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Abstract 
The viral component in aquatic systems clearly needs to be incorporated into future 
ocean and inland water climate models. Viruses have the potential to influence carbon 
and nutrient cycling in aquatic ecosystems significantly. Changing climate likely has 
both direct and indirect influence on virus-mediated processes, among them an 
impact on food webs, biogeochemical cycles and on the overall metabolic 
performance of whole ecosystems. Here we synthesise current knowledge on 
potential climate-related consequences for viral assemblages, virus-host interactions 
and virus functions, and in turn, viral processes contributing to climate change. There 
is a need to increase the accuracy of predictions of climate change impacts on virus-
driven processes, particularly of those linked to biological production and 
biogeochemical cycles. Comprehension of the relationships between microbial/viral 
processes and global phenomena is essential to predict the influence on as well as the 
response of the biosphere to global change. 
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Introduction 
Whereas most human interventions on ecosystems are immediate, the impact on 
climate change acts over long periods of time, leading to slight but continuous 
alterations. As an example, the predicted 2.6–4.8°C warming, under the conditions of 
Representative Concentration Pathways 8.5 (IPCC, 2013), for this century is expected 
to be responsible for species movements and extinctions, as well as for changes in the 
composition of communities, thus likely altering ecosystem functioning (Mooney et 
al., 2009). Since global change will probably impact all ecosystem components, it is 
expected that even the smallest life-forms such as Bacteria, Archaea, eukaryotic 
microorganisms and viruses of aquatic systems will play important roles as agents 
and recipients of global climate change (Danovaro et al., 2011; Hutchins and Fu, 
2017). 

Beside direct effects by changes in water temperature, others may occur 
through altered oceanic circulation along with changing habitats, biogeochemical 
cycles and food webs. Particularly estuaries and continental shelf regions seem to be 
affected by changed river runoff due to reduced or enhanced precipitation and 
flooding. This will result in changes in salinity and nutrients, and in the strength and 
seasonality of circulation patterns (Danovaro et al., 2011; Cozzi et al., 2012). 
Changing ocean currents, fluctuations in the depth of the surface mixed layer and 
stratification might influence light and nutrient availability and ultimately CO2-
dynamics and the carbon cycle (Bauer et al., 2013; Finke et al., 2017). Moreover, 
warming will increase the extent of the oxygen minimum zones (OMZ), which are a 
globally important sink for nitrogen and a source of CO2. Another global player is the 
reduction of seawater pH due to enhanced CO2 levels in the atmosphere (ocean 
acidification, OA). OMZ changes and OA will also influence virus-host interactions. 

For inland waters and freshwater systems a whole array of human-mediated 
threats makes them the most affected ecosystems. Beside pollution and nutrient loads, 
overexploitation, flow modification, habitat destruction or degradation, climate 
change is designated as a significant factor for ongoing alterations of these systems 
(Dudgeon et al., 2006; Zweimüller et al., 2008). There is also evidence that climate 
warming will affect pelagic carbon metabolism and sediment delivery in lakes and 
carbon sequestration in streams and rivers (Battin et al., 2009; Boyero et al., 2011; 
Kritzberg et al., 2014). 

caister.com/cimb 358 Curr. Issues Mol. Biol. Vol. 41



Viruses and Global Change                                                                                                      Zhang et al.

Global climate change-related impacts are most striking in the polar regions, 
where temperature and other factors are changing at more than twice the global 
average (Hoegh-Guldberg and Bruno, 2010). Due to the major contribution of 
microbes to ecosystem processes, much attention has been paid to the impact of rapid 
climate change in Arctic and Antarctic microbial communities (e.g., the European 
Project on Ocean Acidification, EPOCA). Declines or shifts in these microbial 
ecosystems will no doubt have implications for entire food webs and biogeochemical 
fluxes, and polar microbiota can be viewed both as sentinels and amplifiers of global 
change (Vincent, 2010). 

