and A is an action-set. T : S × A →
Pr(s′|s, a) defines a state-transition probability function, where Pr(s′|s, a) rep-
resents the probability that the robot transitions from state s to state s′ after
executing action a. R : S × A → R is a reward function that defines the reward
r(s, a) that the robot gets for performing action a in state s. When at time t, the
robot performs an action at from state st, it receives a reward rt and transitions to
state st+1. The discount factor, γ, represents how much future rewards are taken
into account for the current decision.

The behaviour of the robot is represented by a policy π that defines a prob-
ability distribution over actions in every state s ∈ S: π(s) = {π(s, a); a ∈ A} =
{Pr(a|s); a ∈ A}. The quality of a policy is measured by the amount of rewards it
enables the robot to collect over the long run. The amount of cumulative rewards
expected when starting from a state s and following a policy π is given by the
state-value function and is written

V π(s) =
∑
a

π(s, a)[R(s, a) + γ
∑
s′

Pr(s′|s, a)V π(s′)]. (1)

6 Anis Najar et al.

Another form of value function, called action-value function and noted Qπ,
provides more directly exploitable information than V π for decision-making, as
the agent has direct access to the value of each possible decision:

Qπ(s, a) = R(s, a) + γ
∑
s′

Pr(s′|s, a)V π(s′) ;∀s ∈ S, a ∈ A. (2)

To optimize its behaviour, the agent must find the optimal policy π∗ that
maximizes V π and Qπ. The optimal policy can be derived using Reinforcement
Learning algorithms such as Q-learning [51] and Actor-Critic [2].

The main idea of Actor-Critic architectures is to separately represent the value
function (the critic) and the policy (the actor). The actor stores the policy π and is
used for action selection. It is generally represented by a set of parameters p(s, a)
that reflect the preference for taking each action in each state. At decision time t,
the policy can be derived using a softmax distribution over the policy parameters:

πt(s, a) = Pr(at = a|st = s) =
ep(s,a)∑
b∈A e

p(s,b)
.

The critic computes a value function that is used for evaluating the actions
of the actor. The reward rt received at time t is used for computing a temporal
difference (TD) error

δt = rt + γV (st+1)− V (st). (3)

The TD error is then used for updating both the critic and the actor, using
respectively Equations (4) and (5):

V (st)← V (st) + αδt, (4)

p(st, at)← p(st, at) + βδt, (5)

where α and β are two positive learning rates. A positive TD error increases
the probability of selecting at in st, while a negative TD error decreases it.

In Q-learning, the policy π is not stored separately, but is derived from the
Q-function at decision time, using the softmax distribution over the Q-values. The
Q-function is first initialized for every state-action pair. Then, it is iteratively
updated after each transition using:

Q(st, at)← Q(st, at) + α[rt + γ max
a′∈A

Q(st+1, a
′)−Q(st, at)]. (6)

3.2 Interactive Learning

3.2.1 Shaping with evaluative feedback

Delivering evaluative feedback is an intuitive way for training a robot that presents
some advantages over traditional RL reward functions, such as being more directly
informative about the optimal behaviour and easier to implement [21]. Several
methods have been proposed for shaping with human-provided evaluative feed-
back. In the standard method, reward shaping, evaluative feedback is converted

Interactively shaping robot behaviour with unlabeled human instructions 7

into numerical values that are used for augmenting a predefined reward function
[16,47,43,30]. So, in reward shaping, evaluative feedback is considered in the same
way as standard MDP rewards.

However, several authors have pointed out the difference between the nature of
evaluative feedback and MDP rewards, considering them as information about the
policy [15]. Consistent with this view, policy-shaping methods use the distribution
of evaluative feedback in order to infer the teacher’s policy [12,25]. This policy
can be then combined with another source of information such as an MDP policy.
Overall, policy-shaping methods have been shown to perform better than reward
shaping because they do not interfere with the reward function, hence they avoid
convergence problems [20,12].

The shaping method that we use in this paper (cf. Section 4.2.1) is closely
related to the “Convergent Actor-Critic by Humans” (COACH) algorithm [28].
Both methods use evaluative feedback for updating the actor of an Actor-Critic
architecture. However, in [28] the update term is scaled by the gradient of the
policy; whereas we do not consider a multiplying factor for evaluative feedback.
This minor difference may have important implications on the flexibility of the
teaching process. For instance, one can predict that multiplying by the policy
gradient would dampen the effect of evaluative feedback when the policy is near a
local optimum (when π(s, a) is close to 0 or 1). This would make more difficult for
the human teacher to rectify the policy. This could eventually happen if evaluative
feedback is combined with MDP rewards. However, this question has not been
addressed by the authors. The main focus of our framework being on shaping with
(unlabeled) instructions, we keep the comparison between these two methods for
future work.

3.2.2 Shaping with instructions

Even though evaluative feedback provides a more direct evaluation of the be-
haviour than reward functions, it does not solve the exploration-exploitation dilemma
since the robot still needs to try different actions before performing the optimal
one [42]. Moreover, previous work has shown that, in addition to evaluative feed-
back, human teachers want to provide guidance about future actions [44]. The role
of guidance is to constrain the exploration towards a limited set of actions [41].
Instruction can be viewed is a special case of guidance, where one single action is
communicated for a given situation [33,38,34].

We generally distinguish three ways of shaping with instructions. The first one,
which is referred to as guidance, consists in simply executing the communicated
action. For example, verbal instructions can be used for guiding the robot along
the task [46,43,8]. In [33] and [38], a Learning from Demonstration (LfD) system
is augmented with verbal instructions, in order to make the robot perform specific
actions during the demonstrations.

The second approach for shaping with instructions is to integrate the informa-
tion about the action within the model of the task. In [48], the authors present
a method where a teacher interactively informs an RL agent about the next pre-
ferred state. This information can be provided by telling the agent what action to
perform. State preferences are transformed into linear inequalities that are inte-
grated into the learning algorithm in order to accelerate the learning process. In

8 Anis Najar et al.

[7], instructions are integrated into an RL algorithm by positively reinforcing the
proposed action.

These two approaches can be combined. In [37], the authors present an Actor-
Critic architecture that uses instructions for both decision-making and learning.
For decision-making, the robot executes a composite real-valued action that is
computed as a linear combination of the actor’s decision and the supervisor’s
instruction. Then, the error between the instruction and the actor’s decision is
used as an additional parameter to the TD error for updating the actor’s policy.

Another alternative is to use the provided instructions for building an instruc-
tion model besides the task model. Both models are then combined for decision-
making. For example, in [35], the RL agent arbitrates between the action proposed
by its Q-learning policy and the one proposed by the instruction model, based on
a confidence criterion.

3.3 Interpreting instructions

Classically, the meaning of instructions, i.e. the mapping between instruction sig-
nals and the robot’s actions, is determined before learning the task [33,38,43,44,
46,41]. However, as instructions can be task specific, it is difficult for non-expert
users to program their meaning for new tasks. In addition, handcoded instructions
limit the possibility for different teachers to use their own preferred signals. One
way to overcome this limitation is to let the robot interpret users’ instructions.

One method for interpreting instructions consists in providing the robot with
a description of the task; then making it interact with its environment in order to
interpret the instructions using either demonstrations [27] or a predefined reward
function [4,5,49]. In this case, instructions are provided prior to the learning pro-
cess, and the robot only interacts with its environment without interacting with
the human. The main goal here is only to interpret instructions, not to use them
for task learning.

Another existing method is to teach the robot to interpret continuous streams
of control signals that are provided by the human teacher [30]. In contrast to
the first approach, the robot interacts only with the human and not with the
environment. But yet, the main goal is only to interpret instructions and not to
use them for task learning.

A third approach consists in guiding a task-learning process by interactively
providing the robot with unlabeled instructions. The robot simultaneously learns
to interpret instructions and uses them for task learning. For example, in [13], the
robot is provided with a set of hypotheses about possible tasks and instruction
meanings. The robot then infers the task and instruction meanings that are the
most coherent with each other and with the history of observed instruction signals.

It is important to understand the difference between these different settings.
In the first two settings where the aim is only to interpret instructions, there is no
challenge about the optimality or the sparsity of the provided instructions.

First, instructions cannot be erroneous as they constitute the reference for the
interpretation process. Even though these works do not explicitly assume perfect
instructions, the robustness of the interpretation methods against inconsistent
instructions is not investigated. When instructions are also used for task learning,
as in our work, we have to take into account whether or not instructions are correct

Interactively shaping robot behaviour with unlabeled human instructions 9

Fig. 2 Shaping with unlabeled instructions. Task learning is used for interpreting instructions,
which are in turn used for accelerating the learning process.

with respect to the target task. However, this was not investigated in other works.
In [13], only the performance under erroneous evaluative feedback is reported.

Second, instructions cannot be sparse, since the interpretation process is de-
fined only when instructions are available. For instance, the existing methods for
interpreting instructions using RL [4,5,49,30] cannot be used with sparse instruc-
tions. In these methods, instructions constitute the state-space over which the RL
algorithm is deployed. This assumes the existence of a contiguous MDP state-
space for computing the TD error (cf. Equation 3). However, when instructions
are interactively provided during task learning, as in our work, we have to face the
challenge of sparsity with respect to task states. So, the standard RL method used
in [4,5,49,30] cannot be used with sparse instructions. In this paper, we propose
an alternative solution where instructions are interpreted using the TD error of
the task-learning process (cf. Section 4.2.3).

4 Model

In this section, we present our framework for interactively shaping a robot be-
haviour with unlabeled human instructions. In this framework, learning is primar-
ily based on an external evaluation source, such as evaluative feedback and/or
a reward function. So, the role of instructions is only to accelerate the learning
process.

