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In this article, we introduce a process to reconstruct a Riemann surface with boundary equipped with a linked conductivity tensor from its boundary and the Dirichlet-Neumann operator associated to this conductivity. When initial data comes from a two dimensional real Riemannian surface equipped with a conductivity tensor, this process recovers its conductivity structure.

Dedication

In January 2016 my friend Gennadi Henkin, with whom I had worked for more than …fteen years, passed away. This paper, which comes back on a subject he brought, is dedicated to him.

This paper (1) is organized as follows. Section 1 gives a short non-exhaustive history of the subject and Section 2 contains some of our main results. Section 3 is meant to …x de…nitions and notation about conductivity structures but also to state some results which, if not new, are not completely explicit in literature. Nodal manifolds are inevitably involved in the reconstruction methods proposed here. Section 4.1 contains what we need about them. Sections 4.2 and 5 are devoted to the proofs of Theorems 5 and 3. Section 6 is about the e¤ective reconstruction of a bordered Riemann surface from its Dirichlet-Neumann operator. This is a key case for the inverse conductivity problem. Our method is based on a new a priori analysis of decompositions of a two variables holomorphic function as a sum of shock waves functions, that is holomorphic solutions of @h @y = h @h @x . Section 7 enables to link the key number p of these sought shock waves to the Euler characteristic of a computable complex curve of C 2 .

Introduction

We de…ne a (two dimensional) conductivity structure as a couple (M; ) where M is a connected real surface with boundary (2) equipped with a conductivity : T M ! T M , that is a tensor such that

T p M T p M 3 (a; b) 7 ! a ^ p (b)
p is a positive symmetric bilinear form, being a …xed volume form for M . In the sequel we get rid of brackets for the action of on a di¤erential form ! by writing ! for (!), that is the form M 3 p 7 ! p (! p ). The above de…nition of a conductivity is perhaps unusual but is nothing than an intrinsic reformulation (3) of the one given by [?]. In this paper, conductivities are assumed to be at least of class C 3 though it is not mandatory for all statements.

1 Acknowledgment. I would like to thank the referees for their careful reading and suggestions 2 We think of a surface with boundary M as a dense open subset of an oriented two dimensional real manifold with boundary M whose all connected components are bounded by pure one dimensional real manifolds ; so the topological boundary bM of M is M nM ; in the sequel @M is bM equipped with the natural orientation induced by M . A Riemann surface with boundary is a connected complex manifold of dimension 1 which is also a real surface with boundary.

3 If we …x a point p in M , some coordinates (x; y) around p and we set as in [?] ( ; ) = (dy; dx) then (dx) = r +t and (dy) = u +s , for a = a (1) Some authors prefer to consider a Riemannian metric g on M and solutions of the Dirichlet problem ( g U = 0 & U j bM = u) where g is the Laplace-Beltrami operator. Writing in coordinates the equations d dU = 0 and g U = 0, one sees that these two formulations are equivalent only when det p = 1 for all p 2 M . The positive function s = p det plays a special role in our subject. We call it the coe¢ cient of . In Section 3, we establish that can be uniquely factorized in the form = s c where c is a conductivity of coe¢ cient 1 and also the conjugation operator acting on T M of a complex structure C uniquely associated to . Thus, the condition that det is constant means that (M; ) is nothing more than the Riemann surface (M; C ).

The inverse conductivity problem we consider belongs to Electrical Impedance Tomographic problems ; in physics, U should be considered as an electrical potential, (dU ) as the electrical current generated by U and d dU = 0 as the Maxwell divergence equation when there is no time dependence. The EIT problem is generally thought as the reconstruction of (M; ) from @M , the boundary bM of M orientated by M , T bM M = [ p2bM T p M , T bM M and the Dirichlet-Neumann operator associated to . This formulation is somehow ambiguous because it doesn't tell if M has to be determined as an abstract manifold, an embedded manifold or even more precisely as a particular submanifold of some standard space. Success depends of the chosen position. Before going into what can be recovered and how it can be, we have to clarify what is a Dirichlet-Neumann operator.

To do so, one can use a metric (see Section 3) but we prefer to use the «di¤erential» Dirichlet-Neumann operator N d whose action on a su¢ ciently smooth function u : bM ! R is de…ned by

N d u = [ d (E u)]j bM (2)
Hence, in physics, N d u is the measurement along bM of the current generated by the electrical potential E u.

When M is a domain in R 2 , the conductivity is often thought as the matrix ( jk ) = M at (dx 2 ; dx 1 ) (dx 1 ;dx 2 ) ( ) which represents at each point p the linear map p from T p M with (dx 1 ; dx 2 ) as domain basis to T p M with (dx 2 ; dx 1 ) as range basis, (x 1 ; x 2 ) being the standard coordinates of R 2 ; (1) turns to be X j;k=1;2 @ @x j jk @U @x k = 0 & U j bM = u:

(3) and the conditions constraining as a conductivity translate into the fact that ( jk ) is symmetric and positive. The task, understood as the reconstruction of ( jk ) from (@M; N d ), has no natural solution because it is known from a remark of Tartar cited by [?], that when ' 2 C 1 M ; M is a di¤eomorphism matching identity on bM and is the Jacobian matrix of ', ( 0 jk ) = 1 det t ( jk ) de…nes a conductivity 0 such that N 0 d = N d . However, Lemma 8 of Section 3 shows that ' is a biholomorphism between the Riemann surfaces (M; C ) and (M; C 0 ) where C (resp. C 0 ) is the complex structure where = sc (resp. 0 = s 0 c 0 ), s (resp. s 0 ) being a positive function on M and c (resp. c 0 ) the conjugation operator on T M associated to C (resp. C 0 ). Though they have the same underlying set, it is more accurate to see (M; C ) and (M; C 0 ) as two di¤erent embeddings of the same abstract Riemann surface.

This example leads to consider the two dimensional inverse conductivity problem as the reconstruction of M , an abstract Riemann surface with boundary, and of a function s : M ! R + from the knowledge of bM , s j bM , the action on T bM M of the conjugation operator c of M and the Dirichlet-Neumann operator

N sc d : F (bM ) 3 u 7 ! d c E sc uj bM
where F (M ) is any reasonable functions space like C 0 (bM ), C 1 (bM ) or H 1=2 (bM ), d c = i @ @ , @ = d @ and @ is the Cauchy-Riemann operator of M . In particular, even if data come from a Riemannian manifold (M; g) equipped with a conductivity tensor , we think our inverse problem as the reconstruction of the Riemann surface (M; C ) and of the coe¢ cient of . Note that this formulation doesn't mention the auxiliary volume form because as explained in section 3, the knowledge of the complex structure of M along bM enables to bypass it.

When (M; ) is a two dimensional conductivity structure embedded in a real or complex a¢ ne space, M can also be endowed the complex structure C induced by restriction of the ambient space metric. If c denotes the conjugation operator of C acting on T M , is said to be isotropic (relatively to c or C) if there is a function s : M ! R + such that = sc. In another words, to assume that is isotropic (relatively to the ambient metric) means to suppose the complex structure C associated to is already known. In such circumstances, the inverse problem we talk about is to recover the positive function s = =c = p det . At this point, one may ask what can happen if the starting point is a known Riemann surface X embedded in R 3 whose complex structure C is inherited from the standard euclidean structure of R 3 and is any conductivity on X. When is isotropic relatively to C, C = C and the reconstruction task is done by the Henkin-Novikov theorem 1 below. For a non isotropic conductivity, should an atlas of the abstract Riemann surface (X; C ) be recovered from N d , any constructive metric embedding X 0 of it in R 3 could be considered also as recovered from N d . Of course, X and X 0 will be homeomorphic but (X; C) and X 0 will be di¤erent Riemann surfaces. Moreover, in practical cases, only the boundary of X may be known. So it is not necessarily relevant to consider that X is already embedded in some standard space to which C would be unrelated. Besides, in the main theorem of [?] quoted by Theorem 2, (M; ) is given as embedded in R 3 but is considered for the proof as embedded in C 3 with an anisotropic conductivity while in [?], M is thought as embedded in CP 3 .