The global relevance of aquatic viruses has been evident for many years. 
Viruses are the smallest and most numerous biological entities in aquatic ecosystems, 
the majority being bacteriophages (Wommack and Colwell, 2000; Weinbauer, 2004; 
Suttle, 2007). They are about 10 to 15-fold more abundant than their microbial hosts, 
and equivalent to the carbon in ca. 75 million blue whales (ca. 10% of prokaryotic 
carbon by weight; Suttle, 2005). The typically high frequency of virus infection in 
aquatic ecosystems is known to be a major cause of prokaryotic host mortality. Host 
cell lysis in the marine environment was calculated to be a source of up to 109 tons of 
carbon each day, released from the biological pool (Suttle, 2007; Brussaard et al., 
2008). If the main control of prokaryotic abundance is via protozoan grazing, most of 
the carbon will be channelled to higher trophic levels (microbial loop). In contrast, if 
viral lysis accounts for most prokaryotic losses, then carbon and nutrients are diverted 
away from larger organisms (Proctor and Fuhrman, 1990; Wilhelm and Suttle, 1999). 
The biogeochemical consequence of this “viral shunt” (the process of diverting 
organic carbon away from the grazing food chain via viral lysis of host cells) are 
changed rates of carbon accumulation in the photic zone (CO2 release to the 
atmosphere vs. vertical transport to the meso-/bathypelagic zone). Viruses are also 
involved in shaping the composition of bacterial communities, either by reducing 
abundant host taxa or even by introducing new genetic information into their hosts 
(e.g., Zhang et al., 2007). They are  the largest and most diverse genetic reservoir on 
Earth and may boost the resilience of ecosystems by sustaining multiple species with 
similar or identical biochemical pathways (Thingstad, 2000; Brussard et al., 2008; 
Jacquet et al., 2010; Brum et al., 2015; Guidi et al., 2016; Gregory et al., 2019). 

Elucidating the microbial mediation of carbon-cycle feedbacks to climate 
change appears to be fundamental for understanding ecosystem responses. This 
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approach would provide a mechanistic basis for carbon-climate modelling (Zhou et 
al., 2011). Our substantial lack of knowledge explains why the viral compartment is 
missing from most climate change models. This review tackles the growing evidence 
that aquatic viruses interact actively with climate alterations and are key biotic 
components that can influence the microbial feedback on climate change (compare 
also Danovaro et al., 2011; Mojica and Brussaard, 2014). 

Impact on viral abundance, distribution and dynamics 
In most natural aquatic environments virus communities were found to be highly 
dynamic, with often pronounced changes in abundance and diversity over broad 
ranges of space and time. Viral abundance is largely linked to host availability. The 
numbers of planktonic viruses commonly range between 104 and 108 ml-1, being 
generally higher in inland waters than in marine systems; peak values were reported 
for very productive estuaries and lakes (Peduzzi and Luef, 2009; Parikka et al., 2017). 
Exceptionally high virioplankton abundance has been documented in the alkaline-
saline lake Nakuru in Kenya, East Africa (up to 7 x 109 ml-1; Peduzzi et al., 2014). 
Abundance may be up to three orders of magnitude lower in deep oceanic waters (e.g. 
Parada et al., 2006; Magagnini et al., 2007; Li et al., 2014; Liang et al., 2014; Lara et 
al. 2017; Muck et al. 2014), but virus-induced relative prokaryotic mortality increases 
with water depth: below a depth of 1000 m almost all of the prokaryotic heterotrophic 
production in surface sediment is transformed into organic detritus and dissolved 
organic matter (DOM). This “viral shunt” releases on a global scale 0.37-0.63 Gt 
carbon year-1, and is an essential source of labile organic matter for the deep-sea 
ecosystem (Danovaro et al., 2008). Recently, Lara et al. (2017) estimated that about 
145 Gt of C, 27.6 Gt of N, and 4.6 Gt of P are released annually by the viral shunt in 
global tropical and subtropical oceans. Moreover, on average, 33.6% (equalling 0.605
!Pg!C!year−1) of the globally respired carbon from fluvial systems may pass through a 
viral loop (Peduzzi, 2016). 