Our idea is to use instruction signals as a means for sharing the information
about the optimal action between different task states. We divide this process into
two sub-problems: interpreting instructions and shaping. For interpreting instruc-
tions, the robot must find the action corresponding to each instruction signal. For
this, we take advantage of the task-learning process, to retrieve the information
about the optimal action, from every task state in which each signal has been
observed. Shaping consists in using the interpreted instructions for informing the
robot about the optimal action, in states where the policy has not yet converged.
These two processes are performed simultaneously and incrementally: task learning
is used for interpreting instructions, and the interpreted instructions are in turn
used for accelerating the learning process (Fig. 2). We first describe the general
architecture of our framework. We then detail the methods that are implemented
in each component of the architecture.

10 Anis Najar et al.

Fig. 3 The TICS architecture includes four main components: a Task Model learns the task,
a Contingency Model associates task states with instruction signals, an Instruction Model
interprets instructions, and a Shaping Component combines the outputs of the Task Model
and the Instruction Model for decision-making.

4.1 The TICS architecture

The general architecture of our framework is based on four components: a Task
Model (TM), an Instruction Model (IM), a Contingency Model (CM) and a Shap-
ing Component (SC) (Fig. 3). We call this architecture TICS for Task-Instruction-
Contingency-Shaping. The Task Model is responsible for learning the task, while
the Instruction Model is responsible for interpreting instructions. These two com-
ponents represent the core of the TICS architecture. The two remaining compo-
nents are meant to make the first two components interact with each other. The
Contingency Model links task states within TM to instruction signals within IM,
by determining which signal has been observed in each state. The role of this
model is to minimize the number of interactions with the teacher by recalling the
previously provided instructions, and also to make the mapping between states
and instructions signals more robust to errors. Finally, the Shaping Component is
responsible for combining the outputs of TM and IM for decision-making 1.

Task Model: The Task Model is the component of our architecture that is respon-
sible for learning the task. It takes as inputs task states, the performed actions
and their evaluation; and it derives a task policy accordingly. For example, when
learning from a reward function, the task policy can be derived using a standard
RL algorithm like Q-Learning or Actor-Critic [42]. When learning from evalua-
tive feedback, the task policy can be derived using any algorithm learning from
evaluative feedback, such as TAMER [18], or the Bayesian frameworks of [12] and
[26]. The main challenge is to integrate different evaluation sources into one single
task policy. Combining evaluative feedback and MDP rewards is an active research
question [20]. In this paper, we propose a new method for shaping with evaluative
feedback, that we detail in Section 4.2.1.

Contingency Model: When the robot evaluates the task state and has to choose
an action, the teacher can provide it with an instruction to indicate the optimal

1 The TM, IM, and CM are called Models to indicate that these are learning components,
in which a model (of the task, instructions and contingency) is learned. By contrast, in the
shaping component SC, there is no learning; the shaping method is determined in advance.

Interactively shaping robot behaviour with unlabeled human instructions 11

action to perform. As the robot may encounter the same state several times before
finding the optimal action, we want to avoid the charge for the teacher of giving
the same instruction several times for the same state.

For this purpose, the Contingency Model learns a model of the co-occurrence
between task states and the observed instruction signals. This way, when the robot
encounters a state for which it has already received an instruction, it can use it
for interpretation and shaping. At every step, CM takes as inputs the current
task state and the observed instruction signal, if any. These inputs are used for
updating the model of the contingency between states and instruction signals. The
CM outputs the most probable instruction signal for the current state, which is
then interpreted by IM, and used for shaping in SC.

The second role of CM is to provide robustness against erroneous instructions
by integrating the history of provided instructions, instead of considering only the
signal observed in the current time-step.

Instruction Model: The Instruction Model is the unit of our architecture that is
responsible for interpreting instructions. This model takes as input from CM the
most probable instruction signal for the current task state, in order to interpret
it. For this, it retrieves from TM useful information about the optimal action
for the current state, and updates the meaning of instruction signals accordingly.
The challenge is to design an interpretation method that accelerates the task-
learning process, while being robust against sparse and erroneous instructions.
Our interpretation method is detailed in Section 4.2.3.

Shaping Component: The Shaping Component is responsible for integrating the
information carried by IM into the decision-making step. It takes as inputs infor-
mation from both TM and IM, and outputs an action that would be performed by
the robot. Depending on the algorithm used for task learning and how instruc-
tions are represented, different shaping methods can be designed. A basic shaping
method would be to consider only the action indicated by the instruction. This
would be a satisfying solution if instructions are flawless, i.e. if the teacher always
provides the correct signal and the robot always interprets it correctly. However,
in our case, we do not have such guarantees: the teacher may provide incorrect sig-
nals, and the interpretation of these signals can be incorrect. So, a more reasonable
solution is to take into account the decisions of both IM and TM.

4.2 Methods

The TICS architecture represents the general idea of our framework: instructions
are interpreted (IM) according to the context in which they are provided (TM+CM)
and are in turn used for guiding the learning process (SC). However, each compo-
nent of the architecture can be implemented in several ways. In this section, we
detail the methods we use in this paper. First, we present how we derive a policy
within the Task Model, using both evaluative feedback and MDP rewards. Second,
we explain how instructions are represented and interpreted within the Instruction
Model. Then, we describe our implementation of the Contingency Model. Finally,
we explain how the interpreted instructions are used for decision-making in the
Shaping Component.

12 Anis Najar et al.

Fig. 4 Actor-Critic architecture. The TD error and evaluative feedback are both used for
updating the actor.

4.2.1 Task Model

For combining evaluative feedback with MDP rewards, we adopt the same view as
[12,15,26,28], by considering feedback as information about the policy and not as
standard MDP rewards.

We propose a policy-shaping method that uses evaluative feedback to incre-
mentally update the MDP policy. We first convert the provided feedback into
binary numerical values like in standard reward-shaping methods. Then we use
them to directly update the policy without modifying the value function.

For this, we use an Actor-Critic architecture, where the value function (the
critic) and the policy (the actor) are stored separately (Fig. 4). When learning
from MDP rewards, the actor is updated by the TD error coming from the critic
using Equation (5). When evaluative feedback ft ∈ {−1, 1} is provided, it is directly
used for updating the actor’s parameters using:

p(st, at)← p(st, at) + βft.

Like the TD error, a positive feedback increases the probability of selecting at
in st, while a negative feedback decreases it. This way, both feedback and MDP
rewards are used for updating the same task policy, without interfering with each
other.

4.2.2 Contingency Model

Storing the contingency between task states and instruction signals keeps the
teacher from providing instructions several times for the same state. However,
when dealing with real robotic systems, detecting contingency between different
events raises many challenges.

First, we have to make sure to detect only relevant events. In our case, we want
to ensure that the detected signals from the teacher correspond to instructions
and not to any other signal. For this, we define a set of possible instruction signals
among which the teacher can choose. Whenever one of these signals is detected,
we know that the teacher is providing instruction.

But still, a detected instruction signal can be due to an error either from the
teacher or from the detection system. To limit these errors, we define contingency
for a given state as a probability distribution over detected signals and we only
consider the most likely one as the true instruction signal.

In this paper, we propose a simple implementation of the Contingency Model.
We consider a co-occurrence matrix that stores the number of times each signal
has been detected in every state. Whenever an instruction signal i is detected in

Interactively shaping robot behaviour with unlabeled human instructions 13

a state st, the number of co-occurrences c(st, i) of st and i is incremented. Then,
we update the Contingency Model of st according to the newly detected signals
using

Pr(i|st) =
c(st, i)∑
j∈I c(st, j)

.

The most likely instruction signal i∗ for st is the one that has been observed
most of the time in this state:

i∗(st) = arg max
i∈I

Pr(i|st).

4.2.3 Instruction Model

Interpreting instructions consists in finding the optimal action corresponding to
each instruction signal. To do so, we retrieve information about the optimal action
from the task-learning process. We first explain how we represent instructions, then
we detail our interpretation method.

Representing instructions In this paper, we represent instructions as a probability
distribution over actions. One interesting feature of this representation is that it
enables incremental updates and it naturally represents different hypotheses about
the meaning of an instruction signal. In addition, it is mathematically equivalent
to the definition of a state policy, which is also interesting in terms of (policy)
shaping. In the remainder, we refer to the model of an instruction as a signal

policy, in contrast to the notion of state policy. We denote the signal policy for an
instruction signal i ∈ I at time t as

πt(i) = {πt(i, a); a ∈ A} = {Prt(a|i); a ∈ A}.

Interpreting instructions The most straightforward method for computing a signal
policy πt(i) = {πt(i, a);∀a ∈ A} is to consider instruction signals as the state-
space of an alternative MDP, which can be solved using a standard RL algorithm.
Since each instruction signal is sufficient for indicating the optimal action, state
transitions in this MDP satisfies the Markov property. However, this is only true
if the teacher provides an instruction signal for every state. In fact, RL algorithms
require contiguous state transitions for computing the TD error (cf. Equation 3).
Since we consider an interactive learning scenario, this condition is not necessarily
true. The teacher may not provide instructions for every situation. So, the main
limitation of this interpretation method is that it is valid only with non sparse
instructions. This approach has been previously considered in the literature [4,5,
49,30]. We refer to this method as Reward-based updating (RU).

In this paper, we propose an alternative solution where instructions are inter-
preted using the TD error of the Task Model. We update a signal policy with the
same amount as its corresponding state policy, the idea being that an instruction
signal indicates the optimal action of its corresponding task state. When the robot
visits a state st such as i∗(st) = i and performs action at, it updates the signal
policy πt(i, at) using:

δπt(i, at) = δπt(st, at).

14 Anis Najar et al.

In practice, the update is performed through the parameters of both policies
using:

δpt(i, at) = δpt(st, at).

We refer to this interpretation method as Policy-based updating (PU). In con-
trast to RU, PU can be used with sparse instructions since it does not require
contiguous instruction signals to compute the TD error.

