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Abstract

Data Assimilation remains the operational choice when it comes to forecast and
estimate Earth’s dynamical systems. The analogy with Machine Learning has
already been shown and is still being investigated to address the problem of im-
proving physics-based models. Even though both techniques learn from data,
machine learning focuses on inferring models while data assimilation concentrates
on hidden system state estimation with the help of a dynamical model. In this
work, we exploit the complementarity of these methods in a twin experiment where
the system is partially observed and the known dynamics are incomplete. Finally,
we succeed in partially retrieving the dynamics of a fully-unobserved variable by
training a hybrid model through variational data assimilation.

1 Introduction

Geosciences have a long standing experience in modeling, forecasting or estimating complex dy-
namical systems like atmospheric or ocean dynamics which present high dimensionalities and
non-linearities. Most of these models came from physical laws and are described as partial differen-
tial equations ultimately used in their discretized version. Even with hypothetically known initial
conditions, imperfection and chaoticity of such models enforce the use of observations over time.
Data Assimilation (DA) [1] proposes a large panel of methods to optimally combine a dynamical
model and observations allowing to predict, filter, or smooth system state trajectory. Those methods
are the ones operationally used in numerical weather prediction [2]].

Even though physical modeling has proven to be extremely useful, recent advances in Machine
Learning (ML) deserve consideration. Neural networks and more precisely ResNet-like architectures
can be seen as dynamical systems and numerical schemes, respectively [3]]. They are now considered
state of the art in a vast amount of tasks involving spatio-temporal forecasting which makes them very
appealing for numerical weather prediction [4}[5]. But to train such networks, one needs dense and
representative data which is rarely the case in Earth sciences. At the same time, DA offers a proper
framework allowing to learn from partial, noisy, and indirect observations. Thus, each of this field
can profit from the other by providing either a learnable class of dynamical models or dense data sets.

Approaches combining DA and ML have naturally emerged [6] and already shown promising results
on small-sized system like those of Lorenz [[7]. It was also argued that, under certain conditions,
alternating DA and ML steps can be seen as an Expectation-Maximization algorithm [8} 9, [10]]

In this work we propose to use such methods on a relatively high-dimensional system where the
physics is partially known. We aim at completing this base model by learning the dynamics of a
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fully-unobserved variable through data assimilation. Also, we benefit from powerful and flexible
tools provided by the deep learning community based on automatic differentiation that are clearly
suitable for variational data assimilation [[11], avoiding explicit adjoint modeling.

2 Framework

2.1 The control problem

A system state X evolves over discrete time ¢ according to a parameterized dynamical Markov model
M. Partial and noisy observations Y are available through an observation operator H as represented
in Figure The system state trajectory [Xo, .., Xr] and the model parameters 6 are the quantities to
be estimated.

e

Figure 1: System representation as a parametric hidden Markov model.

In a variational formalism [12] this can be expressed through the minimization of an energy function
of the general form J(X,0) = >, [[Y; — HX;|| + >, [[X¢+1 — Mp(Xy)||, where the first term
is the observation error and the second the model error. One major difficulty of such optimization
problem arises from the fact that the control variables are of different natures. Usually, system
states are estimated over a temporal window which may not include enough examples to train a
machine learning model and more particularly a neural network. We may consider several trajectories
[Xé, - X%F] even though 6 should not depend on a particular one. Ultimately, we choose to avoid
the excessively ill-posed joint optimization problem.

2.2 Coordinate descent: Alternate DA and ML

When 0 is known, DA methods combining My and Y can produce state estimation X. On the
flip side, when the system is fully observed with total confidence, 8 can be learned by regression.
Alternating DA and ML steps, we successively optimize along X and 6. This is why we refer to the
algorithm we use as coordinate descent (see Algorithm|T).

