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Abstract: In recent years, environmental concerns resulted in an increase in the use of renewable
resources such as wind energy. However, high penetration of the wind power is a challenge due
to the intermittency of this resource. In this context, the wind energy forecasting has become a
major issue. In particular, for the end users of wind energy forecasts, a critical but often neglected
issue is the economic value of the forecast. In this work, we investigate the economic value of
forecasting from 30 min to 3 h ahead, also known as nowcasting. Nowcasting is mainly used to
inform trading decisions in the intraday market. Two sources of uncertainty affecting wind farm
revenues are investigated, namely forecasting errors and price variations. The impact of these
uncertainties is assessed for six wind farms and several balancing strategies using market data.
Results are compared with the baseline case of no nowcasting and with the idealized case of perfect
nowcast. The three settings show significant differences while the impact of the choice of a specific
balancing strategy appears minor.

Keywords: wind energy forecasting; nowcasting; electricity market; balancing strategies

1. Introduction

Intermittent renewable sources such as wind energy are subject to rapid and unpredictable
changes. In this context, if producers are part of a liberalized electricity market, they are exposed to
penalties related to the costs of regulating the grid.

The centerpiece of modern electricity markets is the day-ahead, or spot market, where most
electricity purchases and sales take place. The day-ahead market is a one-off auction where producers
and consumers submit their bids and offers before 12:00 for each hour of following day, and the
price for each hour is determined by balancing supply and demand. Thus, offers are made between
12 and 35 h before the delivery. Following the announcement of the day-ahead prices, the intraday
market opens, allowing the participants to adjust their positions taken in the day-ahead market as new
information becomes available. The intraday market is a continuous trading venue, similar to a stock
trading platform, where bids and offers for delivery hours, half-hours or quarter-hours of the next
day are placed in the order book, and matching bids/offers are executed immediately, resulting in
a transaction. The electricity market opens at 15:00 on the previous day and the trading continues
until 5 to 30 min before delivery for each unit, but significant liquidity usually only becomes available
5 to 6 h before delivery.

On delivery, producers are charged for any negative imbalance, defined as the difference between
real production and the aggregate market position (day-ahead plus intraday). Positive imbalances give
rise to payments. However, the corresponding imbalance prices may be lower than the market prices
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that the producer would have obtained in the day-ahead or intraday market. The actual balancing
prices are computed post-factum, depending on the costs of the grid regulation [1].

Several studies showed that accurate forecasts can be used to enhance the value of wind
energy production. Roulston et al. [2] compared the use of forecast from the European Centre for
Medium-Range Weather Forecasts (ECMWF) for 1 to 10 days lead time, and the climatology to bid in
the day-ahead market in the UK. They find that with forecasts based on ECMWF, the daily income
is higher on 60% of the days compared with climatology. Moreover, the weekly income is higher
on 80% of the weeks. Pinson et al. [3] showed that one way to define sophisticated strategies to
participate in the Danish day-ahead market is to provide, in addition to forecasts, information about
their uncertainty. Barthelmie et al. [4] studied the use of forecasts up to 36 h lead time for trading
in the day-ahead market and show that a perfect forecast leads to a price advantage of about 4.5 £
per MWh. As in [2], their study is based on the UK market. Fabbri et al. [5] assessed the costs of
forecasting errors for wind energy producers bidding in the Spanish day-ahead and intraday market.
Considering three case studies (one wind farm, 15 wind farms and the total Spanish production), they
show that these costs can reach as much as 10% of the total generator energy income. Usaola et al. [6]
showed that revenues can be increased with an hourly wind energy forecast from 1 h to 48 h lead-time,
based on in situ measurements and numercial weather prediction (NWP) model outputs, and used to
bid on the day-ahead and intraday markets. Using the rules of the Spanish electricity market, they
show that with such a forecast, the income is reduced by 7.5% with respect to perfect forecast due to
forecasting error. Its is reduced by 9.5% when persistence is used and 10% when no forecast is used.
Matevosyan et al. [7] described a method to simulate the Nordic power market (Norway, Finland,
Sweden, and Denmark). It is based on imbalance price to minimize imbalance costs. They combine
this model with wind energy forecasts from 18 h to 41 h lead time, to build a stochastic optimization
model in order to generate optimal wind power production bids for the day-ahead market.

An economic quantification of the value of the forecast is a way of assessing its performance
for users who are more interested in maximizing revenue from the use of the forecast than in the
forecast itself.

Most of the studies mentioned above focus on wind energy forecasting in order to sell energy
on the day-ahead market. However, the added value of nowcasting, to bid on the intraday market, is
rarely investigated. The goal of this paper is therefore to quantify the economic value of nowcasting
for a producer with a lead time ranging from 30 min to 3 h. We focus on the value of nowcasting for
balancing wind production in the intraday market, to minimize the imbalance penalties. Our tests are
conducted using the data from six specific wind farms situated at different locations in France; two
of these farms are analyzed in more detail. We use the French electricity market rules and data from
EPEX Spot.