4.2.4 Shaping Component

The Shaping Component combines the policies of the Task Model and the Instruc-
tion Model, in order to output an action to be executed by the robot. In Section
3.2.2, we presented some existing methods for shaping with instructions.

In this paper, we use the method proposed by [35], where a confidence measure
is used for arbitrating between several policies. Let x denote either a task state
s ∈ S or an instruction signal i ∈ I. The confidence of a policy π on x is given by

κπ(x) = max
a∈A

π(x, a)−max
b 6=a

π(x, b).

This measure reflects the certainty of a policy and takes values between 0
and 1. For instructions, it reflects the confidence about the interpretation of an
instruction signal. At time-step t, if κπ(st) < κπ(i∗(st)), the decision is taken
according to the Instruction Model. Otherwise, it is taken according to the Task
Model.

5 Simulation protocol

In this section, we present the experimental protocol that we use for evaluating
our framework in simulation. We first introduce the problem domains that we
consider. Second, we describe the teaching protocol used for providing teaching
signals in the simulated environments. Then, we detail our evaluation criteria.

5.1 Problem domains

We evaluate our framework on two different problems: object sorting and maze
navigation. Our motivation is to evaluate our framework on different MDP struc-
tures, in order to make our results more general. The contrasting properties of
these two domains have different implications on the performance of our model.
So, we introduce these two problems and we highlight the difference between their
structures.

5.1.1 Object sorting

We consider the object sorting domain introduced in [41]2. In this task, the robot
has to sort different objects according to their visual features. The scenario (Fig.
5a) involves a robot facing a table on top of which we can place objects in three

2 We also consider this task for the experiment with the real robot (cf. Section 7).

Interactively shaping robot behaviour with unlabeled human instructions 15

(a) Object sorting domain. A robot facing a
table divided into three regions: z1, z2 and z3.
A camera (red rectangle) is used for extract-
ing the visual features of an object placed in
z2. We consider two types of objects: Plain
(left) and Pattern (right), with two different
sizes and three colors. A Kinect sensor (blue
rectangle) extracts feedback and instruction
signals from the teacher.

(b) Maze navigation domain. Standard (top)
and simplified (bottom) maps. White squares
represent the free positions in the maze. The
yellow square represents the goal state. The
arrows represent the teacher’s policy.

Fig. 5 The problem domains used in simulation: object sorting and maze navigation. These
domains have contrasting MDP structures. a) Object sorting has a clustered state-space and a
relatively large action-set (9) compared to its goal-horizon (4). b) Maze navigation, has a fully
connected state-space and relatively small action-set (4) compared to its goal horizon (24).

different positions: z1, z2 and z3. When an object is presented to the robot in
z2, it must pick it up and then place it in the appropriate zone according to its
type. Unicolor objects (Plain) must be placed in z1 while objects with patterns
(Pattern) must be placed in z3. We consider eight different objects in our simulated
task.

The task is defined as an MDP < S,A, T,R >. The state space S is defined
by the tuple S = (Llh, Lrh, Lo, D). Llh = {z2, z3} and Lrh = {z1, z2} represent
the locations of the robot’s hands. Each hand can be located in two different
positions above z1, z2 and z3. Lo = {z1, z2, z3, lh, rh} describes the position of the
object which can be located in one of the three zones or in one of the robot’s
hands. Finally, D = (TY PE,COLOR,SIZE) describes the visual features of the
object: TY PE ∈ {Plain, Pattern} describes its type, COLOR ∈ {Red,Green,Blue}
describes its dominant color, and SIZE ∈ {Large, Small} describes its size.

The robot is able to perform nine elementary actions that are necessary for
completing the task A = {TakeP icture, xMoveLeft, xMoveRight, xP ick, xP lace},
where x ∈ {LeftHand, RightHand}. The TakeP icture action takes an image of
z2 and extracts its visual features. We do not consider this action in simulation,

16 Anis Najar et al.

which means that the descriptors of the object are always known to the robot, and
the action space contains only eight actions.

To make the robot learn the task, we divide each training session into several
episodes. Each episode begins with the teacher placing an object in z2, and ter-
minates whenever the robot places the object either in the correct or the wrong
spot, which leads to either a success or a failure. When learning from a prede-
fined reward function, the robot gets a reward r = −0.1 for every transition until
the end of the episode. A successful episode gives to the robot a positive reward
r = 1, while a failure gives a negative reward r = −1. We consider a deterministic
transition function.

The object sorting domain has some particular characteristics with respect to
standard RL problems. First, the state-space is not connected, as the reachable
states in each episode are determined by the object placed on the table. Second,
the size of the action-set is relatively high (9) compared to the goal horizon (4).

5.1.2 Maze navigation

Maze navigation is a standard problem in the RL literature, where a robot must
navigate within a maze in order to reach a predefined goal state (Fig. 5b). The
task is represented as an MDP < S,A, T,R >. The state space S is defined by
the coordinates of each state S = (sx, sy). The robot can perform four elementary
actions A = {North,East, South, West} that enable it to navigate through the
maze. Each training session is divided into several episodes. At the beginning of
each episode, the robot’s location is randomly initialized in a free position. The
episode ends whenever the robot reaches the goal state.

In our experiments, we consider two different instances of this problem. In
the standard maze problem, some states can have multiple optimal actions; while
in the simplified maze problem, there is only one optimal action in every state.
The existence of multiple optimal actions has implications on the interpretation of
instructions. When learning from a predefined reward function, the RL algorithm
can converge to a policy that is different from the one being communicated by the
teacher. As interpretation is based on the task-learning process, some instructions
can be misinterpreted because of this ambiguity.

We consider a deterministic transition function for this problem. The reward
function is defined by a negative reward r = −0.01 for every intermediate transition
and a positive reward r = 1 for reaching the goal.

Unlike object sorting, the maze navigation domain has a fully connected state-
space as all states are reachable in every episode. In addition, the size of its action-
set is relatively small (4) compared to the goal horizon (24). Most importantly, in
maze navigation, some states can have several possible optimal actions, as noted
above.

5.1.3 Parameters

Table 1 reports the parameters used in our experiments. We use the same param-
eters for all models in both domains. To evaluate the performance of a model on a
given domain, we run 1000 training sessions. Each session involves 1000 consecu-
tive episodes with 1000 maximum steps each. The horizon parameter γ is set to 0.9

Interactively shaping robot behaviour with unlabeled human instructions 17

Table 1 Experiment parameters.

|exp| |episodes| max steps γ α β ε δε
1000 1000 1000 0.9 0.1 0.1 0.1 0.001

and both learning rates α and β are set to 0.1. We use an ε−greedy action-selection
strategy with ε = 0.1, and a decay parameter for ε after each step of δε = 0.001 (ε
reaches 0 after 100 steps). The value function is initialized to 0, at the beginning
of every training session.

5.2 Simulated teacher

For each task, we assume that the simulated teacher has one single preferred
optimal policy π∗T that it tries to communicate to the robot. Evaluative feedback
and instructions are provided according to this policy. For instructions, the teacher
uses one single instruction signal i(a) to indicate each action a ∈ A. For every state
s ∈ S, it provides the instruction signal i(π∗T (s)) corresponding to its own optimal
policy. If the robot executes the action at = π∗T (st), the teacher provides it with
positive feedback fbt = 1. Otherwise, it provides a negative feedback fbt = −1. We
note fb∗T (st, at) the optimal feedback according to the teacher’s preferred policy:

fb∗T (st, at) =

{
1, if at = π∗T (st)

−1, otherwise.
(7)

We assume a transparency-based protocol for providing instructions, where
the teacher has access to the output of the Contingency Model in every step [45].
So, the teacher knows whether or not an instruction signal has been associated to
the current state and whether or not the associated signal is correct, and provides
instruction only if no signal is associated to the current state, or if the displayed
signal is incorrect. The main motivation behind this protocol is to limit the num-
ber of interactions with the robot, so the teacher provides instruction only when
required. For feedback, we assume the teacher provides evaluative feedback for
every performed action.

We evaluate our model under three teaching conditions: ideal, sparse and erro-
neous teaching signals. In the ideal case, the teacher provides instructions for every
state s ∈ S and feedback for every state-action pair (s, a) ∈ S×A. In the sparse con-
dition, instructions are provided only in a subset of the state-space (Pr(i|s) < 1)
and feedback is provided only for a subset of state-action pairs (Pr(fb|s, a) < 1).

In the erroneous case, when the teacher provides instructions, there is a prob-
ability that the robot perceives a random instruction signal it that is different
from the one corresponding to the teacher’s preferred action: it 6= i(π∗T (st)). For
erroneous feedback, we consider that at every step, the robot may perceive an eval-
uative feedback that is inconsistent with the teacher’s policy: fbt 6= fb∗T (st, at).

5.3 Evaluation criteria

To compare different models, we use two evaluation criteria: the convergence rate
of task performance and the interaction load of the teaching process.

18 Anis Najar et al.

5.3.1 Convergence rate

As instructions are employed to speed up the learning process, we compare different
models using the convergence rate of their task performance. To do so, we define
a convergence criterion for each problem, and we report the number of learning
steps that are needed to reach it.

For the object sorting task, we assume that a session converges whenever the
robot is able to perform the task in exactly 4 steps per episode. For maze naviga-
tion, as initial states have different distances from the goal, we consider the highest
distance from the goal as a convergence criterion. So, we assume that a session
converges whenever the robot is able to reach the goal in less than 24 steps.

The convergence rate of each model is computed as follows. First, we tally
the number of steps over the episodes until convergence, for each training session.
Then, we compute the density histogram of this measure over all sessions, and
convert it into a cumulative distribution function. This provides the probability
that task performance converges before n steps. If this probability reaches the
value 1 for n steps, it means that the model performance converges within at most
n learning steps.