Algorithm 1 Coordinate descent

1: Initialize 68
2: while Convergence do

3: for every trajectory ¢ do
4: States estimation X’ minimizing ), ||'Y; — HX}||
5 Learning 6 minimizing 3, , || X}, — Mg(X})]|

3 Case Study

3.1 Materials

The system state evolves over a discretized space-time domain €2 x [0 : T'] where €2 is a bounded
rectangle of R2. At each time X; = [I;,w;] € R3*64%64 ig composed of a passive tracer I;
associated to a motion field wy.



Ground truth

Synthetic data are generated by integrating an advection model over several initial conditions and
constitute a ground truth data-set of multiple system trajectories. I is always the same 2D-sine wave
whose statistics are similar to those of sea surface temperatures, whereas for initial motion fields
wé, we use the ocean surface circulation in different areas of the North Atlantic. The motion field
transports the passive tracer and also itself. An example of a simulated trajectory is shown in Fig. 2]

- i I

Figure 2: System trajectory simulated with the ground truth dynamics.

Available information

In a realistic Earth science setup, available information is limited: physics-based models are incom-
plete and observations are partial and noisy. In our specific case only the passive tracer I is observed
with an additive noise: Y, = I, = HX,; + €r, where ep, is a Gaussian white noise of known
covariance matrix R;. We note d3,(z,y) = ||z — y||%, = ((z — y) "|R; ' (z — y)) the associated
Mahalanobis distance. Regarding our knowledge about the underlying dynamics, we assume to know
the full model except for evolution equation on the motion field.

Introducing our hybrid model

Our main goal is therefore to recover this missing dynamics of the motion field which is never
observed. To do so we introduce in Eq. [I] a parameterized hybrid dynamics M that combines a
numerical scheme [13] representing the known physics M p with a fully convolutional neural network
M, (8) to be trained to represent the unresolved part of the ground truth dynamics. In the perfect
case, 0™ is such that fy-(w) = w.Vw.

oI
— VI =
En +w.VI=0
ow
Mp + M (0) =My the resolvent of the following PDE-system s + fo(w)=0 (1)
VI=0, 00
w=0, 09

3.2 Learning scheme

As depicted before and schematized in Figure[3] we will use a coordinate descent approach alternating
assimilation and learning steps in order to ultimately train the hybrid model. To build a consequent
enough training set, several trajectories are assimilated. During assimilation steps 0 is fixed while
during learning steps X is fixed. We initialize the procedure with the incomplete physics-based model
which means that the first assimilation step is equivalent to a well known variational optical flow
estimation [14]]. The next assimilation steps are performed with an evolution model of the motion
field as in [[15].

Data Assimilation step: strong-constraint 4D-Var

States estimation is achieved on a sliding time window of size w with the 4D-Var algorithm which aims
at solving the PDE-constrained optimization problem described in Eq. 2} While weak-constraint 4D-
Var, allowing model errors, generally produces better results, we intentionally chose to use the strong
version, assuming a perfect model, as we represent this model error with a parameterized dynamics.
Regularization parameters « and /3 are tuned using sequential model-based optimization [16] over
forecast performance after assimilation.
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Figure 3: Schematic view of the learning scheme.

4 Results — forecast skill

To evaluate the trained hybrid model My, we produce forecasts over multiple initial conditions which
were not used during the training and compare them with ground truth trajectories by calculating
RMSE on the tracer I. We benchmark the obtained hybrid model against the incomplete physics-
based model Mp and a hybrid model trained on perfect motion field data MY from ground truth
simulation usually unknown. In Fig.[4] we see that My outperforms the physics-based model M p
and is relatively close to M} whose performance is only limited by the network architecture choice.
Also, reduced uncertainty indicates ability to generalize particularly in areas with intense motion.
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Figure 4: Comparison between M p, My and M} against the ground truth dynamics.



5 Conclusion

We introduced a hybrid model with learnable components. To train it, we leveraged DA ability to
learn from sparse and noisy observations with the help of deep learning tools based on automatic
differentiation. Finally we tested it in a twin experiment where we succeeded in partially retrieving a
missing dynamics of a fully-unobserved variable in a relatively high-dimensional system.
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CO2 Emission Related to Experiments:

Experiments were conducted using a private infrastructure, which has a carbon efficiency of 0.053 kg
COzeq /(kW h). A cumulative of 24 hours of computation was performed on hardware of type Tesla
P100 (TDP of 250W).

