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Abstract. Repurposed drugs that are immediately available and safe to use constitute
a first line of defense against new viral infections. Despite limited antiviral activity
against SARS-CoV-2, several drugs are being tested as medication or as prophylaxis
to prevent infection. Using a stochastic model of early phase infection, we find that a
critical efficacy above 87% is needed to block viral establishment. This can be improved
by combination therapy. Below the critical efficacy, establishment of infection can
sometimes be prevented, most effectively with drugs blocking viral entry into cells or
enhancing viral clearance. Even when a viral infection cannot be prevented, antivi-
rals delay the time to detectable viral loads. This delay flattens the within-host viral
dynamic curve, possibly reducing transmission and symptom severity. Thus, antiviral
prophylaxis, even with reduced efficacy, could be efficiently used to prevent or alleviate
infection in people at high risk.

Keywords: SARS-CoV-2; prophylactic therapy; viral within-host dynamics; stochastic modeling;
combination therapy
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1 Introduction
The novel coronavirus SARS-CoV-2 rapidly spread around the globe in early 2020 (Li et al., 2020; Zhu
et al., 2020; Lai et al., 2020; Chinazzi et al., 2020). As of July 14th, more than 13 million cases and
550,000 associated deaths have been detected worldwide (Dong et al., 2020). SARS-CoV-2 causes
substantial morbidity and mortality with about 4% of cases being hospitalized overall, but up to 47%
in the oldest age group (Verity et al., 2020; Cereda et al., 2020; Salje et al., 2020), and a case fatality
ratio of the order of 1% overall, which is again much higher in the elderly (Wu et al., 2020; Hauser et al.,
2020; Verity et al., 2020). With a short doubling time of 2 to 7 days when uncontrolled (Li et al., 2020;
Cereda et al., 2020; Muniz-Rodriguez et al., 2020), this epidemic can rapidly overburden healthcare
systems (Ferguson et al., 2020). Many countries have imposed social distancing measures to reduce
incidence. Lifting these measures while keeping the epidemic in check may require a combination of
intensive testing, social isolation of positive cases, efficient contact tracing and isolation of contacts
(Bi et al., 2020; Ferretti et al., 2020). Even if these measures are locally successful in keeping the disease
at low prevalence, the presence of SARS-CoV-2 in many countries and substantial pre-symptomatic
transmission (Tindale et al., 2020; Ferretti et al., 2020) suggest that the virus may continue to circulate
for years to come.

Existing antiviral therapies can be repurposed to treat COVID-19 in infected individuals (Harrison,
2020; Li and Clercq, 2020; Gordon et al., 2020). Clinical trials to test several agents are underway, but
existing antivirals have limited efficacy against SARS-CoV-2 and are most efficient in reducing viremia
when taken early in infection (Gonçalves et al., 2020; Kim et al., 2020; Goyal et al., 2020). Prophylactic
therapy using repurposed antivirals has recently been proposed (Jiang et al., 2020; Pagliano et al.,
2020; Spinelli et al., 2020). Prophylactic therapy is successfully used in the prevention of HIV infection
and malaria (Mermin et al., 2006; Baeten et al., 2012). It could be an essential tool to reduce the
probability of SARS-CoV-2 infection in individuals at high risk, e.g. elderly (especially those in nursing
homes), individuals with co-morbidities, and health care workers, thus substantially reducing the
burden on health care systems. Depending on the safety profile of the antiviral drug, it could be
taken continuously (pre-exposure) or just after contact with an infected individual (post-exposure).
In this study, we integrate recent knowledge on SARS-CoV-2 host-pathogen interactions and the
pharmacological properties of the antivirals currently tested in clinical trials to evaluate the efficacy
of prophylactic antiviral therapy. We calculate the probability of establishment of a viral inoculum in
an individual under prophylactic antiviral therapy.

2 Within-host model of viral dynamics
We consider a stochastic analog of a standard target-cell-limited model for viral kinetics. In this
model, the infectious virus, VI , infects epithelial cells of the upper respiratory tract of the host,
denoted T, at rate β, generating infected cells, I1. Following an eclipse phase of mean duration
1/k, cells start to produce virions, i.e., they change their state to I2. Newly produced virions are
continuously released at rate p. A fraction η of these virions is infectious, VI , and can potentially
infect new target cells, the other fraction of virions, (1−η), is non-infectious, VN I . Non-infectious
virions may be the result of deleterious mutations, or misassembly of the viral particle. Free virions
(of both types) and infected cells are lost with rate c and δ, respectively. A potential early humoral
immune response would contribute to the clearance parameter c. For large numbers of target cells,
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infected cells and virions, the following set of differential equations describes the dynamics:

dT

d t
=−βT VI ,

d I1

d t
=βT VI −kI1,

d I2

d t
= kI1 −δI2,

dVI

d t
= ηpI2 − cVI −βT VI ,

dVN I

d t
= (1−η)pI2 − cVN I .