While this measure may provide only a rough idea about convergence over a
training session (e.g. in maze navigation), it is sufficient for comparing the con-
vergence rates of different models, as long as we use the same criterion. The main
advantage of this method is to provide a compact measure of the convergence rates
over all sessions. For a matter of compactness, in this paper we only report the 99th
percentile of the number of steps until convergence, which constitutes a worst-case
evaluation criterion, and the number of sessions over 1000 that did not converge.
Worst-case evaluation provides a better estimation of the reliability of a system
compared to average performance (cf. figures 1 and 5 in supplementary material).
Some cumulative distributions are also provided as supplementary material.

5.3.2 Interaction load

The second evaluation criterion is the interaction load of the teaching process, that
we measure as the number of required teaching signals (feedback and instructions)
for learning the task. We report the maximum number of required teaching signals
over 1000 training sessions as a worst-case evaluation criterion.

When learning from evaluative feedback only, without using instructions, the
total number of required teaching signals equals the number of provided feedback
until convergence of task performance. When instructions are used in addition
to feedback, however, the total number of teaching signals required for learning
is not related to the convergence of task performance. Indeed, task performance
mainly depends on the complexity of the state-space that is defined by instruction
signals; and converges whenever the robot learns to interpret instructions. From
that time on, the robot only needs to use the Instructions Model, in states where
instructions have been provided. But there may exist some states that did not
receive any instruction, and where the policy did not yet converge. In this case,
the teacher still needs to provide instructions for these states.

So, when using instructions, the number of required teaching signals in a ses-
sion equals the number of evaluative feedback until the convergence of task per-
formance, plus the number of instructions provided over the whole session. Here,

Interactively shaping robot behaviour with unlabeled human instructions 19

(a) Object sorting. (b) Maze navigation.

Fig. 6 Performance of the baseline models in the ideal case. Each curve represents the evo-
lution of the number of steps by episode over a training session. For each episode, we report
the median, the minimum and the maximum number of steps over 1000 sessions. Each curve
is smoothed using a moving average over a window of 100 episodes. In black: learning from a
predefined reward function. In red: learning from evaluative feedback. In blue: learning from
both evaluation sources. Blue and red curves completely coincide (purple), which means that
the effect of the reward function is negligible compared to evaluative feedback.

the number of evaluative feedback is the one required for interpreting instructions;
and the number of instructions is the one required for shaping the policy, or more
exactly for entirely determining the Contingency Model.

6 Results in simulation

In this section, we evaluate our framework in simulation under different hypotheses
about the teaching conditions. First, in Section 6.1, we evaluate our model under
ideal teaching signals. Sections 6.2 and 6.3 report the performance of our model
with respectively sparse and erroneous instructions. Sections 6.4 and 6.5 evaluate
the robustness of our model against sparse and erroneous feedback. Finally, in
Section 6.6, we evaluate the cost of our method in terms of interaction load.

6.1 Ideal teaching signals

Under this condition, we assume that the simulated teacher is always available
and always provides correct instructions and feedback, according to its preferred
policy.

We first report the performance of the three baseline models in both problem
domains (Fig. 6). We refer to the baseline model that learns only from evaluative
feedback as FB, the one that learns only from a reward function as RL, and the
model that learns from both evaluation sources as RL+FB. None of these models
use instructions. However, they use the same Actor-Critic implementation as the
Task Model.

First, we observe that in the ideal case, FB converges much faster than RL.
This is mainly due to the difference between evaluative feedback and the reward
function in terms of sparsity and temporal credit-assignment. While evaluative
feedback informs about every performed action, the effect of the reward function

20 Anis Najar et al.

Table 2 Comparison of interpretation methods with ideal teaching signals. The reported num-
bers correspond to the 99th percentile of the number of steps until convergence. In parentheses,
the number of sessions over 1000 that did not converge.

Learning from evaluative feedback
PU RU FB

sorting 102 102 503
maze 38 38 393

Learning from a predefined reward function
PU RU RL

sorting 1248 2881 2476 (716)
maze 9141 5.2e+4 2.5e+4

Table 3 Model performance under ideal teaching signals. The reported numbers correspond
to the 99th percentile of the number of steps until convergence. In parentheses, the number of
sessions over 1000 that did not converge.

Learning from evaluative feedback and/or a predefined reward function
FB+PU RL+FB+PU FB RL+FB RL+PU RL

sorting 103 103 503 503 1298 2476 (716)
maze 39 39 393 393 3011 2.5e+4

needs to be iteratively propagated over the entire state-action space. This also
explains the second observation, that RL+FB is equivalent to FB. Evaluative
feedback dominates over the reward function when they are combined.

Second, we note that for the object sorting domain, the RL algorithm does
not always converge to the solution of 4 steps by episode (Fig 6a). However, the
robot still converges to a solution within at most 5 steps. At worst, it performs
one additional and useless action, like changing the position of the empty hand
before putting the object in the correct zone. Consequently, when necessary, we
also consider the 5-steps by episode convergence criterion in addition to the 4-steps
criterion for measuring the convergence rate on the object sorting task.

We now assess the performance of our interpretation method, Policy-based Up-
dating (PU), with respect to Reward-based Updating (RU) and to the baselines
(Table 2, Fig. 1 in supplementary material). For this, we only consider the output
of the Instruction Model in decision-making, so the performance of each interpre-
tation method only depends on the quality of its interpretation. When learning
from evaluative feedback, we observe that both interpretation methods have the
same performance; and both of them improve the convergence rate compared to
FB, in both domains (for RU, evaluative feedback is converted into rewards).
When learning from a predefined reward function, however, PU outperforms RU
in both domains. Even though RU correctly interprets instructions (the Instruc-
tion Model converges to the optimal policy), it does not improve the convergence
rate compared to RL.

In Table 3, we assess the performance of our full model using the PU method
with respect to the baselines. We observe that in both domains the best perfor-
mance is obtained with FB+PU, namely when unlabeled instructions are used in
addition to evaluative feedback. The second best performance is achieved when
only using evaluative feedback (FB). Then, we have the performance obtained
when unlabeled instructions are used in addition to a predefined reward function
(RL+PU). Finally, the worst performance is obtained when only using a reward
function. We can see that using unlabeled instructions with evaluative feedback

Interactively shaping robot behaviour with unlabeled human instructions 21

Table 4 Model performance under sparse instructions. The probability of receiving an in-
struction over the entire state space is p = Pr(i|s). The reported numbers correspond to the
99th percentile of the number of steps until convergence. In parentheses, the number of ses-
sions over 1000 that did not converge. (*) Convergence to 5 steps by episode criterion. (**)
Simplified maze problem.

p=1 p=0.9 p=0.7 p=0.5 p=0.3 p=0.1 p=0 baseline
FB+PU FB

sorting 103 278 363 430 483 516 503 503
maze 39 48 60 113 207 349 393 393

RL+PU RL
sorting 1298 1452 (234) 1738 (506) 1995 (630) 2334 (702) 2354 (741) 2476 (716) 2476 (716)
sorting5* 989 1136 1428 1751 1981 2128 2157 2157
maze 3011 1.4e+4 3e+4 6.7e+4 9.9e+4 (74) 5.7e+4 (219) 2.5e+4 2.5e+4
maze2** 3555 9692 1.5e+4 1.9e+4 2.2e+4 2.3e+4 2.4e+4 2.4e+4

RL+FB+PU RL+FB
sorting 103 278 363 430 483 516 503 503
maze 39 48 60 113 207 349 393 393

accelerates the learning process by 80% in object sorting and 90% in maze navi-
gation. When learning from a predefined reward function, the learning process is
accelerated by 48% in object sorting and 88% in maze navigation.

From these results, we conclude that with ideal teaching signals, our framework
improves the convergence rate with respect to not using unlabeled instructions.

6.2 Sparse instructions

We now evaluate our framework with sparse instructions. Under this condition,
instructions are provided only in a subset of the state space, while feedback is
provided at every step.

When learning from evaluative feedback, we observe the same behaviour for
both problem domains (Table 4, Fig. 2 in supplementary material). With no in-
structions, our model is equivalent to the baseline. The more the teacher pro-
vides instructions for different states, the higher the probability for our model to
converge faster. These results demonstrate the robustness of our method against
sparse instructions, in the case of learning from evaluative feedback.

When learning from a predefined reward function, however, this behaviour
holds only for the object sorting task (Table 4, Fig. 3 in supplementary. material).
In maze navigation, our model is not robust beyond a certain level of sparsity
Pr(i|s) ≤ 0.5. This issue can be explained by the existence of multiple optimal
policies, since many states can have two optimal actions. For high instruction
sparsity, there is more risk that a signal is given in states where the optimal
action found by the Task Model (RL) is different from the teacher’s policy. In this
situation, the meaning of the provided instruction signal can be misinterpreted by
the robot, as it might be associated with another action than the one intended by
the teacher.

We verify this on the simplified maze navigation domain which has a unique
optimal policy (maze2 in Table 4, also see Fig. 3 in suppl. material). In this domain,
our model is robust against all levels of instruction sparsity and its performance
increases proportionally to the number of provided instruction signals.

22 Anis Najar et al.

For domains with multiple optimal policies, different solutions can be consid-
ered to avoid the misinterpretation of instructions. In our work, we assumed for
simplicity that the teacher has one single preferred policy, according to which
(s)he provides instructions. This corresponds to the special case where the teacher
knows only one way of performing the task. In a real-world scenario, however,
if the teacher is aware about the different optimal actions, (s)he may alternate
between different instruction signals. This would lower the effect of misinterpreta-
tion as the provided instruction signals would match more often with the optimal
action found by the Task Model; so the robot would not get stuck into one wrong
interpretation. In the extreme case, the teacher could change its policy to match
the robot’s actions. Otherwise, if the teacher wants to persist on its own policy,
(s)he can always correct misinterpretations through evaluative feedback, forcing
the robot to follow the communicated policy.