Total emissions are estimated to be 0.32 kg COqeq.

Estimations were conducted using the MachineLearning Impact calculator| presented in [17]].

A Experiment details

A.1 Ground truth
Initial conditions
Initial motion fields came from an ocean circulation model re-analysis where they are expressed in

ms~!. Different used zones exposed in Figure. [5|constitute the diversity of the dataset. Half of the
zones are used in the training scheme, the other half is used for testing.
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Figure 5: Initial motion fields by zones.
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Dynamics

The ground dynamics is an advection model described in the Eq.

ol

= VI =

aﬁLWV 0

%—v:+(w.V)w:0 3)
VI=0, 09

w=0, 00

Respectively, these equations represent: linear advection of the I tracer by the velocity field, non-
linear advection of the velocity by itself, vanishing Neumann boundary conditions for / and vanishing
Dirichlet boundary conditions for w. The same semi-Lagrangian numerical scheme [13]] is used for
both advection equations.

The space-time domain is discretized over a grid of parameter dxr = dy = 10000 and dt = 8640
which means, in relation with measurement unit of the velocity field, that each pixel covers an area of
10km? and each time step represents 8640s = 0.1 day.

A.2 Data Assimilation: 4D-Var

Usually, PDE-constrained optimization in inverse problems is solved with an adjoint method. Gradi-
ents are obtained by retropropagation of the adjoint dynamics which can be problematic to handle.
Thanks to deep learning tools based on automatic differentiation and using fully-differentiable dy-
namical models, we can obtain those gradients with no effort. The used 4D-Var algorithm is detailed
in Algorithm 2]

Algorithm 2 Strong 4D-Var
Set the iteration index k£ = 0

—

2: Initialize the state vector X5 = X,
3. forward integration : run the model My and compute J% ,
4: backward: run automatic differentiation and compute V Jj,
5. while J¥ , < eand k < MazIter do
6:  update state vector X¥ : X¥*1 = BFGS(XE, JE ., VJIE )
7: forward integration : run the model M and compute .J};’;!
8: backward : automatic differentiation computes VJE‘E
9: setk=Fk+1
10:  return X}

Under Gaussian errors and linear model hypothesis, 4D-Var leads to the maximum a posteriori
estimation of the state which motivates the used cost function. Even with the used regularization,
enforcing smoothness on the estimated velocity field, the Bayesian interpretation still stands. As
depicted in [18]], the regularization can be embedded in error covariance matrices as a prior knowledge.

A.3 Machine Learning step

As the function to learn is relatively simple, there was no doubt that classical architecture would
be able to approximate it well. We tested several fully convolutional neural networks and best
performances were obtained with encoder-decoder based architectures. However, the neural network
should be used inside the 4D-Var algorithm which is computationally expensive considering the
multiple forward-backward integration required. We made a compromise between the size of the
network and its ability to learn the desired function on perfect data and ended up with the following
architecture:

Layer (type) Output Shape Param #




Conv2d-1 [-1, 16, 64, 64] 304
Conv2d-2 [-1, 32, 64, 64] 4,640
BatchNorm2d-3 [-1, 32, 64, 64] 64
Conv2d-4 [-1, 16, 64, 64] 4,624
BatchNorm2d-5 [-1, 16, 64, 64] 32
Conv2d-6 [-1, 8, 64, 64] 1,160
Conv2d-7 [-1, 2, 64, 64] 18

Total params: 10,842

Trainable params: 10,842
Non-trainable params: O

Input size (MB): 0.03
Forward/backward pass size (MB): 3.81
Params size (MB): 0.04

Estimated Total Size (MB): 3.89

The training is performed with a batch size of 32, a decaying learning rate starting at 5 x 10~3, He
normal weights initialization and Adam optimizer.
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