After the introduction, the methodology is described in Section 2, with the overview of the data
sets (in situ measurements, NWP outputs and price data), the details of the nowcasting model used
in the study and the description of the French electricity market. In Section 3, the two sources of
uncertainty faced by the wind producer are discussed. They include the forecasting model uncertainty,
which is expected to decrease with shorter lead times, and on the other hand, the market price
volatility, which is expected to increase with shorter lead times. To identify the impact of the
uncertainties on the revenues of producers, Section 4 compares various scenarios: the case where
no nowcast is available, the case where a perfect nowcast is available, and the case where a realistic
nowcast is available. The impact of these three scenarios is analyzed in depth with respect to the
contribution of the two sources of variability. Finally, one-year income obtained using several nowcasts
is compared at six existing wind farms. Section 5 discusses the results, summarizes the main outcome
and provides perspectives.

It is essential to mention that in practice, small wind producers cannot access the market directly,
but sell their energy through an aggregator. This being said, the methodology of this study remains
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valid, it would simply be necessary to transpose it to the aggregator scale, and only the numbers
presented would vary.

2. Methodology

2.1. Data Sets

Several data sets are needed for this study. For the wind and wind energy production, we use
in situ measurements from the company Zephyr ENR. Zephyr ENR is a French company owner of
6 wind farms in North-Western France (see Figure 1). For each wind farm, the characteristics of the
site and the wind turbines are listed in Table 1.

Table 1. Main characteristics of the 6 considered wind farm including: the location, the commissioning
year, the number, type and reference of the wind turbines and the hub height.

Name Location Commissioning Number, Type and Hub
Year Reference of Turbines Height

Parc de Bonneval (A) (48.20◦ N, 1.42◦ E) 2006 6 Vestas V80-2 MW 100 m
Moulin de Pierre (B) (48.24◦ N, 1.47◦ E) 2017 6 Vestas V112-3 MW 94 m

Parc de Beaumont (C) (47.60◦ N, 1.44◦ W) 2015 6 Vestas V100-2 MW 95 m
Parc de la Renardière (D) (47.64◦ N, 1.48◦ W) 2009 6 Senvion MM92-2 MW 100 m

Parc de la Haute Chèvre (E) (49.04◦ N, 0.93◦ W) 2011 3 Enercon E82-2.3 MW 85 m
Parc de la Vènerie (F) (49.01◦ N, 1.16◦ W) 2014 4 Enercon E82-2.3 MW 85 m

This study was conducted in the six wind farms with similar results. Consequently the two most
representative farms are investigated in-depth for illustration: Parc de Bonneval and Parc de la Vènerie
(in red in Figure 1). Parc de Bonneval is located in the fields with a flat topography, while Parc de la
Vènerie is surrounded by forests with a more rugged topography. Several measurements are collected
at the hub height. The wind speed is measured with a sampling period of 1 s with anemometers
located on the nacelle, behind the blades. Then, 10 min averages are retrieved for both wind speed and
wind energy. In this study, this 10 min data for the year 2015 are used.

Figure 1. Location of the wind farms owned by Zephyr ENR. There are Parc de Bonneval (A), Moulin
de Pierre (B), Parc de Beaumont (C), Parc de la Renardière (D), Parc de la Haute Chèvre (E), and Parc
de la Vènerie (F). In this study, results are shown for the two wind farms in red: Parc de Bonneval and
Parc de la Vènerie. Figure extracted from Google Earth.

Electricity market price data for this study were obtained from Epex Spot, the electricity exchange
managing the day-ahead electricity markets of France, Germany, Austria and Switzerland. We use the
hourly day-ahead prices, the last intraday prices, and, for the detailed analysis of the two representative
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wind farms, the German order book data. All prices were retrieved for the year 2015. The order book
dataset contains all orders submitted to the intraday market from the time the intraday market opens
until the market closes. We apply the algorithm by Martin et al. [8] to simulate the limit order book
(LOB) and reconstruct the bid and offer prices.

The balancing penalties computed by the French transmission system operator RTE (Réseau de
Transport d’Électricité), depending on grid regulation costs (https://clients.rte-france.com/lang/an/
visiteurs/vie/mecanisme/volumes_prix/pre.jsp), were retrieved from RTE website for the year 2015.

2.2. Forecasting Models

For the market simulations in this study, two forecasting models are used.
To determine the positions to take in the day-ahead market, wind energy production forecasts

from 12 h ahead to 35 h ahead are needed. To this end, we use the hourly forecasts of the wind speed
up to 4 days from the European Centre for Medium-Range Weather Forecasts (ECMWF). The spatial
resolution of ECMWF forecasts is of about 16 km (0.125◦ in latitude and longitude). The wind speed
is forecasted at 100 m which is the hub height at Parc de Bonneval. At Parc de la Vènerie, where the
turbine height is 85 m, so height correction is needed to avoid overestimation. The wind speed at 85 m
is inferred from the 10 m and 100 m wind speed forecasts using the power law given by:

Uz = czα, (1)

where Uz is the wind speed at altitude z and c and α are parameters to be estimated. Using the data
from 2015, α can be easily computed using Equation (1):

α̂ =
log(U10)− log(U100)

log(10)− log(100)
, (2)

where U10 and U100 are 10 m and 100 m wind speed from ECMWF averaged over 2015. The interpolated
wind speed at 85 m height is then given by:

Û85 = U100

(
85

100

)α̂

(3)

To compute the wind energy forecasts we used the power curve of the turbines. We model the
power curves according to the standard methodology of The Standard International IEC 61400-12-1 [9].
The methodology consists of modeling the power curve by dividing the wind speed dataset onto
0.5 m s−1 intervals. For each wind speed intervals we compute the corresponding averaged power.
Then the computed power curve is retrieved by fitting these means.

