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Abstract

We analyze the Biot system solved with a fixed-stress split, Enriched Galerkin (EG) discretiza-
tion for the flow equation, and Galerkin for the mechanics equation. Residual-based a posteriori
error estimates are established with both lower and upper bounds. These theoretical results are
confirmed by numerical experiments performed with Mandel’s problem. The efficiency of these a
posteriori error estimators to guide dynamic mesh refinement is demonstrated with a prototype
unconventional reservoir model containing a fracture network. We further propose a novel stopping
criterion for the fixed-stress iterations using the error indicators to balance the fixed-stress split
error with the discretization errors. The new stopping criterion does not require hyperparameter
tuning and demonstrates efficiency and accuracy in numerical experiments.

Keywords: A Posteriori Error Estimates, Enriched Galerkin, Biot System, Fixed-Stress Iterative
Split

1. Introduction

Applications arising in the geosciences and biosciences such as subsidence events, carbon se-
questration, groundwater remediation, hydrocarbon production, and hydraulic fracturing, enhanced
geothermal systems, solid waste disposal, and biomedical heart modeling, are driving the develop-
ment of numerical models coupling flow and poromechanics. In this paper, we focus on deriving
a posteriori error indicators for the Biot model that consists of a poromechanics equation coupled
to a flow model with the displacement and pressure as unknowns. In contrast to solving the Biot
system fully implicitly, we consider fixed stress iterative scheme that allows the decoupling of the
flow and mechanics equations. The decoupling scheme offers several attractive features such as the
use of existing flow and mechanics codes, use of appropriate preconditioners and solvers for the two
models, and ease of implementation. The design of this approach which is currently quite popular
is important in the formulation of efficient, convergent, and robust schemes.

In the fixed-stress split algorithm, the flow problem is solved first followed by the mechanics
problem, and a constant mean total stress is assumed during the flow solve. Kim et al. [27] demon-
strated stability for fixed stress and in [35, 36, 34] Mikelić and Wheeler established contractive
property of the scheme. Besides, we note here that this approach can be interpreted as a precon-
ditioner technique for solving the fully coupled system. For instance, the work of Gai et al. [20]
and Gai [19] involved interpreting this scheme as a physics-based preconditioning strategy applied
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to a Richardson fixed-point iteration. The same preconditioning technique was applied to the fully
coupled system in the work of Castelletto et al. [10, 11].

Several extensions of the fixed-stress split scheme have been studied. Almani et al. [4] and
Kumar et al. [28] extended the fixed-stress split to the multirate case, in which flow takes multiple
fine time steps within one coarse mechanics time step. Borregales [8] extended the fixed-stress split
to a nonlinear case. Dana et al. [14, 15] studied a multiscale extension of the fixed-stress split to
a poroelastic-elastic system where the poromechanics equation is solved on a larger domain with
a coarse grid and the flow equation is solved on a small domain with finer grid. Moreover, Bause
et al. [6] and Borregales et al. [7] explored space-time methods of the fixed-stress split, and the
work of Rodrigo et al. [41] considered the stability analysis of the discretization schemes. Storvik et
al. [43] studied the optimal choice of the stabilization parameter used in the fixed-stress split. Lu
and Wheeler [32] have recently extended the fixed-stress split to a three-way coupling, an adaptive
asynchronous coupling scheme that allows over 97.5% reduction in poromechanics computational
time due to not requiring the displacement to be computed for every time step.

Here we restrict our attention to the fixed-stress iterative coupling, analyze the enriched
Galerkin method (EG) for flow and Galerkin for elasticity. This is an extension of the previ-
ous work on Galerkin and/or mixed finite element methods for flow [24] to EG. In the early works
of Gai [19] and Wang [44] for two phase Biot system, it was observed that local mass conservation
for flow was essential. In Biot studies in fractured porous media, Lee et al. [30] have demonstrated
that EG is locally conservative and robust in treating fracture networks including quasi Newtonian
flows arising in proppant stimulation. Choo and Lee [12] showed that local mass conservation can
also be crucial to accurate simulation of deformation processes in fluid-infiltrated porous materials.
Therefore, EG is an attractive method for flow discretization, locally mass conservative, giving rise
to inexpensive residual error indicators that are easily incorporated in the code. Mixed methods are
also well suited to local mass conservation. Recently, Ahmed et al. derived a posteriori estimates
for fully mixed formulations of Biot model for both the monolithic scheme and the fixed-stress split
scheme [3, 2]. Their approach requires solving local auxiliary problems which are computationally
costly. Li and Zikatanov [31] derived residual-based a posteriori error estimates of mixed methods
for monolithic three-field Biot’s consolidation model that does not require the calculation of local
problems, which is promising to be extended for fixed-stress split schemes.

In this paper, we derive error equalities for each iteration of the fixed-stress algorithm at each
time step, followed by residual-based a posteriori error estimates. These estimates are based on
separate results extended to EG from [24]: contraction mapping, stability estimates and a priori
error estimates for the discretized problem that incorporate convergence of the iteration at each time
step. Here both lower bound (efficiency) and upper bound estimates (reliability) are obtained, but
they are non-optimal in terms of efficiency in the sense that the lower bounds involve weak residual
errors that cannot be computed numerically, see Section 6. The upper bound estimates represent
an extension of Ern et al. [18] for the monolithic Biot system based on Galerkin approximations.
In [18] no lower bounds were derived and as far as the authors are aware none have been derived
to date for Galerkin schemes. In our theoretical work, it is clear that obtaining lower bounds for
a posteriori errors is difficult, technical, and requires weak error terms that unfortunately do not
lead to obtaining the effectivity index easily. This is further aggravated by the imbalance in the
constants multiplying the pressure in the flow and displacement equations, see Section 8.1.

While the analysis presented here applies to the poroelastic system, a novel feature of this work
involves a generalized poroelastic–elastic system that represents the coupled flow and poromechan-
ics phenomena arising from hydrocarbon production or geological carbon sequestration in deep
subsurface reservoirs. The reason for this choice is that in these phenomena the spatial domain in
which fluid flow occurs is generally much smaller than the spatial domain over which significant
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deformation occurs. It also improves standard approaches. Indeed, the typical approaches model
the same physics over one domain, either considers only the reservoir with an overburden pressure
imposed directly or models the entire reservoir and surrounding rocks with zero permeability in
the surrounding rocks. The former approach may misrepresent the mechanics boundary conditions
and precludes the study of land subsidence or uplift whereas the latter approach is computationally
prohibitive.

This work is organized as follows. In the subsection below we establish notation. In Section 2, a
continuous-time model involving the decoupling of the model into elastic and poroelastic domains
with interface conditions is formulated in primal variational form. The primal formulation, complete
with the fixed-stress splitting algorithm, is fully discretized with EG for flow and Galerkin for
mechanics in Section 3. The a posteriori error equalities are derived in Section 4, and the error
indicators are inferred from them. Section 5 is devoted to an upper bound for the total error.
Section 6 introduces auxiliary weak residual errors. The lower bounds are discussed in Section 7.
Computational results are presented in Section 8. Numerical results on the Mandel problem confirm
these upper and lower error bounds. Moreover, the efficiency of using the a posteriori indicators
to guide dynamic mesh adaptation and a novel stopping criterion for the fixed-stress iterations are
presented. Finally, Section 9 draws some conclusions.

1.1. Notation

To be specific, the notation is expressed in three dimensions in a bounded connected open set
Ω ⊂ R3. The scalar product of L2(Ω) is denoted by (·, ·)Ω

∀f, g ∈ L2(Ω), (f, g)Ω =

∫
Ω
f(x)g(x)dx,

and the index Ω is omitted when the domain of integration is clear from the context. For any
non-negative integer m, the classical Sobolev space Hm(Ω) is defined by (cf. [1] or [37]),

Hm(Ω) = {v ∈ L2(Ω) : ∂kv ∈ L2(Ω) ∀ |k| ≤ m},

where

∂kv =
∂|k|v

∂xk11 ∂x
k2
2 ∂x

k3
3

,

equipped with the following seminorm and norm for which it is a Hilbert space:

|v|Hm(Ω) =

 ∑
|k|=m

∫
Ω
|∂kv|2 dx

 1
2

, ‖v‖Hm(Ω) =

 ∑
0≤|k|≤m

|v|2Hk(Ω)

 1
2

.

This definition is extended to any real number s = m+ s′ for an integer m ≥ 0 and 0 < s′ < 1 by
defining in dimension d the fractional semi-norm and norm, see [33] and [25],

|v|Hs(Ω) =

 ∑
|k|=m

∫
Ω

∫
Ω

|∂kv(x)− ∂kv(y)|2

|x− y|d+2 s′
dx dy

 1
2

, ‖v‖Hs(Ω) =
(
‖v‖2Hm(Ω) + |v|2Hs(Ω)

) 1
2
.

These fractional order spaces are often used for traces. The following trace property holds in a
domain Ω with a Lipschitz continuous boundary ∂Ω: If v belongs to Hs(Ω) for some s ∈]1

2 , 1], then
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its trace on ∂Ω belongs to Hs− 1
2 (∂Ω) and there exists a constant Cs such that

∀v ∈ Hs(Ω) , ‖v‖
Hs− 1

2 (∂Ω)
≤ Cs‖v‖Hs(Ω). (1.1)

In particular, H
1
2 (∂Ω) is the trace space of H1(Ω), with norm

|v|
H

1
2 (Γ)

=
( ∫

Γ

∫
Γ

|v(x)− v(y)|2

|x− y|d
dx dy

) 1
2 ,

and H−
1
2 (∂Ω) is the dual space of H

1
2 (∂Ω). Finally, if Γ is a subset of ∂Ω with positive measure,

|Γ| > 0, we say that a function g in H
1
2 (Γ) belongs to H

1
2
00(Γ) if its extension by zero to ∂Ω belongs

to H
1
2 (∂Ω). It is a proper subspace of H

1
2 (Γ), and is normed by

‖v‖
H

1
2
00(Γ)

=
(
|v|2

H
1
2 (Γ)

+

∫
Γ
|v(x)|2 dx

d(x,Γ)

) 1
2
, (1.2)

where d(x,Γ) denotes the distance to Γ.
We also recall Korn’s and Poincaré’s inequalities both valid for all functions v in H1(Ω)3 that

vanish on Γ:
|v|H1(Ω) ≤ K‖ε(v)‖L2(Ω), (1.3)

‖v‖L2(Ω) ≤ P|v|H1(Ω), (1.4)

where ε(v) is the strain tensor, and K and P are constants depending only on Ω and Γ. These
imply

‖v‖H1(Ω) ≤ C1‖ε(v)‖L2(Ω), C1 = K
(
1 + P2

) 1
2 . (1.5)

A trace inequality for all functions v in H1(Ω)3 that vanish on Γ can be obtained by combining
the interpolation inequality

∀v ∈ H1(Ω) , ‖v‖L2(Γ) ≤ C(Ω)‖v‖
1
2

L2(Ω)
‖v‖

1
2

H1(Ω)
,

with (1.4) and (1.3),

‖v‖L2(Γ) ≤ C2‖ε(v)‖L2(Ω), C2 = C(Ω)
(
KPC1

) 1
2 . (1.6)

As usual, for handling time-dependent problems, it is convenient to consider measurable func-
tions defined on a time interval ]a, b[ with values in a functional space, say X (cf. [33]). More
precisely, let ‖ · ‖X denote the norm of X; then for any number r, 1 ≤ r ≤ ∞, we define

Lr(a, b;X) = {f measurable in ]a, b[ :

∫ b

a
‖f(t)‖rXdt <∞},

equipped with the norm

‖f‖Lr(a,b;X) =

(∫ b

a
‖f(t)‖rXdt

) 1
r

,

with the usual modification if r =∞. It is a Banach space if X is a Banach space, and for r = 2,
it is a Hilbert space if X is a Hilbert space. Derivatives with respect to time are denoted by ∂t and
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we define for instance

H1(a, b;X) = {f ∈ L2(a, b;X) : ∂t f ∈ L2(a, b;X)}.

2. Governing equations and formulation

Let Ω be a bounded, connected, Lipschitz domain in R3. We are interested in the situation where
a poro-elastic model holds in a connected subset Ω1 of Ω (the pay-zone), completely embedded into
Ω, while an elastic model holds in Ω2 (the nonpay-zone), see Figure 1, where

Ω2 = Ω \ Ω1.

Let Γ12 denote the boundary of Ω1, assumed to be Lipschitz, and let n12 be the unit normal on
Γ12 exterior to Ω1. In the examples we have in mind, Ω1 is much smaller than Ω. This work
extends readily to more general configurations, but for simplicity, we focus on this situation. Let
the boundary of Ω, ∂Ω, be partitioned into two disjoint open regions not necessarily connected,
but with a finite number of connected components, each with Lipschitz-continuous boundaries,

∂Ω = ΓD ∪ ΓN .

We denote by nΩ the unit outward normal vector to ∂Ω. To simplify, we assume that the measure
of ΓD is positive: |ΓD| > 0.

Figure 1: Pay-zone with surrounding rock

Let σ be the effective linear elastic stress tensor,

σ(u) = 2Gε(u) + λ(∇ · u)I, (2.1)

where ε(u) = 1
2

(
∇u+∇tu

)
is the symmetric gradient tensor, I the identity tensor, and λ > 0 and

G > 0 are the Lamé coefficients. Let σpor be the linear poro-elastic stress tensor

σpor(u, p) = σ(u)− αp I, (2.2)

where α > 0 is the Biot-Willis coefficient. Let f be the body force in Ω. In the nonpay-zone,
i.e., a.e. in Ω2×]0, T [, the governing equations for the displacement u are those of linear elasticity.
In the pay-zone Ω1, the equations are those of Biot’s consolidation model for a linear elastic,
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homogeneous, isotropic, porous solid saturated with a slightly compressible single-phase fluid. The
unknowns are the solid’s displacement u and the fluid’s pressure p. This model is based on a
quasi-static assumption, namely it assumes that the material deformation is much slower than the
flow rate, and hence the second time derivative of the displacement (i.e., the acceleration) is zero.
After linearization and simplifications, it leads to the following system of equations in Ω×]0, T [,

−∇ · (λ(∇ · u)I + 2Gε(u)− αpI) = f in Ω1×]0, T [,

−∇ · (λ(∇ · u)I + 2Gε(u)) = f in Ω2×]0, T [,

∂t

(
1

M
p+ α∇ · u

)
− 1

µf
∇ ·
(
κ(∇ p− ρf,rg∇ η)

)
= q in Ω1×]0, T [,

− 1

µf
κ(∇p− ρf,rg∇η) · n12 = 0 on ∂Ω1×]0, T [,

[u] = 0 on ∂Ω1×]0, T [,

[σ(u)]n12 = αpn12 on ∂Ω1×]0, T [,

u = 0 on ΓD×]0, T [,

σnΩ = tN on ΓN×]0, T [,

p(0) = p0 in Ω1,

(2.3)

where M > 0 is the Biot modulus, µf the fluid’s viscosity, κ the permeability tensor, g the gravity
constant, ρf,r the reference density, η a signed distance in the vertical direction, q a given volumetric
fluid source or sink term, and tN a given normal traction. At initial time, u(0) is defined by the
above system with p(0) = p0, except of course, the third and fourth equations. Note that the
only boundary conditions on the pressure p are transmission conditions since Ω1 has no exterior
boundary. The tensor κ is assumed to be independent of time, symmetric, bounded and uniformly
positive definite in space, with largest eigenvalue λmax and smallest eigenvalue λmin > 0,

a.e. x ∈ Ω1 , λmin ≤ λi(x) ≤ λmax, i = 1, 2, 3. (2.4)

For the sake of simplicity, we assume in addition that the coefficients of κ belong locally to some
finite-dimensional space, such as a polynomial space. This assumption can be avoided by a suitable
approximation of κ, but it complicates the analysis, see for instance [17].

To simplify the notation, the density indices f and r will be dropped and ρf,r will be replaced
from now on by ρ.

The mean stress σ̄ that will be used in the algorithm is defined by

σ̄ = Kb∇ · u− αp, (2.5)

where Kb is the drained bulk modulus, Kb = λ+ 2
3G.

2.1. Primal variational formulation

Define the spaces:

H1
0D(Ω) = {v ∈ H1(Ω) : v|ΓD = 0}, W = H1

0D(Ω)d. (2.6)

As shown by Girault et al. [22], problem (2.3) has the following equivalent variational formulation,
for every solution belonging to the spaces below:
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Find u ∈ L∞(0, T ;W ) and p ∈ L∞(0, T ;L2(Ω1)) ∩ L2(0, T ;H1(Ω1)) solving a. e. in ]0, T [

2µ(ε(u), ε(v))Ω + λ(∇ · u,∇ · v)Ω = (f ,v)Ω + α(p,∇ · v)Ω1 + (tN ,v)ΓN , ∀v ∈W , (2.7)(
∂t

(
1

M
p+ α∇ · u

)
, θ

)
Ω1

+
1

µf

(
κ(∇ p− ρ g∇ η),∇θ

)
Ω1

= (q, θ)Ω1 , ∀θ ∈ H1(Ω1), (2.8)

with the initial condition
p(0) = p0 in Ω1. (2.9)

This problem has a unique solution for all sufficiently smooth data, say f ∈ H1(0, T ;L2(Ω)d),

q ∈ L2(Ω×]0, T [), tN ∈ H1(0, T ;H−
1
2 (ΓN )d), see [39]. The scalar product on ΓN in (2.7) stands

for the duality pairing between H−
1
2 (ΓN )d and H

1
2
00(ΓN )d.

3. Enriched Galerkin approximation

3.1. Mesh and spaces

For h > 0, let Th be a regular family of conforming simplicial meshes of the domain Ω, with h
the maximum element diameter. The family of meshes is regular in the sense of Ciarlet [13]: there
exists a constant σ > 0, independent of h, such that

hE
%E
≤ σ, ∀E ∈ Th, (3.1)

where hE is the diameter of E and %E the diameter of the ball inscribed in E. We assume that

Th = T 1
h ∪ T 2

h ,

where T 1
h is a conforming simplicial mesh of Ω1 and T 2

h a conforming simplicial mesh of Ω2. Let
Eh denote the set of all interior faces of Th and E∂h the set of all its boundary faces. For any e in
Eh, ωe denotes the union of the elements adjacent to e. We suppose that

E∂h = ED,∂h ∪ EN,∂h ,

where ED,∂h is the set of all faces lying on ΓD and EN,∂h those lying on ΓN . The set of all faces
interior to Ω1 is E1

h and that interior to Ω2 is E2
h. Finally, the set of faces on Γ12 is E12

h . A unit
normal vector ne is attributed to each e in Eh and E∂h ; its direction can be freely chosen. Here, the
following rule is applied: if e ∈ E∂h , then ne = nΩ, the exterior normal to Ω; if e is in E1

h or E2
h,

then ne points from Ei to Ej , where Ei and Ej are the two elements of Th adjacent to e and the
number of Ei is smaller than that of Ej . Finally, if e ∈ E12

h , then ne = n12, the outward normal
to Ω1. The jumps and averages of any function f on e ∈ Eh (smooth enough to have a trace) are
defined by

[f(x)]e := f(x)|Ei − f(x)|Ej , when ne points from Ei to Ej ,

{f(x)}e :=
1

2

(
f(x)|Ei + f(x)|Ej

)
.

When e ∈ E∂h , the jump and average coincide with the trace on e.
Let k ≥ 1 and m ≥ 1 be two integers. On this mesh, we introduce first the following standard

finite element spaces:
Wh := {v ∈W : v|E ∈ Pm(E)d, ∀E ∈ Th}, (3.2)
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Qh = {q ∈ H1(Ω1) : q|E ∈ Pk(E), ∀E ∈ T 1
h }. (3.3)

Next, the space Qh is enriched by piecewise constants in each cell, whence the name enriched,

Mh = Qh + {q ∈ L2(Ω1) : q|E ∈ P0(E),∀E ∈ T 1
h }. (3.4)

The displacement will be discretized inWh and the pressure inMh, and because of the discontinuous
constants in Mh, the discrete flow equations will be locally mass conservative. Their structure will
be the same as that of a discontinuous Galerkin formulation, but as the jumps involve only constants,
their coding will be simpler.

As the exact solution is not necessarily smooth, it is approximated by Scott & Zhang interpolants
(see [42]),

Rh ∈ L(W ,Wh), Πh ∈ L(H1(Ω1), Qh). (3.5)

Considering the degree of the polynomial functions in Wh and Qh, these interpolants have the
following quasi-local approximation errors:

∀E ∈ Th,∀v ∈ Hs(E)d , |v −Rh(v)|Hj(E) ≤ C h
s−j
E |v|Hs(∆E) , 1 ≤ s ≤ m+ 1, 0 ≤ j ≤ s, (3.6)

∀E ∈ T 1
h , ∀q ∈ Hs(E) , |q −Πh(q)|Hj(E) ≤ C h

s−j
E |q|Hs(∆E) , 1 ≤ s ≤ k + 1, 0 ≤ j ≤ s, (3.7)

with constants C independent of E and hE , where ∆E is a small patch of elements including E
containing the values used in computing the approximation.

Regarding approximation in time, the interval [0, T ] is divided into N equal subintervals with
length ∆ t and endpoints tn = n∆ t. The choice of equal time steps is a simplification; the material
below extends readily to variable time steps. The data is assumed to be continuous in time, and
we set a.e. in Ω

fn(x) = f(x, tn), qn(x) = q(x, tn), tnN (x) = tN (x, tn). (3.8)

3.2. Fixed-stress iterative coupling

With these spaces, the fully discrete split problem is:
Initialization. Set

p0
h = Πh(p0). (3.9)

Compute u0
h ∈Wh and σ̄0

h by solving

∀vh ∈Wh , 2G
(
ε(u0

h), ε(vh)
)

Ω
+λ
(
∇·u0

h,∇·vh
)

Ω
= α

(
p0
h,∇·vh

)
Ω1

+(f0,vh)Ω+
(
t0N ,vh

)
ΓN
, (3.10)

and setting
σ̄0
h = Kb∇ · u0

h − αp0
h. (3.11)

Time step n ≥ 1.

1. Set pn,0h = pn−1
h , un,0h = un−1

h , and σ̄n,0h = σ̄n−1
h .