Factors affecting virus dynamics and microbial host-virus interactions in the 
marine environment have been summarized (Mojica and Brussaard, 2014). Typically 
virus numbers are linked to system productivity, as a result of the balance between 
production and decay. Eutrophic water bodies contain more virus particles than 
oligotrophic systems (Parikka et al., 2017). The trophic situation can also be very 
variable on seasonal scales, particularly in running waters with pronounced 
hydrological dynamics (Peduzzi, 2016). Virus abundance apparently varies more 
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pronouncedly on seasonal scales in inland waters than in the marine environment 
(Wilhelm and Matteson; 2008). 

Impact of temperature 
The typical viral life cycles (lytic and lysogenic) and replication rates are closely 
linked with host metabolism. As temperature is a major regulatory factor of microbial 
growth, an increase in temperature will likely affect the interaction between viruses 
and their hosts (Mojica and Brussaard, 2014). With increasing prokaryote growth 
rate, burst size can increase while the length of the lytic cycle decreases (Proctor et 
al., 1993; Hadas et al., 1997), boosting virus production. Higher temperatures should 
also increase the contact rates between viruses and hosts (Murray and Jackson, 1992) 
and hence potentially infection. Although evidence across systems is scarce, increases 
in burst size together with increases in production have been described for some 
natural systems (e.g. Parada et al., 2006).  Danovaro et al. (2011) suggested that the 
observed relationship between viral abundance and temperature from different 
oceanic regions could be used to infer evidence for the potential effect of rising sea-
surface temperatures. With these compiled data, the strongest effect was detected in 
temperate-open oceans: a temperature increase of only a few degrees was 
accompanied by a doubling in viral abundance. Nonetheless, factors influencing 
virioplankton distribution are clearly more complex than predicted by temperature 
alone. This is underlined by the observation that, when global data were grouped 
together, an overall decreasing pattern of viral abundance with increasing temperature 
was identified. This inverse relationship suggests that latitudinal changes, which 
influence radiation regimes and trophic characteristics, can display cascade effects on 
growth rates of hosts and viral infectivity (Danovaro et al., 2011). A large data set 
from the Atlantic Ocean revealed that temperature was important in the Sargasso Sea, 
but not in the northeast Atlantic (Rowe et al., 2008). In experiments over short time 
scales, changes in temperature did not directly influence viral abundance (Feng et al., 
2009). 

In the same compilation of literature data, Danovaro et al. (2011) showed that, 
in cold water systems, higher viral production rates were associated with warmer 
temperatures, whereas the relationship for systems at tropical and mid-latitudes was 
less clear. They concluded that different oceanic regions would respond differently to 
changes in surface temperatures caused by climate change. These temperature-
associated changes in viral abundance and production are likely secondary effects 
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caused by changes in host cell communities and in virus decay rates (Nagasaki and 
Yamaguchi, 1998; Wells and Deming, 2006). Demory et al. (2017) demonstrated that 
at suboptimum temperatures, lytic cycle kinetics of a Micromonas virus were 
lengthened and viral yield was reduced. Temperature increase shortened the latent 
periods, increased the burst size, and affected viral infectivity (Maat et al., 2017). 
Higher temperature will increase viral decay by enhanced activity of extracellular 
proteases and nucleases (Suttle and Chen, 1992; Noble and Fuhrman, 1997; 
Corinaldesi et al., 2010; Wei et al., 2018). In addition, alteration of temperature may 
affect protein stability and biomolecule elasticity of viral capsid proteins or lipid 
membranes, and influence the folding and binding of proteins and nucleic acids 
(Mojica and Brussaard, 2014). An experimental study in two contrasting Arctic 
systems (Lara et al., 2013) revealed that heterotrophic bacterial and viral abundance, 
bacterial production and grazing by protists increased at higher experimental 
temperatures. It remains to be elucidated whether predictable seasonal changes in 
hosts and viruses are applicable for climate-related long-term and large-scale changes 
(Danovaro et al., 2011). 