To determine positions to take in the intraday market, nowcasts are needed. In this study we focus
on nowcasts from 30 min ahead (for the transactions taking place just before intraday market closure)
to 3 h ahead. To this end, we use the nowcasting model described in [10], which will be referred
herefater to as LRobs

SW (see the Notations list). It is a downscaling model with low cost assimilation,
which uses ECMWF forecasts and in situ measurements as explanatory variables.

The explanatory variables are listed in Table 2. These include variables representative of the large
scale weather systems (wind speed at altitude, vorticity, . . . ) as well as mean and turbulence surface
variables characterizing the stability of the boundary layer meteorology (e.g., typically the first 1-km
deep layer of the atmosphre). To this set of variables, is added the error between the wind speed
measured at time t0, time at which the nowcast is initiated, and the ECMWF forecasted wind speed at
lead time t, i.e., Vhub_height

t0
− VECMWF

t0
(t).

https://clients.rte-france.com/lang/an/visiteurs/vie/mecanisme/volumes_prix/pre.jsp
https://clients.rte-france.com/lang/an/visiteurs/vie/mecanisme/volumes_prix/pre.jsp
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Table 2. Explanatory variables from ECMWF forecasts used as input of the nowcast model LRobs
SW.

(a) Surface variables

Altitude (m) Variable Unit

10 m / 100 m Zonal wind speed m s−1

Meridional wind speed m s−1

2 m Temperature K
Dew point temperature K

Surface

Skin temperature K
Mean sea level pressure Pa

Surface pressure Pa
Surface latent heat flux J m−2

Surface sensible heat flux J m−2

- Boundary layer dissipation J m−2

Boundary layer height m

(b) Altitude variables

Pressure Level (hPa) Variable Unit

1000 hPa/925 hPa/
850 hPa/700 hPa/

500 hPa

Zonal wind speed m s−1

Meridional wind speed m s−1

Geopotential height m2 s−2

Divergence s−1

Vorticity s−1

Temperature K

(c) Computed variables

Altitude Variable Unit

10 m/100 m Norm of the wind speed m s−1

Between 10 m
and 925 hPa

Wind shear m s−1

Temperature gradient K

Among the explanatory variables, some can be correlated and some other probably provide
important information. To limit the number of explanatory variable and limit the overfitting by keeping
the important and uncorrelated variables, a forward selection is performed. This iterative procedure,
adds variables from the set of explanatory variables based on a choosen criteria. In this case, we choose
the Bayesian Inference Criterion (BIC) [11] which is based on the likelihood function. The forward
selection introduce a penalty term related to the number of parameter in the model, in order to reduce
the overfitting. The model with the lowest BIC is preferred. At each step, the explanatory variable
which minimize the BIC of the resulting model, is added. The procedure is repeated as long as the
BIC decreases.

Dupré et al. [10] show that this model overperforms the classical benchmark models, such as
Artificial Neural Networks [12], or Auto Regressive Moving Average models [13] for nowcasting
applications (i.e., from 10 min to 3 h). In [10], the authors also consider a downscaling model without
assimilation of observations: LRno-obs

SW (see the Notation list). This model will be used in the following
in a benchmark comparing LRobs

SW, LRno-obs
SW , ECMWF forecasts and persistence.

2.3. Electricity Market

The short-term electricity trading in France and most other European countries is organized in
three stages, shown in Figure 2 for a given delivery date t0 [1].

The day-ahead market, where most short-term trading takes place, is a one-off auction where
participants submit bids for specific delivery hours, or blocks of hours, of the following day, and prices
are determined by supply and demand. The bids for the next day must be submitted before 12:00. In our
simulation, the producer is assumed to make bids based on wind energy forecasts computed from
ECWMF wind forecasts as explained above. Since the forecast starting at 1200 UTC (Universal Time
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Coordinate) with French local time being UTC+1 h in winter and UTC+2 h in summer), the forecast is
not yet available to determine the bid to be submitted before 12:00, so the forecast starting at 0000 UTC
is used instead. This results in using forecasts with horizons from 24 h to 47 h for day-ahead bidding.

After making the initial transaction in the day-ahead market, the producer has the possibility to
adjust the position in the intraday market if the production forecast has changed. The intraday market
opens at 15:00 on the day preceding delivery, and transactions are possible until 5 to 30 min before the
delivery time (depending on the product). It operates continuously as an order book where market
participants may place orders.

Day-ahead

t = D-1 12:00

Intraday

D-1 15:00 ≤ t ≤ t0-30 min

Imbalance

t ≥ t0

Forecasts from: ECMWF LRobs
SW

Figure 2. Electricity market organization for delivery at time t0. The day-ahead market operates as a
one-time auction at 12:00 on the day before the delivery date, for each slot of the next day. The intraday
market opens at 15:00 on the day before delivery and operates continuously until 5 to 30 min before the
delivery time. Upon delivery, RTE compensates any imbalances using the imbalance market and issues
appropriate imbalance payments/collects imbalance penalties from market participants.