2. For ` ≥ 1, compute
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(a) pn,`h ∈Mh by solving

∀θh ∈Mh,
( 1

M
+
α2

Kb

) 1

∆ t

(
pn,`h − p

n−1
h , θh

)
Ω1

+
1

µf

∑
E∈T 1

h

(
κ(∇ pn,`h − ρg∇ η),∇ θh

)
E

− 1

µf

∑
e∈E1h

((
{κ(∇ pn,`h − ρg∇ η) · ne}e, [θh]e

)
e

+ τp
(
{κ∇ θh · ne}e, [pn,`h ]e

)
e

)
+

1

µf

∑
e∈E1h

γe
he

(
[pn,`h ]e, [θh]e

)
e

= − α

Kb

1

∆t

(
σ̄n,l−1
h − σ̄n−1

h , θh
)

Ω1
+ (qn, θh)Ω1 ;

(3.12)

(b) the predictor of the difference in fluid content δpφ by

δpφ :=
( 1

M
+
α2

Kb

)
(pn,`h − p

n,`−1
h ); (3.13)

(c) un,`h ∈Wh by solving for all vh ∈Wh,

2G
(
ε(un,`h ), ε(vh)

)
Ω

+ λ
(
∇ ·un,`h ,∇ · vh

)
Ω

= α
(
pn,`h ,∇ · vh

)
Ω1

+
(
fn,vh

)
Ω

+
(
tnN ,vh

)
ΓN

;

(3.14)

(d) σ̄n,`h by

σ̄n,`h = Kb∇ · un,`h − αp
n,`
h ; (3.15)

(e) the corrector of the difference in fluid content δcφ by

δcφ := α∇ · (un,`h − u
n,`−1
h ) +

1

M
(pn,`h − p

n,`−1
h ). (3.16)

If ∥∥∥δcφ − δpφ∥∥∥
L∞(Ω1)

> ε,

set `← `+ 1 and return to (a);
else, set

`n := `, pnh := pn,`nh , unh := un,`nh , σ̄nh := σ̄n,`nh , (3.17)

march in time n← n+ 1 and return to 1.

Note that
δcφ − δ

p
φ =

α

Kb

(
σ̄n,`h − σ̄

n,`−1
h

)
,

and hence the stopping criterion rests on the difference between two iterates of the mean stress. The
choice of parameter τp leads to different EG schemes. For example, τp = 1 leads to the Symmetric
Interior Penalty Galerkin (SIPG) scheme, τp = 0 leads to the Incomplete Interior Penalty Galerkin
(IIPG) scheme, and τp = −1 results in the Non-symmetric Interior Penalty Galerkin (NIPG)
scheme. For the sake of brevity, we shall mostly focus here on the SIPG scheme. Through the
choice of parameters γe > 0, the penalty jump term in (3.12) has the effect of determining the
allowable amount of discontinuity across an edge. The parameters can also be modified to take into
account the variation of κ as in [29], but, as this option complicates the a posteriori analysis, it has
not been chosen here. Considering the uniform positive definiteness of the permeability tensor κ,
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the parameters γe can be tuned so that the system (3.12) has one and only one solution for each
right-hand side, see Lemma 2 in the Appendix. On the other hand, owing to Korn’s inequality,
(3.14) is always uniquely solvable for each right-hand side. Thus this algorithm generates a unique
sequence. As expected, the approach of [36] can be extended to establish unconditional geometric
convergence of the algorithm in the case of NIPG, and conditional geometric convergence, when
the parameters γe are sufficiently large, in the case of SIPG or IIPG (see Lemma 2 and (10.13) in
the Appendix). Under the same conditions, stability estimates and optimal a priori error bounds
can be derived, similar to those in [24].

4. A posteriori error equations

In this section, we derive error equalities that bring forth residuals arising during computations.
At this stage, the data is assumed to be as smooth as needed.

For a posteriori estimates, it is convenient to interpolate the discrete sequences in time. Thus,
for any discrete function in time vn, let

vnτ = vn−1 +
t− tn−1

∆t
(vn − vn−1), t ∈ [tn−1, tn]. (4.1)

For the sake of conciseness, we shall use the following bilinear forms on the space H1(Ω) +Mh:

∀p, θ ∈ H1(Ω) +Mh, Jh(p, θ) :=
∑
e∈E1h

γe
he

(
[p]e, [θ]e

)
e
,

∀p, θ ∈ H1(Ω) +Mh,
(
p, θ
)
h

:=
∑
E∈T 1

h

(
κ∇ p,∇ θ

)
E
,

∀p, θ ∈ H1(Ω) +Mh,
(
(p, θ

)
)
h

:=
(
p, θ
)
h

+ Jh(p, θ),

together with the seminorm

∀θ ∈ H1(Ω) +Mh, |θ|h :=
(
θ, θ
) 1

2
h
, (4.2)

and norm
∀θ ∈ H1(Ω) +Mh, ‖θ‖h :=

(
(θ, θ

)
)
1
2
h
. (4.3)

The subscript E (resp. ωe) is added when these quantities are restricted to E (resp. ωe).

4.1. Flow error equation

The idea is to derive an error equality tested with an arbitrary function θ in a suitable Sobolev
space. The beginning of the following derivation is classical.

With the above notation, the discrete flow equation (3.12) reads in each interval ]tn−1, tn]

∀θh ∈Mh,
( 1

M
+
α2

Kb

)(
∂tp

n,`
hτ , θh

)
Ω1

+
1

µf

((
(pn,`h , θh

)
)
h
−
∑
E∈T 1

h

(
ρgκ∇ η,∇ θh

)
E

)
− 1

µf

∑
e∈E1h

((
{κ(∇ pn,`h − ρg∇ η) · ne}e, [θh]e

)
e

+ τp
(
{κ∇ θh · ne}e, [pn,`h ]e

)
e

)
= − α

Kb

(
∂tσ̄

n,`−1
hτ , θh

)
Ω1

+ (qn, θh)Ω1 .

(4.4)
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Hence, assuming that p belongs to H1+ε(Ω1) for some ε > 0, and ∂tp and ∇ · (∂tu) are sufficiently
smooth in each interval ]tn−1, tn], the flow’s error equation, tested with θh, is

∀θh ∈Mh,
( 1

M
+
α2

Kb

)(
∂t(p− pn,`hτ ), θh

)
Ω1

+
1

µf

(
(p− pn,`h , θh

)
)
h

− 1

µf

∑
e∈E1h

((
{κ(∇(p− pn,`h ) · ne}e, [θh]e

)
e

+ τp
(
{κ∇ θh · ne}e, [p− pn,`h ]e

)
e

)
+

α

Kb

(
∂t(σ̄ − σ̄n,`−1

hτ ), θh
)

Ω1
= (q − qn, θh)Ω1 .

(4.5)

On the other hand, for all E ∈ T 1
h , let θ|E belong to H1+ε(E), for some ε > 0. The exact flow

equation (2.8) tested with θ − θh reads in each interval ]tn−1, tn],

∀θh ∈Mh,
( 1

M
+
α2

Kb

)
(∂tp, θ − θh)Ω1 +

1

µf

((
(p, θ − θh

)
)
h
−
∑
E∈T 1

h

(
ρgκ∇ η,∇(θ − θh)

)
E

)
− 1

µf

∑
e∈E1h

((
{κ(∇ p− ρg∇ η) · ne}e, [θ − θh]e

)
e

+ τp
(
{κ∇(θ − θh) · ne}e, [p]e

)
e

)
= − α

Kb

(
∂tσ̄, θ − θh

)
Ω1

+ (q, θ − θh)Ω1 .

(4.6)

Therefore, by writing θ = θ − θh + θh and using (4.4) and (4.6), the flow error tested with any
θ|E ∈ H1+ε(E) for all E ∈ T 1

h , becomes for all θh ∈Mh, in each interval ]tn−1, tn],

( 1

M
+
α2

Kb

)
(∂t(p− pn,`hτ ), θ)Ω1 +

1

µf

(
(p− pn,`h , θ

)
)
h

− 1

µf

∑
e∈E1h

((
{κ(∇(p− pn,`h ) · ne}e, [θ]e

)
e

+ τp
(
{κ∇ θ · ne}e, [p− pn,`h ]e

)
e

)
+

α

Kb

(
∂t(σ̄ − σ̄n,`−1

hτ ), θ
)

Ω1

= (q, θ − θh)Ω1 −
[( 1

M
+
α2

Kb

)
(∂tp

n,`
hτ , θ − θh)Ω1 +

1

µf

((
(pn,`h , θ − θh

)
)
h
−
∑
E∈T 1

h

(
ρgκ∇ η,∇(θ − θh)

)
E

)
− 1

µf

∑
e∈E1h

((
{κ(∇ pn,`h − ρg∇ η) · ne}e, [θ − θh]e

)
e

+ τp
(
{κ∇(θ − θh) · ne}e, [pn,`h ]e

)
e

)
+

α

Kb

(
∂tσ̄

n,l−1
hτ , θ − θh

)
Ω1

]
+ (q − qn, θh)Ω1 .

(4.7)

This equality is modified first by observing that

(qn, θh)Ω1 = (qnh , θh)Ω1 and (q, θ − θh)Ω1 + (q − qnh , θh)Ω1 = (q − qnh , θ)Ω1 + (qnh , θ − θh)Ω1 ,

where qh denotes the L2 projection on Pk in each cell E; and next by applying Green’s formula in
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each cell E

−
∑
E∈T 1

h

(
κ(∇pn,`h − ρg∇ η),∇(θ − θh)

)
E

=
∑
E∈T 1

h

(
∇ · (κ(∇pn,`h − ρg∇ η)), θ − θh)E

−
∑
e∈E1h

((
[κ(∇pn,`h − ρg∇η) · ne]e, {θ − θh}e

)
e

+
(
{κ(∇pn,`h − ρg∇η) · ne}e, [θ − θh]e

)
e

)
−
∑
e∈E12h

(
κ(∇pn,`h − ρg∇η) · n12, θ − θh

)
e

Then (4.7) becomes for all θ|E ∈ H1+ε(E) for all E ∈ T 1
h , all θh ∈ Mh, and in each interval

]tn−1, tn],

( 1

M
+
α2

Kb

)
(∂t(p− pn,`hτ ), θ)Ω1 +

1

µf

(
(p− pn,`h , θ

)
)
h

− 1

µf

∑
e∈E1h

((
{κ(∇(p− pn,`h ) · ne}e, [θ]e

)
e

+ τp
(
{κ∇ θ · ne}e, [p− pn,`h ]e

)
e

)
+

α

Kb

(
∂t(σ̄ − σ̄n,`−1

hτ ), θ
)

Ω1

= (q − qnh , θ)Ω1

+
∑
E∈T 1

h

(
qnh −

( 1

M
+
α2

Kb

)
∂tp

n,`
hτ +

1

µf
∇ ·
(
κ(∇pn,`h − ρg∇ η)

)
− α

Kb
∂tσ̄

n,`−1
hτ , θ − θh

)
E

− 1

µf

∑
e∈E1h

((
[κ(∇pn,`h − ρg∇η) · ne]e, {θ − θh}e

)
e
− τp

(
{κ∇(θ − θh) · ne}e, [pn,`h ]e

)
e

)
− 1

µf

∑
e∈E12h

(
κ(∇pn,`h − ρg∇η) · n12, θ − θh

)
e
− 1

µf
Jh(pn,`h , θ − θh).

(4.8)

Up to this point, the approach presented above is similar to that of [18] for a monolithic scheme.
But now, we want to bring forth the effect of the algorithmic error. To this end, we express the
time derivative in the left-hand side of (4.8) as it appears in (2.8). By means of formula (2.5) for
the mean stress σ̄, this gives the following version of the flow error equality:(
∂t
( 1

M
(p− pn,`hτ ) + α∇ · (u− un,`hτ )

)
, θ
)

Ω1

+
1

µf

(
(p− pn,`h , θ

)
)
h

= (q − qnh , θ)Ω1 +
∑
E∈T 1

h

(
qnh − ∂t(

1

M
pn,`hτ + α∇ · un,`hτ ) +

1

µf
∇ ·
(
κ(∇pn,`h − ρg∇ η)

)
, θ − θh

)
E

+
1

µf

∑
e∈E1h

((
{κ(∇(p− pn,`h ) · ne}e, [θ]e

)
e

+ τp
(
{κ∇ θ · ne}e, [p− pn,`h ]e

)
e

)
− 1

µf

∑
e∈E1h

((
[κ(∇pn,`h − ρg∇η) · ne]e, {θ − θh}e

)
e
− τp

(
{κ∇(θ − θh) · ne}e, [pn,`h ]e

)
e

)
− 1

µf

∑
e∈E12h

(
κ(∇pn,`h − ρg∇η) · n12, θ − θh

)
e
− 1

µf
Jh(pn,`h , θ − θh)− α

Kb

(
∂t(σ̄

n,`
hτ − σ̄

n,`−1
hτ ), θh

)
Ω1
.

(4.9)
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4.2. Elasticity error equation

Again, the idea is to derive an error equality tested with an arbitrary function v in a suitable
Sobolev space. We proceed as above, with the exception of the last step. First, we interpolate
linearly in time (3.14) in each subinterval and use the L2 projection fh of f on P3

m in each cell E

and the L2 projection tN,h of tN on P3
m in each face e of EN,∂h . Then the discrete elasticity error

equation reads in each interval ]tn−1, tn]

∀vh ∈Wh, 2G
(
ε(un,`hτ − u), ε(vh)

)
Ω

+ λ
(
∇ · (un,`hτ − u),∇ · vh

)
Ω
− α

(
pn,`hτ − p,∇ · vh

)
Ω1

=
(
fnhτ − f ,vh

)
Ω

+
(
tnN,hτ − tN ,vh

)
ΓN
.

(4.10)

Next, the exact elasticity equation (2.7), tested with v − vh, for all v in W at any time gives

∀vh ∈Wh, 2G(ε(u), ε(v − vh))Ω + λ(∇ · u,∇ · (v − vh))Ω − α(p,∇ · (v − vh))Ω1

= (f ,v − vh)Ω + (tN ,v − vh)ΓN .

(4.11)

Therefore, we infer from (4.10) and (4.11) the following elasticity error equation in each interval
]tn−1, tn]:

∀vh ∈Wh, 2G(ε(u− un,`hτ ), ε(v))Ω + λ(∇ · (u− un,`hτ ),∇ · v)Ω − α(p− pn,`hτ ,∇ · v)Ω1

= (f − fnhτ ,vh)Ω + (tN − tnN,hτ ,vh)ΓN + (f ,v − vh)Ω + (tN ,v − v)ΓN

−
[
2G(ε(un,`hτ ), ε(v − vh))Ω + λ(∇ · (un,`hτ ),∇ · (v − vh))Ω − α(pn,`hτ ,∇ · (v − vh))Ω1

]
.

(4.12)

Finally, (4.12) is modified by using

(f ,v − vh)Ω + (f − fnhτ ,vh)Ω = (f − fnhτ ,v)Ω + (fnhτ ,v − vh)Ω,

a similar expression for tN , and Green’s formula in each cell E. This yields in each interval ]tn−1, tn],
for all v in W

∀vh ∈Wh, 2G(ε(u− un,`hτ ), ε(v))Ω + λ(∇ · (u− un,`hτ ),∇ · v)Ω − α(p− pn,`hτ ,∇ · v)Ω1

= (f − fnhτ ,v)Ω + (tN − tnN,hτ ,v)ΓN

+
∑
E∈T 1

h

(fnhτ +∇ · σ(un,`hτ )− α∇ pn,`hτ ,v − vh)E +
∑
E∈T 2

h

(fnhτ +∇ · σ(un,`hτ ),v − vh)E

−
∑
e∈Eh

(
[σ(un,`hτ )]ene,v − vh

)
e

+ α
∑

e∈E1h∪E
12
h

(
[pn,`hτ ]e, (v − vh) · ne

)
e

−
(
σ(un,`hτ )nΩ − tnN,hτ ,v − vh)ΓN .

(4.13)
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Note that (4.13) is valid at initial time (i.e. when n = 0). Note also that when the data and
solution are smooth enough, (4.13) can be differentiated with respect to time,(
σ(∂t(u− un,`hτ )), ε(v)

)
Ω
− α

(
∂t(p− pn,`hτ ),∇ · v

)
Ω1

=
(
∂t(f − fnhτ ),v)Ω +

(
∂t(tN − tnN,hτ ),v)ΓN

+
∑
E∈T 1

h

(
∂tf

n
hτ +∇ · σ(∂tu

n,`
hτ )− α∇ ∂tpn,`hτ ,v − vh

)
E

+
∑
E∈T 2

h

(
∂tf

n
hτ +∇ · σ(∂tu

n,`
hτ ),v − vh

)
E

−
∑
e∈Eh

(
[σ(∂tu

n,`
hτ )]ene,v − vh

)
e

+ α
∑

e∈E1h∪E
12
h

(
∂t[p

n,`
hτ ]e, (v − vh) · ne

)
e

−
(
σ(∂tu

n,`
hτ )nΩ − ∂ttnN,hτ ,v − vh)ΓN .

(4.14)

4.3. Final error equation

In the spirit of [18, 40], an upper bound for the error is obtained by testing, in each interval,

(4.9) with θ = p− pn,`hτ , (4.13) with v = ∂t(u− un,`hτ ) and substituting the expression for

−α(p− pn,`hτ ,∇ · ∂t(u− u
n,`
hτ ))Ω1 ,

into the resulting error flow equation. This gives an equation in each subinterval with left-hand
side

LHS :=
1

2M

d

dt
‖p− pn,`hτ ‖

2
L2(Ω1) +G

d

dt
‖ε(u− un,`hτ )‖2L2(Ω) +

λ

2

d

dt
‖∇ · (u− un,`hτ )‖2L2(Ω)

+
1

µf
‖p− pn,`hτ ‖

2
h,

(4.15)
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and right-hand side for all θh ∈ H1(0, T ;Mh) and all vh ∈ H1(0, T ;Wh),

RHS :=
1

µf
((pn,`h − p

n,`
hτ , p− p

n,`
hτ ))h −

α

Kb

(
∂t(σ̄

n,`
hτ − σ̄

n,`−1
hτ ), θh

)
Ω1

+
∑
E∈T 1

h

(
qnh − ∂t(

1

M
pn,`hτ + α∇ · un,`hτ ) +

1

µf
∇ ·
(
κ(∇pn,`h − ρg∇ η)

)
, p− pn,`hτ − θh

)
E

+
1

µf

∑
e∈E1h

((
{κ(∇(p− pn,`h ) · ne}e, [p− pn,`hτ ]e

)
e

+ τp
(
{κ∇(p− pn,`hτ ) · ne}e, [p− pn,`h ]e

)
e

)
− 1

µf

∑
e∈E1h

((
[κ(∇pn,`h − ρg∇η) · ne]e, {p− pn,`hτ − θh}e

)
e
− τp

(
{κ∇(p− pn,`hτ − θh) · ne}e, [pn,`h ]e

)
e

)
− 1

µf

∑
e∈E12h

(
κ(∇pn,`h − ρg∇η) · n12, p− pn,`hτ − θh

)
e
− 1

µf
Jh(pn,`h , p− pn,`hτ − θh)

+
∑
E∈T 1

h

(
fnhτ +∇ · σ(un,`hτ )− α∇ pn,`hτ , ∂t(u− u

n,`
hτ − vh)

)
E

+
∑
E∈T 2

h

(
fnhτ +∇ · σ(un,`hτ ), ∂t(u− un,`hτ − vh)

)
E
−
∑
e∈Eh

(
[σ(un,`hτ )]ene, ∂t(u− un,`hτ − vh)

)
e

+ α
∑

e∈E1h∪E
12
h

(
[pn,`hτ ]e, ∂t(u− un,`hτ − vh) · ne

)
e
−
(
σ(un,`hτ )nΩ − tnN,hτ , ∂t(u− u

n,`
hτ − vh)

)
ΓN

+
(
q − qnh , p− p

n,`
hτ

)
Ω1

+
(
f − fnhτ , ∂t(u− u

n,`
hτ )
)

Ω
+
(
tN − tnN,hτ , ∂t(u− u

n,`
hτ )
)

ΓN
.

(4.16)

For each n and `, in each interval ]tn−1, tn], the usual choice of function vh is

vh = Rh(u− un,`hτ ), (4.17)

whereas the simplest choice for θh, considering that Mh contains the constant functions, is the
integral mean value in each cell E,

θh|E = mE(p− pn,`hτ ) :=
1

|E|

∫
E

(p− pn,`hτ ). (4.18)

As the surface terms involving κ∇ p · n cannot be controlled by the left-hand side, we apply
the argument introduced in [26]. It consists in extracting the problematic surface terms from the
consistency error equation (4.5) and thus expressing them as functions of quantities that can be
estimated. Since these terms depend on the choice of parameter τp, to simplify the discussion, we
choose from now on τp = 1 (i.e., the case SIPG), the other cases are slightly simpler because they
involve less terms. With θh defined by (4.18), the sum of these surface terms is

1

µf

∑
e∈E1h

(
{κ∇(p− pn,`h ) · ne}e, [−pn,`hτ ]e

)
e

= − 1

µf

∑
e∈E1h

(
{κ∇(p− pn,`h ) · ne}e, [pn,`hτ − θ]e

)
e
, (4.19)

for any function θ in H1(0, T ;Q1
h), where Q1

h denotes the space Qh defined in (3.3) with degree
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k = 1 (thus having no jump). Then the flow error equation (4.5) tested with pn,`hτ − θ ∈Mh yields

− 1

µf

∑
e∈E1h

(
{κ∇(p− pn,`h ) · ne}e, [pn,`hτ − θ]e

)
e

= −
( 1

M
+
α2

Kb

)(
∂t(p− pn,`hτ ), pn,`hτ − θ

)
Ω1

− 1

µf
((p− pn,`h , pn,`hτ − θ))h +

1

µf

∑
e∈E1h

(
{κ∇(pn,`hτ − θ) · ne}e, [p− p

n,`
h ]e

)
e

− α

Kb

(
∂t(σ̄ − σ̄n,`−1

hτ ), pn,`hτ − θ
)

Ω1
+ (q − qnh , pn`hτ − θ)Ω1 .