The molecular mechanisms and the environmental factors behind the 
lysogenic decision are still not well understood (Long et al., 2008). The present 
climate-related changes in environmental conditions (temperature, circulation of 
water masses, nutrient availability, alterations in system productivity, coastal mixing 
with freshwater, etc.) may significantly influence viral life strategies. Lysogeny is 
thought to be favoured under low nutrient concentrations and high virus-to-host cell 
ratios (Wilson and Mann, 1997). Thus, if nutrient availability becomes limited due to 
increased vertical stratification caused by rising sea surface temperatures (Sarmiento 
et al., 2004), a substantial shift to the lysogenic life cycle may be the consequence. 
Conversely coastal and estuarine environments may shift to increase favouring of the 
lytic life-style with large-scale implications on heterotrophic and autotrophic 
organisms (Danovaro et al., 2011). However, Vaqué et al. (2019) found rather the 
inverse trend related to temperature. Knowles et al. (2016) suggested that lysogeny is 
also favoured at high bacterial production rates (Piggyback-the-Winner model). As 
temperature increases will influence growth, there could be also a change in viral life 
strategies. The direct and indirect effects of temperature on viruses and their 
interaction with hosts remain to be investigated in more detail. 
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Effect of changing salinity 
Freshening of the oceanic environments due to climate change has been discussed 
particularly for poleward regions, and freshwater increases of the Arctic Ocean are 
suggested as being linked to respective changes of the North Atlantic as well 
(Peterson et al. 2002; Peltier et al., 2006). Changes in salinity can also influence viral 
lifestyles (Williamson and Paul, 2006), but experimental studies reveal no consistent 
pattern regarding the lytic-lysogenic-decision (Danovaro et al., 2011 and references 
therein), whereas Bettarel et al. (2011) found a switch from lytic to lysogenic life 
styles at high salinity. Recently, viral lysogeny and lysis shifts related to spring-neap 
tidal cycle were observed in a macrotidal subtropical estuary, which may be caused 
by freshwater-seawater mixing dynamics (Chen et al., 2019). Either induction or 
increased phage latent periods have been found under elevated sodium chloride 
concentrations. There is evidence that salinity can be of importance for the burst size 
of infected cells. In waters with high salinity, large burst sizes (up to 200) have been 
described (Guixa-Boixareu et al., 1996). Furthermore, in freshwater environments 
burst sizes are typically higher than in marine systems (Peduzzi and Luef, 2009). 
Mixing of these two environments may result in shifts of host growth rates, DOM 
availability and burst sizes. An interesting experimental study regarding freshwater 
and seawater mixing (e.g. as in estuaries) demonstrated that production rates of 
freshwater viruses sharply declined after seawater addition, followed by a rapid 
(within 48 h) recovery of the viral populations. Conversely, marine viruses were not 
significantly affected by mixing with freshwater (Cissoko et al., 2008). However, 
Marine et al. (2013) showed that freshwater prokaryote and virus communities can 
adapt to a controlled increase in salinity through changes in their structure and 
interactions. Another study has shown the possibility for freshwater viruses to cross 
into the marine environment and replicate normally (Sano et al. 2004). These studies 
and others (Bonilla-Findji et al., 2009; Wei et al. 2019) indicate that viruses can 
rapidly respond to major shifts in the abundance and community composition of 
bacterial hosts, which suffer from osmotic shock. 

In a meta-analysis Danovaro et al. (2011) showed that systems with lower 
salinity display higher viral abundance. However, these results could reflect the more 
specific situation of the sampled areas rather than a general trend because this data set 
was largely from few estuarine systems. It may also be linked to the different nutrient 
availability and trophic state of the estuarine environments rather than to a direct 
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effect of salinity on the viral assemblages. In addition, Parikka et al. (2017) showed in 
an across-systems study that the ratio of viruses to prokaryote abundance was 
inversely related to salinity. 