It should be emphasized that although it is possible to trade in the intraday market starting
from 15:00 on the day before delivery (that is, for example, 32 h before delivery for the last slot of
the delivery day), most transactions take place a few hours (4–5 h) before delivery time [14]. In our
simulations we therefore assume that producers use nowcasts to adjust their positions in the intraday
market 3 h to 30 min before delivery. It is a priori more advantageous to sell the production in the
day-ahead market if it can be well forecasted, because the day-ahead market is more liquid. On the
other hand, balancing the production in the intraday market at the last moment can be tempting as the
forecasts are as accurate as possible. However, price volatility increases significantly as the delivery
date approaches [14], so it is more risky to wait.

Finally, any differences between the the electricity produced and the electricity sold are
compensated financially by RTE using the imbalance settlement prices. These prices are set according
to the cost of additional generating units RTE must call upon to balance the French electricity system.
At this point there are two possibilities: whether the producer has delivered too much electricity and
is forced to refund the difference at a generally lower price than in the intraday market. Or he has
delivered a lower amount of electricity and is forced to buy the difference at a generally higher price
than in the intraday market.

Using the nowcasts and the different market prices, the total income from electricity generated
during delivery hour t, Itot

t can be calculated as the sum of the incomes from each stage of the market:

Itot
t = Iday-ahead

t + Iintraday
t + Iimbalance

t , (4)
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where Iday-ahead
t is the income from the day-ahead market, Iintraday

t is the income from the intraday
market and Iimbalance

t is the income from imbalance settlement (see the Notation list). The three sources
of income are defined as follows:

Iday-ahead
t = FECMWF

t × pday-ahead
t

Iintraday
t =

(
FLRobs

SW
t − FECMWF

t

)
× pintraday

t

Iimbalance
t =

(
Freal

t − FLRobs
SW

t

)
× pimbalance

t ,

(5a)

(5b)

(5c)

where FECMWF
t is the forecast of the energy production (in MWh) computed from the ECMWF

wind speed forecast, FLRobs
SW

t is the nowcast of the wind energy production, Freal
t is the actual energy

production; pday-ahead
t is the price at which energy was sold in the day-ahead market, pintraday

t is the
price at which energy was sold in the intraday market and pimbalance

t is the imbalance price (see the
Notation list).

As an illustration, Figure 3 shows the monthly averaged day-ahead price and interquartile
variability range, as well as the wind energy production at Parc de Bonneval and Parc de la Vènerie
and the simulated daily income, computed with the LRobs

SW nowcasting model. Seasonal variability is
clearly visible: the income is significantly higher in winter for the two farms due to higher production,
and strong correlation between income and production. From the interquartile range, one can see
that the distribution is not symmetric, especially in summer, when the third quartile is closer to the
mean than the first quartile. Moreover, the seasonal pattern visible in the monthly average income
is also reflected in the quartiles: for the two farms the interquartile range is smaller in summer than
in winter. This can be explained by the lower variability of the production in summer than in winter.
The variability of the day-ahead price which represents almost 90% of the total income is fairly similar
in summer and in winter whereas the variability of energy production in winter is larger than in
summer by about 50%.

To sum up the workflow of the study, Figure 4 illustrates the methodology. It displays the
forecasting aspects: how the different models are fitted and how they are used in an operational
mode. It also displays the economic aspect: how we go from wind speed forecasting to income from
production. The flowchart also exhibits the temporal aspect of the study linked to the three steps of
the electricty market, as well as the different type of data that are used along the study workflow.
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Figure 3. Panel (a): day-ahead price averaged over each month of the calendar year, together with the
first and third quartiles for each month. Panels (b,c): wind energy production at Parc de Bonneval
and Parc de la Vènerie, averaged over each month with first and third quartiles for each month.
Panels (d,e): simulated daily income, computed with the LRobs

SW nowcasting model, averaged over each
month, with quartiles for each month. Data and results are shown for the year 2015.
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ECMWF
wind speed
forecasts

Day-ahead
volume

ECMWF
forecast
outputs

In-situ wind
speed mea-
surements

LRno-obs
SW

LRobs
SW

Persistence

Wind speed
nowcasts

Power curve

ECMWF
production
forecasts

Production
nowcasts

Intraday
volume (sell)

Underestimation of

day ahead volume

Intraday
volume (buy)Overestimation of

day ahead volume

In-situ
production

Positive
imbalance

Underestimation

of intraday volume

Negative
imbalanceOverestimation

of intraday volume

Day ahead
income

Day ahead
market price

Intraday
income

Intraday
market price

Imbalance
income

Imbalance
settlement

price

Total income

Input / output

Process

Decision

t = D-1 12:00

D-1 15:00 ≤ t ≤ t0-30 min

t ≥ t0

Wind farm local data

Used as raw data

Used as model input

Data used to fit LRno-obs
SW and LRobs

SW models

Data used to fit persistence model

Figure 4. Workflow considered in this study.
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3. Sources of Uncertainty in Wind Farm Income

This study highlights two main sources of uncertainty in wind farm income. The first one is related
to nowcasting errors. Nowcasting errors are expected to decrease when the delivery time comes closer.
Figure 5 displays for the two wind farms the Normalized Root Mean Square Error (NRMSE) of the
four available nowcasts from LRobs

SW, LRno-obs
SW and ECMWF models and from persistence. The NRMSE

is defined as follows.

NRMSE =

√
1
N

N
∑

i=1
(ŷi − yi)2

Ỹ
, (6)

where ŷi is the i-th energy forecast and yi is the corresponding observation, N refers to the number
of forecasts used to compute the NRMSE, and Ỹ is the rated power (12 MW at Parc de Bonneval and
9.2 MW at Parc de la Vènerie).