Bringing forth the algorithmic error, this can be written

− 1

µf

∑
e∈E1h

(
{κ∇(p− pn,`h ) · ne}e, [pn,`hτ − θ]e

)
e

= −
(
∂t
( 1

M
(p− pn,`hτ ) + α∇ · (u− un,`hτ )

)
, pn,`hτ − θ

)
Ω1

− 1

µf
((p− pn,`h , pn,`hτ − θ))h +

1

µf

∑
e∈E1h

(
{κ∇(pn,`hτ − θ) · ne}e, [p− p

n,`
h ]e

)
e

− α

Kb

(
∂t(σ̄

n,`
hτ − σ̄

n,`−1
hτ ), pn,`hτ − θ

)
Ω1

+ (q − qnh , pn`hτ − θ)Ω1 .

Considering that θ does not jump, the double scalar product has the expression

− 1

µf
((p− pn,`h , pn,`hτ − θ))h = − 1

µf

(
p− pn,`h , pn,`hτ − θ

)
h

+
1

µf
Jh(pn,`h , pn,`hτ ).

Thus

− 1

µf

∑
e∈E1h

(
{κ∇(p− pn,`h ) · ne}e, [pn,`hτ − θ]e

)
e

= −
(
∂t
( 1

M
(p− pn,`hτ ) + α∇ · (u− un,`hτ )

)
, pn,`hτ − θ

)
Ω1

− 1

µf

(
p− pn,`h , pn,`hτ − θ

)
h

+
1

µf
Jh(pn,`h , pn,`hτ ) +

1

µf

∑
e∈E1h

(
{κ∇(pn,`hτ − θ) · ne}e, [p− p

n,`
h ]e

)
e

− α

Kb

(
∂t(σ̄

n,`
hτ − σ̄

n,`−1
hτ ), pn,`hτ − θ

)
Ω1

+ (q − qnh , pn`hτ − θ)Ω1 .
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Therefore, by substituting this equality into (4.16) and (4.15), we derive

LHS =
1

µf
((pn,`h − p

n,`
hτ , p− p

n,`
hτ ))h −

1

µf

(
p− pn,`h , pn,`hτ − θ

)
h

+
1

µf
Jh(pn,`h , 2pn,`hτ + θh)

− α

Kb

(
∂t(σ̄

n,`
hτ − σ̄

n,`−1
hτ ), θh

)
Ω1
− α

Kb

(
∂t(σ̄

n,`
hτ − σ̄

n,`−1
hτ ), pn,`hτ − θ

)
Ω1

+
∑
E∈T 1

h

(
qnh − ∂t(

1

M
pn,`hτ + α∇ · un,`hτ ) +

1

µf
∇ ·
(
κ(∇pn,`h − ρg∇ η)

)
, p− pn,`hτ − θh

)
E

− 1

µf

∑
e∈E1h∪E

12
h

((
[κ(∇pn,`h − ρg∇η) · ne]e, {p− pn,`hτ − θh}e

)
e

+
1

µf

∑
e∈E1h

(
{κ∇(pn,`hτ − θ) · ne}e, [p− p

n,`
h ]e

)
e

+
(
q − qnh − ∂t

( 1

M
(p− pn,`hτ ) + α∇ · (u− un,`hτ )

)
, pn,`hτ − θ)Ω1 +

(
q − qnh , p− p

n,`
hτ

)
Ω1

+
∑
E∈T 1

h

(
fnhτ +∇ · σ(un,`hτ )− α∇ pn,`hτ , ∂t(u− u

n,`
hτ − vh)

)
E

+
∑
E∈T 2

h

(
fnhτ +∇ · σ(un,`hτ ), ∂t(u− un,`hτ − vh)

)
E
−
∑
e∈Eh

(
[σ(un,`hτ )]ene, ∂t(u− un,`hτ − vh)

)
e

+ α
∑

e∈E1h∪E
12
h

(
[pn,`hτ ]e, ∂t(u− un,`hτ − vh) · ne

)
e
−
(
σ(un,`hτ )nΩ − tnN,hτ , ∂t(u− u

n,`
hτ − vh)

)
ΓN

+
(
f − fnhτ , ∂t(u− u

n,`
hτ )
)

Ω
+
(
tN − tnN,hτ , ∂t(u− u

n,`
hτ )
)

ΓN
.

(4.20)

Note that this formulation requires that ∂t
(

1
M p+α∇·u

)
be sufficiently smooth to be tested against

piecewise polynomial functions.
The functions vh and θh have been chosen by (4.17) and (4.18), respectively. To choose θ, recall

that phτ = pct
hτ + pdisc

hτ , where ct denotes its continuous part and disc its discontinuous constant
part. Then we take

θ = pct
hτ + Sh(pdisc

hτ ), (4.21)

where Sh is an approximation operator of Scott & Zhang type [42] that is globally C0 and piecewise
P1 in each cell, see [21]. More precisely, for any node a of Ω̄1, we choose an element Ea in Ω̄1 with
vertex a, set

Sh(pdisc
hτ )(a) = pdisc

hτ |Ea ,

and
∀x ∈ Ω̄1, Sh(pdisc

hτ )(x) =
∑
a

pdisc
hτ (Ea)φa(x), (4.22)

where φa is the standard piecewise P1 basis function and a runs over all vertices of elements in Ω̄1.
Now, for each n, we consider (4.20) for the last iterate ` = `n that achieves convergence of the

discrete mean stress so that we can drop everywhere the index ` except when it appears as ` − 1,
i.e., pnhτ := pn,`nhτ , unhτ := un,`nhτ . In addition, to avoid a multiplicity of notation, we denote by vnh
the step function in time that takes the value vnh in the interval ]tn−1, tn]. Then, we integrate both
sides of (4.20) from 0 to t, 0 < t ≤ T , say tm−1 < t ≤ tm, and again to simplify, this integral of the
step function vnh is denoted by

∫ t
0 vh. At this stage, we observe that the time derivative of u−uhτ

and p−phτ cannot be absorbed by the left-hand side; and hence will have to be integrated by parts.
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Thus, we derive the following error equality:

1

2M
‖(p− phτ )(t)‖2Ω1

+G‖ε(u− uhτ )(t)‖2Ω +
λ

2
‖∇ · (u− uhτ )(t)‖2Ω +

1

µf

∫ t

0
‖p− phτ‖2h

=
1

µf

∫ t

0
((ph − phτ , p− phτ ))h −

1

µf

∫ t

0

(
p− ph, phτ − θ

)
h

+
1

µf

∫ t

0
Jh(ph, 2phτ + θh)

− α

Kb

∫ t

0

(
∂t(σ̄hτ − σ̄`−1

hτ ), θh
)

Ω1
− α

Kb

∫ t

0

(
∂t(σ̄hτ − σ̄`−1

hτ ), phτ − θ
)

Ω1

+

∫ t

0

∑
E∈T 1

h

(
qh − ∂t(

1

M
phτ + α∇ · uhτ ) +

1

µf
∇ ·
(
κ(∇ph − ρg∇ η)

)
, p− phτ − θh

)
E

− 1

µf

∫ t

0

∑
e∈E1h∪E

12
h

((
[κ(∇ph − ρg∇η) · ne]e, {p− phτ − θh}e

)
e

+
1

µf

∫ t

0

∑
e∈E1h

(
{κ∇(phτ − θ) · ne}e, [p− ph]e

)
e

+

∫ t

0

((
q − qh, phτ − θ

)
Ω1

+
(
q − qh, p− phτ

)
Ω1

)
+

∫ t

0

( 1

M
(p− phτ ) + α∇ · (u− uhτ ), ∂t(phτ − θ)

)
Ω1

−
∫ t

0

∑
E∈T 1

h

(
∂t(fhτ +∇ · σ(uhτ )− α∇ phτ ),u− uhτ − vh

)
E

−
∫ t

0

∑
E∈T 2

h

(
∂t(fhτ +∇ · σ(uhτ )),u− uhτ − vh

)
E

+

∫ t

0

∑
e∈Eh

(
[∂tσ(uhτ )ne]e,u− uhτ − vh

)
e

−
∫ t

0
α

∑
e∈E1h∪E

12
h

(
[∂tphτ ]e, (u− uhτ − vh) · ne

)
e

+

∫ t

0

(
∂t(σ(uhτ )nΩ − tN,hτ ),u− uhτ − vh

)
ΓN

−
∫ t

0

(
∂t(f − fhτ ),u− uhτ

)
Ω
−
∫ t

0

(
∂t(tN − tN,hτ ),u− uhτ

)
ΓN

+ Init + IP(t)− IP(0),

(4.23)

where

Init :=
1

2M
‖p0 −Πh(p0)‖2Ω1

+G‖ε(u(0)− u0
h)‖2Ω +

λ

2
‖∇ · (u(0)− u0

h)‖2Ω, (4.24)

IP(t) = −
(
(

1

M
(p− phτ ) + α∇ · (u− uhτ ))(t), (phτ − θ)(t)

)
Ω1

+
∑
E∈T 1

h

(
(fhτ +∇ · σ(uhτ )− α∇ phτ )(t), (u− uhτ − vh)(t)

)
E

+
∑
E∈T 2

h

(
(fhτ +∇ · σ(uhτ ))(t), (u− uhτ − vh)(t)

)
E
−
∑
e∈Eh

(
[σ(uhτ )(t)ne]e, (u− uhτ − vh)(t)

)
e

+ α
∑

e∈E1h∪E
12
h

(
[phτ (t)]e, (u− uhτ − vh)(t) · ne

)
e
−
(
σ(uh,τ (t))nΩ − tN,hτ (t), (u− uhτ − vh)(t)

)
ΓN

+
(
(f − fhτ )(t), (u− uhτ )(t)

)
Ω

+
(
(tN − tN,hτ )(t), (u− uhτ )(t)

)
ΓN
.

(4.25)
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5. Basic upper bounds

Here we bound the expressions in the right-hand side of (4.23), in terms of the errors in its left-
hand side, the errors on the data, and what will be recognized as error indicators. Recall that this
inequality is written for tm−1 < t ≤ tm ≤ T , and ` is usually omitted because it is understood that
at each time tn, ` = `n, the smallest integer that achieves convergence. Of course the inequality is
valid for any ` ≥ 1, and for the sake of clarity, the indicators are all defined with the superscript
`. Below, Ĉ denote various constants that are independent of h, ∆ t, and `. Recall that λmax and
λmin > 0 are the largest and smallest eigenvalues of κ and recall that vnh denotes the step function

in time that takes the value vnh in the interval ]tn−1, tn] and its integral is denoted by
∫ t

0 vh. To
simplify, it is understood that in minγe and maxγe the minimum and maximum are taken over all
faces e of E1

h. We consider first the expressions not included in Init, or IP.

5.1. Expressions involving θh

Recall that θh is given in each E by mE(p−phτ ), see (4.18). There are four expressions, we treat
each one in their order of appearance. In the first one, we shall recognize the following indicator
that measures the jump of pn,`h on interfaces in each interval ]tn−1, tn],

ηn,`pen :=
(
∆ t
) 1

2

(γe
he

) 1
2 ‖[pn,`h ]e‖L2(e). (5.1)

Note that ∑
e∈E1h

(
ηn,`pen

)2
= ∆ tJh(pn,`h , pn,`h ).

Proposition 1. There exists a constant Ĉ such that for all constants δ1 > 0, we have

1

µf

∣∣ ∫ t

0
Jh(ph, 2phτ + θh)

∣∣
≤ 1

2µf

[
δ1

∫ t

0
‖phτ − p‖2h +

1

δ1

( m∑
n=1

∑
e∈E1h

(
ηnpen

)2
+ Ĉ2(d+ 1)

) m∑
n=1

∑
e∈E1h

γe
λmin,e

(
ηnpen

)2]
,

(5.2)

where λmin,e is the smallest eigenvalue of κ in the union of the two elements adjacent to e.

Proof. Let X = Jh(ph, 2phτ + θh) = Jh(ph, phτ ) + Jh(ph, phτ + θh). First, by Young’s inequality, for
any δ1 > 0, and since p does not jump∣∣Jh(ph, phτ )

∣∣ ≤ 1

2

(
δ1Jh(phτ − p, phτ − p) +

1

δ1
Jh(ph, ph)

)
.

This will give the first part of (5.2). For the second part, by the definition (4.18) of θh, it follows
from (10.4) that, for E adjacent to e

‖phτ−p+θh‖L2(e) = ‖phτ−p−mE(phτ−p)‖L2(e) ≤ Ĉh
1
2
E |phτ−p|H1(E) ≤ Ĉ

( hE
λmin,e

) 1
2 ‖κ

1
2∇(phτ−p)‖L2(E).
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Therefore, owing to the regularity of the mesh,

Jh(ph, phτ + θh) ≤1

2

(
δ1|phτ − p|2h +

Ĉ2

δ1
(d+ 1)

∑
e∈E1h

γe
he
‖[ph]e‖2L2(e)

hE
he

γe
λmin,e

)

≤ 1

2

(
δ1|phτ − p|2h +

Ĉ2

δ1
(d+ 1)

∑
e∈E1h

γe
he
‖[ph]e‖2L2(e)

γe
λmin,e

)
,

After integration in time, this will give the other part of (5.2).

In the second expression, we recognize the algorithmic error indicator defined in each interval
]tn−1, tn] by

ηn,`fs =
(
∆ t
) 1

2
∥∥ 1

∆ t

(
σ̄n,`h − σ̄

n,`−1
h

)∥∥
L2(Ω1)

. (5.3)

Proposition 2. There exists a constant Ĉ such that, for any δ2 > 0,

α

Kb

∣∣∣ ∫ t

0

(
∂t(σ̄hτ−σ̄`−1

hτ ), θh
)

Ω1

∣∣∣ ≤ 1

2

[ δ2

M
‖phτ−p‖2L∞(0,t;L2(Ω1))+

M

δ2

( α
Kb

)2( m∑
n=1

(
∆ t
) 1

2 ηn,`fs

)2]
. (5.4)

Proof. Let X = α
Kb

(
∂t(σ̄hτ − σ̄`−1

hτ ), θh
)

Ω1
. On any interval ]tn−1, tn],

X =
α

Kb

1

∆ t

(
σ̄n,`h − σ̄

n,`−1
h , θh

)
Ω1
,

and the definition of θh implies∣∣X∣∣ ≤ 1

∆ t

α

Kb
‖σ̄n,`h − σ̄

n,`−1
h ‖L2(Ω1)‖phτ − p‖L2(Ω1).

Hence ∫ tn

tn−1

|X| ≤ α

Kb

(
∆ t
) 1

2 ηn,`fs sup
t∈]0,t[

‖phτ − p‖L2(Ω1),

and (5.4) follows by summing this inequality over n and applying Young’s inequality.

The third expression involves the following local interior residual flow error indicator in each
interval ]tn−1, tn] and all E of T 1

h :

ηn,`E,p := hE
(
∆ t
) 1

2
∥∥qnh+

1

µf
∇·
(
κ(∇pn,`h −ρg∇ η)

)
− 1

M

1

∆ t
(pn,`h −p

n−1
h )−α 1

∆ t
∇·(un,`h −u

n−1
h )

∥∥
L2(E)

.

(5.5)

Proposition 3. There exists a constant Ĉ such that, for any δ3 > 0,∣∣∣ ∫ t

0

∑
E∈T 1

h

(
qh − ∂t(

1

M
phτ + α∇ · uhτ ) +

1

µf
∇ ·
(
κ(∇ph − ρg∇ η)

)
, p− phτ − θh

)
E

∣∣∣
≤ 1

2

[ 1

µf
δ3

∫ t

0
|p− phτ |2h + µf

1

δ3
Ĉ2

m∑
n=1

∑
E∈T 1

h

1

λmin,E

(
ηnE,p

)2]
,

(5.6)

where λmin,E is the smallest eigenvalue of κ in E.
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Proof. Owing to (10.3), we have

‖p− phτ − θh‖L2(E) ≤
Ĉ

λ
1
2
min,E

hE‖κ
1
2∇(p− phτ )‖L2(E).

Then, the proof of (5.6) is a straightforward application of this bound and Young’s inequality.

The last expression involves the following local jump flux error indicator, for each e in E1
h ∪ E12

h

and each interval ]tn−1, tn],

ηn,`flux,e :=
(
he∆ t

) 1
2
∥∥[κ(∇ pn,`h − ρg∇ η) · ne]e

∥∥
L2(e)

. (5.7)

Proposition 4. There exists a constant Ĉ such that, for any δ3 > 0,

1

µf

∣∣∣ ∫ t

0

∑
e∈E1h∪E

12
h

(
[κ(∇ph − ρg∇η) · ne]e, {p− phτ − θh}e

)
e

∣∣∣
≤ 1

2µf

[
δ3

∫ t

0
|p− phτ |2h +

1

δ3
Ĉ2(d+ 1)

m∑
n=1

∑
e∈E1h∪E

12
h

1

λmin,e

(
ηnflux,e

)2]
.

(5.8)

Proof. Note that (10.16) implies that θh also satisfies for e in E1
h,

‖{p− phτ − θh}e‖2L2(e) ≤
Ĉ2

λmin,e
he
(
‖κ

1
2∇(p− phτ )‖2L2(E1) + ‖κ

1
2∇(p− phτ )‖2L2(E2)

)
,

with only one element E when e is on E12
h . This readily yields (5.8).

5.2. Expressions involving θ

Recall that θ is defined by (4.21) and (4.22). Here, there are five expressions, examined in their
order of appearance. In the first one, we shall recognize two time error indicators in each interval
]tn−1, tn], one for volumes,

ηn,`t,p :=
(∆ t

3

) 1
2
∣∣pn,`h − pn−1

h

∣∣
h
, (5.9)

and one for jumps on each face e ∈ E1
h,

ηn,`t,J :=
(∆ t

3

) 1
2
(γe
he

) 1
2 ‖[pn,`h − p

n−1
h ]e‖L2(e). (5.10)

Note that (
ηn,`t,p
)2

+
∑
e∈E1h

(
ηn,`t,J
)2

=
∆ t

3
‖pn,`h − p

n−1
h ‖2h.
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Proposition 5. There exists a constant Ĉ such that, for any δ1 > 0,

1

µf

∣∣∣ ∫ t

0

(
p− ph,phτ − θ

)
h

∣∣∣ ≤ 1

2µf

[
2δ1

∫ t

0
‖p− phτ‖2h

+
1

δ1
Ĉ2
(d+ 1

d

)2
(K − 1)2 λmax

minγe

m∑
n=1

(1

2

(
ηnt,p
)2

+
∑
e∈E1h

((
ηnt,J
)2

+
(
ηnpen

)2))]
.

(5.11)

Proof. First, we deduce from (10.20) that

|phτ − θ|h ≤ Ĉ
d+ 1

d
(K − 1)

( λmax

minγe

) 1
2Jh(phτ , phτ )

1
2

≤ Ĉ d+ 1

d
(K − 1)

( λmax

minγe

) 1
2

(
Jh(phτ − ph, phτ − ph)

1
2 + Jh(ph, ph)

1
2

)
.

Next, we split p− ph into p− phτ + phτ − ph and set

X1 =
1

µf

∫ t

0

(
p− phτ , phτ − θ

)
h
, X2 =

1

µf

∫ t

0

(
phτ − ph, phτ − θ

)
h
.

The above inequality yields

|X1| ≤
1

µf
Ĉ
d+ 1

d
(K − 1)

( λmax

minγe

) 1
2

∫ t

0
|p− phτ |h

(
Jh(phτ − ph, phτ − ph)

1
2 + Jh(ph, ph)

1
2

)
.

With Young’s inequality, this becomes

|X1| ≤
1

2µf

[
2δ1

∫ t

0
|p− phτ |2h +

1

δ1
Ĉ2
(d+ 1

d

)2
(K − 1)2 λmax

minγe

m∑
n=1

∑
e∈E1h

((
ηnpen

)2
+
(
ηnt,J
)2)]

. (5.12)

Regarding X2, there is no need to split Jh(phτ , phτ ) because the first factor will be bounded by an
indicator. Indeed, in view of (5.9), we can write

|X2| ≤
1

2µf

[
2δ1

∫ t

0
Jh(p− phτ , p− phτ ) +

1

2δ1
Ĉ2
(d+ 1

d

)2
(K − 1)2 λmax

minγe

m∑
n=1

(
ηnt,p
)2]

, (5.13)

and (5.11) is derived by adding (5.12) and (5.13).

The second one uses ηn,`fs as follows:

Proposition 6. There exists a constant Ĉ such that, for any δ3 > 0,

α

Kb

∣∣∣ ∫ t

0

(
∂t(σ̄hτ − σ̄`−1

hτ ), phτ − θ
)

Ω1

∣∣∣
≤ 1

2

[ δ3

µf

∫ t

0
Jh(p− phτ , p− phτ ) +

µf
δ3

( α
Kb

)2 1

minγe
Ĉ2(K − 1)2

m∑
n=1

h2
(
ηnfs
)2]

.

(5.14)
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Proof. The estimate (10.19) implies

‖phτ − θ‖2L2(Ω1) ≤ Ĉ
2(K − 1)2 h2

minγe
Jh(phτ , phτ ).

From here, we infer (5.14) via Young’s inequality.

The next proposition estimates the third expression.

Proposition 7. There exists a constant Ĉ such that, for any δ3 > 0,

1

µf

∣∣∣ ∫ t

0

∑
e∈E1h

(
{κ∇(phτ − θ) · ne}e, [p− ph]e

)
e

∣∣∣
≤ 1

2µf

[
δ3

∫ t

0
Jh(p− phτ , p− phτ ) +

d+ 1

2δ3

(d+ 1

d
)2Ĉ2

( λmax

minγe

)2
(K − 1)2

n∑
m=1

∑
e∈E1h

(
ηnpen

)2]
.