For a bounded domain M of R 2 equipped with an isotropic conductivity , it is known that is completely determined by its Dirichlet-Neumann operator. This uniqueness is established for a real analytic conductivity by Kohn and Vogelius in [?]. For a smooth isotropic conductivity, an e¤ective reconstruction process has been given by Novikov in [?] and for a conductivity with a positive lower bound and of class W 2;p , p > 1, by Nachman in [?]. Another proof of this result has been written by Gutarts in [?] for a smooth conductivity. When M is a connected Riemann surface whose genus is known, Henkin and Novikov in [?,th. 1.2] generalize and correct the reconstruction results of an isotropic conductivity of [?]. The necessarily technical aspect of the main result of [?, th. 1.2] limits us to give here only a sketch of it.

Theorem 1 (Henkin-Novikov, 2011) Let M be a Riemann surface of genus g equipped with an isotropic conductivity = sc where s 2 C 3 M; R + and c is the conjugation operator of M acting on 1-forms. Then s can be recovered from the Dirichlet-Neumann operator N d by solving g Fredholm equations associated to g generic data of N d and then by solving g explicit systems which, in the case where M is a domain of fz 2 C 2 ; P (z) = 0g, P 2 C N [X], are linear systems of N (N 1) equations with N (N 1) unknowns.

When the conductivity isn't isotropic, authors have focused on the injectivity up to di¤eomorphism of 7 ! N d , that is on the reverse of Tartar's remark. This injectivity is proved by Nachman [?] for a bounded domain of class C 3 in R 2 and a conductivity of class C 3 after Sylvester [?] proved it with additional hypothesis. In [?], it is established for a conductivity of class L 1 but for a simply connected domain of R 2 .

In the special case where the conductivity coe¢ cient is constant, the question is to know if two conformal structures on M are identical when they share the same Dirichlet-Neumann operator. A positive answer is claimed by Lassas and Uhlmann in [?] when M is connected and Belishev con…rmed it in [?] by showing that M can be seen as the spectra of the algebra of restrictions to bM of holomorphic functions on M extending continuously to M .

In [?] and [?], the complete knowledge of the Dirichlet-Neumann operator is necessary to get the uniqueness of the conformal structure. In [?], it is said that it is determined by the action of the Dirichlet-Neumann operator on only three generic functions but the proof provided for this result is correct only if one strengthens a little the generic conditions required for these functions as it is done in [?]. This uniqueness can also be obtained by increasing the number of generic functions as in [?]. Theorem 3 below gives a proof with the hypothesis of [?] and at the end of this section, we propose a new reconstruction of the Riemann surface (M; C ).

In [?] for a domain of R 2 and in [?, Th. 1.1] for the general case of a real two dimensional connected manifold M , Henkin and Santacesaria made a major breakthrough in the theory by proving that the Dirichlet-Neumann operator determines the complex structure C of (M; ) as a nodal Riemann surface nodal with boundary embedded in C 2 . We refer to section 4.1 for de…nitions and notation about nodal surfaces.

Theorem 2 (Henkin-Santacesaria, 2012) Let (M; ) be a conductivity structure, being of class C 3 . Then, there exists in C 2 a nodal Riemann surface with boundary M and a C 3normalization F : M ! M such that F = tc M where t 2 C 3 M; R + and c M is the conjugation operator of the complex structure induced by C 2 on M. If in addition F : M ! M 0 is another C 3 -normalization of the same kind, M and M 0 are roughly isomorphic in the sense of [?]. Lastly, the boundary value of F and in particular bM are determined by bM , T bM M and the Dirichlet-Neumann operator N d of (M; ).

Note that thanks to Lemma 8, F is holomorphic in the sense that for any subset V of M such that F (V ) is a branch of M, F is analytic from (V; C ) to C 2 . Besides, this theorem's proof implies that the singularities of M are the points of F M with many preimages by F . So, when M as no singularity, F is a di¤eomorphism from M onto M satisfying the hypothesis of Lemma 8, which makes it an isomorphism of Riemann surfaces with boundary from (M; C ) onto M.

In [?], it is said that M and M 0 are isomorphic without providing a precise meaning for it. Let us succinctly prove it involves at least rough isomorphism as de…ned in Section 4.1. Suppose that F : M ! M and G : M ! M 0 are C 3 -normalizations of the above kind. Set

F reg = F Reg M F 1 (Reg M) , G reg = G Reg M 0 G 1 (Reg M 0 ) and denotes by H reg the map from Reg M 0 \ G (F 1 (Reg M)) to Reg M \ F (Reg M 0 ) de…ned by H reg (z) = F reg G 1 reg (z) .
Because F and G are normalizations, H reg extends holomorphically along any branch of M 0 as a (multivalued) map H from M 0 to M. By construction, H (M 0 ) and M are complex curves which are di¤erent at most at a …nite number of points. Hence, they are equal and in particular, Sing M and Sing M 0 has the same cardinal. It follows that M and M 0 are roughly isomorphic. The analysis of Theorem 2 is carry on in the next section.

Main results

The nodal Riemann surfaces M and M 0 involved in Theorem 2 are actually isomorphic in the strong sense of this article. Indeed, by lifting to M , M and M 0 induce complex structures on M which coincide on bM and share the same Dirichlet-Neumann operator. Then, Theorem 3 below enables to tell that these lifted Riemann surfaces with boundary are isomorphic and hence, that M and M 0 are so as nodal Riemann surfaces with boundary. The proof of Theorem 3 is given in Section 3. When n = 2, it completes the proof of Theorem 1 of [?] whose arguments really had to be corrected. By the way, as said before, Theorem 3 also proves the isomorphism claim of [?, Th. 1.1].

In the statement below, [w 0 : : w n ] denotes the standard homogeneous coordinates of CP n . If ! 0 ; :::; ! n are (1; 0)-forms of CP n without common zero and are pairwise proportional, we denote by [! 0 :

:

! n ] or [!] the map de…ned on each f! j 6 = 0g by [!] = h ! 0 ! j : : !n ! j i .
Note that the hypothesis required for (u 0 ; :::; u n ) in the theorem below is generically veri…ed within n-uples of smooth functions on the boundary (see [?, ?]).

Theorem 3 (Henkin-Michel, 2007) Let M and M 0 , two smooth Riemann surfaces bordered by the same real curve . Set @ = d @ (resp. @ 0 = d @ 0 ), @ (resp. @ 0 ) being the Cauchy-Riemann operator of M (resp. M 0 ). If u 2 C 1 ( ), denote e u (resp. b u) the harmonic extension of u to M (resp. M 0 ) and set u = (@e u) j (resp. 0 u = (@ 0 b u) j ) ; (resp. 0 ) is also the operator c de…ned by ( 9) when is the conjugation operator of M (resp. M 0 ) acting on 1-forms.

