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Abstract 

Stereoelectroencephalography-guided radiofrequency-thermocoagulation (SEEG-guided RF-TC) 

consists of coupling SEEG investigation with RF-TC stereotactic lesioning directly through the 

recording electrodes. In this systematic review the surgical technique, indications, and outcomes are 

described. Maximum accuracy is reached when a frame-based procedure with a robotic assistance and 

a per-operative vascular X-ray imaging are performed. Monitoring of the lesioning procedure based on 

the impedance, a sharp modification of which indicates that the thermocoagulation has reached its 

maximum volume, allows the optimization of the lesion size. The first indication concerns patients in 

whom a SEEG is required to determine whether surgery is feasible and in whom resection is indeed 

possible. Even if surgery is performed owing to insufficient efficacy of SEEG-guided RF-TC, the 

procedure remains interesting owing to its high positive predictive value for good outcome after surgery. 

The second indication concerns patients in whom phase I non-invasive investigations have concluded 

to surgical contraindication and who may still undergo SEEG in a purely therapeutic perspective (small 

deep zones inaccessible to surgery and network nodes of large epileptic networks). Lastly, SEEG-guided 

RF-TC can be considered as a first-line treatment for periventricular nodular heterotopia (PNH). 

Independently of indication, the overall seizure-free rate is 23% and the responder rate is 58%. The best 

results are obtained for PNH (38% seizure-free and 81% responders), while the worst results have been 

reported for temporal lobe-epilepsy in a dedicated study. The overall complication rate is 2.5%. More 

evidence is needed to help determine the exact place of SEEG-guided RF-TC in the surgical 

management algorithm.   



Introduction 

Stereotactic neurosurgery was initially developed in the second half of the XXth century as a solution to 

the high morbidity of invasive open surgery[1]. Historically, in epilepsy surgery stereotactic procedures 

were mainly used to localize the seizure onset zones through the recording of intracranial-EEG by 

stereoelectroencephalography (SEEG)[2]. More recently, following the growing accuracy of the 

delineation of the seizure onset zone and epileptic networks, the surgical management of drug-resistant 

epileptic patients faced new challenges[3–5]. Alongside surgical advances in conventional epilepsy 

surgery, stereotactic lesioning has emerged as an alternative when surgery is not an option. Several 

stereotactic approaches have been developed, including radiosurgery[6], Laser Interstitial 

Thermotherapy (LiTT)[7–15], High Intensity Focal Ultrasound (HIFU)[16,17], and SEEG-guided 

Radiofrequency Thermo-Coagulation (SEEG-guided RF-TC)[18–27]. The present review focuses on 

the latter, which aims at coupling SEEG investigation with RF-TC stereotactic lesioning directly through 

the recording electrodes. This technique was first reported in 2004 in a feasibility study[18] with the 

initial aim to produce a lesion in the seizure onset zone, as an alternative to surgery. The subsequent 

publications highlighted the limits of this approach as a purely curative procedure and developed its use 

for palliative and diagnostic purposes[27–29]. More recently, the publication of several large series with 

long-term outcomes helped clarify the indications of SEEG-guided RF-TC. Nevertheless a meta-

analysis recently highlighted the high heterogeneity of these studies[30]. 

Only one study has specifically focused on children[31], but large published series include a 

considerable pediatric population[22,32] and do not report significantly different results in such patients. 

Consequently, we chose to include all published studies investigating SEEG-guided RF-TC. For this, 

three electronic databases were searched (MEDLINE, Cochrane (CENTRAL) and the Web of Science) 

using the following search strategy: [Stereoelectroencephalography OR Stereo-electroencephalography 

OR SEEG] OR [Stereotactic AND (“Electroencephalography” OR “EEG”)] AND [Thermocoagulation 

OR TC OR radiofrequency OR RF OR radiofrequency-thermocoagulation OR RT-TC] OR [thermos-

SEEG OR thermoSEEG] AND [Epilepsy OR Epileptic], limited to the period from January 1, 2004 to 

December 31, 2017. We will nonetheless provide additional insights about specific pediatric situations. 