This is the solution that we consider in our work. Table 4 shows that when the
reward function is combined with evaluative feedback, our model becomes totally
robust to sparse instructions. As the effect of evaluative feedback dominates over
the effect of the reward function, correcting misinterpreted instructions can be
done easily. This is particularly true with the method we use for interpretation,
PU, which is based on the TD error of the Task Model. Because this error tends
to zero as the robot learns, the effect of the reward function on interpretation
fades over time. Consequently, there is a certain point in time where the effect of
corrections cannot be overridden by the reward function.

In summary, these results show that our framework is robust against sparse in-
structions, when learning from evaluative feedback. Learning from a reward func-
tion, however, may cause convergence issues in domains with multiple optimal
policies, due to misinterpreting instructions. Finally, when learning from both eval-
uation sources, evaluative feedback provides robustness against sparse instructions
by allowing the teacher to correct misinterpreted instructions.

6.3 Erroneous instructions

We now evaluate the robustness of our model against erroneous instructions. Under
this condition, instructions and feedback are not sparse. However, each time the
teacher provides an instruction, we include a probability for the robot to perceive
a signal that is inconsistent with the teacher’s policy.

Generally, we observe that our model is robust to erroneous instructions up
to a probability of error Pr(it 6= i(π∗T (st)) ≤ 0.3 (Table 5). When learning from
evaluative feedback, our model still outperforms the baseline for a probability of
error Pr(it 6= i(π∗T (st)) ≤ 0.3, in both domains. In the object sorting domain, our
model outperforms the baseline in 97% of sessions (see Fig. 4 in supplementary
material). When learning from a predefined reward function, our model outper-
forms the baseline for Pr(it 6= i(π∗T (st)) ≤ 0.5 in both domains. Combining the
reward function with evaluative feedback does not provide more robustness against
erroneous instructions and the combination has almost the same performance as
when learning only from evaluative feedback.

These results show that our framework is robust against erroneous instructions
and improves the convergence rate, for a probability of erroneous instructions lower
than 0.3.

Interactively shaping robot behaviour with unlabeled human instructions 23

Table 5 Model performance under erroneous instructions. The probability of receiving an
erroneous instruction is p = Pr(it 6= i(π∗

T (s)). The reported numbers correspond to the 99th
percentile of the number of steps until convergence. In parentheses, the number of sessions
over 1000 that did not converge. (*) Although the 99th percentile is higher than the baseline,
the model still outperforms the baseline in more than 90% of the sessions (See Fig. 4 in
supplementary material).

p=0 p=0.1 p=0.3 p=0.5 p=0.7 p=0.9 p=1 baseline
FB+PU FB

sorting 103 329 568* 1011 3056 (2) 4096 (294) 3974 (65) 503
maze 39 49 253 1756 1.8e+4 1.4e+4 1.4e+4 393

RL+PU RL
sorting 1298 1316 1543 2014 3907 (3) 5034 (995) 6240 (987) 2476 (716)
maze 3011 5325 11566 2.4e+4 1.6e+5 (4) NA NA 2.5e+4

RL+FB+PU RL+FB
sorting 103 340 512* 1065 2904 (1) 4201 (258) 3964 (63) 503
maze 39 52 259 1784 1.9e+4 (1) 1.4e+4 1.4e+4 393

Table 6 Model performance under sparse feedback. The probability of receiving a feedback
over the entire state-action space is p = Pr(fb|s, a). The reported numbers correspond to the
99th percentile of the number of steps until convergence. In parentheses, the number of sessions
over 1000 that did not converge.

p=1 p=0.9 p=0.7 p=0.5 p=0.3 p=0.1 p=0
FB

sorting 503 3492 (784) NA NA NA NA NA
maze 393 1.1e+4 1.6e+4 (414) NA NA NA NA

FB+PU
sorting 103 104 160 342 (2) 1295 (169) 1287 (979) NA
maze 39 42 55 78 148 1349 (1) NA

RL+FB RL
sorting 503 1012 (58) 1243 (231) 1413 (574) 1665 (759) 2227 (758) 2476 (716) 2476 (716)
maze 393 605 9904 1.4e+4 1.9e+4 2.4e+4 2.5e+4 2.5e+4

RL+FB+PU RL+PU
sorting 103 104 300 520 696 1069 1298 1298
maze 39 40 44 69 429 1278 3011 3011

6.4 Sparse feedback

One limitation of learning from evaluative feedback is that the quality of the
learning process mainly depends on the number of provided feedback. If feedback
is too sparse, the learning process can be penalized. So, we propose to evaluate
the performance of our framework under different levels of feedback sparsity. We
consider the condition where instructions are not sparse, while feedback is provided
only for a subset of state-action pairs.

We first consider the situation where evaluative feedback is the only available
evaluation source (Table 6). In this case, we observe that the FB+PU model makes
the learning process more robust to higher levels of feedback sparsity. In the object
sorting task, the performance of the baseline model FB is drastically decreased
whenever feedback becomes sparse (Pr(fb|s, a) < 1). With FB+PU, however, the
learning process is still robust down to a probability of feedback Pr(fb|s, a) ≥ 0.7.

In the maze navigation task, the baseline model FB is robust down to a proba-
bility of feedback Pr(fb|s, a) ≥ 0.9; while FB+PU is robust down to a probability
of feedback Pr(fb|s, a) ≥ 0.3. These results show that our framework improves the

24 Anis Najar et al.

robustness of the learning process against feedback sparsity. However, the robust-
ness is still limited to a certain level of sparsity.

This limitation can be alleviated by using an additional evaluation source that
would take over the learning process whenever feedback is lacking. Table 6 shows
that when evaluative feedback is combined with a reward function, the learning
process becomes robust against all levels of feedback sparsity. Generally, we ob-
serve that the more sparse the feedback, the more the models tend to behave like
when learning only from the reward function. So, in the extreme case with no
feedback, the baseline RL+FB is equivalent to RL, and RL+FB+PU is equivalent
to RL+PU. In both cases, convergence is guaranteed by the reward function. Note
that for the object sorting task, the baseline model RL+FB does not completely
converge to the 4-steps solution whenever feedback becomes sparse. However, it
still converges to the near-optimal 5-steps solution; but here we only report the
results for the 4-steps solution for comparison. The RL+FB+PU model, on the
other hand, is robust against all levels of feedback sparsity in both domains.

Globally, we observe that for a given number of feedback, RL+FB+PU im-
proves the convergence rate with respect to RL+FB. The convergence rate of
RL+FB ranges from the performance of RL to the performance of FB with full
feedback. The RL+FB+PU model benefits from a larger range of convergence
rates. Without teaching signals, it performs like RL, while the maximum conver-
gence rate goes beyond the performance of FB-with-full-feedback.

To sum up, we can say that our framework improves the robustness against
feedback sparsity when learning only from evaluative feedback, but it is still limited
to a certain level of feedback sparsity. Using a reward function in addition to
evaluative feedback makes the learning process robust against all levels of feedback
sparsity. But yet, for the same number of feedback, our framework improves the
convergence rate, with respect to learning without unlabeled instructions.

6.5 Erroneous feedback

We now consider the condition where the teacher may provide erroneous feedback.
Under this condition, instructions are correct and neither instructions nor feedback
are sparse. On every time-step, there is a probability that the feedback is not
consistent with the teacher’s policy.

When learning only from evaluative feedback, we observe the same behaviour
in both domains (Table 7). Whether instructions are used or not, the learning
process is not robust to a probability of error Pr(fbt 6= fb∗T (st, at)) ≥ 0.5. This is
a predictable result, since evaluative feedback is binary. For a probability of error
Pr(fbt 6= fb∗T (st, at)) = 0.5, evaluative feedback provides no information about the
policy. Below this level of error, however, our model and the baseline completely
converge in both domains. Nevertheless, our model still outperforms the baseline
for the same level of erroneous feedback.

When evaluative feedback is combined with a reward function, no significant
improvement is observed. However, this has to be put into perspective with the fact
that feedback is not sparse. We can expect more effect from the reward function
with sparse feedback. Nevertheless, these results show that, whether a reward
function is used or not, our framework is robust against erroneous feedback and
improves the convergence rate, if the teacher is optimal most of the time.

Interactively shaping robot behaviour with unlabeled human instructions 25

Table 7 Model performance under erroneous feedback. The probability of receiving an erro-
neous feedback is p = Pr(fbt 6= fb∗T (st, at)). The reported numbers correspond to the 99th
percentile of the number of steps until convergence. In parentheses, the number of sessions
over 1000 that did not converge.

p=0 p=0.1 p=0.3 p=0.5
FB

sorting 503 892 4065 NA
maze 393 871 5681 NA

FB+PU
sorting 103 142 643 NA
maze 39 47 135 4.6e+4 (997)

RL+FB
sorting 503 859 4184 (12) NA
maze 393 729 5163 NA

RL+FB+PU
sorting 103 136 512 2.3e+5 (980)
maze 39 48 135 3.6e+5 (809)

Table 8 Interaction load measured as the maximum number of required teaching signals over
1000 training sessions.

Object sorting Maze navigation
FB+PU FB FB+PU FB

#feedback 106 563 46 568
#instructions 53 0 181 0
#total 159 563 227 568

6.6 Interaction load

To evaluate the cost of our method in terms of interaction load, we measure the
total number of required teaching signals, as described in Section 5.3.2. We assess
the cost of using unlabeled instructions in addition to evaluative feedback with
respect to only using evaluative feedback. We only consider the ideal case where
all teaching signals are correct and not sparse.

Table 6.6 reports the maximum number of required teaching signals over 1000
training sessions for both domains (see Fig. 5 in supplementary material). Without
using instructions, the teacher needs to provide at most 563 feedback for the object
sorting domain and 568 feedback for maze navigation. With our framework, these
numbers are reduced to 159 teaching signals for the object sorting domain (81%
fewer feedback, 72% fewer teaching signals) and 227 teaching signals for maze nav-
igation (91% fewer feedback, 60% fewer teaching signals). This demonstrates that
our framework reduces the number of evaluative feedback and the total number
of required teaching signals.