(1)

Using the same methodology as in Gonçalves et al. (2020) to generate parameter estimates for
system (1), we show examples of predictions in four patients (Fig. 1(a); see Gonçalves et al. (2020) or
Section S6 in the Supplementary Information (SI) for details). An important quantity in determining
the dynamics of this model is the intra-host basic reproductive number R0. It reflects the mean
number of secondary cell infections by a single infected cell at the beginning of the infection, when
target cells are not limiting. Using next-generation tools for invasion analysis (Hurford et al., 2010),
the within-host basic reproductive number for model (1) is given by

R0 =
βT0

c +βT0

ηp

δ
, (2)

where T0 is the initial number of target cells. R0 is the product of two terms: βT0/(c +βT0), which
corresponds to the probability that the virus infects a cell before it is cleared, and ηp/δ, which is the
mean number of infectious virus particles produced by an infected cell during its lifespan of average
duration 1/δ. The mean number of overall produced virions is called the “burst size” (N = p/δ).

We study the within-host dynamics of SARS-CoV-2 in the early stage of an infection, when the
number of infected cells is small and stochastic effects are important. To do so, we define a set of
reactions corresponding to the differential equations in (1) (see Pearson et al. (2011); Conway et al.
(2013) for similar models):

VI +T
β−→ I1, infection of target cells,

I1
k−→ I2, end of eclipse phase,

I2
δ−→∅, infected cell death,

I2
ηp−→ I2 +VI , infectious virus production,

I2
(1−η)p−→ I2 +VN I , non-infectious virus production,

VI ,VN I
c−→∅, virus clearance.

(3)

Because we are interested in early events, we subsequently assume in the analysis that the number
of target cells remains equal to T0 (see Section S1 in the SI). This is a reasonable assumption as long
as the number of virions is much smaller than the number of target cells (VI (t ) ¿ T (t )).

2.1 Parameterization of the model
The exact values of the intra-host basic reproductive number R0 and the burst size N are critical to
our predictions. Based on patient data from Young et al. (2020) with a peak viral load of order 106

4

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 19, 2020. ; https://doi.org/10.1101/2020.05.07.20092965doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.07.20092965
http://creativecommons.org/licenses/by/4.0/


0 5 10 15 20 25 30
10 2

100

102

104

106

108

time after infection (days)

vi
ru

s
(c

o
p

ie
s.

m
L−

1
)

(a) Within-host dynamics of example patients.
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(b) Contour lines of viral peak size and time.

Figure 1: Deterministic within-host dynamics of SARS-CoV-2. (a) Model predictions using the
target cell-limited model in four typical patients of Young et al. (2020), with a mean R0

of 7.69. Parameter values are given in Table S2 in the Supplementary Information. The
dotted line depicts the detection threshold. (b) We plot the contour lines of the viral peak
(blue lines) and the number of virus particles at the viral peak per mL (orange lines) as
a function of R0 and the proportion of susceptible target cells. The lines are obtained by
evaluating the set of differential equations in eq. (1) with T (0) = f ×1.33×107, where f is
the proportion of susceptible target cells (x-axis). The initial amount of virus particles per
mL, VI (0) = 1/30, corresponds to 1 virus particle in absolute numbers in the total upper
respiratory tract, which we assume has a volume of 30 mL. The contour lines for viral
loads (orange) stop if the viral peak is reached after 20 days, which can happen for low
values of R0. The parameters of the model are set to: k = 5 d−1, c = 10 d−1, δ= 0.595 d−1,
p = 11,200 d−1, η = 0.001 and β = cδR0/(T (0)(ηp −δR0)). Dots depict averages of some
data sets from Table 1.