As a reminder, LRobs
SW is a linear regression with assimilation of observations and LRno-obs

SW is a
linear regression without assimilation.
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(a) Parc de Bonneval

Persistence
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LRobs
SW
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(b) Parc de la Vènerie

Persistence

ECMWF

LRno-obs
SW

LRobs
SW

Figure 5. Forecasting errors for several forecast model as a function of lead time to delivery. Results
for ECMWF, LRobs

SW and LRno-obs
SW nowcasts as well as persistence are shown. The models are evaluated

against persistence (red dashed line). Results for Parc de Bonneval (a) and for Parc de la Vènerie (b)
are shown. The x-axis displays the time before the delivery date: x = 40 means that the models are
launched 40 min before the delivery date.

Figure 5 displays the NRMSE of the nowcasts as a function of lead time before the delivery date.
For the two wind farms, the performance of ECMWF and LRno-obs

SW do not depend on the time horizon.
The NRMSE is around 11% at Parc de Bonneval and between 11% and 14% at Parc de la Vènerie.
When in situ measurements are added as explanatory variables in LRobs

SW, the error decreases as the
forecast time horizon gets closer to the delivery time. The error from LRobs

SW increases from 7.9% at Parc
de Bonneval for 30-min lead time, to 10.8% for 2 h lead time. For more details on the forecasting errors,
interested readers are referred to [10].

Using LRobs
SW nowcast, the optimal strategy should thus be to adjust the position in the intraday

market as late as possible, i.e., 30 min before the delivery date. However, one needs to take into account
the impact of price volatility which measures the risk associated with price fluctuations. If volatility is
low, most of the time, an average price is obtained which means the associated risk is low. However,
when the volatility is high it is whether possible to get a very good price (low purchase and high
sale) or a very bad one (high purchase and low sale). As a result, transactions are much more risky.
Intraday electricity market prices are non stationary. The number of transactions per unit time and the
average price volatility strongly depend on the time remaining until delivery [14] and increase when
the delivery time draws near.

Figure 6 displays the annual price variations on intraday in 2015 as a function of the balancing
time all delivery date combined. The closer the delivery date, the larger the price variations. Moreover,
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the variations are larger for the buying price than for the selling price. It starts between 12.1 ¤ and
12.3 ¤ 3 h before the delivery date, up to between 13.4 ¤ and 14.5 ¤ 30 min before the delivery date.
A larger variation means more risk for the producer. Consequently, from Figure 6, the optimal scenario
seems to be a balancing time as early as possible.

180 160 140 120 100 80 60 40 20 0

Time before delivery date (in minutes)

12.0

12.5

13.0

13.5

14.0

14.5
P

ri
ce
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ri

at
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n
s

(i
n

eu
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s)
Selling price

Buying price

Figure 6. Price variations in euros as a function of time before delivery date. Blue line in for the selling
price on intraday and orange line is for the buying price.

Since the forecasting model is expected to be the most accurate close to the delivery date,
while larger price variations introduce additional uncertainty at this time, one can assume the existence
of an optimal time to balance in the intraday market. As expected from Figure 5, the optimal time
should depend on the nowcast model. In the following, the results are analyzed using LRobs

SW model
which displays the best performance.

4. Results

To determine the optimal balancing time in the intraday market, we introduce three case studies:

1. The case without nowcast available. In this case, the difference between the production sold in
the day-ahead market and the real production is compensated via imbalance settlement price.

2. The case with a perfect nowcast available. There is no imbalance penalty.
3. The case with a realistic nowcast available. The quantities sold in the intraday and day-ahead

markets differ from the real production, so the producer may have to pay an imbalance penalty.

To evaluate the impact of the four available nowcasts (LRobs
SW, LRno-obs

SW , ECMWF or persistence),
we define a score that represents the difference in income between the case where a realistic nowcast is
used and the case without nowcast available:

∆I = IForecast
tot − INo forecast

tot (7)

The score is computed weekly and is expressed in euros per MW of installed capacity. It is positive
(resp. negative) for income gain (resp. loss) consequent to the use of nowcast information.

Figure 7 displays ∆I at Parc de Bonneval and Parc de la Vènerie, for the four nowcasts. At Parc de
Bonneval, except for a strong peak from persistence in March, LRobs

SW nowcasts outperform the others.
The quantity ∆I is on average positive showing the added-value of the use of nowcast information.
The annual averaged values are 58.0 ¤/MW for LRobs

SW, 17.3 ¤/MW for LRno-obs
SW , 15.2 ¤/MW for

ECMWF and 35.1 ¤/MW for persistence. However, the variation range of ∆I can reach 100% at times.
At Parc de la Vènerie, such as at Parc de Bonneval, the use of a nowcasts increases the income. This
income increase is larger than at Parc de Bonneval, except for ECMWF. The annual averaged values
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are 84.1 ¤/MW for LRobs
SW, 24.5 ¤/MW for LRno-obs

SW , 2.8 ¤/MW for ECMWF and 67.0 ¤/MW for
persistence. For the two wind farms, LRobs

SW model shows the best performance.
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Figure 7. ∆I (Equation (7)) normalized by the installed capacity at Parc de Bonneval (a) and Parc de la
Vènerie (b). It is expressed in euros per MW and it is computed weekly.