(5.15)

Proof. Since θ is a polynomial function, by combining the argument of Proposition 15 with that of
(10.20), we obtain for any δ > 0

1

µf

∣∣∣ ∑
e∈E1h

(
{κ∇(phτ − θ) · ne}e, [ph]e

)
e

∣∣∣ ≤ 1

2µf

[
δJh(ph, ph) +

d+ 1

2δ

(d+ 1

d

)2
Ĉ2
( λmax

minγe

)2
(K − 1)2Jh(phτ , phτ )

]
,

Thus, the choice

δ3 =
d+ 1

2δ

(d+ 1

d

)2
Ĉ2
( λmax

minγe

)2
(K − 1)2, i.e., δ =

d+ 1

2δ3

(d+ 1

d

)2
Ĉ2
( λmax

minγe

)2
(K − 1)2,

leads to (5.15).

The fourth expression is estimated by applying an easy variant of (10.19).

Proposition 8. There exists a constant Ĉ such that, for any δ3 > 0,∣∣∣ ∫ t

0

(
q− qh, phτ − θ

)
Ω1

∣∣∣ ≤ 1

2

[ δ3

µf

∫ t

0
Jh(p− phτ , p− phτ ) +

µf
δ3
Ĉ2(K − 1)2 h2

minγe

∫ t

0
‖q− qh‖2L2(Ω1)

]
.

(5.16)

Finally, for the fifth expression, we shall use as indicator the jump of the pressure’s time
derivative on each face e ∈ E1

h and in each interval ]tn−1, tn],

ηn,`∂p,J := he∆ t
(γe
he

) 1
2 ‖ 1

∆ t
[pn,`h − p

n−1
h ]e‖L2(e). (5.17)

The proof of the next proposition follows easily from (10.19).
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Proposition 9. There exists a constant Ĉ such that, for any δ2 > 0 and δ4 > 0,∣∣∣ ∫ t

0

( 1

M
(p− ph,τ ) + α∇ · (u− uhτ ), ∂t(phτ − θ)

)
Ω1

∣∣∣ ≤ 1

2

[ δ2

M
‖p− phτ‖2L∞(0,t;L2(Ω1))

+ λδ4‖∇ · (u− uhτ )‖2L∞(0,t;L2(Ω1)) +
( 1

M

1

δ2
+
α2

δ4λ

)
Ĉ2 (K − 1)2

minγe

( m∑
n=1

( ∑
e∈E1h

(
ηn∂p,J

)2) 1
2

)2]
.

(5.18)

5.3. Expressions involving vh

Recall that vh is defined by applying (4.17) with degree one to u − uhτ . Here, they can be
combined so that there are five expressions, and each one is estimated straightforwardly by using
(3.6) with s = 1, either applied directly or following a trace inequality. This leads to the following
error indicators in each interval ]tn−1, tn]:
the time derivative of the displacement equilibrium in all E of T 1

h ,

ηn,`E,1,∂u := hE∆ t‖ 1

∆ t

(
fnh − fn−1

h +∇ · σ(un,`h − u
n−1
h )− α∇(pn,`h − p

n−1
h )

)
‖L2(E), (5.19)

the time derivative of the displacement equilibrium in all E of T 2
h ,

ηn,`E,2,∂u := hE∆ t‖ 1

∆ t

(
fnh − fn−1

h +∇ · σ(un,`h − u
n−1
h )

)
‖L2(E), (5.20)

the time derivative of the stress tensor’s jump in the pay-zone and interface, i.e., all e ∈ E1
h ∪ E12

h ,

ηn,`e,1,∂σ := h
1
2
e ∆ t‖ 1

∆ t
[(σ(un,`h − u

n−1
h )− α(pn,`h − p

n−1
h )I)ne]e‖L2(e), (5.21)

the time derivative of the stress tensor’s jump in the interior of the nonpay-zone, i.e., e ∈ E2
h,

ηn,`e,2,∂σ := h
1
2
e ∆ t‖ 1

∆ t
[σ(un,`h − u

n−1
h )ne]e‖L2(e), (5.22)

the time derivative of the stress tensor error on e ∈ ΓN ,

ηn,`e,N,∂σ := h
1
2
e ∆ t‖ 1

∆ t

(
σ(un,`h − u

n−1
h )nΩ − (tnN,h − tn−1

N,h )
)
‖L2(e). (5.23)

For the sake of conciseness, p is extended by zero in Ω2. We obtain the following volume estimates
for any δ > 0; to simplify, the number of repetitions of an element is not specified and is incorporated
in the constant Ĉ,

2∑
i=1

∣∣∣ ∫ t

0

∑
E∈T ih

(
∂t(fhτ+∇ · σ(uhτ )− α∇ phτ ),u− uhτ − vh

)
E

∣∣∣
≤ 1

2

2∑
i=1

[
δ‖∇(u− uhτ )‖2L∞(0,t;L2(Ωi))

+
1

δ
Ĉ2
( m∑
n=1

( ∑
E∈T ih

(
ηnE,i,∂u

)2) 1
2

)2]
.
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Note that by Korn’s inequality (1.3) with Γ = ΓD

2∑
i=1

‖∇(u− uhτ )‖2L2(Ωi)
= ‖∇(u− uhτ )‖2L2(Ω) ≤ K

2‖ε(u− uhτ )‖2L2(Ω).

Therefore the two volume estimates can be combined as follows:

2∑
i=1

∣∣∣ ∫ t

0

( ∑
E∈T ih

(
∂t(fhτ +∇ · σ(uhτ )− α∇ phτ ),u− uhτ − vh

)
E

∣∣∣
≤ 1

2

[
δ5G‖ε(u− uhτ )‖2L∞(0,t;L2(Ω)) +

Ĉ2K2

δ5G

2∑
i=1

( m∑
n=1

( ∑
E∈T ih

(
ηnE,i,∂u

)2) 1
2

)2]
.

(5.24)

A similar argument leads to the interface estimates,∣∣∣ ∫ t

0

( ∑
e∈Eh

(
[∂t(σ(uhτ )− αphτI)ne]e,u− uhτ − vh

)
e

+
(
∂t(σ(uhτ )nΩ − tN,hτ ),u− uhτ − vh

)
ΓN

)∣∣∣
≤ 1

2

[
δ5G‖ε(u− uhτ )‖2L∞(0,t;L2(Ω)) +

Ĉ2K2

δ5G

(( m∑
n=1

( ∑
e∈Eh

(
ηne,∂σ

)2) 1
2

)2
+
( m∑
n=1

( ∑
e∈EN,∂h

(
ηne,N,∂σ

)2) 1
2

)2)]
,

(5.25)

where ηe,∂σ stands for ηe,1,∂σ in E1
h ∪ E12

h and ηe,2,∂σ in E2
h.

5.4. The first expression and the data errors

The first expression has a straightforward bound,

1

µf

∣∣∣ ∫ t

0
((ph − phτ , p− phτ ))h

∣∣∣ ≤ 1

2µf

[
δ1

∫ t

0
‖p− phτ‖2h +

1

δ1

m∑
n=1

((
ηnt,p
)2

+
∑
e∈E1h

(
ηnt,J
)2)]

. (5.26)

There remain the three data errors. We start with the error on q,∣∣∣ ∫ t

0

(
q − qh, p− phτ

)
Ω1

∣∣∣ ≤ 1

2

[ δ2

M
‖phτ − p‖2L∞(0,t;L2(Ω1)) +

M

δ2
‖q − qh‖2L1(0,t;L2(Ω1))

]
. (5.27)

And we finish with the error on the time derivative of the force and the given traction,∣∣∣ ∫ t

0

(
∂t(f − fhτ ),u− uhτ

)
Ω

∣∣∣ ≤ 1

2

[
δ5G‖ε(u− uhτ )‖2L∞(0,t;L2(Ω)) +

P2K2

δ5G
‖∂t(f − fhτ )‖2L1(0,t;L2(Ω))

]
,∣∣∣ ∫ t

0

(
∂t(tN − tN,hτ ),u− uhτ

)
ΓN

∣∣∣ ≤ 1

2

[
δ5G‖ε(u− uhτ )‖2L∞(0,t;L2(Ω)) +

C2
NC

2
1

δ5G
‖∂t(tN − tN,hτ )‖2

L1(0,t;H−1/2(ΓN ))

]
,

(5.28)

where C1 is the constant of (1.5) and CN is the constant of a trace inequality on ΓN , from H
1
2
00(ΓN )3

to W .
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5.5. Bounds for IP(t)

The bounds in this subsection are derived in the interval ]tm−1, tm], 1 ≤ m ≤ N . They use the
following error indicators at time tn:
the pressure jump

ηn,`p,J := he
(γe
he

) 1
2 ‖[pn,`h ]e‖L2(e), (5.29)

for i = 1, 2, the displacement equilibrium in all E ∈ T ih , with ph set to zero in Ω2

ηn,`E,i,u := hE‖fnh +∇ · σ(un,`h )− α∇ pn,`h ‖L2(E), (5.30)

the stress tensor’s jump in the pay-zone and interface, i.e., all e ∈ E1
h ∪ E12

h ,

ηn,`e,1,σ := h
1
2
e ‖[
(
σ(un,`h )− αpn,`h I

)
ne]e‖L2(e), (5.31)

the stress tensor’s jump in the interior of the nonpay-zone, i.e., e ∈ E2
h,

ηn,`e,2,σ := h
1
2
e ‖[(σ(un,`h )ne]e‖L2(e) (5.32)

the stress tensor’s error on e ∈ ΓN ,

ηn,`e,N,σ := h
1
2
e ‖σ(un,`h )nΩ − tnN,h‖L2(e). (5.33)

The first bound follows readily from (10.19): There exists a constant Ĉ such that, for any δ6 > 0
and δ7 > 0,∣∣∣(( 1

M
(p− phτ ) + α∇ · (u− uhτ ))(t), (phτ − θ)(t)

)
Ω1

∣∣∣
≤ 1

2

[ δ6

M
‖(p− phτ )(t)‖2L2(Ω1) + λδ7‖∇ · (u− uhτ )(t)‖2L2(Ω1)

+ Ĉ2
( 1

δ6M
+
α2

δ7λ

)
(K − 1)2 1

minγe

∑
e∈E1h

(
(1− s)(ηm−1

p,J )2 + s(ηmp,J)2
)]
,

(5.34)

where 0 ≤ s ≤ 1, in fact s = t−tm−1

∆ t since tm−1 < t ≤ tm. The remaining bounds are straightfor-
ward; they hold for the above s and for any δ8 > 0. We have first the volume estimate,

2∑
i=1

∣∣∣ ∑
E∈T ih

(
(fhτ +∇ · σ(uhτ )− α∇ phτ )(t), (u− uhτ − vh)(t)

)
E

∣∣∣
≤ 1

2

[
δ8G‖ε(u− uhτ )(t)‖2L2(Ω) +

Ĉ2K2

δ8G

2∑
i=1

∑
E∈T ih

(
(1− s)

(
ηm−1
E,i,u

)2
+ s
(
ηmE,i,u

)2)]
.

(5.35)
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Next, we have the interface estimate,∣∣∣ ∑
e∈Eh

(
[(σ(uhτ )− αphτI)(t)ne]e, (u− uhτ − vh)(t)

)
e

+
(
σ(uhτ (t))nΩ − tN,hτ (t), (u− uhτ − vh)(t)

)
ΓN

∣∣∣
≤ 1

2

[
δ8G‖ε(u− uhτ )(t)‖2L2(Ω)

+
Ĉ2K2

δ8G

( ∑
e∈Eh

(
(1− s)

(
ηm−1
e,σ

)2
+ s
(
ηme,σ

)2)
+
∑

e∈EN,∂h

(
(1− s)

(
ηm−1
e,N,σ

)2
+ s
(
ηme,N,σ

)2))]
.

(5.36)

Finally, the bound for the data terms is∣∣∣((f − fhτ )(t), (u− uhτ )(t)
)

Ω
+
(
(tN − tN,hτ )(t), (u− uhτ )(t)

)
ΓN

∣∣∣ ≤ 1

2

[
δ8G‖ε(u− uhτ )(t)‖2L2(Ω)

+
Ĉ2

δ8G

(
K2‖f − fhτ‖2L∞(0,t;L2(Ω)) + C2

NC
2
1‖tN − tN,hτ‖2L∞(0,t;H−1/2(ΓN ))

)]
.

(5.37)

5.6. The initial errors

Let us star with bounds for IP(0). At initial time, these bounds are simpler, mainly because p0
h

has no jumps, and hence (phτ −θ)(0) = 0. Hence a combination of (5.35)–(5.37) gives for all δ8 > 0∣∣IP(0)
∣∣ ≤ 1

2

[
3δ8G‖ε(u(0)− u0

h)‖2L2(Ω)

+
Ĉ2

δ8G

(
K2
( 2∑
i=1

∑
E∈T ih

(
η0
E,i,u

)2
+

∑
e∈E1h∪E

2
h

(
η0
e,2,σ

)2
+
∑
e∈E12h

(
η0
e,1,σ

)2
+
∑

e∈EN,∂h

(
η0
e,N,σ

)2
+ ‖f − fhτ‖2L∞(0,t;L2(Ω))

)
+ C2

1C
2
N‖tN − tN,hτ‖2L∞(0,t;H−1/2(ΓN ))

)]
.

(5.38)

Note that η0
e,1,σ only appears in the interface because p0

h does not jump.
Regarding the initial pressure and displacement errors, by definition the former is simply an

interpolation error, see (3.9) and (3.5). But the initial displacement is computed and its error stems
from (4.13). By testing (4.13) at n = 0 with v = u−u0

h, we readily derive by the above argument
that

2G‖ε(u(0)− u0
h)‖2L2(Ω) ≤

α2

4λ
‖p(0)− p0

h‖2L2(Ω1) +
∣∣IP(0)

∣∣.
Hence the choice δ8 = 2

3 in (5.38) yields

G‖ε(u(0)− u0
h)‖2L2(Ω) ≤

α2

4λ
‖p(0)− p0

h‖2L2(Ω1)

+
3

4

Ĉ2

G

(
K2
( 2∑
i=1

∑
E∈T ih

(
η0
E,i,u

)2
+

∑
e∈E1h∪E

2
h

(
η0
e,2,σ

)2
+
∑
e∈E12h

(
η0
e,1,σ

)2
+
∑

e∈EN,∂h

(
η0
e,N,σ

)2
+ ‖f − fhτ‖2L∞(0,t;L2(Ω))

)
+ C2

1C
2
N‖tN − tN,hτ‖2L∞(0,t;H−1/2(ΓN ))

)
.

(5.39)
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Similarly, the choice δ8 = 4
3 in (5.38) leads to

λ‖∇ · (u(0)− u0
h)‖2L2(Ω) ≤

α2

λ
‖p(0)− p0

h‖2L2(Ω1)

+
3

4

Ĉ2

G

(
K2
( 2∑
i=1

∑
E∈T ih

(
η0
E,i,u

)2
+

∑
e∈E1h∪E

2
h

(
η0
e,2,σ

)2
+
∑
e∈E12h

(
η0
e,1,σ

)2
+
∑

e∈EN,∂h

(
η0
e,N,σ

)2
+ ‖f − fhτ‖2L∞(0,t;L2(Ω))

)
+ C2

1C
2
N‖tN − tN,hτ‖2L∞(0,t;H−1/2(ΓN ))

)
.

(5.40)

5.7. The reliability bound

Let us substitute the above bounds in (4.23). Since there are many indicators, to simplify, they
are grouped into categories,
• the algorithmic errors,

ηmalg :=
( m∑
n=1

(∆ t)
1
2 ηnfs

)2
+

m∑
n=1

h2
(
ηnfs
)2
, (5.41)

• the time errors,

ηmtime :=
m∑
n=1

((
ηnt,p
)2

+
∑
e∈E1h

(
ηnt,J
)2)

, (5.42)

• the flow errors,

ηmflow :=
m∑
n=1

∑
E∈T 1

h

(
ηnE,p

)2
+

m∑
n=1

∑
e∈E1h∪E

12
h

(
ηnflux,e

)2
, (5.43)

• the penalty jumps,

ηmjump :=

m∑
n=1

∑
e∈E1h

(
ηnpen

)2
+
( m∑
n=1

( ∑
e∈E1h

(
ηn∂p,J

)2) 1
2

)2
+
∑
e∈E1h

((
ηm−1
p,J

)2
+
(
ηmp,J

)2)
, (5.44)

• the errors on the tensor’s time derivative,

ηmE∂σ :=
( m∑
n=1

( ∑
e∈E1h∪E

12
h

(
ηne,1,∂σ

)2) 1
2

)2
+
( m∑
n=1

( ∑
e∈E2h

(
ηne,2,∂σ

)2) 1
2

)2
+
( m∑
n=1

( ∑
e∈EN,∂h

(
ηne,N,∂σ

)2) 1
2

)2
,

(5.45)
• the errors on the displacement’s time derivative,

ηmT∂u :=
2∑
i=1

( m∑
n=1

( ∑
E∈T ih

(
ηnE,i,∂u

)2) 1
2

)2
, (5.46)

• the errors on the tensor at final time,

ηmEσ :=
∑

e∈E1h∪E
12
h

((
ηm−1
e,1,σ

)2
+
(
ηme,1,σ

)2)
+
∑
e∈E2h

((
ηm−1
e,2,σ

)2
+
(
ηme,2,σ

)2)
+
∑

e∈EN,∂h

((
ηm−1
e,N,σ

)2
+
(
ηme,N,σ

)2)
,

(5.47)
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• the errors on the displacement at final time,

ηmTu :=
2∑
i=1

∑
E∈T ih

((
ηm−1
E,i,u

)2
+
(
ηmE,i,u

)2)
, (5.48)

• the initial errors,

η0 :=
2∑
i=1

∑
E∈T ih

(
η0
E,i,u

)2
+
∑
e∈E12h

(
η0
e,1,σ

)2
+

∑
e∈E1h∪E

2
h

(
η0
e,2,σ

)2
+
∑

e∈EN,∂h

(
η0
e,N,σ

)2
. (5.49)

Then, we have the following theorem.

Theorem 1. The following reliability bound holds for all time t, tm−1 < t ≤ tm, 1 ≤ m ≤ N , with
a constant Ĉ independent of h, ∆ t, and t,

1

4M
‖p− phτ‖2L∞(0,t;L2(Ω1)) +

G

2
‖ε(u− uhτ )‖2L∞(0,t;L2(Ω)) +

λ

4
‖∇ · (u− uhτ )‖2L∞(0,t;L2(Ω))

+
1

2µf

∫ t

0
‖p− phτ‖2h ≤ Ĉ

[
η0 + ‖p(0)−Πh(p(0))‖2L2(Ω1) + ‖q − qh‖2L1(0,t;L2(Ω1)) + h2‖q − qh‖2L2(Ω1)×]0,t[)

+ ηmalg + ηmtime + ηmjump + ηmflow + ηmE∂σ + ηmT∂u + ηmEσ + ηmTu

+ ‖∂t(f − fhτ )‖2L1(0,t;L2(Ω)) + ‖∂t(tN − tN,hτ )‖2
L1(0,t;H−1/2(ΓN ))

+ ‖f − fhτ‖2L∞(0,t;L2(Ω)) + ‖tN − tN,hτ‖2L∞(0,t;H−1/2(ΓN ))

]
.

(5.50)

6. Weak residual error terms

We observe that several indicators involve time derivatives, whereas the left-hand side of the
reliability bound (5.50) does not. As a consequence, some indicators cannot be bounded by the
error terms of this left-hand side. Thus, when developing these bounds we are led to introduce
several weak residual error terms, relative to derivation in time, that arise in the subsequent section,
namely,

(
En,`nf

)2
=

∫ tn

tn−1

sup
θh∈Mh/R

1

‖θh‖2h

×
∣∣∣(qnh − q + ∂t

( 1

M
(p− pn,`nhτ ) + α∇ · (u− un,`nhτ )

)
+

α

Kb
∂t(σ̄

n,`n
hτ − σ̄

n,`n−1
hτ ), θh

)
Ω1

∣∣∣2,
(6.1)

En,`nE =
∥∥qnh − q + ∂t

( 1

M
(p− pn,`nhτ ) + α∇ · (u− un,`nhτ )

)∥∥
L2(tn−1,tn;H−1(E))

, (6.2)

where E is any element of Ω1,

En,`nE,i,∂σ =

∫ tn

tn−1

sup
v∈H1

0 (E)3

1

|v|H1(E)

∣∣∣(∂tσ(u−un,`nhτ ), ε(v)
)
E
−α
(
∂t(p−pn,`nhτ ),∇·v

)
E
−
(
∂t(f−fnhτ ),v

)
E

∣∣∣,
(6.3)
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where E ⊂ Ωi, i = 1, 2, and p is set to zero in Ω2,

En,`nωe,∂σ
=

∫ tn

tn−1

sup
v∈H1

0 (ωe)3

1

|v|H1(ωe)

∣∣∣(∂tσ(u−un,`nhτ ), ε(v)
)
ωe
−α
(
∂t(p−pn,`nhτ ),∇·v

)
ωe
−
(
∂t(f−fnhτ ),v

)
ωe

∣∣∣,
(6.4)

where e is an interior face of Ω, and again p is set zero in Ω2,

En,`ne,N,∂σ =

∫ tn

tn−1

sup
v∈H1

e (E)3

1

|v|H1(E)

∣∣∣(∂tσ(u−un,`nhτ ), ε(v)
)
E
−
(
∂t(tN−tnN,hτ ),v

)
e
−
(
∂t(f−fnhτ ),v

)
E

∣∣∣,
(6.5)

where e is a face on ΓN , E is the element adjacent to e, and exceptionally,

H1
e (E) = {z ∈ H1(E) ; z = 0 on ∂E \ e}.

Before estimating these terms, we introduce the notation for any function q in L1(0, T ),

m(q) =
1

∆t

∫ tn

tn−1

q(s)ds.

We shall also use an auxiliary regularizing operator Ph of Hermite type that will only serve for
theoretical purposes, Ph : H1(Ω)→ Zh, where

Zh = {zh ∈ C1(Ω) ; zh|E ∈ Pr(E), ∀E ∈ T 1
h },

with r ≥ k sufficiently large to guarantee that the functions of Zh are globally in C1(Ω) and satisfy
the approximation property (3.7), see for example [13, 9, 45]. With this operator, we associate the
following interpolation error:

A1(p) = |Ph(p)−p|h+h
( ∑
E∈T 1

h

‖∇·(κ∇(Ph(p)−p))‖2L2(E)

) 1
2
+h

1
2 ‖κ∇(Ph(p)−p)·n12‖L2(Γ12). (6.6)

To alleviate notation, when there is no ambiguity, the superscript `n will be omitted.