6.7 Summary

The experimental results obtained in simulation can be summarized as follows:

Ideal case: When teaching signals are correct and not sparse, our framework
improves the convergence rate with respect to learning without unlabeled instruc-
tions.

26 Anis Najar et al.

Sparse instructions: When learning from evaluative feedback, our framework
is robust against all levels of instruction sparsity, and improves the convergence
rate with respect to not using unlabeled instructions. However, when learning from
a reward function, the existence of multiple possible interpretations can prevent
the learning process from converging. This only happens in domains with multiple
optimal policies and when instructions are below a certain level of sparsity. When
the reward function is combined with evaluative feedback, our framework becomes
robust against all levels of instruction sparsity, as feedback enables the teacher to
rectify misinterpreted instructions.

Erroneous instructions: Our framework is robust against erroneous instruc-
tions and improves the convergence rate, if the probability of receiving erroneous
instructions is lower than 0.3.

Sparse feedback: When learning only from evaluative feedback, our framework
improves the convergence rate and the robustness of the learning process against
feedback sparsity. However, it is still limited to a certain level of sparsity. With a
reward function, the learning process becomes robust against all levels of feedback
sparsity.

Erroneous feedback: Our framework is robust against erroneous feedback and
improves the convergence rate as long as the teacher provides correct feedback most
of the time.

Interaction load: In the ideal case, our framework reduces the number of
evaluative feedback and the total number of required teaching signals.

7 Experiment with a real robot

In this section, we evaluate our framework with a real robot and a real human
teacher on the object sorting task (Fig. 5a). We assess the performance of the
TICS architecture when using unlabeled instructions with respect to only using
evaluative feedback. For the sake of simplicity, we do not consider a predefined
reward function. In order to assess the scalability of our framework to different task
complexities, we contrast two experimental conditions by varying the complexity
of the state-space representation.

In this experiment, we use a slightly different implementation of the TICS
architecture using Q-learning instead of Actor-Critic. So, we first detail our meth-
ods in Section 7.1. Then, we present the experimental setup with the real robot
in Section 7.2. The experimental results are reported in Section 7.3. These results
confirm that our framework improves the convergence rate of the learning pro-
cess and reduces the number of required teaching signals, in line with the results
reported in simulation.

7.1 Methods

In this experiment, the TICS architecture is based on the Q-learning algorithm
instead of Actor-Critic. In the Task Model, evaluative feedback is converted into

Interactively shaping robot behaviour with unlabeled human instructions 27

numerical values r ∈ {−1, 1} and used in a reward-shaping fashion for updating a
Q-function, with γ = 0 and α = 0.3 3.

For interpreting instructions, we use the Reward-based Updating method (RU)
that considers instruction signals as an alternative state-space for learning a Q-
function within the Instruction Model, in the same way as in the Task Model (cf.
Section 4.2.3). As shown in Section 6.1, RU has the same performance as PU,
when learning from non sparse evaluative feedback and instructions. So, we will
refer to our model in this experiment as FB+RU.

We rely on the same implementation of the Contingency Model as in Section
4.2. However, we implement a different shaping method that updates the Q-values
of the Task Model towards the Q-values of the Instruction Model, and then uses
the policy of the Task Model for decision-making. We consider a greedy action-
selection strategy. As the learning process is completely guided by the teacher,
random exploration is not required.

7.2 Experimental setup

The experimental set-up (Fig. 5a) is composed of a Baxter Research Robot facing a
table on top of which we place three magnets. The magnets allow placing objects at
three different positions on the table: left, middle and right. Pictures of the objects
placed at the middle position can be taken with a webcam placed between the robot
and the table. A Microsoft Kinect4 V2 sensor is placed on top of the robot’s head
and used for extracting feedback and instruction signals from the human teacher.
The screen on the robot’s head is employed as a transparency device to display
the current task state, the associated instruction signal, the performed action and
the perceived reward. The robot is controlled by an implementation of the TICS
architecture on ROS [36].

7.2.1 Human teacher

Throughout a training session, the human teacher5 uses either only feedback (FB)
or feedback plus unlabeled instructions (FB+RU). Feedback is divided in two
categories fb ∈ {head nod, head shake}. By convention, head nods are converted
into a positive reward, while head shakes are converted into a negative reward.

Instruction signals are defined over the teacher’s hand gestures. For each hand,
the system recognizes five states h ∈ {pointing right, pointing left, pointing middle,
raised open, raised closed}, resulting in 35 possible gestures using either one or
both hands. In this work, we use only one instruction signal per action; so we only
use nine gestures.

3 With myopic discounting (γ = 0) [19], the Q-values play the same role as policy parameters
in Actor-Critic. So, this method is still compatible with our view about evaluative feedback as
information about the policy.

4 https://dev.windows.com/en-us/kinect, accessed 20-12-2014. We use a modified version of
the Kinect V2 ROS client/server provided by the Personal Robotics Laboratory of Carnegie
Mellon University. https://github.com/personalrobotics/, Last accessed 20-12-2014.

5 The first author of this paper.

28 Anis Najar et al.

In all sessions, the teacher provides feedback for every step (non sparse feed-
back). In sessions including unlabeled instructions, the teacher provides an in-
struction signal only if the robot did not receive any instruction for the current
state or if the recorded signal is erroneous.

7.2.2 Experimental conditions

We follow the same protocol as [41] by considering two different conditions:
Small state space: In this condition, the object descriptor D = (TY PE);

TY PE ∈ {Plain, Pattern, Unknown} contains one single variable based on the
number of Speeded-Up Robust Features (SURF) [3] descriptors of the object. The
Plain, Pattern and Unknown values are obtained by thresholding the number of
extracted SURF descriptors. If this number is less than 50, the object is considered
as Plain. Otherwise it is considered as Pattern. The number of different task states
resulting from this representation is 72.

Large state space: In this condition, the object descriptor D = (TY PE,
COLOR,SIZE) contains three variables: TY PE ∈ {Plain, Pattern, Unknown} de-
scribes the number of SURF descriptors as in the previous condition. COLOR ∈
{Red,Green,Blue, Unknown} describes the dominant color of the object that can
be red, green or blue. SIZE ∈ {Large, Small, Unknown} describes the area of the
bounding box of the object. This representation yields 864 task states.

In order to assess the scalability of our framework to different task complexities,
we compare our model FB+RU to the baseline model FB in both the small and the
large state space conditions. We conduct four training sessions with each model in
each condition, which results in 16 sessions. In each training session, six different
objects are presented one by one to the robot in a specific order. Four different
orders were chosen randomly beforehand and the same orders were employed for
both models in both conditions. Each session ends when all the six objects have
been presented twice for the small state space condition and three times for the
large state space condition, whether learning converged or not. A video of one
training session can be found online6.

7.3 Experimental results

Figure 7 reports the evolution of the number of provided instructions and negative
feedback over time for each condition. The results are averaged over the four
sessions. We can see that in the small state space condition, the baseline model
converges after at most 36 minutes, while our model converges within 17 minutes.
In the large state space condition, the baseline model does not completely converge
after an hour of training, while our model converges after at most 24 minutes.

Table 9 reports various statistics over the training sessions such as the training
time, the number of steps, number of teaching signals, number of explored states,
number of undesired states and the number of steps spent in undesired states.
Undesired states define situations in which the robot is holding the object with
the wrong hand, or is holding the object while its descriptors are unknown (this
may happen if the robot takes a picture after picking the object). We also report

6 https://youtu.be/TK9SwFedtUc

https://youtu.be/TK9SwFedtUc

Interactively shaping robot behaviour with unlabeled human instructions 29

(a) Small state space. (b) Large state space.

Fig. 7 Number of instructions (blue) and negative feedback (red) over time.

Small state space Large state space
FB+RU FB FB+RU FB

training time (min) 25 33 31 67
#steps 135 235 166 470
#feedback 135 235 165 466
#negative feedback 42 135 33 296
#instructions 29 0 50 0
#states 36 51 61 108
#undesired states 8 14 8 23
#steps in undesired states 10 29 10 70
#Q-values 265 164 450 359

Table 9 Experiment statistics. The results are averaged over four training sessions. Training
time, number of steps, number of provided feedback, negative feedback and instruction signals,
number of explored states, number of undesired states, number of steps spent in undesired
states and number of learned Q-values.

the size of the Q-function measured as the number of state-action pairs for which
the algorithm learns a value.

The experimental results are consistent with those obtained in simulation and
with the results reported by [41]. They show that our model reduces considerably
the number of steps and training time (42% fewer steps for the small state condition
and 64% in the large state condition). It is also more efficient by achieving better
performance with less interactions (30% less teaching signals for the small state
condition and 53% in the large state condition). The robot also explores fewer
states (respectively 29% and 43% fewer in each condition), fewer undesired states
(resp. 42% and 65% fewer) and spends less time in these states (resp. 65% and
85% less). This reflects a more efficient exploration strategy for our model.

Finally, when using only evaluative feedback, the robot learns in average 3
action values per state, compared to 7 action values per state when also using
unlabeled instructions. This means that our model can determine more efficiently
the Q-function in less time.

This experiment validates the results we obtained in simulation. It demon-
strates that our framework reduces both the training time and the number of
required teaching signals with respect to not using unlabeled instructions.

30 Anis Najar et al.

8 Discussion

Our experimental results, both in simulation and with a real robot, demonstrate
the effectiveness of our framework in improving the convergence rate of the learn-
ing process and in reducing the total number of required teaching signals. This
performance can be explained by a reduction in the complexity of the learning
process.