Changes in salinity and pH can also influence the extent of virus adsorption to 
particles (Harvey and Ryan, 2004; Mojica and Brussaard, 2014), thus affecting virus 
distribution and proliferation. Further, enhanced river runoff to the sea will likely 
increase the particle concentration in coastal regions. In a riverine environment, for 
example, the quality, size and age of particles and aggregates, and the exposure time 
of viruses to aggregates, apparently are the key factors regulating viral abundance 
(Kernegger et al., 2009; Peduzzi, 2016). Importantly, particles (mainly with organic 
constituents) appear to play a role as viral scavengers or reservoirs rather than viral 
factories (Weinbauer et al. 2009). Moreover, adsorption of viruses to suspended 
particles can stimulate growth of the free-living prokaryotic community, e.g. by 
reducing viral lysis (Peduzzi and Luef, 2008; Weinbauer et al., 2009). In case salinity 
and particle load play a significant role in community composition, then the predicted 
sea-level rise, saltwater and freshwater mixing and temperature changes associated 
with the present global climate change could influence the success of the dominant 
viral and host taxa. 

In those locations where climate change will increase freshwater input and 
nutrient concentrations, lytic life strategies could become more important through 
higher burst sizes, increasing infection rates due to the addition of freshwater viruses, 
and increased growth rates of prokaryotes and phytoplankton (Danovaro et al. 2011). 
An accelerated prokaryote-virus production cycle will on one hand release more 
components (e.g. enzymes) that are known as highly active for viral decay 
(Wommack and Colwell, 2000). On the other hand, increasing amounts of substrate 
for prokaryotes from the ‘viral shunt’ will result in larger burst sizes and potentially 
enhanced rates of adaptation and evolution. Important information could be drawn 
from additional experimental, proteomic and genomic data analyses in systems with 
gradients of salinity and from studies on the lifestyle of viruses and their host 
interactions. The speed and mechanisms of change, which are currently poorly 
understood, will be the main controlling factors in the shifts along the freshwater-
marine continuum (Danovaro et al., 2011). 

caister.com/cimb 364 Curr. Issues Mol. Biol. Vol. 41



Viruses and Global Change                                                                                                      Zhang et al.

Ocean acidification 
The uptake of anthropogenic CO2 in ocean waters is reported to alter the pH 
(Riebesell et al., 2009). Nonetheless, predictions of the effect of ocean pH changes on 
the viral compartment are difficult. While the direct effects on marine viruses remain 
uncertain, it is likely that the most significant changes will be caused by the impact 
on their host organisms, for example on calcifying protists (Danovaro et al., 2011). 
Another example is the observed sharp drop in nitrification under increased CO2 
concentrations (Hutchins et al., 2009), suggesting that viruses from ammonia-
oxidising bacteria and archaea might be affected. Furthermore, decreased pH can 
affect a broad range of physiological processes in microorganisms, e.g. those based 
on a proton gradient across membranes. Moreover, a significant fraction of near-
surface prokaryotes was found to carry the pigment proteorhodopsin (which can act 
as a light-driven proton pump), being quite sensitive to even small decreases in pH 
(Fuhrman et al., 2008). In the so far largest CO2 manipulation experiment (European 
Project on Ocean Acidification, EPOCA), complex impacts on different groups of 
plankton and on biogeochemical cycles were found (Riebesell et al., 2013, and 
special volume of Biogeosciences). 

The survival, infectivity and adsorption of some bacteriophages were reported 
to be sensitive to pH (Harvey et al., 2014) and several studies have demonstrated an 
influence on the proliferation dynamics of phage-host systems (e.g., Larsen et al., 
2008; Carreira et al., 2012; Traving et al., 2014; Chen et al., 2015). Highfield et al. 
(2017) showed that the diversity of EhV was much lower in the high-pCO2 treatment 
enclosure that did not show inhibition of E. huxleyi growth. In the EPOCA 
experiment, a significant influence of ocean acidification on the relationship between 
viral and bacterial abundance was found (Brussaard et al., 2013). Ocean acidification 
did not affect lytic viral production in mesocosms experiments from the 
Mediterranean Sea and a Norwegian fjord, but lysogeny was stimulated and either 
linked to phytoplankton production (Tsiola et al., 2017) or bacterial production 
(Vaqué et al., 2017). In summary, profound effects related to pH-changes on 
microbial communities and their viruses have been detected, but the topic remains 
largely unexplored. 