virions per mL, we estimate the intra-host basic reproductive number to be R0 = 7.69 (Fig. 1(a)). To
explore the range of possible values for R0, we systematically solved the system of equations 1 and
examined the peak viral load and time when the peak is reached, as a function of the number of
susceptible target cells T0 and R0, with all other parameters held constant at values given in Fig. 1.
For peak viral loads between 106 and 108 copies per mL and peak timing between 4 and 9 days,
encompassing the range of average outcomes observed in multiple studies (Table 1), R0 may vary
between 3 and 13 (Fig. 1(b)). We note that there is substantial inter-individual variability in viral
loads, and some patients present a peak viral load at 109 copies/mL or higher (Jones et al., 2020),
compatible with a R0 of 15 ore more. The mean peak viral load across the studies surveyed was 106

copies/mL (Table 1).
The burst size for SARS-CoV-2 is unknown. Estimates of the burst size for other coronaviruses

range from 10−100 (Robb and Bond, 1979) to 600−700 (Bar-On et al., 2020; Hirano et al., 1976)
infectious virions. We assume that the proportion of infectious virions produced by an infected cell
is η= 10−3. This value is motivated by the fraction of infectious virus in an inoculum injected into
rhesus macaques, η= 1.33×10−3 (Munster et al., 2020, Methods - Study design). The total viral burst
size is then between 10,000 and 100,000 virions. Such large total burst size is suggested by electron

5

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 19, 2020. ; https://doi.org/10.1101/2020.05.07.20092965doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.07.20092965
http://creativecommons.org/licenses/by/4.0/


Table 1: Literature review of SARS-CoV-2 viral load trajectories within hosts.

Country /
Setting

#
ind.

Mean peak
viral load

[copies.mL−1]

Mean time of
viral peak
[days after
infection]

Reference

Singapore /
hospital /

nasopharyngeal
swabs

13
106 (max.
3×108)

5-10 (a few
days after

symptoms)

Young et al. (2020),
reanalyzed in

Gonçalves et al.
(2020); Goyal et al.
(2020); Kim et al.

(2020)

Germany /
hospital /

nasopharyngeal
swabs

9
7×105 per
swab (max.

2×109)

≤ 7 (already
declining at
admission)

Wölfel et al. (2020)

mainland China
/ throat swabs

67
105 (max.
3×107)

≤ 5 (no
increase after

symptom
onset)

Pan et al. (2020)

mainland China
/ throat swabs

94
105 (max.
7×108)

5 He et al. (2020)

Hongkong /
hospital / throat

swabs
23

106 (max.
3×107)

4 To et al. (2020)

The fact that transmission is maximal around five days post-infection also
suggests a peak viral load at that time [Ferretti et al. (2020)]. We assume that
the mean time to reach the maximal viral load is five days.

microscopy1 showing the emergence of many virions from cells infected by SARS-CoV-1 (Stertz et al.,
2007; Knoops et al., 2008). Given the uncertainty in this parameter, we ran simulations both with
N ≈ 18,823 (parameter set ‘LowN’) and with a much higher burst size of N = 188,230 (parameter set
‘HighN’). The exact values of the LowN and HighN parameter sets are given in Table 3.

1see also the webpage dedicated to SARS-CoV-2: www.flickr.com/photos/niaid/albums/
72157712914621487
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3 Results

3.1 Survival and establishment of the virus within the host
As shown in Pearson et al. (2011) and Conway et al. (2013), the probability that a viral inoculum of
size V0 establishes an infection within the host is given by:

ϕ=
 1−

(
1− R0−1

ηN

)VI (0)
, if R0 ≥ 1,

0, if R0 < 1 .
(4)

When R0 > 1, the establishment probability increases with the size of the inoculum VI (0). Indeed, for
infection to succeed, only a single infectious virus particle among VI (0) needs to establish, so the
more virus particles there are initially, the more likely it is that at least one establishes. Importantly,
for a given R0, the virus establishes more easily when it has a low burst size N . Keeping the mean
number of offspring R0 constant, a virus with a smaller burst size will have a larger infectivity β or
smaller clearance c , which increases the first factor of R0, see eq. (2). Moreover, for the same number
of virions to be produced at lower burst sizes, more cells need to be involved in viral production
than for large burst sizes. This mitigates two risks incurred by the virus: the risk that it does not
find a cell to infect before it is cleared, and the risk that the infected cell dies early by chance. Since
more cells are involved in viral production for lower burst sizes, these risks are shared over all these
virus-producing cells. This reduces the stochastic variance in viral production, which in turn results
in a higher establishment probability.

3.2 Prophylactic antiviral therapy blocks establishment of the
virus

Next, we investigate the effect of prophylactic antiviral drug therapy on the establishment probability
of the virus during the early phase of an infection. In particular, we examine drugs with four distinct
modes of action.