Proposition 10. If the data κ and the unknown p are sufficiently smooth, we have

(
En,`nf

)2 ≤ Ĉ

µ2
f

[(
ηn,`nt,p

)2
+

∫ tn

tn−1

‖pn,`nhτ − p‖
2
h +

∫ tn

tn−1

A1(p)2
]
. (6.7)

Proof. Set

X = qnh − q + ∂t
( 1

M
(p− pnhτ ) + α∇ · (u− unhτ )

)
+

α

Kb
∂t(σ̄

n
hτ − σ̄

n,`n−1
hτ ). (6.8)

The a priori error equation for the pressure (4.5) reads for any θh in Mh,(
X, θh

)
Ω1

=
1

µf

[
((pnh − p, θh))h−

∑
e∈E1h

(
{κ∇(pnh − p) ·ne}e, [θh]e

)
e
−
∑
e∈E1h

(
{κ∇ θh ·ne}e, [pnh − p]e

)
e

]
.

Note that this equality is unchanged when any global constant is added to θh in its right-hand side,
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thus justifying the definition of En,`nf . By inserting pnhτ and Ph(p) in this right-hand side, we obtain

(
X, θh

)
Ω1

=
1

µf

[
((pnh − pnhτ , θh))h + ((pnhτ − p, θh))h −

∑
e∈E1h

(
{κ∇(pnh − Ph(p)) · ne}e, [θh]e

)
e

−
∑
e∈E1h

(
{κ∇(Ph(p)− p) · ne}e, [θh]e

)
e
−
∑
e∈E1h

(
{κ∇ θh · ne}e, [pnh − p]e

)
e

]
.

(6.9)

We infer from Green’s formula and the regularity of κ and Ph(p) that for all θ ∈ H1(Ω1),

−
∑
e∈E1h

(
{κ∇(Ph(p)− p) · ne}e, [θh]e

)
e

= −
∑
E∈T 1

h

(
∇ · (κ∇(Ph(p)− p)), θh − θ

)
E

−
(
Ph(p)− p), θh − θ

)
h

+

∫
Γ12

κ∇(Ph(p)− p) · n12(θh − θ).

Thus (6.9) reads for all θh in Mh and θ ∈ H1(Ω1),(
X, θh

)
Ω1

=
1

µf

[
((pnh − pnhτ , θh))h + ((pnhτ − p, θh))h −

(
Ph(p)− p), θh − θ

)
h

−
∑
E∈T 1

h

(
∇ · (κ∇(Ph(p)− p)), θh − θ

)
E

+

∫
Γ12

κ∇(Ph(p)− p) · n12(θh − θ)

−
∑
e∈E1h

(
{κ∇(pnh − Ph(p)) · ne}e, [θh]e

)
e
−
∑
e∈E1h

(
{κ∇ θh · ne}e, [pnh − p]e

)
e

]
.

(6.10)

By applying to the last two terms the argument used in proving Proposition 15, we derive∣∣ ∑
e∈E1h

(
{κ∇(pnh − Ph(p)) · ne}e, [θh]e

)
e

∣∣ ≤ Ĉ ∑
e∈E1h

(γe
he

) 1
2 ‖[θh]e‖e

(λmax

γe

) 1
2 ‖κ

1
2∇(pnh − Ph(p))‖E

≤ Ĉ
( λmax

minγe

) 1
2Jh(θh, θh)

1
2 |pnh − Ph(p)|h.

Likewise,∣∣ ∑
e∈E1h

(
{κ∇ θh · ne}e, [pnh − Ph(p)]e

)
e

∣∣ ≤ Ĉ( λmax

minγe

) 1
2Jh(pnh − Ph(p), pnh − Ph(p))

1
2 |θh|h.

Hence, by substituting these two bounds into (6.10) and employing the estimates of Proposition
16, we obtain the following bound for X:

|
(
X, θh

)
Ω1
| ≤ 1

µf

[(
‖pnh − pnhτ‖h + ‖pnhτ − p‖h + Ĉ

( λmax

minγe

) 1
2 ‖pnh − Ph(p)‖h

)
‖θh‖h

+ ĈA1(p)Jh(θh, θh)
1
2

]
.

Thus

sup
θh∈Mh/R

(
X, θh

)2
Ω1

‖θh‖2h
≤ Ĉ

µ2
f

[
‖pnh − pnhτ‖2h + ‖pnhτ − p‖2h +A1(p)2

]
,
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which implies (6.7). Note that the second term is an error bounded by Theorem 1.

The bound (6.7) supposes that ∇ · κ∇ p ∈ L2(E×]tn−1, tn[). This only guarantees H−
1
2 regu-

larity of the normal trace of κ∇ p on the interface Γ12, see [23]; but its L2 regularity follows from
the no flow condition.

Proposition 11. Let ηt,p,E denote the restriction of ηt,p defined in (5.9) to an element E. We
have (

En,`nE

)2 ≤ 3
[
C2(ηn,`nE,p )2 +

λmax

µ2
f

( ∫ tn

tn−1

|p− pn,`nhτ |
2
h,E + (ηn,`nt,p,E)2

)]
. (6.11)

with the constant C of (10.1).

Proof. For any element E in Ω1, take θ ∈ H1
0 (E) arbitrary, non zero, and θh = 0 in the flow error

equation (4.9). As θ vanishes on the boundary of E, (4.9) reduces to(
qnh − q + ∂t

( 1

M
(p− pnhτ ) + α∇ · (u− unhτ )

)
, θ
)
E

= − 1

µf

(
(p− pnhτ , θ)h,E + (pnhτ − pnh, θ)h,E

)
+
(
qnh − ∂t

( 1

M
pnhτ + α∇ · unhτ

)
+

1

µf
∇ · (κ(∇ pnh − ρg∇ η)), θ

)
E
.

Owing to the local Poincaré inequality (10.1), we have∣∣∣(qnh − ∂t( 1

M
pnhτ + α∇ · unhτ

)
+

1

µf
∇ · (κ(∇ pnh − ρg∇ η)), θ

)
E

∣∣∣
≤ ĈhE

∥∥qn − ∂t( 1

M
pnhτ + α∇ · unhτ

)
+

1

µf
∇ · (κ(∇ pnh − ρg∇ η))

∥∥
L2(E)

|θ|H1(E).

Then by dividing by |θ|H1(E), squaring, taking the supremum with respect to θ in H1
0 (E), and

integrating over ]tn−1, tn[, we recover (6.11).

Take i = 1; for En,`nE,1,∂σ, we test (4.14) with vh = 0 and v ∈ H1
0 (E)3; this gives(

σ(∂t(u− unhτ )), ε(v)
)
E
− α

(
∂t(p− pnhτ ),∇ · v

)
E
−
(
∂t(f − fnhτ ),v)E

=
(
∂tf

n
hτ +∇ · σ(∂tu

n
hτ )− α∇ ∂tpnhτ ,v

)
E

Therefore, by (10.1), we obtain∣∣∣(σ(∂t(u− unhτ )), ε(v)
)
E
−α
(
∂t(p− pnhτ ),∇ · v

)
E
−
(
∂t(f − fnhτ ),v)E

∣∣∣
≤ C hE‖∂tfnhτ +∇ · σ(∂tu

n
hτ )− α∇ ∂tpnhτ‖L2(E)|v|H1(E),

and by integrating in time, we derive a bound for En,`nE,1,∂σ. A bound for En,`nE,2,∂σ follows by the same
argument, with an analogous formula and we have with the constant C of (10.1),

En,`nE,i,∂σ ≤ Cη
n,`n
E,i,∂u, i = 1, 2. (6.12)

Regarding En,`nωe,∂σ
, assume for the moment that e is interior to Ω1, test (4.14) with vh = 0 and
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v ∈ H1
0 (ωe)

3. This choice yields(
σ(∂t(u− unhτ )), ε(v)

)
ωe
− α

(
∂t(p− pnhτ ),∇ · v

)
ωe
−
(
∂t(f − fnhτ ),v)ωe

=
∑
E⊂ωe

(
∂tf

n
hτ +∇ · σ(∂tu

n
hτ )− α∇ ∂tpnhτ ,v

)
E
−
(
[(σ(∂tu

n
hτ )− α∂tpnhτI)ne]e,v

)
e

≤
∑
E⊂ωe

‖∂tfnhτ +∇ · σ(∂tu
n
hτ )− α∇ ∂tpnhτ‖L2(E)‖v‖L2(E) + ‖[(σ(∂tu

n
hτ )− α∂tpnhτI)ne]e‖L2(e)‖v‖L2(e).

By applying (10.2) and (10.5), and dividing both sides by |v|H1(ωe), we deduce

1

|v|H1(ωe)

∣∣∣(σ(∂t(u− unhτ )), ε(v)
)
ωe
− α

(
∂t(p− pnhτ ),∇ · v

)
ωe
−
(
∂t(f − fnhτ ),v)ωe

∣∣∣
≤ Ĉ

(
hωe

( ∑
E⊂ωe

‖∂tfnhτ +∇ · σ(∂tu
n
hτ )− α∇ ∂tpnhτ‖2L2(E)

) 1
2

+ h
1
2
e ‖[(σ(∂tu

n
hτ )− α∂tpnhτI)ne]e‖L2(e)

)
.

After an integration in time and maximizing over v ∈ H1
0 (ωe)

3, this implies

∣∣En,`nωe,∂σ

∣∣ ≤ Ĉ[( ∑
E⊂ωe

(
ηn,`nE,1,∂u

)2) 1
2

+ ηn,`ne,1,∂σ

]
. (6.13)

When e lies on Γ12, the same argument leads to

∣∣En,`nωe,∂σ

∣∣ ≤ Ĉ[((ηn,`nE1,1,∂u

)2
+
(
ηn,`nE2,2,∂u

)2) 1
2

+ ηn,`ne,1,∂σ

]
, (6.14)

where E1 ⊂ Ω1 and E2 ⊂ Ω2 are the two elements adjacent to e. When e is an interior face of Ω2,
the relevant bound is ∣∣En,`nωe,∂σ

∣∣ ≤ Ĉ[( ∑
E⊂ωe

(
ηn,`nE,2,∂u

)2) 1
2

+ ηn,`ne,2,∂σ

]
. (6.15)

For En,`ne,N,∂σ, we proceed as above, but ωe is reduced to the element E adjacent to e and v
vanishes on ∂E \ e. Then we easily derive∣∣En,`ne,N,∂σ

∣∣ ≤ Ĉ(ηn,`nE,2,∂u + ηn,`ne,N,∂σ

)
. (6.16)

Remark 1. The weak residual error terms studied above will affect the effectivity index since they
will be used to estimate some of the indicators. Hence, evaluating the effectivity index requires their
numerical computation or approximation. Unfortunately, their computation is not straightforward.

7. Lower bounds

Here we bound below the error, i.e., we derive upper bounds for each indicator in terms of
the errors on the discrete solution and the data. Some of these bounds will be derived under the
assumption that κ and the solution are sufficiently smooth. As before, Ĉ denotes various constants
independent of h, n, and ∆ t.
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7.1. The algorithmic error indicator

Let us start with an arbitrary value of `. First, the contraction property (10.14) yields

ηn,`fs ≤
(
∆ t
) 1

2
1

(β Kb)`−1

∥∥ 1

∆ t
(σ̄n,1h − σ̄n−1

h )
∥∥
L2(Ω1)

, (7.1)

where
σ̄n,1h − σ̄n−1

h = Kb∇ · (un,1h − u
n−1
h )− α(pn,1h − p

n−1
h ).

Next, a bound for the first term in this right-hand side reduces to a bound for the second term, as
shown in the next proposition.

Proposition 12. We have

‖∇·(un,1h −u
n−1
h )‖2L2(Ω1) ≤

α2

λ2
‖pn,1h −p

n−1
h ‖2L2(Ω1)+

1

2Gλ

(
P2K2‖fn−fn−1‖2L2(Ω)+C

2
1C

2
N‖tnN−tn−1

N ‖2
H−

1
2 (ΓN )

)
.

(7.2)

Proof. By taking the difference between (3.14) at step n, ` = 1 and at step n − 1, and testing
with vh = un,1h −u

n−1
h , we obtain, after applying Korn’s inequality, a trace inequality, and Young’s

inequality

2G‖ε(un,1h − u
n−1
h )‖2L2(Ω) + λ‖∇ · (un,1h − u

n−1
h )‖2L2(Ω)

≤ 1

2

(
λ‖∇ · (un,1h − u

n−1
h )‖2L2(Ω1) +

α2

λ
‖pn,1h − p

n−1
h ‖2L2(Ω1)

)
+ 2G‖ε(un,1h − u

n−1
h )‖2L2(Ω)

+
1

4G

(
P2K2‖fn − fn−1‖2L2(Ω) + C2

1C
2
N‖tnN − tn−1

N ‖2
H−

1
2 (ΓN )

)
,

which reduces to (7.2).

Thus

‖σ̄n,1h −σ̄
n−1
h ‖2L2(Ω1) ≤ 2α2

(
1+

K2
b

λ2

)
‖pn,1h −p

n−1
h ‖2L2(Ω1)+

K2
b

λG

(
P2K2‖fn−fn−1‖2L2(Ω)+C

2
1C

2
N‖tnN−tn−1

N ‖2
H−

1
2 (ΓN )

)
,

(7.3)
and we must find an estimate for pn,1h − p

n−1
h . This is the object of the next lemma.

Lemma 1. Suppose that the penalty parameters γe satisfy (10.12). Assuming that the solution and
κ are sufficiently smooth as in Proposition 10, we have for all n, 1 ≤ n ≤ N ,

1

2∆ t

( 1

M
+
α2

Kb

)
‖pn,1h − p

n−1
h ‖2L2(Ω1) ≤ Ĉ

[
|pn−1
h −m(Ph(p))|2h + Jh(pn−1

h −m(p), pn−1
h −m(p))

+ ∆ t
∑
E∈T 1

h

‖∇ · (κ∇m(Ph(p)− p))‖2L2(E) +
(
h+ ∆ t+ h

1
2 + (∆ t)

1
2
)
‖κ∇m(Ph(p)− p) · n12‖2L2(Γ12)

+ ‖qn −m(q)‖2L2(Ω1×]tn−1,tn[) + ‖∂t
( 1

M
p+ α∇ · u

)
‖2L2(Ω1×]tn−1,tn[)

]
.

(7.4)

Proof. By inserting pn−1
h and m(Ph(p)) in (3.12) at step ` = 1 with τp = 1, and recalling that Ph(p)
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does not jump at interfacs, we derive for all θh ∈Mh,

( 1

M
+
α2

Kb

) 1

∆ t

(
pn,1h − p

n−1
h , θh

)
Ω1

+
1

µf
((pn,1h − p

n−1
h , θh))h +

1

µf
((pn−1

h −m(Ph(p)), θh))h

+
1

µf

∑
E∈T 1

h

(
κ(∇m(Ph(p))− ρg∇ η),∇ θh

)
E
− 1

µf

∑
e∈E1h

(
{κ∇(pn,1h − p

n−1
h ) · ne}e, [θh]e

)
e

− 1

µf

∑
e∈E1h

(
{κ∇(pn−1

h −m(Ph(p))) · ne}e, [θh]e
)
e
− 1

µf

∑
e∈E1h

(
{κ(∇m(Ph(p))− ρg∇ η) · ne}e, [θh]e

)
e

− 1

µf

∑
e∈E1h

(
{κ∇ θh · ne}e, [pn,1h − p

n−1
h ]e

)
e
− 1

µf

∑
e∈E1h

(
{κ∇ θh · ne}e, [pn−1

h ]e
)
e

= (qn, θh)Ω1 .

With the choice θh = pn,1h − p
n−1
h , this becomes

( 1

M
+
α2

Kb

) 1

∆ t
‖pn,1h − p

n−1
h ‖2L2(Ω1) +

1

µf
‖pn,1h − p

n−1
h ‖2h −

2

µf

∑
e∈E1h

(
{κ∇(pn,1h − p

n−1
h ) · ne}e, [pn,1h − p

n−1
h ]e

)
e

= − 1

µf
((pn−1

h −m(Ph(p)), pn,1h − p
n−1
h ))h +

1

µf

∑
e∈E1h

(
{κ∇(pn−1

h −m(Ph(p))) · ne}e, [pn,1h − p
n−1
h ]e

)
e

+
1

µf

∑
e∈E1h

(
{κ∇(pn,1h − p

n−1
h ) · ne}e, [pn−1

h ]e
)
e
− 1

µf

∑
E∈T 1

h

(
κ(∇m(Ph(p))− ρg∇ η),∇(pn,1h − p

n−1
h )

)
E

+
1

µf

∑
e∈E1h

(
{κ(∇m(Ph(p))− ρg∇ η) · ne}e, [pn,1h − p

n−1
h ]e

)
e

+ (qn −m(q), pn,1h − p
n−1
h )Ω1 + (m(q), pn,1h − p

n−1
h )Ω1 .

Let us examine the terms containing ∇m(Ph(p)) − ρg∇ η. Since the gradient of Ph(p) does not
jump at interfaces and κ is supposed to be sufficiently smooth, by Greens’ formula applied in each
E, we can write for any θh ∈Mh,

−
∑
E∈T 1

h

(
∇ · (κ(∇m(Ph(p))− ρg∇ η)), θh

)
E

=
∑
E∈T 1

h

(
κ(∇m(Ph(p))− ρg∇ η),∇ θh

)
E

−
∑
e∈E1h

(
{κ(∇m(Ph(p))− ρg∇ η) · ne}e, [θh]e

)
e
−
∫

Γ12

κ(∇m(Ph(p))− ρg∇ η) · n12 θh.
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Hence

− 1

µf

∑
E∈T 1

h

(
κ(∇m(Ph(p))− ρg∇ η),∇ θh

)
E

+
1

µf

∑
e∈E1h

(
{κ(∇m(Ph(p))− ρg∇ η) · ne}e, [θh]e

)
e

=
1

µf

∑
E∈T 1

h

(
∇ · (κ(∇m(Ph(p))− ρg∇ η)), θh

)
E
− 1

µf

∫
Γ12

κ(∇m(Ph(p))− ρg∇ η) · n12 θh

=
1

µf

∑
E∈T 1

h

(
∇ · (κ∇m(Ph(p)− p)), θh

)
E
− 1

µf

∫
Γ12

κ∇m(Ph(p)− p) · n12 θh

+
1

µf

∫
Ω1

∇ · (κ(∇m(p)− ρg∇ η)) θh,

where the no flux interface condition in (2.3) is used in the next to last term. Finally, let us
integrate in time the flow equation in (2.3) from tn−1 and tn, divided by ∆ t. Considering that κ
and ρg∇ η are independent of time, this gives for any θh ∈Mh

(m(q), θh)Ω1 +
1

µf

(
∇ · (κ(∇m(p)− ρg∇ η)), θh

)
Ω1

=
1

∆ t

∫ tn

tn−1

(
∂t
( 1

M
p+ α∇ · u

)
, θh
)

Ω1
. (7.5)

By collecting these equalities, we obtain,

( 1

M
+
α2

Kb

) 1

∆ t
‖pn,1h − p

n−1
h ‖2L2(Ω1) +

1

µf
‖pn,1h − p

n−1
h ‖2h −

2

µf

∑
e∈E1h

(
{κ∇(pn,1h − p

n−1
h ) · ne}e, [pn,1h − p

n−1
h ]e

)
e

= − 1

µf
((pn−1

h −m(Ph(p)), pn,1h − p
n−1
h ))h +

1

µf

∑
e∈E1h

(
{κ∇(pn−1

h −m(Ph(p))) · ne}e, [pn,1h − p
n−1
h ]e

)
e

+
1

µf

∑
e∈E1h

(
{κ∇(pn,1h − p

n−1
h ) · ne}e, [pn−1

h −m(p)]e
)
e

+
1

µf

∑
E∈T 1

h

(
∇ · (κ∇m(Ph(p)− p)), pn,1h − p

n−1
h

)
E

− 1

µf

∫
Γ12

κ∇m(Ph(p)− p) · n12 (pn,1h − p
n−1
h ) +

(
qn −m(q), pn,1h − p

n−1
h

)
Ω1

+
1

∆ t

∫ tn

tn−1

(
∂t
( 1

M
p+ α∇ · u

)
, pn,1h − p

n−1
h

)
Ω1
.

(7.6)

The assumption (10.12) on the penalty parameters γe implies that

1

µf
‖pn,1h − p

n−1
h ‖2h −

2

µf

∑
e∈E1h

(
{κ∇(pn,1h − p

n−1
h ) · ne}e, [pn,1h − p

n−1
h ]e

)
e
≥ 1

2µf
‖pn,1h − p

n−1
h ‖2h.

With this, (7.4) is deduced from (7.6) by a straightforward variant of (10.9), suitable applications
of Young’s inequality, and the consequence (10.24) of the trace inequality on Γ12.

By substituting (7.4) into (7.3), by using (7.1), and recalling the definition (5.3) of the algo-
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rithmic error, and the notation (10.15), we obtain the following bound for ηn,`fs

(
ηn,`fs

)2 ≤ 1

(β Kb)2`−2

[(
1 +

K2
b

λ2

)4Ĉ

β

(
|pn−1
h −m(Ph(p))|2h + Jh(pn−1

h −m(p), pn−1
h −m(p))

+
∑
E∈T 1

h

‖∇ · (κ∇(Ph(p)− p))‖2L2(E×]tn−1,tn[)

+
( h

∆ t
+ 1 +

h
1
2

∆ t
+

1

(∆ t)
1
2

)
‖κ∇(Ph(p)− p) · n12‖2L2(Γ12×]tn−1,tn[)

+ ‖qn − q‖2L2(Ω1×]tn−1,tn[) + ‖∂t
( 1

M
p+ α∇ · u

)
‖2L2(Ω1×]tn−1,tn[)

)
+
K2
b

Gλ

1

∆ t

(
P2K2‖fn − fn−1‖2L2(Ω) + C2

1C
2
N‖tnN − tn−1

N ‖2
H−

1
2 (ΓN )

)]
.