Potential impact of climate change on viruses and carbon cycling 
Knowledge on the interactive role of viruses in global CO2 fluxes is largely in its 
infancy. Four main CO2 sequestration processes in the ocean are known, the physical 
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or solubility pump, the carbonate, the biological pump and the microbial carbon 
pump (Legendre et al., 2015). Conversion of CO2 into biomass and the subsequent 
sinking of organic and inorganic components of the plankton in the ocean interior are 
known as the biological carbon pump. The microbial carbon pump is the conversion 
of organic matter into forms with low bioavailability (Jiao et al., 2010; Legendre et 
al., 2015). The effect of rising atmospheric CO2 on ocean acidification and 
carbonation is also receiving current attention. Factors affecting these processes are 
relevant to understand the functioning of the largest ecosystem on Earth, and to better 
comprehend the global carbon cycle and its implications on climate (Riebesell et al., 
2009). It is still a largely open question how and to what extent the ‘viral shunt’ 
influences the efficiency of the biological pump, the microbial carbon pump and the 
sequestration of carbon in the ocean interior. After viral infection, a varying but 
substantial fraction of the released organic material can be more or less efficiently 
utilized by uninfected heterotrophic prokaryotes, thus entering again the food web. 
The net effect of the viral shunt is that it detours bacterial production away from 
being consumed by protists and ultimately converts organic matter into dissolved 
inorganic nutrients, including respired CO2 (Wilhelm and Suttle, 1999; Suttle, 2007). 
Viral particles also make a contribution to the pools and fluxes of DOC, DON and 
DOP in the global oceans (Suttle, 2005; Jover et al., 2014; Zhang, et al., 2014). 