To simplify the complexity analysis, we only consider the ideal case where
teaching signals are correct and non sparse. Also, we do not consider the effect
of the reward function, since it is negligible compared to the effect of evaluative
feedback in the ideal case. Without instructions, learning the task requires to de-
rive a policy over the entire state space, which amounts to computing |S| × |A|
state-action preference values. With our framework, task learning is divided into
two processes: interpreting instructions and shaping. Interpreting instructions re-
quires to derive a policy over instruction signals, which amounts to computing
|I| × |A| signal-action preference values. Shaping requires to use the information
about the optimal action in every task state. This is done by associating an in-
struction signal to each different task state, which requires |S| operations. So, with
our framework, the learning process requires |S| + |I| × |A| operations instead of
|S| × |A|. Our framework reduces the complexity of the learning process only if
|I| < |S| × (1− 1

|A|), which is equivalent to |I| < |S| as |A| gets large.

The number of provided instructions |I| can be written as |I| = |O|×|C|, where
|O| is the number of different optimal actions required for executing the task, and
|C| is the number of different instruction signals used by the teacher for indicating
each action. So, the more task states sharing the same optimal action there are,
and the fewer different signals are used by the teacher per action, the better the
gain of our method. In our experiments, we considered domains such that |O| = |A|
and |A| < |S|; and we assumed |C| = 1. So, the condition |I| < |S| was satisfied.

The reduction in complexity resulting from our framework can be explained by
the role played by unlabeled instructions, which serve as a bottleneck that shifts
the complexity of the learning process from the task state space to the signal
state space. This scheme can be considered as a hybrid learning method that
lies between reinforcement learning and supervised learning and combines their
benefits (Fig. 1). In a pure RL scheme, learning is mainly based on the exploration
of the state-action space and suffers from slow convergence. Supervised learning,
on the other hand, is more straightforward but requires predefined labels. In our
framework, instruction signals constitute labels whose meanings are learned by RL
and used for learning the task in a supervised fashion. More precisely, the Policy-
based Updating method (PU) interprets instructions by using the TD error of
the task-learning process; and shaping mainly depends on the Contingency Model
which associates instruction signals to task states in a supervised learning way.
The PU method proposed in this paper alleviates the limitation of the standard
interpretation method, RU, which only works with non sparse instructions.

Our work presents similarities with autonomous reward-shaping methods [24,
23,29,14], that share the common idea of learning a value function on an alterna-
tive state-space, and then using this function for shaping the task in the original
state-space. Our framework is based on a similar idea, that instruction signals
define an alternative state-space in which a policy is learned, and used for shaping
the policy of the task state-space. First, as with external sensors in [23], instruction

Interactively shaping robot behaviour with unlabeled human instructions 31

Fig. 8 Relationship between different information sources in our framework.

signals represent additional sensory readings that are not part of the “problem-
space”. Second, as in [14], instruction signals can be considered as a clustering
of the “grond-space”, where each signal regroups all states in which it has been
provided. The main difference is that with our framework, the similarity measure
defining the clustering is not based on the topographic proximity of task states,
but rather on whether or not these states share the same optimal action.

In addition to reducing the complexity of the learning process, our framework
provides a flexible way for switching between different learning modalities: learning
from a reward function, learning from evaluative feedback and learning from in-
structions. This lets the teacher benefit from the advantages of each source of infor-
mation (Fig. 8). Evaluative feedback accelerates the learning process with respect
to the reward function. Instructions accelerate the learning process with respect
to both evaluative feedback and the reward function. Finally, the reward function
provides autonomy with respect to evaluative feedback, in both task learning and
interpreting instructions.

Despite all these advantages, our framework still suffers from several limita-
tions. For instance, we assumed that the robot was able to detect a predefined set
of instruction signals, which requires a prior segmentation of these signals. This
constitutes a limitation for our system, because even with an important category
of discrete signals, the teacher is still constrained by the signals that the system
is able to detect. On possible solution to this limitation would be to perform an
online segmentation of the teacher’s gestures.

In this paper, we also assumed that the teacher had a single preferred action
for every task state, and only one signal is used per action. The main motivation
for doing so is to handle contradictory and erroneous instructions. In fact, we
assumed that the existence of multiple instructions was synonymous to contradic-
tion. So, at every time step, only the most likely instruction signal is extracted
from the Contingency Model for interpretation and shaping. However, this imple-
mentation limits the possibility for the teacher to indicate the same action with
different signals or to suggest several actions for the same state, which can be
useful in problems with multiple optimal policies. A possible extension would be
to consider all the signals that have been detected in a given state, and to use
their contingencies as weights for both interpretation and shaping.

Another limitation resides in the transparency-based teaching protocol, in
which the teacher has access to the signal that is associated to the current state.

32 Anis Najar et al.

The main motivation behind this protocol is to limit the number of interactions
with the robot, so the teacher needs to provide instructions only when required.
Without such a protocol, our method would be less effective in reducing the num-
ber of teaching signals, but would still be as effective in accelerating the learning
process. Nevertheless, this protocol requires a transparency device and is not easy
to implement in all real robots. In our case, we used the screen of the Baxter
robot, but other solutions such as intentional actions [17] or gazing behaviours
[45] can also be employed. There are some other alternatives such as active learn-
ing protocols where the robot asks explicitly for teaching signals when required.
However this solution also has its limitations. For example, it can be constraining
and annoying for the teacher to not control the pace of the interaction. All these
aspects related to the teaching protocol are very important and require further
investigations in future work. More extended user studies are necessary to provide
external validation of the assumptions about how people would be interacting with
our system.

9 Conclusion

This paper presents a novel framework for interactively shaping a robot behaviour
with unlabeled human instructions. The key idea is to reduce the complexity of a
task-learning process through unlabeled instruction signals. These signals are in-
terpreted by the robot, and used simultaneously for accelerating the task-learning
process.

This approach has several advantages. First, using unlabeled instructions offers
more adaptability to the preferences of the teacher, by providing more flexibility
in the choice of signals and in their meaning. Second, this reduces the required
engineering effort, by removing the constraint about encoding the meaning of each
signal.

We implemented our framework as a modular architecture (TICS) based on
four components: a Task Model, an Instruction Model, a Contingency Model and
a Shaping Component. This modular architecture makes it possible to integrate
several sources of information, such as a reward function, evaluative feedback and
instructions. This enables the teacher to switch between different teaching modal-
ities in order to benefit from each source of information. Although in this paper
we proposed one particular implementation, the modularity of our architecture
makes it possible to imagine several extensions for each component. For instance,
different algorithms can be designed for task learning, for computing contingency,
for interpreting instructions and for shaping.

Finally, the experimental results reported in this paper demonstrate the effec-
tiveness of our framework in accelerating the task-learning process and in reducing
the number of required teaching signals. The complexity reduction performed by
our framework provides a novel perspective for combining Reinforcement Learning
and Supervised Learning paradigms.

Interactively shaping robot behaviour with unlabeled human instructions 33

Supplementary material

Supplementary material includes five figures and can be found with this article
online.

References

1. B. D. Argall, S. Chernova, M. Veloso, and B. Browning. A Survey of Robot Learning from
Demonstration. Robot. Auton. Syst., 57(5):469–483, May 2009.

2. A. G. Barto, R. S. Sutton, and C. W. Anderson. Neuronlike adaptive elements that
can solve difficult learning control problems. IEEE Transactions on Systems, Man, and
Cybernetics, SMC-13(5):834–846, Sept. 1983.

3. H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool. Speeded-Up Robust Features (SURF).
Comput. Vis. Image Underst., 110(3):346–359, June 2008.

4. S. R. K. Branavan, H. Chen, L. S. Zettlemoyer, and R. Barzilay. Reinforcement Learn-
ing for Mapping Instructions to Actions. In Proceedings of the Joint Conference of the
47th Annual Meeting of the ACL and the 4th International Joint Conference on Natu-
ral Language Processing of the AFNLP: Volume 1 - Volume 1, ACL ’09, pages 82–90,
Stroudsburg, PA, USA, 2009. Association for Computational Linguistics.

5. S. R. K. Branavan, L. S. Zettlemoyer, and R. Barzilay. Reading Between the Lines:
Learning to Map High-level Instructions to Commands. In Proceedings of the 48th Annual
Meeting of the Association for Computational Linguistics, ACL ’10, pages 1268–1277,
Stroudsburg, PA, USA, 2010. Association for Computational Linguistics.

6. S. Chernova and A. L. Thomaz. Robot learning from human teachers. Synthesis Lectures
on Artificial Intelligence and Machine Learning, 8(3):1–121, 2014.

7. J. A. Clouse and P. E. Utgoff. A Teaching Method for Reinforcement Learning. In
Proceedings of the Ninth International Workshop on Machine Learning, ML ’92, pages
92–110, San Francisco, CA, USA, 1992. Morgan Kaufmann Publishers Inc.

8. F. Cruz, J. Twiefel, S. Magg, C. Weber, and S. Wermter. Interactive reinforcement learning
through speech guidance in a domestic scenario. In 2015 International Joint Conference
on Neural Networks (IJCNN), pages 1–8, July 2015.

9. S. Doncieux, N. Bredeche, J.-B. Mouret, and A. E. G. Eiben. Evolutionary Robotics:
What, Why, and Where to. Frontiers in Robotics and AI, 2:4, 2015.

10. S. Feng, E. Whitman, X. Xinjilefu, and C. G. Atkeson. Optimization based full body
control for the atlas robot. In Humanoid Robots (Humanoids), 2014 14th IEEE-RAS
International Conference on, pages 120–127. IEEE, 2014.

11. J. Garćıa and F. Fernández. A Comprehensive Survey on Safe Reinforcement Learning.
J. Mach. Learn. Res., 16(1):1437–1480, Jan. 2015.

12. S. Griffith, K. Subramanian, J. Scholz, C. L. Isbell, and A. Thomaz. Policy Shaping:
Integrating Human Feedback with Reinforcement Learning. In Proceedings of the 26th In-
ternational Conference on Neural Information Processing Systems, NIPS’13, pages 2625–
2633, USA, 2013. Curran Associates Inc.