(7.7)

From the a posteriori point of view, this bound is not satisfactory because the three last terms
cannot be interpreted as errors, but just involve the solution and data; this is strikingly true of the
first of these terms that has no reason to be small. This reflects the inconsistency of the algorithm’s
starting value at each time step, and this effect can only be mitigated by iterating sufficiently, i.e.,
taking `n sufficiently large to guarantee a suitable estimate of the error

m∑
n=1

√
∆ t ηnfs,

in (5.50). To this end, we prescribe the condition for all n

1

(βKb)`n
≤ C∆ t, (7.8)

with a constant C independent of n, h, ∆ t (to simplify, we do not explicit this constant). The next
theorem summarizes this result.

Theorem 2. Assume that (7.8) holds at each time step and that (10.12) is satisfied. If the data
and solution are sufficiently smooth, we have

ηn,`nfs ≤Ĉ
[
∆t |pn−1

h −m(Ph(p))|h + ∆t Jh(pn−1
h −m(p), pn−1

h −m(p))
1
2

+ ∆t
( ∑
E∈T 1

h

‖∇ · (κ∇(Ph(p)− p))‖2L2(E×]tn−1,tn[)

) 1
2

+ (∆ t)
1
2
(
h

1
2 + (∆ t)

1
2 + h

1
4 + (∆ t)

1
4
)
‖κ∇(Ph(p)− p) · n12‖L2(Γ12×]tn−1,tn[)

+ ∆ t‖qn − q‖L2(Ω1×]tn−1,tn[) + ∆ t‖∂t
( 1

M
p+ α∇ · u

)
‖L2(Ω1×]tn−1,tn[)

)
+ (∆ t)

3
2

(
‖∂tf‖L∞(tn−1,tn;L2(Ω)) + ‖∂ttN‖

L∞(tn−1,tn;H−
1
2 (ΓN ))

)]
.

(7.9)

Remark 2. Observe that, if in addition to the assumptions of Theorem 2, the mesh size and time
step are of the same order, i.e.,

h ≤ Ĉ ∆t, (7.10)
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then (when `n achieves convergence)

N∑
n=1

(∆t)
1
2 ηnfs ≤ Ĉ

[
(∆t)

1
2
( N∑
n=1

∆t(|pn−1
h −m(Ph(p))|2h + Jh(pn−1

h − p, pn−1
h − p))

) 1
2

+ ∆t
( ∑
E∈T 1

h

‖∇ · (κ∇(Ph(p)− p))‖2L2(E×]0,T [)

) 1
2

+ (∆t)
3
4 ‖κ∇(Ph(p)− p) · n12‖L2(Γ12×]0,T [) + ∆t‖qn − q‖L2(Ω1×]0,T [)

+ ∆t
(
‖∂t
( 1

M
p+ α∇ · u

)
‖L2(Ω1×]0,T [) + ‖∂tf‖L∞(0,T ;L2(Ω)) + ‖∂ttN‖

L∞(0,T ;H−
1
2 (ΓN ))

)]
.

(7.11)

Under the same assumption, the other term in ηmalg is much more favorable because it is bounded
as follows( N∑

n=1

h2
(
ηnfs
)2) 1

2 ≤ Ĉ
[
(∆t)

3
2
( N∑
n=1

∆t(|pn−1
h −m(Ph(p))|2h + Jh(pn−1

h − p, pn−1
h − p))

) 1
2

+ (∆ t)2
( ∑
E∈T 1

h

‖∇ · (κ∇(Ph(p)− p))‖2L2(E×]0,T [)

) 1
2

+ (∆ t)
7
4 ‖κ∇(Ph(p)− p) · n12‖L2(Γ12×]0,T [) + (∆ t)2‖qn − q‖L2(Ω1×]0,T [)

+ (∆ t)2
(
‖∂t
( 1

M
p+ α∇ · u

)
‖L2(Ω1×]0,T [) + ‖∂tf‖L∞(0,T ;L2(Ω)) + ‖∂ttN‖

L∞(0,T ;H−
1
2 (ΓN ))

)]
.

(7.12)

7.2. The time errors indicator

A bound for the time errors indicators ηt,p and ηt,J , defined in (5.9) and (5.10),

ηn,`nt,p =
(∆ t

3

) 1
2
∣∣pn,`nh − pn−1

h

∣∣
h
, ηn,`nt,J =

(∆ t

3

) 1
2
(γe
he

) 1
2 ‖[pn,`nh − pn−1

h ]e‖L2(e),

is derived by much the same argument as in estimating En,`nf .

Proposition 13. Under the assumptions of Theorem 2, we have

(
ηn,`nt,p

)2
+
∑
e∈E1h

(
ηn,`nt,J

)2 ≤ 12µ2
f

[(
En,`nf

)2
+
( Ĉ
µf

)2 ∫ tn

tn−1

(
‖pn,`nhτ − p‖

2
h +A1(p)2

)]
, (7.13)

where the interpolation error A1(p) is defined in (6.6).
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Proof. Proceeding as in the proof of Proposition 10, we define X by (6.8) and write

1

µf

[
((pnh − pnhτ , θh))h −

∑
e∈E1h

(
{κ∇(pnh − pnhτ ) · ne}e, [θh]e

)
e
−
∑
e∈E1h

(
{κ∇ θh · ne}e, [pnh − pnhτ ]e

)
e

]
=
(
X, θh

)
Ω1

+
1

µf

[
((p− pnhτ , θh))h +

∑
e∈E1h

(
{κ∇(pnhτ − Ph(p)) · ne}e, [θh]e

)
e

+
∑
e∈E1h

(
{κ∇ θh · ne}e, [pnhτ − p]e

)
e

+
∑
E∈T 1

h

(
∇ · (κ∇(Ph(p)− p)), θh − θ

)
E

+
(
Ph(p)− p), θh − θ

)
h
−
∫

Γ12

κ∇(Ph(p)− p) · n12(θh − θ)
]
.

With the choice θh = pnh−pnhτ , we recognize in the above left-hand side ah(θh, θh) defined in (10.10).
Assuming (10.12), ah(θh, θh) is bounded below by (10.13). Thus, by applying to the last three terms
the estimates of Proposition 16, we derive

1

2µf
‖pnh − pnhτ‖h ≤ sup

θh∈Mh/R

(
X, θh

)
Ω1

‖θh‖h
+

1

µf

[
‖pnhτ − p‖h + Ĉ

( λmax

minγe

) 1
2
(
‖pnhτ − Ph(p)‖h + |Ph(p)− p|h

)
+

Ĉ

minγ
1
2
e

(
A1(p)− |Ph(p)− p|h

)]
.

Note that
pnhτ − Ph(p) = (pnhτ − p) + (p− Ph(p));

therefore, the argument in the third term can be replaced by pnhτ − p and the contribution of
p− Ph(p) can be incorporated into A1(p). Then the proposition follows from

1

4µ2
f

∫ tn

tn−1

‖pnh − pnhτ‖2h ≤ 3
[(
Enf
)2

+
( Ĉ
µf

)2 ∫ tn

tn−1

(
‖pnhτ − p‖2h +A1(p)2

)]
.

7.3. The local interior flow error indicator

Recall formula (5.5) for ηE,p,

ηn,`nE,p = hE
(
∆ t
) 1

2
∥∥qnh +

1

µf
∇ ·
(
κ(∇pn,`nh − ρg∇ η)

)
− ∂t

( 1

M
pn,`nhτ + α∇ · un,`nhτ

)∥∥
L2(E)

.

The bound for ηnE,p proceeds via a standard local argument in each element E ⊂ Ω1. To simplify,
we assume that restriction to each E of the density ρ and the components of the permeability
tensor κ are polynomials. The pressure error equation (4.9) is tested with θh = 0 and

θ|E = bE

(
qnh +

1

µf
∇ ·
(
κ(∇ pnh − ρg∇ η)

)
− ∂t

( 1

M
pnhτ + α∇ · unhτ

))
|E ,

extended by zero outside E, where bE is the lowest degree unit bubble function in E. Thus
θ ∈ H1

0 (E) is a polynomial function and

‖θ‖L2(E) ≤ ‖qnh +
1

µf
∇ ·
(
κ(∇ pnh − ρg∇ η)

)
− ∂t

( 1

M
pnhτ + α∇ · unhτ

)
‖L2(E).
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Let

A =
(
qnh +

1

µf
∇ ·
(
κ(∇ pnh − ρg∇ η)

)
− ∂t

( 1

M
pnhτ + α∇ · unhτ

)
, θ
)
E
.

On the one hand, as θ is a polynomial function, a familiar scaling argument leads to

A ≥ Ĉ
∥∥qnh +

1

µf
∇ ·
(
κ(∇pnh − ρg∇ η)

)
− ∂t

( 1

M
pnhτ + α∇ · unhτ

)∥∥2

L2(E)
.

On the other hand, (4.9) reduces to

A = (qnh − q + ∂t
( 1

M
(p− pnhτ ) + α∇ · (u− unhτ )

)
, θ)E +

1

µf

(
(p− pnhτ , θ)h,E + (pnhτ − pnh, θ)h,E

)
.

By collecting the above inequalities and applying (10.6), we derive

hE
∥∥qnh +

1

µf
∇ ·
(
κ(∇pnh − ρg∇ η)

)
− ∂t

( 1

M
pnhτ + α∇ · unhτ

)∥∥
L2(E)

≤ Ĉ
( 1

µf
λ

1
2
max

(
|p− pnhτ |h,E + |pnhτ − pnh|h,E

)
+ ‖qnh − q + ∂t

( 1

M
(p− pnhτ ) + α∇ · (u− unhτ )

)
‖H−1(E)

)
.

By squaring both sides, integrating in time over ]tn−1, tn[, and recalling the notation En,`nE , we

deduce an upper bound for ηn,`nE,p ,

(
ηn,`nE,p

)2 ≤ 3Ĉ2
[(
En,`nE

)2
+

1

µ2
f

λmax

(∫ tn

tn−1

|p− pn,`nhτ |
2
h,E +

(
ηn,`nt,p,E

)2)]
. (7.14)

7.4. The local jump flow error indicator

Recall the local jumps ηpen defined in (5.1),

ηn,`npen =
(
∆ t
) 1

2

(γe
he

) 1
2 ‖[pn,`nh ]e‖L2(e).

By inserting pn,`nhτ , ηn,`npen has the bound

(
ηn,`npen

)2 ≤2

∫ tn

tn−1

γe
he
‖[pn,`nh − pn,`nhτ ]e‖2L2(e) + 2∆ tJh(p− pn,`nhτ , p− pn,`nhτ )

= 2
(
ηn,`nt,J

)2
+ 2

∫ tn

tn−1

Jh(p− pn,`nhτ , p− pn,`nhτ ).

(7.15)

This is an acceptable bound, since the first term is an indicator and the second one an error term.

7.5. The local jump flux error indicator

The local flux jump ηflux,e defined by (5.7) reads

ηn,`nflux,e =
(
he∆ t

) 1
2
∥∥[κ(∇ pn,`nh − ρg∇ η) · ne]e

∥∥
L2(e)

.

The bound for ηnflux,e is derived by a classical argument on each face e ∈ E1
h. To simplify, we restrict

the discussion to internal faces, the case of boundary faces (i.e., on Γ12) being simpler, since jumps
on Γ12 are just traces. Thus, let e be an internal face and let be be a unit bubble polynomial
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function of the lowest degree that vanishes on ∂e. Let ê be a reference unit face and ω̂ê the union
of two reference unit elements that share ê. By working first on ω̂ê and then switching to ωe by a

suitable transformation, we can construct an extension operator G, linear from H
1
2
00(e) into H1

0 (ωe)
and uniformly continuous with respect to e and h, i.e.,

∀f ∈ H
1
2
00(e), |G(f)|H1(ωe) ≤ Ĉ|f |

H
1
2
00(e)

, (7.16)

with Ĉ independent of h, e, and ωe. The pressure error equation (4.9) is tested with θh = 0 and

θ|ωe = G
([
κ(∇ pnh − ρg∇ η) · ne

]
e
be

)
.

Thus θ ∈ H1
0 (ωe), hence has no jump through e, and θ|e ∈ H

1
2
00(e),

‖θ‖L2(e) ≤ ‖
[
κ(∇ pnh − ρg∇ η) · ne

]
e
‖L2(e).

Moreover, by the construction of G and the fact that the restriction of θ to e belongs to a finite
dimensional space, we have on the one hand,(

[κ(∇ pnh − ρg∇ η) · ne]e, θ
)
e
≥ Ĉ

∥∥[κ(∇ pnh − ρg∇ η) · ne]e
∥∥2

L2(e)
.

On the other hand, (4.9) reduces to

1

µf

(
[κ(∇pnh − ρg∇η) · ne]e, θ

)
e

= −
(
∂t
( 1

M
(p− pnhτ ) + α∇ · (u− unhτ )

)
− (q − qnh), θ

)
ωe

+
∑
E⊂ωe

(
qnh − ∂t(

1

M
pnhτ + α∇ · unhτ ) +

1

µf
∇ ·
(
κ(∇pnh − ρg∇ η)

)
, θ
)
E

− 1

µf

((
p− pnhτ , θ

)
h,ωe

+
(
pnhτ − pnh, θ

)
h,ωe

)
.

Therefore,

1

µf

∥∥[κ(∇ pnh − ρg∇ η) · ne]e
∥∥2

L2(e)
≤ Ĉ

[
‖∂t
( 1

M
(p− pnhτ ) + α∇ · (u− unhτ )

)
− (q − qnh)‖H−1(ωe)|θ|H1(ωe)

+
∑
E⊂ωe

‖qnh − ∂t(
1

M
pnhτ + α∇ · unhτ ) +

1

µf
∇ ·
(
κ(∇pnh − ρg∇ η)‖L2(E)‖θ‖L2(E)

+
1

µf

(
|p− pnhτ |h,ωe + |pnhτ − pnh|h,ωe

)
|θ|h,ωe

]
.

Then, by applying (7.16), (10.1), and (10.8), we derive∥∥[κ(∇ pnh − ρg∇ η) · ne]e
∥∥
L2(e)

≤ Ĉ
[
µf

( 1

h
1
2
e

‖∂t
( 1

M
(p− pnhτ ) + α∇ · (u− unhτ )

)
− (q − qnh)‖H−1(ωe)

+ h
1
2
e

( ∑
E⊂ωe

‖qnh − ∂t(
1

M
pnhτ + α∇ · unhτ ) +

1

µf
∇ ·
(
κ(∇pnh − ρg∇ η)‖2L2(E)

) 1
2

)
+
(λmax

he

) 1
2

(
|p− pnhτ |h,ωe + |pnhτ − pnh|h,ωe

)]
.
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By squaring both sides, multiplying by he, and integrating with respect to time, we obtain

(
ηn,`nflux,e)

2 ≤ 3Ĉ
[
µ2
f

((
En,`nωe

)2
+
∑
E⊂ωe

(
ηn,`nE,p

)2)
+ 2λmax

((
ηn,`nt,p,ωe

)2
+

∫ tn

tn−1

|p− pn,`nhτ |
2
h,ωe

)]
. (7.17)

7.6. The time derivative pressure’s jump indicator

Recall formula (5.17) for η∂p,J ,

ηn,`n∂p,J = he∆ t
(γe
he

) 1
2 ‖ 1

∆ t
[pn,`nh − pn−1

h ]e‖L2(e).

By comparing with ηn,`nt,J defined in (5.10), we see that

ηn,`n∂p,J = he
( 3

∆t

) 1
2 ηn,`nt,J . (7.18)

This is an acceptable upper bound if we assume that

h2
e ≤ Ĉ ∆t, (7.19)

a condition less restrictive than (7.10).

7.7. The time derivative of displacement balance indicators

Take i = 1 and consider the time derivative of the displacement equilibrium ηE,1,∂u given by
(5.19),

ηn,`nE,1,∂u = hE∆ t‖∂tfnhτ +∇ · σ(∂tu
n,`n
hτ )− α∇ ∂tpn,`nhτ ‖L2(E).

When equation (4.14) is tested with vh = 0 and

v|E = bE∂t
(
fnhτ +∇ · σ(unhτ )− α∇ pnhτ

)
,

extended by zero outside E, it reduces to(
∂tf

n
hτ +∇ · σ(∂tu

n
hτ )− α∇ ∂tpnhτ ,v

)
E

=
(
σ(∂t(u− unhτ )), ε(v)

)
E
− α

(
∂t(p− pnhτ ),∇ · v

)
E

−
(
∂t(f − fnhτ ),v)E

Thus, by proceeding as in Section 7.3, we deduce that

Ĉ
∥∥∂tfnhτ +∇ · σ(∂tu

n
hτ )− α∇ ∂tpnhτ

∥∥2

L2(E)

≤
( 1

|v|H1(E)

∣∣(σ(∂t(u− unhτ )), ε(v)
)
E
− α

(
∂t(p− pnhτ ),∇ · v

)
E
−
(
∂t(f − fnhτ ,v

)
E

∣∣)|v|H1(E)

≤ Ĉ

hE

( 1

|v|H1(E)

∣∣(σ(∂t(u− unhτ )), ε(v)
)
E
− α

(
∂t(p− pnhτ ),∇ · v

)
E
−
(
∂t(f − fnhτ ),v

)
E

∣∣)‖v‖L2(E),

where we have used (10.6). Therefore, by multiplying both sides with hE and integrating in time,
this leads to

ηn,`nE,1,∂u ≤ ĈE
n,`n
E,1,∂σ. (7.20)
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When i = 2, the treatment of ηE,2,∂u defined by (5.20) is the same and leads to the bound

ηn,`nE,2,∂u ≤ ĈE
n,`n
E,2,∂σ. (7.21)

7.8. The time derivative of stress tensor’s jump indicators

To bound the time derivative of the stress tensor’s jump on e ∈ E1
h ∪ E12

h given by (5.21),

ηn,`ne,1,∂σ = h
1
2
e ∆ t‖[(σ(∂tu

n,`n
hτ )− α∂tpn,`nhτ I)ne]e‖L2(e),

we proceed as for ηflux and use the same notation. Consider a face e in E1
h and test (4.14) with

vh = 0 and

v|ωe = G
([(
σ(∂tu

n
hτ )− α∂tpnhτI

)
ne
]
e
be

)
.

The equality (4.14) becomes∫
e
be
∣∣[(σ(∂tu

n
hτ )−α∂tpnhτI

)
ne
]
e

∣∣2 =
∑
E⊂ωe

(
∂tf

n
hτ +∇ · σ(∂tu

n
hτ )− α∇ ∂tpnhτ ,v

)
E

−
(
σ(∂t(u− unhτ )), ε(v)

)
ωe

+ α
(
∂t(p− pnhτ ),∇ · v

)
ωe

+
(
∂t(f − fnhτ ),v)ωe .

Thus

Ĉ
∥∥[(σ(∂tu

n
hτ )− α∂tpnhτI

)
ne
]
e

∥∥2

L2(e)

≤
( 1

|v|H1(ωe)

∣∣− (σ(∂t(u− unhτ )), ε(v)
)
ωe

+ α
(
∂t(p− pnhτ ),∇ · v

)
ωe

+
(
∂t(f − fnhτ ),v)ωe

∣∣)|v|H1(ωe)

+
∑
E⊂ωe

‖∂tfnhτ +∇ · σ(∂tu
n
hτ )− α∇ ∂tpnhτ‖L2(E)‖v‖L2(E)

≤ Ĉ
( 1

h
1
2
e

1

|v|H1(ωe)

∣∣− (σ(∂t(u− unhτ )), ε(v)
)
ωe

+ α
(
∂t(p− pnhτ ),∇ · v

)
ωe

+
(
∂t(f − fnhτ ),v)ωe

∣∣
+ h

1
2
e

( ∑
E⊂ωe

‖∂tfnhτ +∇ · σ(∂tu
n
hτ )− α∇ ∂tpnhτ‖2L2(E)

) 1
2

)
‖v‖L2(e),

where we have used (7.16), (10.2), and (10.8). By multiplying both sides with h
1
2
e and integrating

in time we infer
ηn,`ne,1,∂σ ≤ Ĉ

(
En,`nωe,∂σ

+
( ∑
E⊂ωe

(ηn,`nE,1,∂u)2
) 1

2

)
. (7.22)

When e lies on Γ12, (7.22) is replaced by

ηn,`ne,1,∂σ ≤ Ĉ
(
En,`nωe,∂σ

+
(
(ηn,`nE1,1,∂u

)2 + (ηn,`nE2,2,∂u
)2
) 1

2

)
, (7.23)

where E1 ⊂ Ω1 and E2 ⊂ Ω2 are the two elements adjacent to e. The case of ηe,2,∂σ defined by
(5.22) is the same; we obtain

ηn,`ne,2,∂σ ≤ Ĉ
(
En,`nωe,∂σ

+
( ∑
E⊂ωe

(ηn,`nE,2,∂u)2
) 1

2

)
. (7.24)
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Finally, we consider ηe,N,∂σ defined by (5.23),

ηn,`ne,N,∂σ = h
1
2
e ∆ t‖σ(∂tu

n,`n
hτ )nΩ − ∂ttnN,hτ‖L2(e).

As e lies on ΓN , the jump reduces to the trace, ωe is the element adjacent to e, and the lifting
function v defined above vanishes on ∂E \ e, i.e. belongs to H1

e (E). Therefore, we readily obtain

ηn,`ne,N,∂σ ≤ Ĉ
(
En,`ne,N,∂σ + ηn,`nE,2,∂u

)
, (7.25)

where the auxiliary error En,`ne,N,∂σ is defined by (6.5).

7.9. Indicator of the pressure jump at time tn

To bound ηp,J defined by (5.29),

ηn,`np,J = he
(γe
he

) 1
2 ‖[pn,`nh ]e‖L2(e),

we compare it with ηpen defined by (5.1) and observe that

ηp,J =
he

(∆ t)
1
2

ηpen.

Therefore, under the assumption (7.19), we have

ηn,`np,J ≤ Ĉη
n,`n
pen . (7.26)

7.10. Indicator of the displacement equilibrium errors at time tn

Recall the indicator of displacement equilibrium ηE,i,u in T ih , see (5.30), with ph = 0 in Ω2,

ηn,`nE,i,u = hE‖fnh +∇ · σ(un,`nh )− α∇ pn,`nh ‖L2(E).