In global carbon cycling models viruses are still practically ignored, making it 
difficult to come up with comprehensive conclusions. One scenario is that viral lysis 
increases the efficiency of the biological pump by enriching the proportion of carbon 
in the sinking particulate material (Suttle, 2007). At the same time, a viral-mediated 
control on the biological pump will potentially be impacted by climate change in that 
climate-induced warming of surface oceans could increase the mortality of the 
pelagic prokaryotes; this would cause an increased release of labile dissolved organic 
matter (DOM) that can enhance the metabolism and respiration of uninfected cells. 
Furthermore, a meta-analysis of data from the literature suggested that higher 
temperatures are associated with exponentially higher decay rates of virioplankton, 
based on higher levels of exoenzymatic activities (Danovaro et al., 2011). Danovaro 
et al. (2011) present a conceptual scheme of the impact on the biological carbon 
pump and of potential feedback mechanisms. In that concept, viral lysis, together 
with rising CO2 concentration, cause changes in phytoplankton composition and 
production. The result would be a modification of both the photosynthetically 
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produced particulate organic (POC) and inorganic (PIC, by calcifying 
photoautotrophs) carbon. It would also alter the particle export, in particular the 
relative ratio of PIC to POC in this material. Thus, the flux of CO2 between the ocean 
surface and the atmosphere would be affected as a possible feedback effect on 
atmospheric CO2 concentrations. The metabolism of heterotrophic prokaryotic cells 
could also be enhanced by rising sea-surface temperatures, thus increasing carbon 
consumption and respiration rates. Two potential scenarios regarding the viral-
mediated control on the biological pump were suggested (Danovaro et al. 2011). On 
one hand, by altering the pathways of carbon fluxes in the sea - when converting 
living organic matter into dead particulate organic matter and DOM via cell lysis - the 
viral shunt could have a negative effect on the biological pump. DOM from cell lysis 
will be retained to a greater extent in surface waters, much of it converted to DIC 
through respiration and photodegradation. On the other hand, the viral shunt could 
favour carbon sequestration by increasing the nutrient availability for primary 
producers. This could increase the amount of living POC in surface waters, thus 
enhancing carbon export. In addition, other studies highlighted the role of viral lysis 
for the release of dense and refractory colloidal aggregates (Mari et al., 2005), or for 
the formation and size increase of organic aggregates (Peduzzi and Weinbauer, 1993), 
suggesting that viral mortality of host cells can favour carbon transport to the deep 
sea (viral shuttle; (Sullivan et al., 2017; Yamada et al., 2018). As viruses could also 
produce positively buoyant aggregates (Weinbauer, 2004), the role of aggregates 
produced by viruses can be described as viral elevator (Weinbauer et al., 2009). The 
influence of viral lysis on the stability and formation of aggregates may either 
increase the retention time of particles in the euphotic zone or increase carbon export 
to the ocean interior (Weinbauer et al., 2009). However, it is still unclear, whether 
viruses short-circuit or prime the biological pump (Brussaard et al., 2008). Changes in 
the amount of carbon release into the deep will no doubt influence also the 
functioning of deep-sea ecosystems (Smith et al., 2008). Recently, it has been shown 
that viruses play a more significant role for carbon fixation than previously thought; 
this influence is mediated by auxiliary metabolic genes (AMGs) (Puxty et al., 2016, 
2018). This suggests a closer link of viral infection to the carbon cycle. In a recent 
review, it has been argued that metabolic reprogramming of infected cells and viral 
lysis alter nutrient cycling and carbon export in the ocean; however, the net impacts 
remain uncertain (Zimmerman et al., 2020). 
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Regarding inland waters the current perception is that the contribution of river 
networks to fluvial net heterotrophy and CO2 outgassing has been underestimated in 
the past (Battin, 2008; Raymond et al., 2013; Acuña et al., 2020). Almost nothing, 
however, is known about the significance of the viral shunt in flowing inland waters 
(Peduzzi and Luef, 2008; Peduzzi, 2016). Most fluvial systems harbour and transport 
high amounts of organic carbon (dissolved and particulate). Although viral lysis may 
release only a small fraction to this large organic carbon pool, it could still contribute 
significantly to the readily utilizable carbon (labile and semi-labile fraction) and its 
remineralisation in fluvial systems. This should be particularly relevant in these 
systems, which are characterised by a high proportion of allochthonous (terrestrial) 
aged and recalcitrant carbon (Peduzzi, 2016). Pollard and Ducklow (2011) reported 
for the Australian Bremer River that terrestrial DOC was partly returned to the 
atmosphere as CO2 through bacterial respiration, assisted by bacteriophage lysis of 
their hosts. This short-circuits the microbial loop. Since streams and rivers are also 
subjected to climate change-related temperature shifts (Zweimüller et al., 2008), it is 
likely that the role of viruses in determining the proportion of organic material in 
horizontal transport and in processing and remineralisation in fluvial waters will be 
impacted as well. 

Conclusions and outlook 
The growing knowledge on virus ecology of marine and inland water environments 
has increased the incorporation of virus-related processes into aquatic food web 
models. Nonetheless, in climate change models the role of viruses is difficult to 
assess due to the rudimentary studies and data. Viruses can be anticipated as the 
ultimate nanoscale drivers/regulators of life in the effect they can have on organisms. 
Accordingly, aquatic viral ecology will contribute importantly, as the effects of 
climate and anthropogenic forcing in aquatic food webs are resolved step by step 
(Brussaard et al., 2008; Zimmerman et al., 2020). Changes in water temperature no 
doubt affect microbial growth, respiratory rates and carbon assimilation. This makes 
it extremely important to understand the effect of global warming on microbial 
communities and their central role in the carbon cycle. Temperature increases are also 
likely to impact the interactions between viruses and their host cells. Clearly, an 
improved understanding of viral responses to present climate change would enhance 
our chances to predict and adapt to potential consequences of such changes (compare 
Danovaro et al., 2011). Virus infection of microbial cells has the potential for 
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cascading effects in food webs (Peduzzi et al., 2014). As ocean temperatures rise, 
precipitation patterns change and freshening of surface oceans occur, simultaneous 
and intermingled cascading effects may be the result. Global shifts in viral lifestyles 
in response to changing climate could have dramatic effects on global 
biogeochemical cycles via cascading effects. 