13. J. Grizou, M. Lopes, and P. Y. Oudeyer. Robot learning simultaneously a task and how
to interpret human instructions. In 2013 IEEE Third Joint International Conference on
Development and Learning and Epigenetic Robotics (ICDL), pages 1–8, Aug. 2013.

14. M. Grze and D. Kudenko. Online learning of shaping rewards in reinforcement learning.
Neural Networks, 23(4):541 – 550, 2010.

15. M. K. Ho, M. L. Littman, F. Cushman, and J. L. Austerweil. Teaching with Rewards
and Punishments: Reinforcement or Communication? In Proceedings of the 37th Annual
Meeting of the Cognitive Science Society, July 2015.

16. C. Isbell, C. R. Shelton, M. Kearns, S. Singh, and P. Stone. A Social Reinforcement
Learning Agent. In Proceedings of the Fifth International Conference on Autonomous
Agents, AGENTS ’01, pages 377–384, New York, NY, USA, 2001. ACM.

17. W. B. Knox, C. Breazeal, and P. Stone. Learning from feedback on actions past and
intended. In In Proceedings of 7th ACM/IEEE International Conference on Human-
Robot Interaction, Late-Breaking Reports Session (HRI 2012), Mar. 2012.

18. W. B. Knox and P. Stone. Interactively Shaping Agents via Human Reinforcement: The
TAMER Framework. In Proceedings of the Fifth International Conference on Knowledge
Capture, K-CAP ’09, pages 9–16, New York, NY, USA, 2009. ACM.

34 Anis Najar et al.

19. W. B. Knox and P. Stone. Reinforcement learning from human reward: Discounting in
episodic tasks. In 2012 IEEE RO-MAN: The 21st IEEE International Symposium on
Robot and Human Interactive Communication, pages 878–885, Sept. 2012.

20. W. B. Knox and P. Stone. Reinforcement Learning from Simultaneous Human and MDP
Reward. In Proceedings of the 11th International Conference on Autonomous Agents
and Multiagent Systems - Volume 1, AAMAS ’12, pages 475–482, Richland, SC, 2012.
International Foundation for Autonomous Agents and Multiagent Systems.

21. W. B. Knox, P. Stone, and C. Breazeal. Training a Robot via Human Feedback: A Case
Study. In Proceedings of the 5th International Conference on Social Robotics - Volume
8239, ICSR 2013, pages 460–470, New York, NY, USA, 2013. Springer-Verlag New York,
Inc.

22. J. Kober, J. A. Bagnell, and J. Peters. Reinforcement Learning in Robotics: A Survey.
Int. J. Rob. Res., 32(11):1238–1274, Sept. 2013.

23. G. Konidaris and A. Barto. Autonomous Shaping: Knowledge Transfer in Reinforcement
Learning. In Proceedings of the 23rd International Conference on Machine Learning,
ICML ’06, pages 489–496, New York, NY, USA, 2006. ACM.

24. G. Konidaris and G. Hayes. Estimating Future Reward in Reinforcement Learning Ani-
mats using Associative Learning. In From animals to animats 8:Proceedings of the Eighth
International Conference on the Simulation of Adaptive Behavior, pages 297–304. MIT
Press, 2004.

25. R. Loftin, J. MacGlashan, B. Peng, M. E. Taylor, M. L. Littman, J. Huang, and D. L.
Roberts. A Strategy-aware Technique for Learning Behaviors from Discrete Human Feed-
back. In Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence,
AAAI’14, pages 937–943, Québec City, Québec, Canada, 2014. AAAI Press.

26. R. Loftin, B. Peng, J. Macglashan, M. L. Littman, M. E. Taylor, J. Huang, and D. L.
Roberts. Learning Behaviors via Human-delivered Discrete Feedback: Modeling Implicit
Feedback Strategies to Speed Up Learning. Autonomous Agents and Multi-Agent Systems,
30(1):30–59, Jan. 2016.

27. J. MacGlashan, M. Babes-Vroman, M. desJardins, M. Littman, S. Muresan, S. Squire,
S. Tellex, D. Arumugam, and L. Yang. Grounding English commands to reward functions.
In Proceedings of Robotics: Science and Systems, 2015.

28. J. MacGlashan, M. K Ho, R. Loftin, B. Peng, G. Wang, D. L. Roberts, M. E. Taylor, and
M. L. Littman. Interactive learning from policy-dependent human feedback. ICML, Jul
2017.

29. B. Marthi. Automatic Shaping and Decomposition of Reward Functions. In Proceedings of
the 24th International Conference on Machine Learning, ICML ’07, pages 601–608, New
York, NY, USA, 2007. ACM.

30. K. W. Mathewson and P. M. Pilarski. Simultaneous Control and Human Feedback in the
Training of a Robotic Agent with Actor-Critic Reinforcement Learning. arXiv preprint
arXiv:1606.06979, 2016.

31. V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. A.
Riedmiller. Playing atari with deep reinforcement learning. CoRR, abs/1312.5602, 2013.

32. V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,
M. Riedmiller, A. K. Fidjeland, G. Ostrovski, and others. Human-level control through
deep reinforcement learning. Nature, 518(7540):529–533, 2015.

33. M. N. Nicolescu and M. J. Mataric. Natural Methods for Robot Task Learning: Instructive
Demonstrations, Generalization and Practice. In Proceedings of the Second International
Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS ’03, pages
241–248, New York, NY, USA, 2003. ACM.

34. K. V. N. Pradyot, S. S. Manimaran, and B. Ravindran. Instructing a Reinforcement
Learner. In Proceedings of the Twenty-Fifth International Florida Artificial Intelligence
Research Society Conference, pages 23–25, Marco Island, Florida., May 2012.

35. K. V. N. Pradyot, S. S. Manimaran, B. Ravindran, and S. Natarajan. Integrating Human
Instructions and Reinforcement Learners: An SRL Approach. Proceedings of the UAI
workshop on Statistical Relational AI, 2012.

36. M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, and A. Y.
Ng. Ros: an open-source robot operating system. In ICRA Workshop on Open Source
Software, 2009.

37. M. T. Rosenstein, A. G. Barto, J. Si, A. Barto, W. Powell, and D. Wunsch. Su-
pervised Actor-Critic Reinforcement Learning. In Handbook of Learning and Approx-
imate Dynamic Programming, pages 359–380. John Wiley & Sons, Inc., 2004. DOI:
10.1002/9780470544785.ch14.

Interactively shaping robot behaviour with unlabeled human instructions 35

38. P. E. Rybski, K. Yoon, J. Stolarz, and M. M. Veloso. Interactive robot task training
through dialog and demonstration. In 2007 2nd ACM/IEEE International Conference on
Human-Robot Interaction (HRI), pages 49–56, Mar. 2007.

39. O. Sigaud and O. Buffet. Markov decision processes in artificial intelligence. Wiley, 2010.
40. D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J. Schrit-

twieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, and others. Mastering the game
of Go with deep neural networks and tree search. Nature, 529(7587):484–489, 2016.

41. H. B. Suay and S. Chernova. Effect of human guidance and state space size on Interactive
Reinforcement Learning. In 2011 RO-MAN, pages 1–6, July 2011.

42. R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. MIT Press,
1998.

43. A. C. Tenorio-Gonzalez, E. F. Morales, and L. Villaseor-Pineda. Dynamic Reward Shap-
ing: Training a Robot by Voice. In A. Kuri-Morales and G. R. Simari, editors, Advances in
Artificial Intelligence IBERAMIA 2010: 12th Ibero-American Conference on AI, Baha
Blanca, Argentina, November 1-5, 2010. Proceedings, pages 483–492. Springer Berlin Hei-
delberg, Berlin, Heidelberg, 2010. DOI: 10.1007/978-3-642-16952-6 49.

44. A. L. Thomaz and C. Breazeal. Reinforcement Learning with Human Teachers: Evidence
of Feedback and Guidance with Implications for Learning Performance. In Proceedings
of the 21st National Conference on Artificial Intelligence - Volume 1, AAAI’06, pages
1000–1005, Boston, Massachusetts, 2006. AAAI Press.

45. A. L. Thomaz and C. Breazeal. Transparency and Socially Guided Machine Learning. In
the 5th International Conference on Developmental Learning, 2006.

46. A. L. Thomaz and C. Breazeal. Robot learning via socially guided exploration. In 2007
IEEE 6th International Conference on Development and Learning, pages 82–87, July
2007.

47. A. L. Thomaz, G. Hoffman, and C. Breazeal. Reinforcement Learning with Human Teach-
ers: Understanding How People Want to Teach Robots. In ROMAN 2006 - The 15th IEEE
International Symposium on Robot and Human Interactive Communication, pages 352–
357, Sept. 2006.

48. P. E. Utgoff and J. A. Clouse. Two Kinds of Training Information for Evaluation Function
Learning. In In Proceedings of the Ninth Annual Conference on Artificial Intelligence,
pages 596–600. Morgan Kaufmann, 1991.

49. A. Vogel and D. Jurafsky. Learning to Follow Navigational Directions. In Proceedings
of the 48th Annual Meeting of the Association for Computational Linguistics, ACL ’10,
pages 806–814, Stroudsburg, PA, USA, 2010. Association for Computational Linguistics.

50. A.-L. Vollmer, B. Wrede, K. J. Rohlfing, and P.-Y. Oudeyer. Pragmatic Frames for Teach-
ing and Learning in Human-Robot Interaction: Review and Challenges. Frontiers in Neu-
rorobotics, 10:10, 2016.

51. C. J. Watkins and P. Dayan. Q-learning. Machine learning, 8(3-4):279–292, 1992.

	Introduction
	Research question
	Background and Related work
	Model
	Simulation protocol
	Results in simulation
	Experiment with a real robot
	Discussion
	Conclusion