 

Surgical technique 

Materials 

All of the studies investigating SEEG-guided RF-TC were conducted using a radiofrequency lesion 

generator system Cosman G3 or G4 (Cosman Medical, Burlington, MA, USA) connected to the SEEG 

electrodes through a dedicated electrode selector. The most frequently used SEEG electrodes are the 

Microdeep electrodes (Dixi Medical, Besançon, France) which have a diameter of 0.8 mm, and include 

5 to 18 recording contacts that are 2 mm in length and 1.5 mm apart[18,23]; Alcis SEEG electrodes 

(Alcis - Temis Santé, Besançon, France) are also approved for coagulation procedures. 

Electrode placement 

As SEEG-guided RF-TC is an additional procedure performed during an SEEG, electrode placement 

technique of the latter procedure is crucial (see example in Figure 1). To be appropriate for RF-TC the 

electrode needs to reach the targeted anatomical structure with a good geometric accuracy in order to 

allow safe coagulations in rich vascular environments. These two aspects can be assessed through a 

common measure called the effective accuracy[33]. Very few studies provide comparison between 

SEEG techniques, but the use of a stereotactic-frame, a surgical robot, and a per-operative angiography 

(specifically compared to pre-operative angio-MRI) seems to be associated with a better effective 

accuracy[33,34]. Concerning the overall safety of electrode insertion, a meta-analysis recently found 

SEEG to be safe[35]. Evidence is still, however, lacking to clearly identify technical risk factors 

associated with poor safety as there are many biases that could hamper interpretation of results, but the 

best safety is obtained by teams performing a frame-based procedure coupled to a per-operative 

angiography or angio-CT[20,34–39].  

Radiofrequency thermocoagulation 

The French national guidelines on SEEG include a section dedicated to SEEG-guided RF-TC and are, 

to date, the only recommendations published on this topic[40,41]. They slightly differ from the initial 



description of the technique[18] as more recent laboratory investigations have found that two parameters  

determine the volume of the lesion: the dipole selection and the radiofrequency parameters[42,43]. 

The French guidelines recommend to create the dipole by selecting adjacent electrode contacts on a 

single electrode[40]. These contacts are conventionally located in cortical areas showing either a low 

amplitude fast pattern or spike-wave discharges at the onset of the seizures. Interictal paroxysmal 

activities can help to locate the ictal onset zone but when isolated are classically insufficient to be 

considered as a SEEG-guided RF-TC target[28]. Nevertheless, because of the high specificity of the 

spiking signature of type II focal cortical dysplasias[44], SEEG-guided RF-TC can be exceptionally 

performed where this signature is observed, even if no seizure has been recorded. Functionally 

evaluating all the possible targets by bipolar electrical stimulations (low and high frequency pulse 

stimulation up to 3mA)  during the video-SEEG recording session is recommended to avoid side effects 

[40]. RF-TC may be reconsidered on dipoles whose stimulation provokes a neurological deficit. The 

direct electric stimulations for functional mapping are similar to those used for triggering seizures during 

the SEEG or when studying the functional connectivity within a network, and can be either low 

frequency shock or high frequency train stimulations. Train stimulations are particularly relevant for 

functional mapping of primary areas. The parameters for shock stimulations are 1 Hz frequency; a shock 

duration of 0.5 to 3 ms; an intensity of 0.5 to 4 mA (progressively increased); a stimulation duration of 

20 to 60 s. The parameters for train stimulation are 50 Hz frequency; a shock duration of 0.5 to 1 ms; an 

intensity of 0.5 to 5 mA (progressively increased); a stimulation duration of 3 to 8 s[40]. 

Parameters of radiofrequency current can be adapted to optimize the size of the lesion. For each 

coagulation site, the maximal lesion volume may be reached by using parameters adjusted according to 

the impedance (which indicates when coagulation occurs), whereas the lesion size obtained using  

standard fixed parameters is usually smaller (see Figure 2)[45]. The power delivered (in practice, the 

voltage, since the intensity is automatically adapted by the radiofrequency generator) is therefore 

increased until the impedance suddenly increases (usually within a few seconds); in vitro data suggest 

that this is related to the coagulation of proteins producing a sudden modification of the resistance that 



the tissue applies to the delivered sinusoidal current[45]. After this impedance change, any extra current 

delivered does not produce any increase of the size of the lesion. 