(i) Reducing the ability of the virus to infect cellsβ. This corresponds for instance to treatments that
block viral entry, e.g. a neutralizing antibody (given as a drug) by binding to the spike glycoprotein
(Li and Clercq, 2020).

(ii) Increasing the clearance of the virus c. This mode of action models drugs that may be non-
neutralizing but bind to circulating virus particles and facilitate their clearance by phagocytic cells.

(iii) Reducing viral production p. This mechanism corresponds for example to nucleoside ana-
logues that prevent viral RNA replication (favipiravir, remdesivir), or to protease inhibitors (lopinavir/
ritonavir) (Li and Clercq, 2020).

(iv) Increasing infected cell death δ. This would describe the effect of SARS-CoV-2 specific anti-
bodies that bind to infected cells and induce antibody-dependent cellular cytoxicity or antibody-
dependent cellular phagocytosis. It would also model immunomodulatory drugs that stimulate
cell-mediated immune responses.

We denote by εβ, εc , εp and εδ the efficacies of the antiviral drugs in targeting the viral infectivity,
viral clearance, viral production and infected cell death, respectively. Their values range from 0 (no
efficacy) to 1 (full suppression). We neglect variations in drug concentrations over time within the
host and, to be conservative, assume a constant drug efficacy corresponding to the drug efficacy at
the drug’s minimal concentration between doses.
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3.2.1 Antiviral reducing viral infectivity

Antiviral drugs reducing viral infectivity β by the factor (1−εβ) leave the burst size N unchanged, but

reduce the basic reproductive number, R0, by a factor 1− f (εβ) = 1− cεβ
c+(1−εβ)βT0

. If
(
1− f (εβ)

)
R0 ≥ 1,

the establishment probability changes to:

ϕβ = 1−
(

1−
(
1− f (εβ)

)
R0 −1

ηN

)VI (0)

. (5)

If
(
1− f (εβ)

)
R0 is less than 1, the virus will almost surely go extinct and we have ϕβ = 0.

With a plausible inoculum size of 10 infectious virions (Leung et al., 2020), we find that an efficacy
(εβ) of 81% (LowN parameter set) is necessary to reduce the establishment probability of a viral
infection by 50% compared to no treatment (see Fig. 2 panels A and C). Subsequently, when we
mention the efficacy of an antiviral drug reducing viral infectivity, we always refer to εβ and not f (εβ).

3.2.2 Antiviral increasing viral clearance

Antiviral drugs that increase the clearance rate c of extracellular virus particles reduce the average
lifespan of a virus by a factor (1− εc ). This changes the clearance parameter c by a factor 1/(1−
εc ). With this definition of efficacy, we find that the reproductive number R0 is reduced by the
same factor as obtained for a drug reducing infectivity: (1− f (εc )) = 1− cεc

c+(1−εc )βT . Therefore, the
establishment probabilities take the same form, so that ϕc = ϕβ. Consequently, we will reduce
our analysis to antiviral drugs that reduce viral infectivity, keeping in mind that results for the
establishment probability are equally valid for drugs increasing viral clearance.

3.2.3 Antiviral reducing viral production

Antiviral drugs reducing the viral production (parameter p) reduce the burst size N by a factor (1−εp ).
The basic reproductive number R0 is reduced by the same factor. If (1−εp )R0 ≥ 1, such drugs alter
the establishment probability as:

ϕp = 1−
(
1− (1−εp )R0 −1

(1−εp )ηN

)VI (0)

. (6)

A reduction of 50% of the establishment probability compared to no treatment can be achieved
with an efficacy of 85% (LowN parameter set, VI (0) = 10). The efficacy needed is greater than that for
antivirals targeting infectivity or viral clearance (81%) (see Fig. 2 panels A and C). Thus, for imperfect
drugs that do not totally prevent establishment, drugs targeting infectivity (or clearance) are more
efficient than those targeting viral production. This effect emerges from the stochastic dynamics and
the reduction in viral production variance mentioned above: in the early phase, it is more important
for the virus to infect many host cells than to ensure the production of a large number of virions.