To determine more precisely the added value of nowcast information, we separate the total income
into three sources: income from day-ahead market, income from intraday market and income from
imbalance settlement. Particular attention is given to Iintraday and Iimbalance as they have a stronger
dependence on the nowcast. We consider four balancing times: 30 min, 1 h, 2 h and 3 h before the
delivery time. The quantity Iday-ahead is the same for all four scenarios, since it does not depend on the
balancing time. For each balancing time, we compare two cases: the case with perfect nowcasts and
the case with LRobs

SW nowcast. In each case, the quantity sold in the day-ahead market is based on the
ECMWF forecasts (see Section 2.2).

Figure 8 displays the daily income in euros per MW from the intraday market, averaged over
each month, at Parc de Bonneval (Figure 8a,b) and at Parc de la Vènerie (Figure 8c,d). The two farms
exhibit similar behavior whatever the forecast (realistic or perfect), with higher revenues during spring
and summer (with an exception in May), than during fall and winter. The income from the intraday

market is negative in winter and positive in summer. This means that in winter, FLRobs
SW

t < FECMWF
t ,

and the balancing consists of buying energy in the intraday market, while in summer FLRobs
SW

t > FECMWF
t ,

and the balancing consists of selling a surplus of energy in the intraday market. The difference between
the four balancing strategies is more pronounced in the case of realistic forecast, as for perfect foreast,
the difference is only due to the difference in market prices.
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Figure 8. Daily income from intraday market averaged over months at Parc de Bonneval ((a) and (b))
and at Parc de la Vènerie ((c) and (d)) in 2015. For both farms, four different balancing times (30 min,
1 h, 2 h, and 3 h before the delivery date) are shown. Panel (a) (resp. (c)) displays the results when the
nowcast is provided by LRobs

SW at Parc de Bonneval (resp. Parc de la Vènerie), and panel (b) (resp. (d))
assumes perfect knowledge of the realized production at Parc de Bonneval (resp. Parc de la Vènerie).

More quantitatively, Table 3 shows how frequently the energy balanced in the intraday market
Pintraday exceeds different thresholds. Four thresholds are considered: Pintraday < −20% of the installed
capacity (ICAP) (large negative forecast errors), Pintraday < 0 MWh (moderately negative forecast
errors), Pintraday > 0 MWh (moderately positive forecast errors) and Pintraday > 20% ICAP (large
positive forecast errors). The first four rows display the results for the four balancing strategies for
LRobs

SW nowcast, while the last row displays the results for perfect nowcast. At Parc de Bonneval,
the occurrence of positive errors (around 53%) is larger than that of negative errors (around 41%)
for both LRobs

SW and perfect nowcasts. Therefore, in most cases, the balancing is done by selling excess
energy in the intraday market. At Parc de la Vènerie, the occurrences of negative and positive errors
are similar. However, the occurrence of large negative errors is significantly higher than the occurrence
of large positive errors. Therefore, in most cases, the balancing consists of buying a lack of energy on
intraday. This explains the results of Figure 8. As the balancing at Parc de Bonneval consists mainly in
selling an energy surplus, the income is therefore positive (Figure 8a,b). However, as the balancing at
Parc de la Vènerie consists mainly in buying an energy deficit, the income from this balancing tends to
be negative (Figure 8c,d).

The last source of income that depends on nowcasting and on balancing strategy is the imbalance
settlement. Figure 9 shows the monthly averages of the daily income from imbalance settlement
Pimbalance

t for Parc de Bonneval for 2015. The income is mostly negative at Parc de Bonneval, except in
February. At Parc de la Vènerie, a similar curve is found but shifted to more positive values.
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Table 3. Occurrence of Pintraday above or below various thresholds, where Pintraday is defined
as the difference between the production nowcast and the production sold in the day-ahead
market. Occurrences of large negative errors (Pintraday < −20% ICAP), moderate negative
errors (Pintraday < 0 MWh), moderate positive errors (Pintraday > 0 MWh) and large positive errors
(Pintraday >20% ICAP) are indicated for Parc de Bonneval and Parc de la Vènerie and four balancing
times (30 min, 1 h, 2 h and 3 h before the delivery date) using the LRobs

SW (first four rows) and perfect
(last row) nowcasts.

(a) Parc de Bonneval

Pintraday < −20% ICAP Pintraday < 0 MWh Pintraday > 0 MWh Pintraday > 20% ICAP
Occurrence (%) Occurrence (%) Occurrence (%) Occurrence (%)

30 min 3.6 41.0 52.9 4.7
1 h 3.8 40.8 53.3 4.9
2 h 3.0 41.0 53.3 2.6
3 h 2.8 40.9 53.5 2.3

Perfect forecast 7.0 41.9 52.3 10.0

(b) Parc de la Vènerie

Pintraday < −20% ICAP Pintraday < 0 MWh Pintraday > 0 MWh Pintraday > 20% ICAP
Occurrence (%) Occurrence (%) Occurrence (%) Occurrence (%)

30 min 6.1 50.1 49.9 2.7
1 h 6.5 50.3 49.6 3.0
2 h 6.5 51.6 48.3 2.1
3 h 6.3 52.2 47.8 1.7

Perfect forecast 6.4 48.1 51.7 3.6

Figure 9. Daily income from imbalance averaged over months at Parc de Bonneval in 2015 (a) and at
Parc de la Vènerie (b) in 2015 for four different balancing strategies (30 min, 1 h, 2 h and 3 h before the
delivery date).