Select u = (u 0 ; :::; u n ) 2 C 1 ( ) n+1 where n 2 N , suppose that for all j 2 f0; :::; ng, u j = 0 u j , the map [ u] = [ u 0 : : u n ] = [ 0 u] is well de…ned, realizes an embedding of in fw 2 CP n ; w 0 6 = 0g and suppose in addition that [@e u] (resp. [@ 0 b u]) is well de…ned on M (resp. M 0 ) and extends meromorphically [ u] (resp. [ 0 u]) to M (resp. M 0 ). Under these conditions, there exists an isomorphism of Riemann surfaces with boundary from M onto M 0 whose restriction to is identity.

Hence, the regular part of the nodal Riemann surface M produced by the Henkin-Santacesaria theorem is a model for the complex structure of (M nF 1 (Sing M) ; ). This model is e¤ectively computable. Indeed, M is a complex curve of C 2 nbM which in the sense of currents satis…es d [M] = F [@M ] where [M] denotes the integration current on M and [@M ] the one of bM oriented by M . In this situation, one knows, essentially since the works of Harvey and Lawson [?, ?], that M is computable thanks to Cauchy type formulas (see e.g. [?, Th. 2] or [?, Prop. 1]). More speci…cally, because M lies in C 2 , these formulas directly give the symmetric functions of the functions whose graphs describes the intersections of M with a chosen family of complex lines.

Meanwhile, as only the boundary values of F are known, there is an ambiguity on how to unfold the possible nodes of M. To really know the complex structure C of M , one has to know an atlas of it or a true embedding of it in some classical space. When the coe¢ cient of is constant, it is the same thing as recovering (M; C ). This particular case is studied in [?, Th. 4] and with the remark made at page 327, we readily have the result below for which we refer to [?] for the precise meaning of generic. Note also that though [?] is formally only about Riemann surfaces, the only part of the theorem below which isn't explicit in [?] is the isotropy statement but it is a plain consequence of the fact that is a biholomorphism from (M; C ) to S.

The theorem below introduces operators which play a crucial role in this paper. When (M; ) is a conductivity structure, we set @ = d @ and d = i @ @ where @ is the Cauchy-Riemann operator of Riemann surface (M; C ). The operator c acts on u 2 C 1 (bM ) by c u = (@ e u) j bM , e u being the C -harmonic extension to M of u. The theorem doesn't mention the regularity of because what matters is that (M; C ) is a smooth manifold with boundary so that Stokes formula holds.

Theorem 4 (Henkin-Michel, 2015) Let (M; ) be a conductivity structure. Then for generic u = (u 0 ; ::

:; u 3 ) in C 1 (bM; R) 4 , the map [ c u] = [ c u 0 : : c u 3 ]
is the boundary value of a map which embeds (M; C ) in CP 3 as a Riemann surface S with boundary. Moreover, = [@ e u] where e u is the C -harmonic extension of u to M , and is a conductivity isotropic relatively to the complex structure of S.

One should be careful here because the operator c can't be thought as directly available from N d . Even if is the identity on the …bers of T M along bM , what is immediately available from N d are the boundary values of the derivatives of solutions of Dirichlet problems d dU = 0 and U j bM = u while what is required to apply Theorem 4 are the boundary values of the derivatives of solutions of Dirichlet problems dd U = 0 and U j bM = u. Unless the coe¢ cient of is constant, one can't expect these boundary values to be the same. To cope with this di¢ culty, we have Theorem 5 which is a new result.

Before stating it, we explain some notation but complete details and proofs are in written in Section 4.2. We says that the conductivity structure ( f M ; e ) extends plainly (M; ) if M f M , e is of the same class as , e j M = and e j p = Id is de…ned in Corollary 12 of Section 4.2 but for a rough picture, the reader can think it as a kernel with the usual logarithmic singularities on the diagonal but with no boundary vanishing condition. Then the double-layer potential D g u of u 2 C 0 (bM) is de…ned for any regular point q of f MnbM by (D g u) (q) = R @M ud c g q where g q = g (q; :). When u is su¢ ciently smooth, the functions D + g u = (D g u) j M and D g u = (D g u) f MnM extends up to the boundary into (nodal) C 1 -functions whose restrictions to bM are denoted A + g u and A g u. The conditional Green operator B g = Id + N # g is de…ned for any u 2 C 1 (bM) and p 2 bM by N # g u (p) = 2P V R @M u (q) @g @ p (p; q) q where P V means principal value and ( ; ) is a frame for T bM M, direct and orthonormal with respect to the ambient Hermitian metric of C 2 , being tangent to bM.

Theorem 5 Let (M; ) be a conductivity structure, being of class C 3 . Select, which is always possible, a conductivity structure ( f M ; e ) extending plainly (M; ). We denote F : f M ! f M C 2 the normalization obtained by applying Theorem 2 to ( f M ; e ) and we set f = F F (bM ) bM

. g, D g , A g and B g and are de…ned as above.

Then, Id + A g is an endomorphism of C 1 (bM), its kernel and the kernel of B g are …nite dimensional subspaces of C 1 (bM) and for any u 2 C 1 (bM; R) such that R @M (f u) w = 0 when w 2 ker B g , the equation f u = w + A g w can be solved in C 1 (bM; R) and for any solution w, c u = F @D + g w j bM . The main di¢ culty in the proof of Theorem 5 comes from the fact that harmonic Dirichlet problems in a nodal curve have unique solutions only if data is speci…ed for nodal points (see [?, Prop. 2]). By the way, should M have no singularity, there would be nothing to do since M would be already an embedding of (M; C ) in C 2 .

Since the boundary values of F are computable from N d and since the Green function we use is so from M and M is computable from N d , Theorem 5 gives a tool to compute from N d as many c u as needed to apply Theorem 4 and so, to get the boundary values of an embedding of the Riemann surface (M; C ) onto a Riemann surface S of CP 3 for which is isotropic. If S itself is computed, the Henkin-Novikov Theorem 1 enables the reconstruction of the conductivity coe¢ cient s of . Finally, denoting c the conjugation operator of S, (S; sc) is an explicit solution of the problem posed if it is understood as producing a conductivity structure, abstract or embedded in a standard space, whose oriented boundary and Dirichlet-Neumann operator are those speci…ed.

It remains to explain how to recover the above Riemann surface S, or, which is the same, the conductivity structure (S; c). As S is a complex submanifold of CP 3 , the problem is no longer to recover c but to recover S as a set. Without loss of generality, S is supposed to be a relatively compact domain in an open Riemann surface e S of CP 3 . For a generic choice of the 4-uple (u 0 ; u 1 ; u 2 ; u 3 ) of functions used in Theorem 4, we can also assume that the projections 2 : (w 0 : w 1 : w 2 : w 3 ) 7 ! (w 0 : w 1 : w 2 ) and 3 : (w 0 : w 1 : w 2 : w 3 ) 7 ! (w 0 : w 1 : w 3 ) immerse e S in CP 2 on nodal curves e S 2 and e S 3 such that 1

3

Sing e S 3 \ 1 2
Sing e S 2 \ e S = ?. Therefore, to obtained an atlas of S, it is su¢ cient to get one for Q j = j (S), j = 2; 3, that is for a nodal Riemann surface with boundary which is a relatively compact domain Q in an open nodal Riemann surface e Q of CP 2 and whose oriented boundary @Q is known. This reconstruction problem is studied in [?, Th. 2] but the suggested algorithm is not truly e¤ective since the polynomials P m arising from a non empty intersection of Q with fw 0 = 0g can't be computed as easily as claimed.