3.2.4 Antiviral increasing infected cell death

Increasing the rate of death of infected cells δ by the factor 1/(1−εδ) reduces the average lifespan of
an infected cell by a factor (1−εδ). This has the same effect on the burst size (and consequently on
R0) as an antiviral drug reducing viral production, again due to our definition of efficacy. Therefore,
the establishment probabilities are the same, ϕp =ϕδ. In our subsequent analysis of establishment
probabilities, we thus exclusively study antivirals affecting viral production.
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Figure 2: Establishment probability of the virus under different antiviral drugs, efficacies ε and
various inoculum sizes V0. The lines in panels A and B correspond to the theoretical
establishment probability under the assumption that target cell numbers are constant,
for the two modes of action (reducing viral infectivity (5) in orange and reducing viral
production (6) in blue). The lines in the bottom panels represent the relative probability of
establishment normalized by the establishment probability in the absence of treatment
from (4), i.e. ϕ j /ϕ. Dots are averages from 100,000 individual-based simulations of the
within-host model described in system (3), in which target cell numbers are allowed to
vary. Parameter values are given in Table 3.

3.2.5 Critical efficacy

Above a critical treatment efficacy, the establishment of a viral infection is not possible. This is true
for all modes of action and for high and low burst sizes (Fig. 2). The critical efficacy does not depend
on the initial inoculum size. It is given by the condition that the drug-modified R0 equals 1, e.g.
(1−εp )R0 = 1 for drugs reducing viral production p. This corresponds to the deterministic threshold
value for the viral population to grow. Computing the critical efficacies for both modes of action with
(5) and (6), we find:

ε̃p = 1− 1

R0
<

(
1− 1

R0

)
ηN

ηN −1
= ε̃β . (7)
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They differ for the two modes of action because reducing infectivity does not proportionally reduce
R0 (Eq. (2)). Thus, drugs that reduce viral production result in a slightly lower critical efficacy, an
effect that is small at low burst size of infectious virions and not discernible at high burst size of
infectious virions (see intersections of the establishment probabilities with the x-axes in Fig. 2 A and
B). For example, in the HighN parameter set, we find a critical efficacy of 87% for both types of drugs.

In summary, in the range where drugs cannot totally prevent infection, drugs that target viral
infectivity reduce the probability of establishment more strongly; drugs that reduce viral production
can totally prevent infection at slightly lower efficacy, but this difference is extremely small when
burst sizes (of infectious virions) are large.

3.3 Combination therapy
We analyze how the combination of two antiviral therapies could further impede establishment of
the virus. We assume that two drugs that target different mechanisms of action lead to multiplicative
effects on R0. The establishment probability and critical efficacies for the two drugs can be computed
in the same way as for single drug treatments.

For example, a combination of two drugs reducing viral production p and infectivity β changes the
establishment probability to

ϕp,β = 1−
(
1−

(1− f (εβ))(1−εp )R0 −1

(1−εp )ηN

)VI (0)

, (8)

if (1− f (εβ))(1−εp )R0 ≥ 1.
The corresponding critical pair of efficacies that prevent viral infection entirely can be computed

as before by solving
(1− f (ε̃β))(1− ε̃p )R0 = 1, (9)

By the arguments from above, we can replace εβ by εc and εp by εδ without changing the results.
Similar calculations allow us to derive the analogous quantities if we combine drugs targeting the
same mechanism of action, e.g. altering p and δ or c and β at the same time. Our analysis would also
carry over to combination of drugs which target the same parameter if they interact multiplicatively.
For example, two drugs reducing viral infectivity β with efficacies εβ,1 and εβ,2, respectively, would
reduce R0 by the factor (1− f (εβ,1)(1− f (εβ,2).

Using two drugs of limited efficacy in combination can largely reduce the establishment probability
compared to the single or no treatment scenarios. For instance, two drugs with efficacies of 65%
each may completely eliminate the risk of viral infection, depending on the combination used (LowN
parameter set, VI (0) = 1, Fig. 3). For comparison, a single drug with 65% efficacy can maximally
reduce the establishment probability to ∼ 40% of the no-treatment establishment probability (see
Fig. 2A). We also find that, compared to the single drug cases, the critical efficacy is significantly
reduced in all combinations studied.

3.4 Time to detectable viral load and extinction time
Lastly, we quantify the timescales of viral establishment and extinction. If the virus establishes, we
ask whether therapy slows down its spread within the host and investigate how long it takes for the
infection to reach the polymerase chain reaction (PCR) test detection threshold. Conversely, if the
viral infection does not establish, we examine how long it takes for antiviral therapy to clear the virus.
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Figure 3: The effect of prophylactic combination therapy on the establishment probability. We
compare different combination therapies (black lines) with the two single effect therapies
(colored lines). The theoretical predictions for the combination therapies are variations
of (8), adapted to the specific pair of modes of action considered. We assume that both
modes of action are suppressed with the same efficacy, shown on the x-axis as ε j . Dots are
averages from 100,000 stochastic simulations using the LowN parameter set and VI (0) = 1.
In Section S4 in the SI, we study the effect of combination therapy in the HighN parameter
set which overall leads to very similar results.