One substantial drawback is the lack of long-term data sets that could be used 
to identify the relationships between climatic conditions and microbial processes. In a 
synthesis of the current knowledge and based on relevant case studies, and on meta-
analyses of literature data, Danovaro et al. (2011) presented a catalogue of potential 
consequences and scenarios; some are outlined below together with additional 
important points: 
1. There is some degree of consensus that the effect of temperature on virus 

related processes will be significant. Effects might be different at different 
latitudes and oceanic regions (at high latitudes rising temperatures may promote 
the viral compartment and depress it at the tropics). Increased vertical 
stratification due to climate change can lead to large-scale nutrient limitations, 
altering viral life strategies (lytic vs. lysogenic cycle). 

2. Changes in salinity and the freshwater-marine continuum will probably impact 
the abundance, proliferation and life strategies of viruses. They may also 
influence the geographical success of dominant host taxa and subsequently the 
success of their viral counterparts. Freshening at the poles may increase the 
input and spread of freshwater groups of hosts and viruses into marine waters, 
facilitating enhanced crossing over of marine and freshwater taxa. Apparently, 
climate change-related impacts are particularly severe in polar regions and the 
microbiota there might be sentinels of global change. 

3. It is currently unclear whether the viral shunt will result in negative or positive 
effects on the efficiency of the biological pump, and consequently, on the 
feedback of marine systems on climate. Viruses have the potential to interact 
with the climate through their contribution to the DOM-pool and to the 
biogenic particles. 

4. The effect of ocean acidification on marine viruses will be largely via the 
effects of pH on the host organisms. Since some key metabolic processes of 
microorganisms are sensitive to changes in pH of the medium, this may 
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profoundly influence the overall functioning of microbial-mediated processes 
and virus-host interactions. 

5. The role of inland waters, in particular streams and rivers, will be largely re-
evaluated through the current perception that the contribution of river networks 
to fluvial net heterotrophy and CO2 outgassing has been underestimated in the 
past. Increased virus activity will probably contribute significantly to the 
readily utilizable carbon (labile and semi-labile fraction) and its 
remineralisation. In fluvial waters, climate change-related temperature shifts 
will influence the role of viruses in determining the proportion of organic 
material in horizontal transport and in processing and remineralisation. 

Figure 7.1 Schematic representation of some potentially important impacts of climate change on the 
virus-host system and potential effects and feedbacks of this biological compartment on some global 
processes and pools; for details see text.
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6. Enhanced river runoff to the sea and mixing processes will likely increase the 
particle concentration at least in coastal regions; such particles are important 
factors regulating viral abundance. Aquatic aggregates apparently play a role as 
viral scavengers or reservoirs rather than viral factories, and adsorption of 
viruses to suspended particles may stimulate growth of the free-living 
prokaryotic community, e.g. by reducing viral lysis. 

From all these considerations it can be concluded that aquatic viruses will be 
significantly influenced by climate change and that viruses, in turn, can influence 
processes contributing to climate change. In Fig. 7.1 some potentially important 
impacts, effects and relations of virus-host systems, facing a global climate change, 
are outlined. Under the present scenario of climate change, however, it remains 
unclear whether viruses will ultimately destabilise or even stabilise the dynamics of 
the living components in ecosystems and the related biogeochemical cycles. Due to 
the dearth of data it is currently unpredictable whether virus-related processes will 
amplify or smooth the impact of climate change on aquatic systems (Danovaro et al., 
2011). These limitations inhibit incorporating virus-related processes into current 
climate models on the necessary spatial and temporal scales at which climate change 
scenarios respond and interact with this important compartment of the biosphere. This 
calls for focused research priorities and long-term data sets to enhance our knowledge 
about the role of aquatic viruses in the present climate change scenario. 
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