In this paper, we provide a new approach to this problem with an e¤ective method of computing these polynomials. How this can be done is described below but details and technical notation are postponed as most as possible to Section 6. Theorem 39 which speci…es a linear system to solve to …nd some crucial auxiliary polynomials and Proposition 41 which enables to extract from them functions with geometric meaning are new and part of our main results. They are written in Sections 6.4 and 6.5.

What we have at our hand is an oriented real curve @Q which is known to be the boundary of a complex curve Q of CP 2 ; without loss of generality, we assume that fw 0 = 0g \ bQ = ?. In such a situation, it is classical to use the Cauchy-Fantapié indicators of Q. Denoting U the open subset of C 2 whose elements are points z = (x; y) of C 2 such that bQ doesn't meet

L z = fw 2 CP 2 ; xw 0 + yw 1 + w 2 = 0g, these are the functions G k , k 2 N, de…ned on U by G k (z) = 1 2 i Z @Q k z ; k z = w 1 w 0 k 1 x + y w 1 w 0 + w 2 w 0 d x + y w 1 w 0 + w 2 w 0 (4)
By Proposition 21, which is a result of Dolbeault and Henkin, we know that for all k 2 N, there exists P k 2 C (Y ) k [X] such that G k P k is the k-nth Newton symmetric function N h;k of locally de…ned shock waves functions h 1 ; :::; h p which determine the intersections of Q with the lines L z . The polynomials P k are generated by points in Q 1 = Q \ fw 0 = 0g. In the favorable but unlikely case Q 1 = ?, all P k are 0, Q is contained in the a¢ ne space fw 0 6 = 0g and well known techniques enable to compute these functions h j .

When the number q 1 of points in Q 1 is 1 or 2, Agaltsov and Henkin [?] give an explicit procedure to recover Q and they claim that it should be e¢ cient for any value of q 1 . Meanwhile, they provide no proof of it and it is no clear to us how to cope with the algebraic systems involved.

The new method we propose below focuses on the number p of the involved shock waves functions and works for any value of p or q 1 . For q 1 2 f1; 2g, it is di¢ cult to compare the Agaltsov-Henkin procedure to our because …xing p or q 1 to small values are really di¤erent hypothesis ; from Corollary 24, p = q 1 + where 2 Z is computed from G 1 . Our reconstruction process goes in …ve steps.

1. If G 1 is algebraic in y and a¢ ne in x, Q is contained, according to Lemma 40, in a connected algebraic curve K such that K \ L z = Q \ L z for z 2 Z where as speci…ed by 24, Z U is a domain of the form [ jyj> D (0; jyj) fyg. In this situation, we choose other coordinates in order that at least one of the lines L z , z 2 Z, meets Q and KnQ. Thus, we assume that @ 2 G 1 @x 2 6 = 0 on Z for the remaining of the process.

2. We assume that for some d 2 N , we have found in C [X] d a solution = ( 1 ; :::; d ) for the di¤erential linear system S d such that B (0; y) ! y!0

1 and 6 = 0, these three conditions being speci…ed in Theorem 39. Note that S d is actually a linear system on the coe¢ cients of . According to Theorem 39,

G 1 = s 1 + 1 A B + X B 0 B with A; B 2 C [Y ], deg A < deg B = r = d , B (0) = 1 and s k = e H 1 B ( P k6j6d F j k ( j 1)), 1 6 k 6 d,
where H is a function de…ned on Z + = Zn (C R ) and F is an operator, both being speci…ed in De…nition 30 and computable from G 1 .

3. According to Corollary 33, outside an analytic subset of Z, the s k are the symmetric functions of shock waves functions g 1 ; ::; g d . Applying to the family (g j ) the reduction described in the beginning of Section 6.5 and applying Proposition 41, we conclude that d > p where p is the number p of the locally de…ned shock waves functions h j we are looking for, r > q 1 and that if (e g j ) 16j6p is the set of functions obtained from (g j ) by reduction, fe g 1 ; :::; e g p g = fh 1 ; :::; h p g and P 1 = 1 A B + X B 0 B . Consequently, (P k ) k2N is the algebraic extension of (G k N e g;k ) k2N where the N e g;k are the Newton symmetric functions of the e g j .

4. We know from Proposition 21, that there exists a locally constant function with values in N such that for z in Z but outside some analytic subset of Z, there exists a neighborhood U z of z in Z and mutually distinct shock waves h z 1 ; :::

; h z (z ) such that Q contains Q z = [ 16k6 (z ) 1 : h z j (z) : x yh z j (z) ; z 2 U z and G k Uz k2N = N h z ;k + P k Uz k2N
where the N h z ;k are the Newton symmetric functions of the h z j . Thanks to Newton's formulas ( 27) and what precede, we can hence compute the symmetric functions S h z ;k of the h z j . Moreover, (z ) = G 0 Uz q 1 is known. We can hence individually compute the functions h z j , 1 6 j 6 (z ) from (S h z ;k ) 16k6 (z ) .

5. Thanks to Lemma 20, Q \ fw 0 6 = 0g and hence Q are known.

From a practical point of view, it would very convenient to know a priori p since it would enable to write directly a relevant system S d . Inequality (5) of Theorem 6 below delivers an upper bound p max for this number p. Note that data needed to think (5) as e¤ective, mainly M, (D@ e u 0 ) j bM and c u 0 = @ e u 0 j bM are, as explained its the proof which is given at the end of Section 7, computable from available boundary data. It would be useful to have a formula delivering X M in terms of Dirichlet-Neumann boundary data but such a formula is not known and M has to be computed in order get its Euler characteristic. Theorem 39 implies that S d has a non trivial solution for some d between 1 and p max . In addition, with results of Section 6.5, we know that from any non trivial solution of some S d , we can extract the sought shock waves. Hence, in the second step of the above process, we have at most p max linear systems S d to solve and this process may be considered as e¤ective for any value of p or q 1 . In Theorem 6 below, the generic hypothesis that Q 2 fQ 1 ; Q 2 g is assumed to satisfy are that Q is a well de…ned nodal open bordered Riemann surface of CP 2 whose boundary is a smooth real curve such that bQ fw 0 w 1 w 2 6 = 0g, (0 : 0 : 1) and (0 : 1 : 0) are not in Q 1 = Q \ fw 0 = 0g which is supposed to be transversal and contained in Reg Q. The number p j is, according to Proposition 21 when Q 2 fQ 1 ; Q 2 g, the number of shock waves functions h j;1 ; :::; h j;p j such the function G k de…ned by ( 4) can be written on the set Z de…ned by ( 24) in the form (h j;1 ) k + + h j;p j k +P j;k where

P j;k 2 C (Y ) k [X].
The complex di¤erential operator @ of (M; C ) is de…ned as before.

Theorem 6 Let (M; ) be a conductivity structure. We equip the bundle 1;0 T M of (1; 0)forms of (M; C ) with an Hermitian metric and a Chern connection D as in Theorem 44.