 

 

Indications 

There is no high-level evidence concerning the indication of SEEG-guided RF-TC, and therefore the 

points presented in this section must not be interpreted as recommendations but as insight about frequent 

clinical situations and when to consider this procedure in the diagnostic/therapeutic algorithm. 

The first historical indication of SEEG-guided RF-TC, which is still the most frequent one, concerns 

patients in whom a SEEG is needed to determine whether surgery is feasible and in whom resection 

finally appears to be indeed possible[28]. When the seizure onset zone is small enough to be entirely 

covered by the sum of the coagulation volumes, SEEG-guided RF-TC may be sufficient to cure the 

patient. In other cases, when only a portion of the seizure onset zone can be targeted by the RF-TC, the 

procedure remains a very helpful prognostic tool: the improvement of the epileptic status of the patient, 

even partial and time-limited, predicts with a high positive predictive value (93%) good outcome after 

conventional surgery [32]. It is worth mentioning that the negative predictive value is low; the absence 

of improvement of epilepsy after an SEEG-guided RF-TC does not therefore constitute an argument 

against surgical resection if the phase II investigations conclude to the presence of an accessible seizure 

onset zone. Very rarely, a partial lesion of a type II focal cortical dysplasia can lead to an increase of the 

seizure frequency – in which case rapid conventional surgery can be necessary if the adjustment of the 

drug regimen is insufficient to stabilize the situation. Concerning the very specific situation of temporal 

lobe epilepsy (TLE), for which LiTT is becoming increasingly popular as an alternative to amygdalo-

hippocamtectomy, evidence indicates that SEEG-guided RF-TC is inferior to conventional surgery, and 

therefore SEEG must not be only justified by the possibility of performing stereotactic lesions in such 

cases[21]. 



More recently, some patients in whom phase I investigations concluded to a surgical contraindication 

underwent SEEG in a purely therapeutic perspective to perform SEEG-guided RF-TC. This situation 

can correspond to that of a small, but clearly inaccessible to resective surgery, suspected ictal onset zone 

requiring a SEEG confirmation. A good example would be an anterior insular focal cortical dysplasia 

covered by a language dominant operculum in a patient who cannot sustain awake surgery, or a 

periventricular nodular heterotopia sited along the tapetum [24,25]. Moreover, when the surgical 

contraindication found on phase I investigations is a large multi-lobar epileptic network, SEEG-guided 

RF-TC can be indicated as a palliative option. The goal is then to target crucial nodes within the epileptic 

network in order to limit the organization and the propagation of seizures[46]. Nevertheless, the 

definition of the network’s nodes remains largely empirical (network modelling is not yet usable in 

clinical practice). 

Concerning hypothalamic hamartomas, a preliminary study using SEEG-guided RF-TC has recently 

been published[47]. However, this type of lesional epilepsy exceptionally requires phase II 

investigations. Moreover, the good results obtained by surgery and radiosurgery[48], the better volume 

control of LiTT, and the difficulty to perform a meaningful functional mapping in this area makes it 

harder to justify SEEG-guided RF-TC in this condition. When economic constraints limit the access to 

the reference techniques, standard monopolar RF-TC remain an option[49].   

The last very empirical and restricted indication is the use of SEEG-guided RF-TC as a diagnostic tool 

when multiple hypotheses are difficult to differentiate during a SEEG. In this specific case, the 

electrodes are left in place after the RF-TC and the SEEG continues. The analysis of the consequences 

of the lesions performed within the network can help to check the validity of the different hypotheses. 