We study all four drug modes of action: drugs that increase either the infected cell death rate δ or
viral clearance c, and drugs reducing either viral production p or the infectivity β.

3.4.1 Time to detectable viral load

Even if antivirals are not efficacious enough to prevent establishment of the infection, could they still
mitigate the infection? We study the effect of antiviral therapy on the time to reach a detectable viral
load within the host. For example, the detection threshold in Young et al. (2020) is at 101.84 copies per
mL. Assuming that the upper respiratory tract has a volume of about 30 mL (Baccam et al., 2006), this
corresponds to approximately 2,000 virus particles.

In our model without treatment the viral population size reaches 2,000 within one day (see the
leftmost data point in Fig. 4). If establishment is likely, it is best to take antiviral drugs reducing the
viral production p to delay the establishment of a viral infection as long as possible. This would
reduce the peak viral load (Gonçalves et al., 2020; Goyal et al., 2020), which is presumably correlated
with the severity of SARS-CoV-2 infection (Zheng et al., 2020). The time to reach a detectable viral
load depends on the growth rate of the viral population, which is to the leading order R0−1

1
c+βT0

+ 1
k + 1

δ

(see

Section S5 in the SI for a derivation and Bonhoeffer et al. (1997) for a similar result). The denominator
is the average duration of a virus life cycle given by the sum of the phase when virions are in the
medium, the eclipse phase of infected cells, and the phase during which infected cells produce
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Figure 4: The mean time to reach a detectable viral load at the infection site. Solid lines represent
the theoretical prediction of the average time for the viral infection to arrive at 2,000
virions (see Section S5 in the SI for details). We used the LowN parameter set to simulate
10,000 stochastic simulations that reached a viral load of 2,000 total virus particles when
starting with an inoculum of VI (0) = 1. Dots are the average times calculated from these
simulations, error bars represent 90% of the simulated establishment times.

virions until their death.
Importantly, the time to reach a detectable viral load is the earliest time when a patient should be

tested to determine if therapy succeeded or failed to prevent infection. That time can be increased up
to 4 days for drugs inhibiting viral production p (blue line in Fig. 4), but there is significant variation
with values ranging from smaller than one day to more than 10 days. Drugs increasing the infectivity
β or infected cell death rate δ do not delay the establishment time. Drugs promoting viral clearance
c increase the establishment time less than drugs decreasing viral production p.

3.4.2 Extinction time of infectious virus particles

Extinction typically happens within a day (in the HighN parameter set) to up to a week (in the LowN
parameter set) depending on the drug’s mode of action (Table 2). We find that antiviral drugs that
either reduce viral infectivity β or increase infected cell death δ show comparably low extinction
times (Table 2). The extinction time is useful to determine the number of days a potentially infected
person should take antiviral medication post-exposure. For example in the LowN parameter set, with
an antiviral drug increasing viral clearance c with 75% efficacy, the time to reach a detectable viral
load is around 2 days on average (Table 2). Extinction, if it occurs, happens very quickly: the median
extinction time is within one day after infection.
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Table 2: Establishment probabilities, times to detection and extinction time statistics for various
sets of antiviral treatment. The first value in each cell gives the establishment probability,
the second value denotes the median of the time to detection (days), the numbers in brackets
are the 10 and 90-percentiles of the time to detection distribution (days), and the last line of
numbers gives the median time to extinction (days), conditioned on non-establishment of
the infection, with the 10 and 90-percentiles in brackets. All times are rounded to half-day
values if below 5 days, and to days if above. Missing values, denoted by dashes, are explained
by the viral population either not going extinct or not establishing; values above 30 days are
set to 30. All results are estimated from 100,000 stochastic simulations for the establishment
probability and 10,000 stochastic trajectories for the extinction and establishment times.