Denote by M the nodal Riemann surface designed by Theorem 2 and denote M the Euler characteristic of M. Assume that u = (u 0 ; u 1 ; u 2 ; u 3 ) 2 C 1 (bM ) 4 satis…es the following generic hypothesis : the C -harmonic extension e u of u is such that [@ e u] is an embedding of M in CP 3 and Q j = [@ e u 0 : @ e u 1 : @ e u j ] (M ), j = 2; 3, satis…es the generic hypothesis stated above. Let p = max (p 2 ; p 3 ) and = max ( 2 ; 3 )

where j = 1 2 i R @Q j d(w 1 =w 0 ) w 1 =w 0
is the number de…ned in Lemma 23 and p j is the number of shock waves functions involved in Proposition 21 when z is in the set Z de…ned by ( 24). Then

p 6 + 1 2 i Z @M
D@ e u 0 @ e u 0 M (5)

Conductivity structures and metrics

Requirements on to be a conductivity indicate a metric is involved. It is noticed in [?] that once a volume form is chosen for M , one can design a natural metric g ; on M by setting for all t; t 0 2 T M g ; (t; t 0 ) = 1 (t y ) ^(t 0 y ) :

Its conformal class or complex structure C doesn't depend on and factorizes (see [?]) through C in the sense that there exists a function s : M ! R + with the same regularity as , called conductivity coe¢ cient in this article, such that when 

(x 1 ; x 2 ) is a couple of local isothermal coordinates for C , M at (dx 2 ; dx 1 ) dx ( p ) = s (p) I 2 ( 
C is also the conformal class associated to c ; when

(x 1 ; x 2 ) is a couple of local isothermal coordinates for C , M at dx dx (c ) = 0 1 1 0 def = J:
In other words, c is also the conjugation operator acting on 1-forms of M . Moreover, if d = c d, @ = 1 2 (d id ) is the Cauchy-Riemann operator associated to C and

d dU = ds d U
for all functions U 2 C 2 M . Note that by de…nition, @ = @ c , @ = @ c and d = d c ; these operators are associated to the complex structure C . Let us suppose that C is a complex structure on M , that is an atlas for M which makes M a Riemann surface with boundary. If x 1 and x 2 are the real and imaginary part of a same holomorphic coordinate for M , Jacobian matrices relatives to (x 1 ; x 2 ) of holomorphic maps commute with J. This means that one can de…ne a tensor c : T M ! T M by the fact that in such coordinates, M at dx dx (c) = J. By construction, c is a conductivity whose coe¢ cient is 1, c d = i @ @ def = d c and c is the conjugation operator of C and also the Hodge star operator acting on 1-forms when M is equipped the metric dual of the one given on each

T p M by ha; bi = a ^ b = 1 p det a ^ (b).
So, decomposition (7) shows a complex structure naturally associated to . It is unique in the sense that if c 0 is the conjugation operator of T M associated to a complex structure C 0 and if s 0 2 R + M 0 , the identity = s 0 :c 0 forces, because det c = 1 = det c 0 , …rst s = s 0 and then c = c 0 . Formula (6) shows that for all p 2 M , p commute with the orthogonal automorphisms of

T p M; (g ; ) p . When M is a submanifold embedded in R 3 , in particular if M is a domain of R 2 ,
and when g ; is induced by the standard metric of R 3 , this means that is isotropic in the usual sense (see [?] and [?] for example). The proposition below sums up what precedes.

Proposition 7 Let M be a real two dimensional surface with boundary. A complex structure C on M de…nes a conductivity tensor with coe¢ cient equal to 1. Reciprocally, for all conductivity on M , there exists a unique complex structure C such that = p det c where c is the conjugation operator associated to C .

Hence, it is natural to say that a complex valued function f de…ned on an open set U of M is -holomorphic if @ f = 0, or equivalently, when for all charts z : V ! C of the holomorphic atlas of (M; C ), f z 1 is holomorphic on z 1 (U ) in the usual sense.

If

(M 0 ; 0 ) is an another conductivity structure, a map f from an open subset U of M to M 0 is said ( ; 0 )-analytic if for all holomorphic charts z 0 : V 0 ! C of (M 0 ; C 0 ), z 0 f is - holomorphic on f 1 (V 0 ) \ U , that is if z 0 f z 1 is holomorphic on z 1 (f 1 (V 0 ) \ U )
in the usual sense for all holomorphic charts z : V ! C of (M; C ). This also can be characterized by the following lemma.

Lemma 8 Let (M; ) and (M 0 ; 0 ) be two conductivity structures, U an open subset of M and f : U ! M 0 a di¤erentiable map. Then f is ( ; 0 )-analytic if and only if

( t Df ) c 0 = c ( t Df ). When f realizes a di¤eomorphism ' from U to f (U ), ' is ( ; 0 )-analytic if and only if ' c = c 0 and in particular if ' = 0 . Proof. Consider holomorphic charts z : V ! C and z 0 : V 0 ! C of (M; C ) and (M 0 ; C 0 ). Set F = M at (dx 0 ;dy 0 ) (dx;dy) (Df ) where (x; y) = (Re z; Im z) and (x 0 ; y 0 ) = (Re z 0 ; Im z 0 ). Then M at (dx;dy) (dx 0 ;dy 0 ) t Df c 0 = M at (dx;dy) (dx 0 ;dy 0 ) t Df M at (dx 0 ;dy 0 ) (dx 0 ;dy 0 ) (c 0 ) = t F J M at (dx;dy) (dx 0 ;dy 0 ) c t Df = M at (dx;dy) (dx;dy) (c ) M at (dx;dy) (dx 0 ;dy 0 ) t Df = J t F
So, the equality ( t Df ) c 0 = c ( t Df ) holds if and only if JF = F J. Translating this on matrix coe¢ cients, this is equivalent to the fact that Re f and Im f satisfy the Cauchy-Riemann equations, that is @f @z = 0.

Suppose now that ' = f f (U ) U is a di¤eomorphism. Since by de…nition, ' c = ( t Df ) 1 (c ) t (D') where ' = 1 , the preceding point gives that ' is ( ; 0 )-analytic if and only if ' c = c 0 . Besides, ' c = (det ) :' c = det ( ) :' c . So, 0 = ' = ( t Df ) 1 (c ) t (D') forces det c 0 = det ( ) and ' c = c 0 .
This lemma enables to justify our comment in the introduction about Tartar's remark. The conductivity 0 is de…ned by M at

(dx 2 ; dx 1 ) (dx 1 ;dx 2 ) ( 0 ) = 1 det t ( jk ) where is the Jacobian matrix of '. But M at (dx 1 ;dx 2 ) (dx 1 ;dx 2 ) ( ) = JM at (dx 2 ; dx 1 ) (dx 1 ;dx 2 ) ( ) and the same holds for 0 . Since 1 det J t J = 1 and J 2 = I 2 , we get M at (dx 1 ;dx 2 ) (dx 1 ;dx 2 ) ( 0 ) = 1 M at (dx 1 ;dx 2 ) (dx 1 ;dx 2 ) ( ) which means 0 = ' . Hence, ' is a biholomorphic map between (M; C ) and (M 0 ; C 0 ).
We now turn our attention to the Dirichlet-Neumann operator itself. Assume again that M is also equipped with an arbitrary Riemannian metric g ; this in particular the case when M is a real surface in R 3 with a non isotropic conductivity. Denote by and vector …elds de…ned along bM such that for all p 2 bM , ( p ; p ) is a direct g-orthonormal basis for T p M and p 2 T p bM . The «normal» Dirichlet-Neumann operator N is then de…ned for any su¢ ciently smooth function u : bM ! R by

N u = @E u @ bM (8)
where E u is the unique solution of (1). So, when u : bM ! R is su¢ ciently smooth

dE u = (E u: ) + (E u: ) = (N u) + (du: ) :
This formula shows that data from N which depends of a choice of metric, can be replaced by data from the «di¤erential» Dirichlet-Neumann operator N d = dE de…ned by (2).