The income from imbalance is the difference between the real production and the production
nowcast, multiplied by the imbalance settlement price. Table 4 shows the same information as Table 3
for the production imbalance Pimbalance. This time, the occurrences of positive and negative errors
are very similar for all balancing times. In these conditions, the positive errors cannot compensate
for the large difference between settlement prices for positive and negative imbalance. Indeed,
the average settlement price for positive imbalances in 2015 is 32 ¤ while the average penalty for
negative imbalances in 2015 is 45 ¤, explaing the negative income. Also, the occurrence of large errors
increases with increasing lead time. When the nowcast is provided 30 min before the delivery date,
the occurrenvce of large negative errors exceeds that of large positive errors, but the occurrence remains
low (<1%). When balancing is done 1 h before the delivery date, the occurrences of large negative and
positive errors are very similar. Combined with the large difference between penalties for positive and
negative imbalance, this suggests that such situations should lead to the lowest income from imbalance
settlement. Finally, when balancing is done 2 h or 3 h before the delivery date, the occurrence of large
positive errors iexceeds that of large negative errors suggesting a positive income from imbalance.
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At Parc de la Vènerie, the occurrence of positive errors is significantly larger than that of negative
errors, compensating the difference in penalty rates. It therefore leads to a positive income from
imbalance settlement. The different result for the two farms is linked to the nowcast error which put in
evidence the impact of nowcast performance assessment. It also shows that for other farms, an a priori
study of the nowcast bias is key information on the wind farm income.

Table 4. Frequency at which Pimbalance exceeds different thresholds. Percentages for the large negative
errors (Pimbalance < −20% ICAP), the moderately negative errors (Pimbalance < 0 MWh), the moderately
positive errors ( Pimbalance > 0 MWh) and the large positive errors (Pimbalance >20% ICAP) are shown.
Table 4a shows the results for Parc de Bonneval while Table 4b shows the results for Parc de la Vènerie.
In both cases the results are shown for four balancing times (30 min, 1 h, 2 h and 3 h before the delivery
date). The last row correspond to the case where no nowcast is available.

(a) Imbalance when using LRobs
SW nowcasting model for Parc de Bonneval

Pimbalance < −20% ICAP Pimbalance < 0 Pimbalance > 0 Pimbalance >20% ICAP
Occurrence (%) Occurrence (%) Occurrence (%) Occurrence (%)

30 min 0.5 46.3 46.2 0.2
1 h 1.3 46.8 46.1 1.1
2 h 2.4 47.6 47.0 3.4
3 h 2.7 47.4 47.5 4.2

No nowcast 7.0 41.9 52.3 10.0

(b) Imbalance when using LRobs
SW nowcasting model for Parc de la Vènerie

Pimbalance < −20% ICAP Pimbalance < 0 Pimbalance > 0 Pimbalance >20% ICAP
Occurrence (%) Occurrence (%) Occurrence (%) Occurrence (%)

30 min 0.4 43.3 56.5 0.0
1 h 0.5 45.5 54.3 0.4
2 h 1.1 45.7 54.2 2.0
3 h 1.5 45.7 54.3 2.8

No nowcast 6.4 48.1 51.7 3.6

To understand the combined effect of the three sources of income, we compare in Figure 10 the
total annual income for 2015 for the three case studies and for the four available nowcasts. For the
two farms, and without surprise, the largest income is obtained when perfect forecast is available
(which is never the case). The lowest income is found when no nowcast is used. At Parc de la Vènerie,
this lowest income is also reached when using ECMWF forecast as a nowcasting tool as ECMWF
forecast of wind energy production performs poorly at this location. Indeed, the forecasts are provided
at 100 m, and despite height correction, there is still a chance of overestimating the production. Such a
bias would produce negative imbalance, resulting in a loss of income. Without surprise, the LRobs

SW
model, assimilating wind farm data and calibrated specifically on each wind farm outperforms the
other models.

However, at Parc de Bonneval (resp. Parc de la Vènerie), the additional income of LRobs
SW nowcast

with respect to the absence of nowcast information is larger than 20 k¤ (resp. 30 k¤). The income
loss of LRobs

SW nowcast with respect to a perfect nowcast is around 30 k¤ (resp. 13 k¤). The difference
between the balancing strategies is even much lower, with additional gain of the order of 1 to 2 k¤.
Given these numbers, it is clear that the balancing strategy is less important than having access to an
accurate nowcast.
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Figure 10. Aggregate income for 2015 for Parc de Bonneval (a) and Parc de la Vènerie (b). For both
panels, we present the results for the case where no nowcast is available (blue bar), the case where
the nowcast is perfect (orange bar), LRobs

SW nowcasting model (dowscaling model with assimilation,
green bar), persistence (red bar), ECMWF (violet bar), and LRno-obs

SW model (downscaling model without
assimilation, brown bar). The scale is different from one Figure to another.

To extend the scope of this study, we apply the methodology to the six wind farms shown in
Figure 1. Results are shown in Figure 11. As the data from wind farms are not available for the same
year and for the sake of consistency, we make the following adjustments to the methodology:

1. for the three considered years, only 24 h lead time forecasts were available from ECMWF.
To determine the day-ahead bids, we therefore use the forecasts starting at 1200 UTC on the day
before delivery, with horizon at 12:00 on the delivery day. For the last twelve hours of the delivery
day, we use the last available lead time from ECMWF.