For E ∈ T 1
h , by testing the displacement error equation (4.13), at time tn, with vh = 0 and

v = bE
(
fnh +∇ · σ(unh)− α∇ pnh

)
,

we obtain(
fnh +∇ · σ(unh)− α∇ pnh,v)E = −(f − fnh ,v)E

+ 2G(ε(u− unh), ε(v))E + λ(∇ · (u− unh),∇ · v)E − α(p− pnh,∇ · v)E .

Hence (10.6) implies

Ĉ‖fnh +∇ · σ(unh)− α∇ pnh‖2L2(E) ≤ ‖f − f
n
h ‖H−1(E)|v|H1(E)

+ Ĉ
(

2G‖ε(u− unh)‖L2(E) + λ‖∇ · (u− unh)‖L2(E) + α‖p− pnh‖L2(E)

)
|v|H1(E)

≤ Ĉ

hE

(
‖f − fnh ‖H−1(E) + 2G‖ε(u− unh)‖L2(E) + λ‖∇ · (u− unh)‖L2(E) + α‖p− pnh‖L2(E)

)
‖v‖L2(E).
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The formula is similar when E ⊂ T 2
h , and we have for i = 1, 2, with p = ph = 0 when i = 2,

ηn,`nE,i,u ≤ Ĉ
(
‖f −fnh ‖H−1(E) + 2G‖ε(u−un,`nh )‖L2(E) +λ‖∇· (u−un,`nh )‖L2(E) +α‖p−pn,`nh ‖L2(E)

)
.

(7.27)

7.11. Indicators of the stress tensor’s jumps at time tn

Here we consider the stress tensor’s jump on e ∈ E1
h ∪ E12

h defined by (5.31)

ηn,`ne,1,σ = h
1
2
e ‖[
(
σ(un,`nh )− αpn,`nh I

)
ne]e‖L2(e),

the one on e ∈ E2
h defined by (5.32)

ηn,`ne,2,σ = h
1
2
e ‖[(σ(un,`nh )ne]e‖L2(e),

and the one on e ⊂ ΓN defined by (5.33),

ηn,`ne,N,σ = h
1
2
e ‖σ(un,`nh )nΩ − tnN,h‖L2(e).

Let us consider the first one; the treatment of the others being much the same. Let e be an interior
face of E1

h, ωe the union of the two elements sharing e, and test (4.13) at time tn with vh = 0 and

v = G
(
be[
(
σ(unh)− αpnhI

)
ne]e

)
.

This yields∫
e
be
∣∣[(σ(unh)− αpnhI

)
ne]e

∣∣2 ≤ ∑
E⊂ωe

‖fnh +∇ · σ(unh)− α∇ pnh‖L2(E)‖v‖L2(E)

+ Ĉ
(

2G‖ε(u− unh)‖L2(ωe) + λ‖∇ · (u− unh)‖L2(ωe) + α‖p− pnh‖L2(ωe) + ‖f − fnh ‖H−1(ωe)

)
|v|H1(ωe)

≤ Ĉ
(
h

1
2
e

∑
E⊂ωe

‖fnh +∇ · σ(unh)− α∇ pnh‖L2(E)

+
1

h
1
2
e

(
2G‖ε(u− unh)‖L2(ωe) + λ‖∇ · (u− unh)‖L2(ωe) + α‖p− pnh‖L2(ωe) + ‖f − fnh ‖H−1(ωe)

))
‖v‖L2(e).

Then, after multiplying by h
1
2
e , we deduce

ηn,`ne,1,σ ≤ Ĉ
(

2G‖ε(u− un,`nh )‖L2(ωe) + λ‖∇ · (u− un,`nh )‖L2(ωe) + α‖p− pn,`nh ‖L2(ωe) + ‖f − fnh ‖H−1(ωe)

+
( ∑
E⊂ωe

(ηn,`nE,1,u)2
) 1

2

)
.

(7.28)

When e ⊂ Γ12, (7.28) becomes

ηn,`ne,1,σ ≤ Ĉ
(

2G‖ε(u− un,`nh )‖L2(ωe) + λ‖∇ · (u− un,`nh )‖L2(ωe) + α‖p− pn,`nh ‖L2(E1) + ‖f − fnh ‖H−1(ωe)

+
(
(ηn,`nE1,1,u

)2 + (ηn,`nE2,2,u
)2
) 1

2

)
,

(7.29)
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where E1 ⊂ Ω1 and E2 ⊂ Ω2 are adjacent to e. When e is interior to Ω2, (7.28) is replaced by

ηn,`ne,2,σ ≤ Ĉ
(

2G‖ε(u−un,`nh )‖L2(ωe) +λ‖∇·(u−un,`nh )‖L2(ωe) +‖f−fnh ‖H−1(ωe) +
( ∑
E⊂ωe

(ηn,`nE,2,u)2
) 1

2

)
.

(7.30)
Finally, when e ⊂ ΓN , there is only on element E adjacent to e and we have

ηn,`ne,N,σ ≤Ĉ
(

2G‖ε(u− un,`nh )‖L2(ωe) + λ‖∇ · (u− un,`nh )‖L2(ωe) + ‖f − fnh ‖H−1(ωe)

+ ‖tN − tnN,h‖H− 1
2 (e)

+ ηn,`nE,2,u

)
.

(7.31)

8. Numerical Results

In this section, we present numerical results that validate the theoretical analysis and the
algorithmic improvements built upon the a posteriori error indicators. All examples are computed
with the open-source finite element package deal.II [5].

8.1. The Mandel Problem

In this section, we solve Mandel’s problem to validate our solution algorithm and test the
effectivity of the a posteriori error indicators. Mandel’s benchmark considers a 2a× 2b rectangular
poroelastic medium sandwiched between two impervious frictionless plates. At t = 0, the medium
is loaded instantaneously by a constant force 2F . Because of the bi-axial symmetry of the physical
problem, the computational domain is taken as a quarter of the physical domain, see Figure 2. The
governing equations are those of Biot’s system with no gravity:

−∇ · (λ(∇ · u)I + 2Gε(u)− αpI) = 0 in Ω×]0, T [,

∂t

(
1

M
p+ α∇ · u

)
− 1

µf
∇ · (κ∇p) = 0 in Ω×]0, T [,

(8.1)

where Ω =]0, a[×]0, b[ is the computational domain. Following the approaches in [34], the boundary
and initial conditions supplementing the governing equations are cast as

− 1

µf
κ∇p · n = 0, ux = 0, σxy = 0 on x = 0,

p = 0, σn = 0 on x = a,

− 1

µf
κ∇p · n = 0, uy = 0, σxy = 0 on y = 0,

− 1

µf
κ∇p · n = 0, uy = Uy(b, t), σxy = 0 on y = b,

p|t=t0 = Pt0(x, y).

(8.2)

Here Uy(b, t) is the analytical solution of the y-displacement at y = b and Pt0(x, y) is the analytical
pressure solution at t = t0 > 0. Analytical pressure, displacement, and stress solutions are provided
as infinite series, see, e.g. [38].

The physical parameters used for the tests are listed in Table 1. We notice that the parameter
α multiplying the pressure in the first line of (8.1) is much larger than 1

M in the second line, hence
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Figure 2: The physical domain (left) and computational domain (right) of Mandel’s problem [32].

the serious imbalance between the two equations. Denote the energy norm of the displacement by

‖u− uh‖e :=
(

2G‖ε(u− uh)‖2L2(Ω) + λ‖∇ · (u− uh)‖2L2(Ω)

) 1
2
. (8.3)

Numerical convergence of the pressure solution measured in the L2 norm and the displacement so-
lution measured in the energy norm are performed under spatial refinement. Since the pressure so-
lution lacks regularity at early time [38], the simulations are run on the time interval [0.01, 0.0101]s.
In order to mitigate the errors caused by the time discretization and the fixed-stress split, a small
time step ∆t= 1e-6s and a small fixed-stress threshold ε =1e-6 are used. The EG scheme is IIPG
with a global penalty parameter of 1e5. The numerical errors are measured at final time T = 0.0101s
and summarized in Table 2. These spacial refinement tests show that the rate of convergence of
the pressure in L2 is between between first- and second-order, and that of the displacement in the
energy norm is close to first-order, as predicted by theoretical estimates for the displacement and
better for the pressure.

Table 1: Parameters for Mandel’s problem.

Parameter Quantity Value

a x dimension 1 m
b y dimension 1 m
k permeability 1e-2 m2

µf fluid viscosity 1.0 Pa·s
F point load intensity 2.0× 103 N/m
E Young’s modulus 1.0×104 Pa
ν Poisson’s ratio 0.2
α Biot’s coefficient 1
M Biot’s modulus 104 Pa

Table 2: Convergence of pressure and displacement solutions under spatial refinement.

Th ‖ 1√
M

(pN − pNh )‖L2(Ω) rate ‖uN − uNh ‖e rate

32× 32 4.0447e-04 - 2.5745e-02 -
64× 64 1.0507e-04 1.945 1.2872e-02 1.0001
128× 128 3.4714e-05 1.7712 6.4361e-03 1.0000
256× 256 1.5875e-05 1.5554 3.2180e-03 0.9967
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The a posteriori error indicators in (5.41)–(5.48) are adapted, without change of notation, to
(8.1)–(8.2), namely, the local error indicators on the interface of the pay-zone and the nonpay-
zone E12

h , the faces in the nonpay-zone E2
h, and the elements in the nonpay-zone T 2

h , are omitted.
Regarding effectivity, considering the strong imbalance between the displacement and the flow
equations, we collect the indicators into two sums,

ηFLOW := ηalg + ηtime + ηflow + ηjump, (8.4)

ηMECH := ηE∂σ + ηEσ + ηT∂u + ηTu , (8.5)

and we associate respectively to ηFLOW and ηMECH the error norms,

|||(p,u)− (ph,uh)|||1 :=

(
1

4M
‖p− ph‖2L2(Ω) +

1

4
‖u− uh‖2e +

∆t

2µf

N∑
n=1

‖p− ph‖2h

) 1
2

, (8.6)

|||(p,u)− (ph,uh)|||2 := 2G‖ε(u− uh)‖L2(Ω) + λ‖∇ · (u− uh)‖L2(Ω) + α‖p− ph‖L2(Ω). (8.7)

Then we define the effectivity indices

Ieff,FLOW =

√
ηFLOW

|||(p,u)− (ph,uh)|||1
, Ieff,MECH =

√
ηMECH

|||(p,u)− (ph,uh)|||2
. (8.8)

Table 3: Convergence of individual a posteriori error indicators under simultaneous spatial and temporal refinement
with simulations from 0.01s to 0.02s.

∆t, Th ηalg ηtime rate ηflow rate ηjump rate

1e-3, 32× 32 1.3215e-02 - 1.7039e-04 - 2.6802e-05 -
5e-4, 64× 64 1.7100e-10 3.4323e-03 1.9449 4.4629e-05 1.9327 9.7493e-06 1.4589
2.5e-4, 128× 128 4.8416e-10 8.7498e-04 1.9583 1.1422e-05 1.9494 4.3753e-06 1.3074
1.25e-4, 256× 256 2.3276e-09 2.2091e-04 1.9679 2.8891e-06 1.9612 2.1219e-06 1.2132

∆t, Th ηE∂σ rate ηEσ rate ηT∂u rate ηTu rate

1e-3, 32× 32 6.9317e+01 - 5.2784e+01 - 7.1801e+01 - 5.4670e+01 -
5e-4, 64× 64 1.8223e+01 1.9274 1.2049e+01 2.1311 1.8542e+01 1.9532 1.2259e+01 2.1569
2.5e-4, 128× 128 4.6724e+00 1.9454 2.8727e+00 2.0998 4.7128e+00 1.9646 2.8975e+00 2.1189
1.25e-4, 256× 256 1.1830e+00 1.9581 7.0101e-01 2.0771 1.1881e+00 1.9727 7.0402e-01 2.0917

Given the assumption that the mesh size and time step are of the same order, see (7.10), we test
the effectivity of the a posteriori indicators under simultaneously spatial and temporal refinements.
We performed two groups of convergence tests to examine the effectivity indices. The first group
of simulations are run from 0.01s to 0.02s with a fixed-stress convergence tolerance ε =1e-6. The
convergence of the individual error indicators in (5.41) to (5.48) and the effectivity indices are
summarized in Table 3 and Table 4, respectively. All the individual error indicators except ηalg

and ηjump exhibit near second order convergence.
√
ηFLOW, |||(pNh ,uNh )− (pN ,uN )|||1,

√
ηMECH, and

|||(pNh ,uNh )− (pN ,uN )|||2 all exhibit asymptotically first-order convergences, which gives converging
Ieff,FLOW and Ieff,MECH. In this group of tests, Ieff,FLOW is around 2.3 and Ieff,MECH around 1.8.

Another group of tests are performed with simulations from 0.001s to 0.002s using smaller time
steps. The convergence of the individual error indicators and the effectivity indices are summarized
in Table 5 and 6 respectively. We observe similar convergence behavior as demonstrated by the
first group of tests with Ieff,FLOW around 1.01 and Ieff,MECH around 8.4. These results suggest that
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Table 4: Effectivity indices under simultaneously spatial and temporal refinement with simulations from 0.01s to
0.02s.

∆t, Th
√
ηFLOW rate |||(pNh ,uNh )− (pN ,uN )|||1 rate Ieff,FLOW

1e-3, 32× 32 1.1581e-01 - 5.0968e-02 - 2.2722
5e-4, 64× 64 5.9048e-02 0.9717 2.5947e-02 0.9740 2.2757
2.5e-4, 128× 128 2.9845e-02 0.9780 1.3115e-02 0.9791 2.2757
1.25e-4, 256× 256 1.5031e-02 0.9821 6.6144e-03 0.9822 2.2724

∆t, Th
√
ηMECH rate |||(pNh ,uNh )− (pN ,uN )|||2 rate Ieff,MECH

1e-3, 32× 32 1.5766e+01 - 8.2160e+00 - 1.9190
5e-4, 64× 64 7.8149e+00 1.0125 4.2061e+00 0.9659 1.8580
2.5e-4, 128× 128 3.8929e+00 1.0089 2.1283e+00 0.9743 1.8291
1.25e-4, 256× 256 1.9432e+00 1.0066 1.0706e+00 0.9802 1.8150

Table 5: Convergence of individual a posteriori error indicators under simultaneous spatial and temporal refinement
with simulations from 0.001s to 0.002s.

∆t, Th ηalg ηtime rate ηflow rate ηjump rate

1e-4, 32× 32 3.2536e-11 1.3955e-03 - 4.0207e-04 - 1.6878e-04 -
5e-4, 64× 64 1.1379e-10 3.5982e-04 1.9554 1.0239e-04 1.9733 3.4890e-05 2.2742
2.5e-5, 128× 128 1.6658e-10 9.1408e-05 1.9661 2.5828e-05 1.9802 1.1203e-05 1.9565
1.25e-5 256× 256 1.0063e-09 2.3039e-05 1.9738 6.4856e-06 1.9849 4.8081e-06 1.7039

∆t, Th ηE∂σ rate ηEσ rate ηT∂u rate ηTu rate

1e-4 , 32× 32 7.0473e+01 - 1.9244e+03 - 7.5991e+01 - 2.0115e+03 -
5e-5 , 64× 64 1.8809e+01 1.9056 4.8834e+02 1.9784 1.9495e+01 1.9627 4.9899e+02 2.0111
2.5e-5, 128× 128 4.8541e+00 1.9298 1.2294e+02 1.9841 4.9394e+00 1.9717 1.2426e+02 2.0084
1.25e-5, 256× 256 1.2327e+00 1.9465 3.0840e+01 1.9880 1.2433e+00 1.9781 3.1004e+01 2.0064

Table 6: Effectivity indices under simultaneously space and time refinement with simulations from 0.001s to 0.002s.

∆t, Th
√
ηFLOW rate |||(pNh ,uNh )− (pN ,uN )|||1 rate Ieff,FLOW

1e-4, 32× 32 4.4344e-02 - 4.3794e-02 - 1.0126
5e-5, 64× 64 2.2296e-02 0.9919 2.2165e-02 0.9824 1.0059
2.5e-5, 128× 128 1.1333e-02 0.9841 1.1205e-02 0.9832 1.0114
1.25e-5, 256× 256 5.8595e-03 0.9735 5.6862e-03 0.9819 1.0305

∆t, Th
√
ηMECH rate |||(pNh ,uNh )− (pN ,uN )|||2 rate Ieff,MECH

1e-4, 32× 32 6.3893e+01 - 7.5442e+00 - 8.4691
5e-5, 64× 64 3.2026e+01 0.9964 3.8195e+00 0.9819 8.3847
2.5e-5, 128× 128 1.6031e+01 0.9973 1.9220e+00 0.9863 8.3409
1.25e-5, 256× 256 8.0199e+00 0.9980 9.6411e-01 0.9895 8.3185

the effectivity indices may depend on the initial condition, final condition, and the relationships
between h and ∆t, as far as the Mandel problem is concerned.

8.2. Dynamic mesh adaptivity guided by the a posteriori error indicators

We demonstrate the potential of using the a posteriori error indicators to guide dynamic mesh
adaptivity in unconventional reservoirs with the following prototype unconventional model (Figure
3). The domain size is [0, 1]× [0, 1] m2 , the fracture width is 1/64 m. The permeability is 10e-16
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m−1 in the matrix and 10e-11 m−1 in the fractures. The fluid density is 1 kg/m3 and its viscosity
is 10e-6 Pa·s. The Young modulus is 5e6 Pa for the matrix and 10e4 Pa for the fractures. Two
wells are located at the center of each horizontal fracture, producing at a rate of 10 m3/s. IIPG
with a global penalty parameter of 100 is employed in the EG scheme. The time of simulation is
[0, 500]s with a uniform time step size ∆t = 20s.

Figure 3: Permeability field and model boundary conditions of the prototype unconventional reservoir model.

The following dynamic mesh adaptation strategy is applied, starting with a uniform 64 × 64
rectangular mesh. The local discretization error indicators in L2(E×]tn−1, tn[) is computed on
each element E ∈ Th at time step tn and summed into two indicators, one associated with the flow
equation and one associated with the mechanics equation. Namely, let

ηE,flow := (ηnt,p,E)2 +
∑
e⊂∂E

(ηnt,J)2

︸ ︷︷ ︸
local time errors

+ (ηnE,p)
2 +

∑
e⊂∂E

(ηnflux,e)
2

︸ ︷︷ ︸
local flow errors

+
∑
e⊂∂E

(
(ηnpen)2 + (ηn∂p,J)2 + (ηnp,J)2

)
︸ ︷︷ ︸

local penalty jumps

,

(8.9)
and

ηE,mechanics :=
∑
e⊂∂E

(ηne,1,∂σ)2

︸ ︷︷ ︸
local errors on the stress tensor’s time derivative

+
∑
e⊂∂E

(ηne,1,σ)2

︸ ︷︷ ︸
local errors on the stress tensor

+ (ηnE,1,∂u)2︸ ︷︷ ︸
local errors on the displacement’s time derivative

+ (ηnE,1,u)2︸ ︷︷ ︸
local errors on the displacement

,

(8.10)

then each of the two indicators are normalized by the maximum value and added up to obtain a
refinement indicator:

ηE,refine :=
ηE,flow

‖ηE,flow‖l∞(Th)
+

ηE,mechanics

‖ηE,mechanics‖l∞(Th)
. (8.11)
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The top 10% elements with the largest refinement indicator ηE,refine values are refined isotropically,
unless the element width is smaller than or equal to 1/512 m; the bottom 20% elements with the
smallest refinement indicator values are coarsened unless the element width is greater than or equal
to 1/8 m. The dynamic mesh adaptivity and solutions are presented in Figure 4. Clearly, the mesh
is adaptively refined near the well, across the fractures, at fracture joints, and around fracture tips.
As the fluid is being depleted inside the fractures, more refinements is put inside and across the
fractures.

We compare the number of degree of freedoms (DoFs) of the adaptive mesh at t = 100s and
t = 500s to the DoFs of a static uniform 128× 128 mesh in Table 7. As time progresses, the DoFs
of the adaptive mesh increase, but overall the adaptive mesh utilizes less than 24% of the DoFs
of the 128 × 128 uniform mesh for both the flow and the mechanics domains. The accuracy of
the adaptive solutions is demonstrated by comparing the pressure and volumetric strain solution
profiles along the center of the top horizontal fracture to those obtained on the 128×128 static
mesh, presented in Figure 5. Results show that the adaptive solutions achieve excellent accuracy,
especially at later time t = 500s. Moreover, a close examination of the top right plot of Figure
5 shows that the adaptive mesh refinement near the fracture boundaries helps to eliminate the
nonphysical pressure oscillations at fracture tips, where the permeability and Young’s modulus
change orders of magnitude across the matrix/fracture interface.

Table 7: Comparison of DoFs between the adaptive mesh and the uniform mesh.

domain uniform mesh 128× 128 adaptive mesh t = 100s (% ) adaptive mesh t = 500s (% )

flow 131585 18815 (14.3%) 29018 (22.1%)
mechanics 132098 20060 (15.2%) 30932 (23.4%)

8.3. Novel stopping criterion for the fixed-stress iterations

A hyperparameter arises from the fixed-stress iterative coupling algorithm (3.9)–(3.17), namely,
the convergence threshold ε in
criterion 1 ∥∥∥σ̄n,`h − σ̄n,`−1

h

∥∥∥
L∞(Ω)

≤ ε. (8.12)

For large-scale engineering applications, the relative change in mean stress is also a widely used
stopping criterion for the fixed-stress iterations: [16, 20, 34, 4, 14, 32]:
criterion 2 ∥∥∥∥∥ σ̄n,`h − σ̄n,`−1

h

σ̄n,`h

∥∥∥∥∥
L∞(Ω)

≤ ε. (8.13)

The choice of a “sufficienty small” convergence threshold ε in either (8.12) or (8.13) is usually
based on the user’s experience, or tuned for each simulation scenario. We propose a new stopping
criterion for the fixed-stress iterations that utilizes the a posteriori error estimators to balance the
fixed-stress split error with the discretization errors without tuning the hyperparameter :
Marching forward to the next time step n+ 1 when
new criterion

ηn,`alg ≤ δ(η
n,`
time + ηn,`jump + ηn,`flow + ηn,`E∂σ + ηn,`T∂u + ηn,`Eσ + ηn,`Tu ). (8.14)

We argue that δ = 0.1 is sufficient for most simulation scenarios without the need of further tuning.
Namely, (8.14) with δ = 0.1 indicates that the error caused by the fixed-stress split is an order
of magnitude less that the errors caused by the spatial and temporal discretizations, hence the
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Figure 4: Dymanic mesh adaptivity guided by the a posteriori error indicators: top: pressure, middle: volumetric
strain, bottom: adaptive mesh; left: t = 100s, right: t = 500s

.

fixed-stress loop is sufficiently iterated and one can march forward to the next time step. We
demonstrate its performance in the following subsections.
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Figure 5: Comparison of the solutions on the dynamic adaptive mesh and on a uniform fine mesh 128 × 128 along
y = 43/128: top: pressure, bottom: volumetric strain; left: t = 100s, right: t = 500s.