In the particular case where det = 1, = c and it is noticed in [?] that @ c E c uj bM = (L c u) ( + i ) where @ c = d @ and @ c is the Cauchy-Riemann operator of (M; C ) and where L c u = 1 2 N c u i @u @ . So, one can consider in this case the «complex» Dirichlet-Neumann operator c de…ned on su¢ ciently smooth functions u : bM ! R by

c u = @ c E c uj bM = (L c u) ( + i ) (9)
For a general det , we still let c = c c . This means that for u 2 C 1 (bM ), c u is still de…ned by ( 9) even if and c are no longer equal. Hence, c and N d correspond to Dirichlet problems associated to di¤erent operators, namely dc d for the …rst and d d = ds c d for the second.

To end this section, we explain how to get rid of the auxiliary volume form . As in the inverse problem studied here, T bM M and T bM M are supposed to be known, the conjugation operator c associated to the complex structure C of (M; ) is known when it acts on T bM M . Having chosen a smooth generating section of T bM , we set s = (c ) s s for any s 2 bM . By de…nition of conductivity, bM 3 s 7 ! s ^ s is then a smooth section of the volume forms bundle of M and can be extended to a smooth volume form on M . Though this extension is not unique, any tensor which would be a conductivity for one of these extensions would be so for any.

Recovering the complex Dirichlet-Neumann operator

Nodal Riemann surfaces are discussed in [?] and the reader can refer to it. Meanwhile, for sake of simplicity [?] doesn't consider the case where nodes are allowed in the boundary. Since the nodal Riemann surface we have to consider is produced as the solution of a boundary problem for a real smooth curve and since as pointed out in [?, section 3.2] such complex curves may present this type of singularity, we give some basics in Section 4.1. Then, we prove the existence of nodal Green functions for such surfaces. At the end of this section, is written the proof of Theorem 5 which enables the recovering of the complex Dirichlet-Neumann operator c . This result is new wether or not nodes at the boundary are present. Besides, existence of such nodes should be considered as exceptional.

Nodal Riemann surfaces and harmonic distributions

In this article a nodal Riemann surface with boundary Q is a set of the form S=R n (bS) where S is a Riemann surface with boundary, R a nodal relation which means that R is an equivalence relation on S identifying a …nite number of points of S but such that two distinct points of bS are in two di¤erent classes and is the natural projection of S on S=R. In particular, bS = bS bS is a bijection. We equip S=R with the quotient topology so that Q is an open subset, Q = S=R and bQ = (bS). One denotes by Reg Q the set of points of Q having only one preimage by and we set Sing Q = Qn Reg Q ; Reg Q and Sing Q are de…ned similarly.

If q 2 Q (resp. q 2 bQ), an inner (resp. boundary) branch of Q at q is any subset B of Q (resp. Q) for which there exists an open connected subset V of S (resp. S) and s 2 V \ 1 (q) such that V n fsg 1 Reg Q , realizes a bijection from V to B and, if q 2 bQ, V \ bS is a neighborhood of s in bS. A set of inner branches at a point q of Q is complete if their union with the possible boundary branch of Q at q is a neighborhood of q in Q.

Q carries a natural (nodal) complex structure which is characterized by the fact that for any inner branch B of Q, there exists an open connected subset V of S such that is a biholomorphism from V to B. Likewise, one gives a natural meaning to notions of nodal conductivities (for which considerations of the preceding section apply) and to nodal function or maps between nodal Riemann surfaces, holomorphic or of class C k , 0 6 k 6 1. With such de…nitions, : S ! Q becomes a normalization of Q.

As pointed out in [?, prop. 2], isomorphisms between nodal Riemann surfaces are a little bit trickier since nodes can be mixed. Let us consider another nodal Riemann surface with boundary Q 0 which is the quotient of a Riemann surface with boundary S 0 and denote 0 the natural projection of S 0 to Q 0 . Take a nodal map ' : Q ! Q 0 ; so, ' is univalued on Reg Q and multivalued on Sing Q. We say that ' is an isomorphism of nodal Riemann surfaces with boundary if the following conditions are satis…ed :

i) ' is an homeomorphism from ' 1 Reg Q 0 \ Reg Q onto ' Reg Q \ Reg Q 0 .
ii) For all inner (resp. boundary) branches B 0 of Q 0 , there exists an inner (resp. boundary) branch

B of Q such that ' B \ Reg Q = B 0 \ Reg Q 0 and the continuous extension ' B 0 B of the map B \ Reg Q ! B 0 , q 7 ! ' (q)
, is an isomorphism of Riemann surfaces (resp. with boundary).

iii) For all q 2 Q, the branches of Q 0 at ' (q) are the images by ' of the branches of Q at q. If ' satis…es only (i) and (ii), we says as in [?, prop. 2] that ' is a rough isomorphism.

Distributions and currents are de…ned on nodal Riemann surfaces as usual by duality and of course, harmonic distributions are by de…nition those in the kernel of dd c . According to [?, prop. 2] whose proof applies without change to the case Sing Q \ bQ 6 = ?, a distribution u on a open set W of Q is harmonic if and only if it is harmonic in the usual sense on W \ Reg Q, continuous on W \ Reg Q as well as in all boundary branches of Q contained in W , and if for any singular point q of Q the two conditions below are satis…ed :

1) for all inner branches B of Q at q su¢ ciently small so it admits a holomorphic coordinate z centered at q, there exists c B 2 C such that u Q q;j nfqg 2c B ln jzj extends to B as a usual harmonic function.

2)

P B2B c B = 0 where B is a complete set of inner branches of Q at q.
This implies that a same continuous function u on bQ extends to Q in many harmonic distribution ; the Dirichlet problem for u is well posed only if for the extension U , one speci…es for all q 2 Sing Q and all inner branches B of Q at q, the residue c B of @U j B at q. In particular, b u denoting the harmonic extension of u

1 bS to S, b
u is the only harmonic distribution which is continuous along any branch of Q and coincides with u on bQ ; we call it the simple harmonic extension of u.

For a nodal Riemann surface Q, we de…ne the complex Dirichlet-Neumann operator as the

operator Q c = c Q
c where c Q is the conjugation operator associated to the complex structure of Q and where in (9) simple harmonic extensions are used.

4.2 Recovering of c , proof of Theorem 5

Green functions in the smooth case

This section is about classical facts on Green functions for a smooth open bordered Riemann surface S which are generalized to the nodal case in Section 4.2.2.

A Green function for S is a function g de…ned on S S without its diagonal S such that for all q 2 S, g q = g (q; :) is harmonic on Sn fqg, continuous on Sn fqg and has an isolated logarithmic singularity at q, which means that given a holomorphic coordinate z of S de…ned near q and centered at q, g q 1 2 ln jzj extends harmonically around q. g is said principal if it is symmetric, real valued and its partial functions g q vanishes on bS. The Perron method shows that such a function exists and the maximum principle implies it is unique.

The problem we want to address is the computation from g of the operator S c which to u 2 C 1 (bS) associates (@e u) j bS where e u is the harmonic extension of u to S. Without loss of generality, we assume that S is a relatively compact domain in an open Riemann surface e S for which g is a Green function. We also assume that g is symmetric and real valued.