ε j Therapy
LowN parameter set HighN parameter set

V0 = 1 V0 = 10 V0 = 1 V0 = 10

0 no treatment
ϕ

Tdetect

Text

36%
0.5 (0.5,1.5)

0 (0,0)

99%
0.5 (0,0.5)
1 (0,1.5)

4%
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ϕ
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0.5 (0,1)
0 (0,0)
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0.5 (0,1)
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0.75

increasing δ
ϕ
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Text
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0.5 (0,2)
0 (0,1.5)

89%
0.5 (0,1)
1.5 (1,3)

2%
0.5 (0,1)
0 (0,0)

18%
0 (0,0.5)

0.5 (0,1.5)

reducing β
ϕ
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1 (0.5,2.5)
0 (0,0.5)

63%
0.5 (0.5,2)
0.5 (0,2.5)

1%
0.5 (0,1)
0 (0,0)

5%
0.5 (0,1)

0.5 (0,0.5)

increasing c
ϕ

Tdetect

Text

9%
2 (0,5)
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63%
2 (0.5,4.5)

0 (0,2)

1%
0 (0,0.5)
0 (0,0)
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0 (0,0)
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ϕ
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Text
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–

0 (0,5)

0%
–

7 (2.5,19)

0%
–

0 (0,0.5)

0%
–

0.5 (0,5)

0.9
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ϕ
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Text

0%
–

0 (0,2)
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–

2.5 (1,5)
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–

0.5 (0,1)
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–
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ϕ
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–
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–
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increasing c
ϕ
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1%
2 (0,20)
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–

0 (0,0)
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4 Discussion and Conclusion
We propose that repurposed antiviral treatments can be used for prophylaxis to block infection by
SARS-CoV-2. Using a stochastic model of within-host SARS-CoV-2 dynamics whose structure and
parameters are informed by recent data (Gonçalves et al., 2020; Kim et al., 2020), we showed that in
principle a combination of two drugs each with efficacy between 60% and 70% will almost certainly
prevent infection (Fig. 3). For single drug treatment, we find that even intermediate efficacies can
delay the within-host establishment of the viral infection for drugs reducing viral production p or
increasing viral clearance c (Fig. 4). More generally, our stochastic model for the early phase of virus
establishment within a host could be used to study the impact of prophylactic treatment on viral
infections whose dynamics can be captured by the deterministic model in (1).

This model makes several important assumptions. First, it encompasses a simplified version of
the innate immune response. Effects of this type of immune reaction are embedded in the param-
eter values of the model. For example, an early innate response, if not effectively subverted by the
virus, might put some target cells into an antiviral state where they are refractory to infection, thus
effectively reducing β (e.g. Pawelek et al., 2012). We neglect a potential adaptive immune response
against the virus because we are interested in the early stages of the infection, before the immune
system develops a specific response to the viral infection. A specific immune response may in later
stages enhance the ability of the body to eliminate the virus. Thus, the estimates of the drug efficacies
needed to prevent establishment of infection are conservative and in reality may be overestimates.
Further, even if the drugs being used do not have efficacies high enough to prevent infection on their
own, they can lengthen the time needed to establish infection and hence allow time for the immune
response to develop and assist in the clearance of the virus. Lastly, we focus on the early phase of the
infection in the upper respiratory tract, and neglect other compartments that may be more favorable
to viral multiplication. For example, the number of virions in the sputum is (on average) 10 to 100
fold higher than in throat swabs (Pan et al., 2020). The upper respiratory tract may allow a small
amount of virus to enter the lower respiratory tract. It would be interesting in future work to explore
the impact of this spatial structure on viral dynamics and establishment probability.

Our results on critical efficacy, shown in Figs. 2 and 3, do not depend on the viral inoculum size.
These results are very similar when considering a low or high burst size. However, they strongly
depend on the intra-host basic reproduction number which we estimated at R0 = 7.69. This basic
reproduction number was estimated from time series of viral load in nasopharyngeal swabs in 13
infected patients (Young et al., 2020; Gonçalves et al., 2020) and is consistent with the mean peak viral
load observed in multiple studies (Table 1). Still, there is substantial inter-individual heterogeneity
in incubation time and peak viral load (He et al., 2020). Shorter incubation times or a higher viral
load peak would result in higher estimates of R0, see for instance Fig. 1b. Yet, our qualitative findings
on the effectiveness of prophylactic therapy remain valid under these variations of R0. Of course,
the quantitative predictions, which depend on R0, change. Considering the current uncertainty
in the basic reproduction number and burst size, we developed an online interactive application
to compute and visualize the establishment probability and deterministic dynamics as a function
of parameters. This application can be used to update our results as our knowledge of intra-host
dynamics and treatment efficacies progresses (it can be accessed by following the instructions on
github.com/pczuppon/virus_establishment/tree/master/shiny).