8.3.1. New stopping criterion tested with the Mandel problem

We first test the new stopping criterion (8.14) for the Mandel problem. The model parameters
shown in Table 1 are used for these tests. The simulations are run from 0s to 1s, with a time step
∆t = 0.1s and mesh 64× 64. The performance of the new stopping criterion (8.14) with δ = 0.1 is
compared to criterion 1 (with ε = 1e−6) and 2 (with ε = 1e−4) in Figure 6 and 7. Figure 6 shows
the number of fixed-stress iterations required to meet the stopping criterion for each time step. The
new criterion (8.14) requires significantly less number of iterations compared to criterion 1 and 2,
especially at initial time steps. On average, the new criterion requires 1.4 fixed-stress iterations
per time step; in contrast, criterion 1 requires 4.4 iterations and criterion 2 requires 2.0 iterations.
Figure 7 compares the solution errors obtained using different stopping criteria. The accuracy of
the new criterion is very close to that of criteria 1 and 2 for all the time steps, especially at initial
time steps where the errors are relatively large.
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Figure 6: Comparison of the number of fixed-stress iterations for each time step using difference stopping criteria for
the Mandel problem.

(a) Pressure solution errors comparison (b) Displacement solution errors comparison

Figure 7: Comparison of pressure and displacement solution errors using different stopping criteria for the Mandel
problem.

8.3.2. New stopping criterion tested with the unconventional reservoir model

The second group of tests for the new stopping criterion is performed using the unconventional
reservoir model presented in Section 8.2. The simulations are run with a uniform mesh 128× 128
and a uniform time step ∆t = 20s from 0s to 500s. The average number of fixed-stress iterations for
different stopping criteria is summarized in Table 8. In this case the new criterion also requires less
fixed-stress iterations per time step than criterion 1 and 2. An examination of the solutions along
the center of the top fracture shown in Figure 8 reveals that the new stopping criterion achieves
the same accuracy in pressure and volumetric strain as criteria 1 and 2.

Table 8: Comparison of average number of fixed-stress iterations per time step using different stopping criteria for
the unconventional reservoir model.

criterion avg # of fixed-stress iterations

criterion 1 (ε = 1e-3) 3
criterion 2 (ε = 1e-3) 2
new criterion (δ = 0.1) 1
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(a) Pressure solutions (b) Volumetric strain solutions

Figure 8: Comparision of pressure and solutions at t = 500 s using different stopping criteria for the unconventional
reservoir model.

We conclude that stopping criteria (8.12) and (8.13) may easily lead to over-iteration (or under-
iteration), unless the convergence threshold is carefully tuned. Without the need of tuning any
hyperparameter, the new stopping criterion is efficient and accurate since the fixed-stress loops are
sufficiently iterated to balance the fixed-stress split error with the discretization errors, achieving the
same accuracy compared to the stopping criteria (8.12) and (8.13) with less number of fixed-stress
iterations.

9. Conclusions and Discussions

We have established residual-based a posteriori error estimators for the Biot system solved with
the fixed-stress iterative split, EG for the flow equation, and CG for the mechanics equation. The
residual-based error estimators do not require solving auxiliary local problems and are therefore
computationally efficient. Both upper and lower bounds of the errors are obtained, although some
lower bounds require weak error terms that unfortunately are not easily included in the formulas
of the effectivity index. These theoretical results are validated by numerical experiments of Man-
del’s problem. We demonstrated the effectiveness of the a posteriori error estimators when guiding
dynamic mesh adaptation in a prototype unconventional reservoir model containing a fracture net-
work. Our numerical investigation suggests that the error estimators are effective by achieving
dynamic mesh refinement near the wells, across the fractures, at the fracture joints and around the
fracture tips; and dynamic mesh coarsening elsewhere. The numerical solutions on the dynamic
mesh have the same accuracy as the solutions on a static fine mesh, while using less than 24% of the
DoFs of the fine mesh. We further proposed a novel stopping criterion relying on the a posteriori
error indicators. The new stopping criterion balances the fixed-stress split error with the discretiza-
tion errors and does not require tuning of the convergence threshold hyperparameter. Numerical
experiments using Mandel’s benchmark problem and the synthetic unconventional reservoir model
have demonstrated the efficiency and accuracy of the new stopping criterion. Namely, the new
stopping criterion achieves the same accuracy compared to other commonly used stopping criteria
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(8.12) and (8.13), while avoiding over-iteration that the stopping criteria (8.12) and (8.13) may
easily encounter.
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10. Appendix

For the reader’s convenience, we recall here some useful bounds, either with or without proofs
when they are well-known. As usual, the family of meshes is regular, see (3.1). Let us start with a
number of local inequalities, with constants Ĉ independent of h, E, e, etc. First a local Poincaré
inequality,

∀θ ∈ H1
0 (E), ‖θ‖L2(E) ≤ ĈhE |θ|H1(E). (10.1)

With a different constant Ĉ, (10.1) also applies to functions that vanish on a part of the boundary
of E with positive measure. It carries over to the union ωe of elements adjacent to e, again with a
different constant,

∀θ ∈ H1
0 (ωe), ‖θ‖L2(ωe) ≤ Ĉhωe |θ|H1(ωe), (10.2)

where hωe is the maximum diameter of the elements sharing e. We also recall a local Poincaré-
Wirtinger inequality for functions with zero mean value

∀θ ∈ H1(E) ∩ L2
0(E), ‖θ‖L2(E) ≤ ĈhE |θ|H1(E). (10.3)

Thus the mean value operator mE has the following approximation error:

Proposition 14. There exists a contant Ĉ, independent of h, such that for any e ∈ Eh and E
adjacent to e, the mean value operator mE defined by (4.18) satisfies

∀v ∈ H1(E), ‖v −mE(v)‖L2(e) ≤ Ĉh
1
2
E |v|H1(E). (10.4)

Next, a trace inequality and a scaling argument gives for any E adjacent to e,

∀θ ∈ H1
0 (ωe), ‖θ‖L2(e) ≤ Ĉh

1
2
e |θ|H1(E). (10.5)

On the other hand, we shall need local inverse inequalities valid for functions θ in finite dimen-
sional spaces, the dimension being independent of h, e, E. First,

|θ|H1(E) ≤
Ĉ

hE
‖θ‖L2(E). (10.6)

Next, we have the inverse trace inequality

‖θ‖L2(e) ≤
Ĉ√
he
‖θ‖L2(E). (10.7)
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If, in addition, θ belongs to H
1
2
00(e),

‖θ‖
H

1
2
00(e)

≤ Ĉ√
he
‖θ‖L2(e). (10.8)

The above constants depend only on the dimension of the local spaces.
Next, let us recall the bounds of some interface jump terms.

Proposition 15. There exists a constant Ĉ, independent of h, such that for all ph ∈ Mh and all
constants δ > 0∣∣∣ ∑

e∈E1h

(
{κ∇ ph · ne}e, [ph]e

)
e

∣∣∣ ≤ δ

2
Jh(ph, ph) +

1

4δ
(d+ 1)Ĉ2 λmax

minγe
|ph|2h. (10.9)

Proof. All constants Ĉ below are independent of h. Let e ∈ E1
h and let E be one of the two elements

of T 1
h sharing e. By (10.7), there exists a constant Ĉ such that∣∣∣(κ∇ ph|E · ne, [ph]e

)
e

∣∣∣ ≤λ 1
2
maxĈ

( |e|
|E|
) 1

2 ‖κ
1
2∇ ph‖L2(E)‖[ph]e‖L2(e) ≤ Ĉ

(γe
he

) 1
2 ‖[ph]e‖L2(e)

(λmax

γe

) 1
2 ‖κ

1
2∇ ph‖L2(E)

≤ 1

2

[
δ
γe
he
‖[ph]e‖2L2(e) +

1

δ
Ĉ2λmax

γe
‖κ

1
2∇ ph‖2L2(E)

]
,

and the constant Ĉ is independent of δ. Therefore∣∣∣({κ∇ ph · ne}e, [ph]e
)
e

∣∣∣ ≤ δ

2

γe
he
‖[ph]e‖2L2(e) + Ĉ2 1

4δ

λmax

γe
‖κ

1
2∇ ph‖2L2(E1∪E2),

where E1 and E2 are the two elements of T 1
h sharing e. Then (10.9) follows from the fact that,

when summing this inequality over each e in E1
h, each element E appears at most d+ 1 times.

Let ah(ph, θh) be the bilinear form with τp = 1, i.e., we consider SIPG,

ah(ph, θh) =
1

µf
((ph, θh))h −

1

µf

∑
e∈E1h

((
{κ∇ ph · ne}e, [θh]e

)
e

+
(
{κ∇ θh · ne}e, [ph]e

)
e

)
. (10.10)

Then (10.9) implies for any δ > 0,

ah(θh, θh) ≥ 1

µf

(
‖θh‖2h − δJh(θh, θh)− 1

2δ
(d+ 1)Ĉ2 λmax

minγe
|θh|2h

)
.

Hence the choice δ = 1
2 gives

ah(θh, θh) ≥ 1

µf

(1

2
Jh(θh, θh) +

(
1− (d+ 1)Ĉ2 λmax

minγe

)
|θh|2h

)
, (10.11)

and the ellipticity of ah follows from a suitable choice of γe. Thus, we have the following lemma.

Lemma 2. If
mine∈E1h

γe ≥ 2(d+ 1)Ĉ2λmax, (10.12)
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with Ĉ the constant of (10.9), then

∀θh ∈Mh, ah(θh, θh) ≥ 1

2µf
‖θh‖2h. (10.13)

The contraction property of the fixed stress algorithm (3.12)–(3.17) holds under the same suf-
ficient condition (10.12). More precisely, (10.12) implies in particular

∀` ≥ 2, ‖σ̄n,`h − σ̄
n,`−1
h ‖L2(Ω1) ≤

1

βKb
‖σ̄n,`−1

h − σ̄n,`−2
h ‖L2(Ω1), (10.14)

where

β =
1

α2M
+

1

Kb
. (10.15)

As βKb > 1, (10.14) means that the sequence σ̄n,`h is contracting in L2(Ω1).
Now, we recall some properties of the approximation operators. We start with θh defined by

(4.18). It follows from Proposition 14 that for any e in Eh,

∀v ∈ H1(Ω), ‖[v − θh]e‖L2(e) ≤ Ĉ
(
hE1 + hE2

) 1
2
(
|v|2H1(E1) + |v|2H1(E2)

) 1
2 ,

‖{v − θh}e‖L2(e) ≤
Ĉ

2

(
hE1 + hE2

) 1
2
(
|v|2H1(E1) + |v|2H1(E2)

) 1
2 .

(10.16)

Next we turn to the operator Sh defined by (4.22). Let v be a function that is constant in each
element; recall that

Sh(v) =
∑
a

v(Ea)φa(x).

Let E ∈ T 1
h with vertices ai, 1 ≤ i ≤ d+1. Since ai is one of the vertices of Eai , there is a sequence

of adjacent elements of T 1
h , E = E1, E2 . . . , Eki = Eai , with E` adjacent to E`+1. Since the mesh

is regular, the number ki is bounded by a fixed integer K independent of ai and h.
Now, as in E,

d+1∑
i=1

φai(x) = 1,

we can write v(E) = v(E)
∑d+1

i=1 φai(x). Thus,

∀x ∈ E, Sh(v)(x)− v(x) =

d+1∑
i=1

(
v(Eai)− v(E)

)
φai(x).

By considering the above sequence of elements Ej , this implies that

∀x ∈ E, Sh(v)(x)− v(x) =
d+1∑
i=1

( ki−1∑
j=1

[v]ej

)
φai(x), (10.17)

where ej is the interface between Ej and Ej+1. Hence

∀x ∈ E,
∣∣Sh(v)(x)− v(x)

∣∣ ≤ d+1∑
i=1

( ki−1∑
j=1

|ej |−
1
2 ‖[v]ej‖L2(ej)

)
φai(x). (10.18)
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From here, we deduce the following proposition:

Proposition 16. There exists a contant Ĉ, related to the regularity of the mesh but independent
of h, such that for all functions v that are constant in each element E of T 1

h ,

‖Sh(v)− v‖2L2(Ω1) ≤ Ĉ(K − 1)2
∑
e∈E1h

he‖[v]e‖2L2(e), (10.19)

∑
E∈T 1

h

‖∇(Sh(v)− v)‖2L2(E) ≤ Ĉ
(d+ 1

d

)2
(K − 1)2

∑
e∈E1h

1

he
‖[v]e‖2L2(e), (10.20)

and
‖Sh(v)− v‖2L2(Γ12) ≤ Ĉ(K − 1)2

∑
e∈E1h

‖[v]e‖2L2(e). (10.21)

Proof. By recalling that the set of functions φai , 1 ≤ i ≤ d + 1, form a convex combination in E,
we infer from (10.18) that

∀x ∈ E,
∣∣Sh(v)(x)− v(x)

∣∣2 ≤ d+1∑
i=1

( ki−1∑
j=1

|ej |−
1
2 ‖[v]ej‖L2(ej)

)2
φai(x).

Then, considering that ki ≤ K, we have

∀x ∈ E,
∣∣Sh(v)(x)− v(x)

∣∣2 ≤ (K − 1)

d+1∑
i=1

( ki−1∑
j=1

|ej |−1‖[v]ej‖2L2(ej)

)
φai(x).

But, as φai is a polynomial of degree one, that takes the value 1
d+1 at the center of E, the Gauss

quadrature formula gives ∫
E
φai =

|E|
d+ 1

.

Hence

‖Sh(v)− v‖2L2(E) ≤
|E|
d+ 1

(K − 1)

d+1∑
i=1

ki−1∑
j=1

1

|ej |
‖[v]ej‖2L2(ej)

.

When summing this inequality over all E in T 1
h , each jump is repeated at most (K − 1)(d + 1)

times. Therefore
‖Sh(v)− v‖2L2(Ω1) ≤ (K − 1)2

∑
e∈E1h

h̄e‖[v]e‖2L2(e),

where h̄e = max|E|
min|e′| for all e′ in a neighborhood of E. The regularity of the mesh implies that

h̄e ≤ Ĉhe. This yields (10.19).
Regarding the gradient of the error, note that

|∇φai | =
1

d

|ẽi|
|E|

,
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where ẽi is the face opposite ai. Therefore, (10.17) implies that in E

|∇(Sh(v)(x)− v(x))|2 ≤ d+ 1

d2
(K − 1)

d+1∑
i=1

( |ẽi|
|E|

)2( ki−1∑
j=1

|ej |−1‖[v]ej‖2L2(ej)

)
.

Hence

‖∇(Sh(v)− v)‖2L2(E) ≤
d+ 1

d2
(K − 1)

d+1∑
i=1

|ẽi|2

|E|

( ki−1∑
j=1

|ej |−1‖[v]ej‖2L2(ej)

)
,

and the same argument as above yields (10.20).
Finally, the proof of the trace inequality (10.21) is similar to that of (10.19). Indeed, we have

∀x ∈ e,
∣∣Sh(v)(x)− v(x)

∣∣2 ≤ (K − 1)
d∑
i=1

( ki−1∑
j=1

|ej |−1‖[v]ej‖2L2(ej)

)
φai(x),

and ∫
e
φai =

|e|
d
.

Thus

‖Sh(v)− v‖2L2(e) ≤
|e|
d

(K − 1)

d∑
i=1

ki−1∑
j=1

1

|ej |
‖[v]ej‖2L2(ej)

,

and (10.21) follows by summing over all face e of E12
h .

An interesting by-product of Proposition 16 is the following trace inequality for the functions
of Mh.

Corollary 1. There exists a contant Ĉ, related to the regularity of the mesh but independent of h,
such that for all θh ∈Mh,

‖θh‖L2(Γ12) ≤ Ĉ
[
‖θh‖L2(Ω1) +

( ∑
e∈E1h

he‖[θh]e‖2L2(e)

) 1
2

+
(
‖θh‖

1
2

L2(Ω1)
+
( ∑
e∈E1h

he‖[θh]e‖2L2(e)

) 1
4
)(( ∑

E∈T 1
h

‖∇ θh‖2L2(E)

) 1
4

+
( ∑
e∈E1h

1

he
‖[θh]e‖2L2(e)

) 1
4
)]
.

(10.22)

Proof. Recall that θh = θct
h + θdisc

h with θct
h ∈ Qh and θdisc

h constant in each cell. Then, we write

‖θh‖L2(Γ12) = ‖
(
θct
h + Sh(θdisc

h )
)

+
(
θdisc
h − Sh(θdisc

h )
)
‖L2(Γ12),

and in view of (10.21), it suffices to bound the sum in the first brackets. As this function is in
H1(Ω1), the trace theorem in Ω1, see [9], yields

‖θct
h +Sh(θdisc

h )‖L2(Γ12) ≤ Ĉ
[
‖θct
h +Sh(θdisc

h )‖L2(Ω1)+‖θct
h +Sh(θdisc

h )‖
1
2

L2(Ω1)
‖∇(θct

h +Sh(θdisc
h ))‖

1
2

L2(Ω1)

]
.
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Now, by (10.19),

‖θct
h +Sh(θdisc

h )‖L2(Ω1) ≤ ‖θh‖L2(Ω1)+‖Sh(θdisc
h )−θdisc

h ‖L2(Ω1) ≤ ‖θh‖L2(Ω1)+Ĉ(K−1)
( ∑
e∈E1h

he‖[θh]e‖2L2(e)

) 1
2
.

Similarly, by (10.20),( ∑
E∈T 1

h

‖∇(θct
h + Sh(θdisc

h ))‖2L2(E)

) 1
2 ≤

( ∑
E∈T 1

h

‖∇ θh‖2L2(E)

) 1
2

+
( ∑
E∈T 1

h

‖∇(Sh(θdisc
h )− θdisc

h )‖2L2(E)

) 1
2

≤
( ∑
E∈T 1

h

‖∇ θh‖2L2(E)

) 1
2

+ Ĉ
d+ 1

d
(K − 1)

( ∑
e∈E1h

1

he
‖[θh]e‖2L2(e)

) 1
2
.

Then (10.22) follows from (10.21) and these two inequalities.

Note that (10.22) readily implies that

‖θh‖L2(Γ12) ≤ Ĉ
[
‖θh‖L2(Ω1) + hJh(θh, θh)

1
2 +

(
‖θh‖

1
2

L2(Ω1)
+ h

1
2Jh(θh, θh)

1
4

)
‖θh‖

1
2
h

]
. (10.23)

This inequality has the following application.

Corollary 2. For all real numbers δ > 0 and δ′ > 0 there exists a constant C(δ, δ′) independent of
h and ∆ t such that for all functions f ∈ L2(Γ12) and θh ∈Mh,∣∣∣ ∫

Γ12

f θh

∣∣∣ ≤ 1

2

[ δ

∆ t
‖θh‖2L2(Ω1) + δ′‖θh‖2h + C(δ, δ′)

(
∆ t+ h+ (∆ t)

1
2 + h

1
2
)
‖f‖2L2(Γ12)

]
. (10.24)

Proof. By applying to θh the trace inequality (10.23) in∣∣∣ ∫
Γ12

f θh

∣∣∣ ≤ ‖f‖L2(Γ12)‖θh‖L2(Γ12),

we infer∣∣∣ ∫
Γ12

f θh

∣∣∣ ≤ 1

2

( δ1

∆ t
‖θh‖2L2(Ω1) +

∆ t

δ1
Ĉ‖f‖2L2(Γ12) + δ2Jh(θh, θh) +

h2

δ2
Ĉ‖f‖2L2(Γ12)

)
+

1

2

( δ3

(∆ t)
1
2

‖θh‖L2(Ω1)‖θh‖h +
(∆ t)

1
2

δ3
Ĉ‖f‖2L2(Γ12) + δ4Jh(θh, θh)

1
2 ‖θh‖h +

h

δ4
Ĉ‖f‖2L2(Γ12)

)
.

The factor of δ3 can be further bounded by

δ3

(∆ t)
1
2

‖θh‖L2(Ω1)‖θh‖h ≤
δ3

2

( δ5

∆ t
‖θh‖2L2(Ω1) +

1

δ5
‖θh‖2h

)
.

Therefore, by collecting all factors, we deduce∣∣∣ ∫
Γ12

f θh

∣∣∣ ≤ 1

2

[(
δ1+

δ3

2
δ5

) 1

∆ t
‖θh‖2L2(Ω1)+

(
δ2+

δ3

2δ5
+δ4

)
‖θh‖2h+

(∆ t

δ1
+
h2

δ2
+

(∆ t)
1
2

δ3
+
h

δ4

)
Ĉ‖f‖2L2(Γ12)

]
.

It is easy to check that numbers δi > 0 can be picked, independent of h and ∆ t, so that both
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δ1 + δ3
2 δ3δ5 and δ2 + δ3

2δ5
+ δ4 are arbitrary. This proves the corollary.
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[35] A. Mikelić and M. F. Wheeler, On the interface law between a deformable porous medium
containing a viscous fluid and an elastic body, Mathematical Models and Methods in Applied
Sciences, 22 (2012), p. 1250031.
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