First, one builds the operator T g which to u 2 C 0 (bS) associates the harmonic function T g u de…ned on e SnbS by T g u : e SnbS 3 q 7 ! 2 i Z @S u@g q (10) and which splits in T g u = (T g u) j S where S + = S and S = e SnS. Let us choose an Hermitian metric for e S and for T e S near bS, a direct orthonormal frame ( ; ) such that j bS 2 T bS S. When f is di¤erentiable function near bS, we can write

@f = 1 2 @f @ i @f @ ( + i ) : (11) 
Since the pull back of by the natural injection of bS into e S is 0, we get that for any u 2 C 1 (bS) and q 2 e SnbS,

(T g u) (q) = Z @S u @g q @ + i Z @S u 0 g q def = D g u + iS g u 0 ( 12 
)
where u 0 = @u @ and where D g u and S g u 0 are the so called double-layer and single-layer potentials of u and u 0 . Since d c = i @ @ , we also get from ( 11) that for any u 2 C 0 (bS) and q 2 e SnbS,

(D g u) (q) = Z @S ud c g q (13)
Like T g , D g and S g split in sided operators D g and S g . Then it is well known that for any u 2 C 2 (bS), D g u = (D g u) j S and S g u = (S g u) j S extend to S as C 1 -functions, that S g is continuous on e S and that if u 2 C 2 (bS), the boundary values A g u = D g u j bS satisfy

A + g u A g u = u & A + g u + A g u = N g u (14)
where N g u is de…ned for p 2 bS by

(N g u) (p) = 2P V Z @S
ud c g q ; P V standing for principal value. According to (12), when u 2 C 2 (bS), T g u also extend to S as C 1 -functions which verify

A + g;c u A g;c u = u & A + g;c u + A g;c u = N g;c u
where A g;c u = T g u j bS = A g u iS g u 0 and where N g;c u is de…ned for p 2 bS by

(N g;c u) (p) = 2P V 2 i Z @S u@g q
This goes back to the works of Sohotksy in 1873 or, later, of Plemelj and can be found in many books. The reader can refer for example to [?, chp. 7, § §11 ] where these operators and formulas are proven to make sense for u in the distributional sense in Sobolev spaces. A direct proof for T g;c and C 2 -functions can be found as a particular case in [?] which addresses similar problems in Stein manifolds. We also use the operator N # g de…ned on any Sobolev space H s (bS) by density of C 1 (bS)

and by, when u 2 C 1 (bS),

8p 2 bS; N # g u (p) = 2P V Z @S
u (q) @g @ p (p; q) q From [?, Prop. 11.3], we know that in the distributional sense

8p 2 bS; N # g u (p) = u (p) + 2 lim "!0 + @S u @ (p " p ) (15) 
Assume that for some u 2 C 1 (bS) and we have found a solution w 2 C 1 (bS) to the equation

u = w + A g w; (16) 
that is, u belongs to the range of Id + A G . Then D + g w is a smooth function on S such that D + g w j bS = A + g w = w + A g w = u, which entails that D + g w is the harmonic extension e u of u to S and that S c u = @D + g w j bS can be computed, which is our goal. Thus, the question which arises is the characterization of the range of Id + A G .

As g is symmetric and real, we know (see e.g. [?, chp. 7, § §11 ]) that for any real s, Id + A g is a Fredholm operator from H s (bS) to itself and has index 0. This implies that the obstruction to solve (16) in H s (bS) for data in H s (bS) is only …nite dimensional and that Id + A g is an isomorphism if it is injective or surjective. Consider the standard identi…cation H s (bS) of the dual of H s (bS) by de…ning the duality pairing h:; :i by density of C 1 (bS) 2 in H s (bS) H s (bS) and by hu; wi = Z @S uw when u; w 2 C 1 (bS). Then we can de…ne the adjoint L of any operator L of H s (bS) and get the identity Im L = (ker L ) ? . Since Id + A g has a closed range as a Fredholm operator, we get Im Id + A g = ker Id + A g ? . From ( 14), it comes Id + A g = 1 2 (Id + N g ) and N g = I + 2A g . For w 2 C 1 (bS), we obtain that for any p 2 bS,

(N g w) (p) = w (p) + 2lim "!0 D g w (p " p )
in the distributional sense. With (15) and the Fubini theorem, we deduce that for u; w 2 C 1 (bS) hu; N g wi = hu; wi + 2 lim

"!0 + Z @S u (p) D g w (p " p ) p = hu; wi + 2 lim "!0 + Z @S u (p) Z @S w (q)
@g @ q (p " p ; q) p q = hu; wi + 2 lim

"!0 + Z @S w (q) Z @S
u (p) @g @ q (p " p ; q) q p = w; N # g u :

This proves that (N g ) = N # g , which entails ker Id + A g = ker Id + N # g . We summarize the above discussion within the following lemma.

Lemma 9 (1) Let B g = Id + N # g . Then ker B g C 1 (bS) and a function u 2 H s (bS) is in the range of Id + A g if and only if hu; wi = 0 for any w 2 ker B g .

(2) Let u 2 C 1 (bS; R) be orthogonal to ker B g and w 2 H s (bS) such that u = w + A g w. Then w 2 C 1 (bS; R) and S c u = @D + g w j bS . (3) When G is the principal Green function for of S, T + G = D + G and Id + A G is an automorphism of H s (bS).

Proof. (1) and ( 2) have been already proved except for w 2 C 1 (bS) and ker B g C 1 (bS). Both are consequences of the fact that N # g and A g are a pseudo-di¤erential operators of order 1 (see [?]). For a smooth real valued u and its harmonic extension e u to S, Stokes Formula applied on S without an arbitrary small conformal disc " around q 2 S gives

T + G u (q) = 2 i Z @S e u@G q + G q @e u = 2 i Z @ " e u@G q + G q @e u + 2 i Z Sn " @e u ^@G q + @G q ^@e u = 2 i Z @ " e u@G q + O (" ln ") + 0 ! "!0 e u (q)
As G and u are real valued,

T + G u = 2 i Z @S e u@G q + G q @e u = 2 i Z @S [d (e uG q ) e u@G q ] = T + G u This yields D + G u = T + G u = e u. Thus, A + G = Id + A G is surjective and, because its index is 0, an isomorphism of H s (bS) as claimed in (3).
Remark. It is also known that Id + A g is an isomorphism of H s (bS) when S C is bounded and has a connected complement (see e.g. [?]). In the general case, it is not di¢ cult to prove that functions in ker Id + A g are boundary values of holomorphic function on e SnS smooth up to the boundary and that the Dirichlet-Neumann operator N : C 1 (bS) 3 u 7 ! @ e u @ j bS realizes an isomorphism from ker B g to ker Id + A g . Thus, to have at hand the principal Green function of S enables to bypass the resolution of (16). Unhappily, the standard method introduced by Fredholm in 1900 to build principal Green functions consists precisely in …nding for each q 2 S a function w q such that g q = w q + A g w q and then to set G q = g q D + g w q . Happily, in our problem it is not necessarily relevant to compute G because we only have to to compute su¢ ciently many S c u. As mentioned in the next session, all of these considerations readily apply to the nodal setting.

Green functions in the nodal case

De…nition 10 Let Z be an open complex curve, possibly singular, of an open subset of C 2 . A Green function for Z is a function g de…ned on (Reg Z Reg Z) n Reg Z such that for all q 2 Reg Z, g q = g (q ; :) extends to Z as a current and i@@g q is the Dirac current q supported by fq g -this implies in particular that @g q is a weakly holomorphic (1; 0)-form on Zn fq g in the sense of [?].

When Z is an open nodal Riemann surface, quotient of , an open Riemann surface, by an equivalence relation and when is the canonical projection of onto Z, a simple Green function for Z is a is symmetric function g de…ned on (Reg Z Reg Z) n Reg Z for which there exists a real valued Green function e g for such that g = e g in the following sense : for any branch B of Z at q , image by of an open subset V of such that V n fs g 1 (Reg Z) where s 2 1 (q ), g q j B = (e g s j V ) in a neighborhood of q in B.