The critical efficacy above which infection is entirely prevented is the efficacy at which the intra-
host basic reproduction number, adjusted to the antiviral drug under consideration, passes below 1.
The value of this critical efficacy could readily be obtained in a deterministic model. Yet, our stochastic
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framework gives several new additional insights into the probability of establishment. Importantly,
below the critical efficacy, viral establishment is not certain. The establishment probability increases
with the size of the initial inoculum (Fig. 2). The number of infectious virions of seasonal coronavirus
in droplets and aerosol particles exhaled during 30 minutes could be in the range of 1 to 10 (Leung
et al., 2020). Assuming this to be the range of the inoculum of infectious virus particles, in most cases
the establishment of a viral infection is not ensured even with low-efficacy drugs. For efficacies below
critical efficacy, drugs reducing infectivity or increasing viral clearance reduce the establishment
probability the most. In contrast, drugs reducing viral production need to be close to critical efficacy
to cause a marked reduction on the probability of establishment (Figs. 2 and 3).

Lastly, we observe that the time to extinction is largely independent of the drug’s mode of action
and typically occurs within a day, see Table 2. In contrast, we find a relatively strong dependence of
the time to detection of an infection on the mode of action of the antiviral drug. If the delay between
exposure and therapy, as well as the efficacy of the available drugs, are such that establishment
of the viral infection is almost certain, antiviral drugs that reduce viral production (parameter p)
will slow down the exponential growth and flatten the within-host epidemic curve the most (Fig. 4).
Repurposed antiviral drugs reducing viral production were recently proposed as good medication
candidates against SARS-CoV-2 (Gordon et al., 2020). This prolonged period at low viral loads could
give the immune system the necessary time to activate a specific response to the virus and develop
temporary host-immunity against SARS-CoV-2. This might be especially important in groups that
are frequently exposed to the virus, e.g. health care workers.

4.1 Conclusion
Clinical trials are underway to test the efficacy of several antiviral drugs (Harrison, 2020; Li and
Clercq, 2020; Belhadi et al., 2020; Sheahan et al., 2020; Maisonnasse et al., 2020), including for
example remdesivir. The efficacy of these drugs is in a 20-70% range (Gonçalves et al., 2020). Thus,
drugs at the high end of this interval could successfully be used in a prophylactic regime. More
precise estimates of R0 and N will be available soon. The drug efficacy needed to block infection
with these refined parameter estimates can be calculated with our online interactive tool, provided
that viral within-host dynamics are correctly described by model (1). Given the current knowledge of
SARS-CoV-2 viral dynamics, our model predicts that prophylactic antiviral therapy can block (or at
least delay) a viral infection, could be administered to people at risk such as health care workers, and
alleviate the burden on the healthcare systems caused by the SARS-CoV-2 pandemic.

5 Methods

Simulations
The individual based simulations are coded in C++ using the (standard) stochastic simulation algo-
rithm for the reactions described in system (3). The code and the data used to generate the figures
are available at: github.com/pczuppon/virus_establishment.

Estimates for the establishment probabilities (depicted by dots in Figs. 2 and 3) are averages of
100,000 independent runs. The condition for successful viral establishment was set to 500 infectious
virions. Estimates for the time to reach a detectable viral load are obtained from 10,000 simulations
where the sum of infectious and non-infectious virus particles exceeded 2,000 copies.
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Table 3: Model parameters used in the stochastic simulations. The remaining parameters are not
changed between the simulations and are set to: k = 5 day−1, δ= 0.595 day−1, c = 10 day−1,
β= cδR0/(T0(ηp −δR0)) day−1. In the low burst size parameter set (LowN) the overall burst
size, i.e. infectious plus non-infectious virus particles, is 18,823 virions. The high burst
size parameter set (HighN) is simply given by multiplication by 10. R0 was fixed to 7.69,
the average value of the reproductive number as estimated in Gonçalves et al. (2020) for
the parameter set in Young et al. (2020). The number of susceptible target cells, T0, was
also estimated from the same data in the LowN parameter set and adjusted in the HighN
parameter set, in order to obtain similar values for the peak viral load and its time.

Parameter set p [d−1] T0 [cells] N [virions] R0 [cells]

LowN 11,200 4×104 18,823 7.69

HighN 112,000 4×103 188,230 7.69
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