 

Outcome 

A recent meta-analysis that included 6 studies[19,22,24,26,27,32] and a total of 296 patients found a 

seizure-free rate of 23% and a responder rate of 58% one year after the SEEG-guided RF-TC, responders 

being defined as those with 50% or greater reduction in seizure frequency as compared to the pre-



procedure period[30]. At the study level, meta-regression failed to identify factors impacting the seizure-

free rate, including the number of RF-TC. Furthermore, therapeutic efficacy was very heterogeneous, 

limiting the interpretation of the pooled result. It also remained high in sub-group analyses which 

indicates that heterogeneity was not only related to variable efficacy with regards to the underlying 

lesion and that it could, in part, be related to variations in the management of SEEG-guided RF-TC 

across centers.  

It is worth mentioning two specific etiologies in which the results differ from the general results and 

must lead to specific indications or contraindications. On the one hand, results of SEEG-guided RF-TC 

in periventricular nodular heterotopias are particularly interesting: among such patients treated with 

SEEG-guided RF-TC it has been reported that 38% were seizure free and 83% were responders [30]. 

On the other hand, in TLE a controlled study found that SEEG-guided RF-TC was inferior to anterior-

temporal lobectomy (ATL); none of the patients who underwent SEEG-guided RF-TC was seizure-free 

at one year (versus 75% in the ATL group), and only 48% percent were responders (versus 100% in the 

ATL group)[21]. No other published study has focused specifically on other etiologies and sub-group 

analysis has failed to identify other etiologies as having good or bad prognosis[30]. 

Emergence of SEEG-guided RF-TC has led to extend indications of SEEG for patients who are not 

eligible for conventional surgery. The implantation strategies may sometimes have also deeply evolved, 

for instance in over implanting a suspected well-limited seizure onset zone in order to perform a curative 

RF-TC procedure or to target network nodes for patients in whom only a palliative approach may be 

considered. Nevertheless these modifications of SEEG implantation strategies are very difficult to assess 

and none of the published studies investigating SEEG-guided RF-TC provide an evaluation of this. 

Concerning safety, the previously mentioned meta-analysis found homogeneous results across studies. 

The pooled complication rate of SEEG-guided RF-TC was 2.5% and, among those reported, only one 

(0.3%) was a non-expected deficit with minimal consequences on the patient’s daily life (hypoesthesia 

of the right thumb)[30]. The other complications were neurological deficits that were anticipated during 

the pre-procedure functional mapping by direct electric stimulation and corresponding to a very well 

circumscribed seizure onset zone situated in the primary motor area. The RF-TC was thus carefully 



discussed with the patients who were aware that the deficit noticed during functional mapping would 

occur after the lesion and may permanently remain[30].  

 

Conclusion 

The increasing number of studies investigating SEEG-guided RF-TC have established that this surgical 

procedure is remarkably safe. More evidence is necessary to determine the exact place of SEEG-guided 

RF-TC in the surgical management of drug-resistant epilepsies, but two situations emerge in which 

SEEG-guided RF-TC may be considered in clinical practice. First, in patients requiring a SEEG in their 

presurgical evaluation, and when SEEG succeeds in delineating an accessible seizure onset zone, SEEG-

guided RF-TC should be considered; although the probability of avoiding surgery by curing the patient 

is low the positive predictive value of a possible effect, even partial, of the RF-TC is valuable in the 

decision to proceed or not with surgery. Secondly, when the suspected seizure onset zone is not 

surgically accessible, but limited in size, a SEEG could be justified for the purpose of performing a 

SEEG-guided RF-TC, even if surgical resection is not an option. A good illustration of this indication 

is periventricular nodular heterotopias; these are rarely accessible to surgery and require SEEG to 

determine the respective contribution of the heterotopia and neocortex in the epileptic network. 

Subsequent SEEG-guided RF-TC allows a one-step procedure providing very encouraging results and 

might therefore be considered as an effective first-line treatment for periventricular nodular heterotopias 

-related drug-resistant epilepsy, LiTT being an interesting alternative option. Concerning TLE, SEEG-

guided RF-TC is inferior to the gold standard technique and should not be used as an alternative. 
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Figure 1: Procedure workflow. 

 

  



Figure 2: a. in vitro aspect of multiple thermocoagulation on a single electrode; b. MRI aspect of multiple 

thermocoagulation on a multiple electrodes (red arrows). 

 

 