2. we only have access to the intraday order book for 2015. For more consistency, we therefore use
the intraday price data available on the EpexSPOT website for the 6 wind farms. The website
provides the last intraday price, without distinction between purchase price and selling price.
Then, to make the simulations more realistic, we add a spread to this price. As mention above,
the average intraday selling price in 2015 is around 31 ¤ while the average intraday buying price
for the year 2015 is around 33¤, so the average spread in the intraday market is 2¤. Then, we add
1 ¤ to the EPEX price to obtain the buying price and subtract 1 ¤ to obtain the selling price.

Despite those simplifications, the conclusions are the same as those inferred from Figure 10.
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Figure 11. Same as Figure 10 for the six wind farms. Subfigure (a) shows the results for Parc de
Bonneval, (b) for Moulin de Pierre, (c) for Beaumont, (d) for Parc de la Renardière, (e) for Parc de
la Haute Chèvre and subfigure (f) shows the results for Parc de la Vènerie. A few changes in the
methodology must be noted. (1) for day-ahead bids we use the ECMWF forecasts from 12 h ahead
to 24 h ahead and for the last twelve hours, we use the last available lead time from ECMWF. (2) for
intraday bids, we use the last price, available on EpexSPOT website, without distinction between
purchase price and selling price.

5. Conclusions

This paper aims at quantifying the economic value for a wind energy producer of nowcast from
30 min to 3 h lead time to bid on the intraday market, by using wind speed and energy production
data of six wind farms as well as electricity prices. Based on these data, several key messages can
be inferred. The optimal balancing time on the intraday market results from a trade-off between the
degradation of the nowcast performance with increasing lead-time to delivery, and the increasing price
volatility when approaching the delivery time. However, balancing at the optimal moment only brings
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an additional income of less than 1% of the annual income for the wind farms considered in the study,
whereas the use of an accurate nowcast can bring an additional gain of about 3–4%.

A second key message is that the combination of wind energy nowcast errors and price volatility
is non trivial as not only the distribution of the wind energy nowcast errors strongly impacts the
income (symmetrical or asymmetrical error distribution) but also the difference of selling and buying
price which can differ significantly on the imbalance market. Therefore, even a non-biased symmetrical
nowcast error distribution can induce an income loss as the sold energy surplus cannot compensate
financially the bought energy deficit. An asymmetrical nowcast error distribution can mitigate or
amplify the price effect. Therefore an accurate assessment of the nowcast error distribution is key to
anticipate the risk the wind energy producer takes when bidding on the intraday market, or worse the
penalties on the imbalance market.

This study presents a scenario where the wind energy producers have access to the electricity
market. However in practice this access is restricted to so-called aggregators. They link the electricity
producers and the electricity market. After buying the production of partners, they sell it, either to
customers or on the market. In this study, the production of each farm is individually sold on the
market. The methodology is valid; however, the numbers mentioned are not realistic since they must
be transposed to the aggregator level.

A second source of uncertainty, which is not addressed in this study, is related to the ECMWF
forecasts 48 h ahead. These forecasts are used to sell the production on the day-ahead market. They are
computed over a grid of 0.125◦ in latitude and longitude and a linear interpolation is performed in
order to retrieve the forecast at the wind farm location. Such resolution is too coarse to account for local
terrain inhomogeneities. Therefore, forecasts on such time and spatial resolution are often biased, as is
shown in this study, with a significant impact on the income assessment. A statistical bias correction
should be applied to reduce uncertainty and remove the bias. This could modify the quantity that
needs to be balanced on intraday, and change the impact of the nowcasting models.

Another potential source of uncertainty affecting the results of our study is related to the use
of market prices of electricity. Our study used mostly data from 2015 with some examples based
on 2016 and 2017. However, the electricity markets are non stationary and the prices may fluctuate
year to year due to external factors, such as the growing penetration of renewables, variations in fuel
prices, changes in market structure, etc. Thus, specific income values given in our paper for specific
wind farms may not be representative of the general situation. However, the relative performance of
different forecasting methods is stable over different wind farms and different years.
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Notations

LRno-obs
SW Downscaling model for wind energy nowcasting. Linear regression using as explanatory

variables the output from ECMWF model

LRobs
SW Downscaling model for wind energy nowcasting. Linear regression using as explanatory

variables the output from ECMWF model and the in-situ measurements

Itot
t Total income (from day ahead, intraday and imbalance markets) at time t

Iday-ahead
t Income from day ahead at time t

Iintraday
t Income from intraday at time t

Iimbalance
t Income from imbalance at time t

FECMWF
t Wind energy forecast (in MWh) from ECMWF model at time t (wind speed forecast

converted using the power curve)

FLRobs
SW

t Wind energy forecast (in MWh) from LRobs
SW model at time t

Freal
t Real production (in MWh) measured at time t

pday-ahead
t Electricity price at time t from day ahead market

pintraday
t Electricity price at time t from intraday

pimbalance
t Electricity price at time t from imbalance settlement

Pintraday Energy quantity (in MWh) that is balanced (buy or sold) via intraday

Pimbalance Energy quantity (in MWh) that is balanced via the imbalance settlements
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