A principal Green function for a nodal bordered Riemann surface Z is a symmetric real valued simple Green function g such that if B is any boundary branch of Z, g j B extends continuously to B with the value 0 on B \ bZ.

Let us now detail the explicit formula of [?, proposition 17] establishing the existence of Green functions for a 1-parameter family of complex curves whose possible singularities are arbitrary. Consider a complex curve Y in an open subset of C 2 , a Stein neighborhood of Y in C 2 , a holomorphic function on such that Y = f = 0g and d j Y 6 = 0 then a strictly pseudoconvex domain

0 of C 2 verifying Y 0 = Y \ 0 ;
and lastly a symmetric function 2 O ( ; C 2 ) such that for all (z; z 0 ) 2 C 2 ,

(z 0 ) (z) = h (z 0 ; z) ; z 0 zi
where hv; wi = v 1 w 1 + v 2 w 2 when v; w 2 C 2 . We de…ne on Reg Y a (1; 0)-form ! by setting

! = dz 1 @ =@z 2 on Y 1 = Y \ f@ =@z 2 6 = 0g ! = +dz 2 @ =@z 1 on Y 2 = Y \ f@ =@z 1 6 = 0g
and we consider k (z 0 ; z) = det z 0 z jz 0 zj 2 ; (z 0 ; z) :

When q 2 Reg Y 0 , [?, prop. 17 ] tells that the formula g c (q ; q) = g c;q (q) = 1 4 2 Z q 0 2Y 0 k (q 0 ; q)k (q ; q 0 ) i! (q 0 ) ^! (q 0 ) :

(17) de…nes a Green function for Y 0 . In addition, the proof of [?, prop. 17 ] gives that if q 2 Reg Y 0 @g c;q = e k q ! where e k q = 1 2 k (:; q ). The proposition below gives a useful complement.

Proposition 11 Suppose Y 0 has only nodal singularities. Then, the function g (q ; q) = Re g c (q ; q) = 1 4 2 Z q 0 2Y 0 1 2 k (q 0 ; q)k (q ; q 0 ) + k (q 0 ; q) k (q ; q 0 ) i! (q 0 )^! (q 0 ) (18) is a simple Green function for Y 0 .

Proof. Let us begin by proving that q being …xed in Reg Y 0 , g c;q extends as a usual harmonic function along the branches of Y 0 n fq g. As g c;q is a harmonic distribution on Y 0 n fq g, we already know that g c;q (Reg Y 0 )nfq g is a usual harmonic function and according to [?, prop. 2], that for any branch B of Y 0 at q, g c;q j B has at most an isolated logarithmic singularity at q. Equivalently, this means that @g c;q has at most a simple pole at q. Fix q in Sing Y 0 and B a branch of Y 0 at q. Decreasing B and with a possible change of coordinates, we get the case where q = 0 and is in a neighborhood of 0 of the form

(z) = (z 2 ' (z 1 )) (z) (19) 
with ' holomorphic in a su¢ ciently small disc V = D (0; r) and j B vanishing only at 0. In particular, there exists a function holomorphic on V such that (0) 6 = 0 and (z 1 ; ' (z 1 )) = z 1 1 (z 1 ) when z 1 2 V , being the number of branches of Y 0 at q. On Bn fqg, we get hence ! = dz 1 (z 1 )z 1 1 . Consider then a (0; 1)-form compactly supported in B ; so = dz 1 with 2 D (V ). Hence, by de…nition, h@g c;q ; i = lim

"#0 + Z z 1 2V nD(0;") b k q (z 1 ) (z 1 ) (z 1 ) z 1 1 idz 1 ^dz 1 where b k q (z 1 ) = e k q (z 1 ; ' (z 1 )). Let us write b k q (z 1 ) (z 1 ) (z 1 ) = X + < 1 c ; z 1 z 1 + Z 1 0 (1 t) 2 ( 2)! D 1 b k q = tz 1 :z 2 1 dt idz 1 ^dz 1
where D p f j w :z p is understood has the value taken by the total di¤erential of order p of f at w on the vector (z; :::

; z). Since R 2 0 e i ( +1) d = 0 when + < 1, we get h@g c;q ; i = Z z 1 2V Z 1 0 (1 t) 2 ( 2)! D 1 b k q = tz 1 :1 1 dt idz 1 ^dz 1 (20) 
Moreover, there exists c 2 C and h 2 O (V ) such that the expression of @g c;q j B is c z 1 dz 1 + hdz 1 in the coordinate z. Hence h@g c;q ; i = lim

"#0 + Z z 1 2V nD(0;") c z 1 + h (z 1 ) (z 1 ) idz 1 ^dz 1 Let us write (z 1 ) = (0) + 1;0 z 1 + 0;1 z 1 + R 1 0 (1 t) D 2 j tz 1 :z 2 1 dt. Then comes h@g c;q ; i = r 2 1;0 c + Z z 1 2V h (z 1 ) (z 1 ) idz 1 ^dz 1 (21) 
As (20) shows no derivation of the Dirac measure at 0, comparison with (21) forces c = 0. Hence g c;q j B and g q j B are usual harmonic functions. Next, we check that i@@g c;q is the Dirac current at q . Since g c;q has no singularity in any branch of Y 0 n fq 0 g, we get thanks to the nodal version of Stokes formula that for that any test function on Y 0 , i@@g c;q ;

= i@g c;q ; @f is the limit when " ! 0 + of 1 i R @ " @g c;q where " is a conformal disk of radius " centered at q . Using the same notation as above with = 1 and q replaced by q which we can assume to be 0, we …nd that i@@g c;q ; = 2 (0; 0) ' 0 (0) 1 (0; 0) (0) 1 + j' 0 (0)j 2 (q )

From ( 19) we get by di¤erentiation that 2 (0; 0) = (0) and 1 (0; 0) = ' 0 (0). Hence, i@@g c;q ; = (q ) which means i@@g c;q = q . Since q is real valued on real valued test functions, this entails i@@g q = q . Fix now q s in Sing Y 0 . Consider a branch B of Y 0 at q s su¢ ciently small so we have for it a holomorphic coordinate z centered at q s . Since g is symmetric from ( 17), what precedes implies that when q 2 Bn fq s g, q 7 ! g q (q) 1 2 ln jz (q) z (q )j = g q (q ) 1 2 ln jz (q) z (q )j is a usual harmonic function on B. Hence, when q 2 Bn fq s g tends to q s , g q 1 2 ln jz z (q )j converges uniformly on B to a harmonic function of the form g B B;qs 1 2 ln jzj where g B B;qs is harmonic on Bn fq s g. For the same reason, if B 0 is another branch of Y 0 at q s or a branch of Y 0 relatively compact in Y 0 n fq s g, g q converges uniformly on B 0 to a harmonic function g B 0 B;qs when q 2 Bn fq s g tends to q s . When B 0 describes the set of branches of Y 0 , these functions g B 0 B;qs match into a function g B;qs which is harmonic on B 0 nbY 0 for all branches B 0 of Y 0 nB, whose restriction to B has a logarithmic singularity at q s and such that g q tends to g B;qs in the sense of currents when q 2 Bn fq s g tends to q s . Proceeding so for all singulars point of Y 0 , we …nd that g is a simple Green function for Y 0 .

We now apply what precedes to the situation of Theorem 5. We recall that F : f M ! C 2 is the map obtained by applying Theorem 2 to a plain extension ( f M ; e ) of (M; ). We set

Y = F ( f M ) and we …x a Stein neighborhood of Y in C 2 , that is a neighborhood of Y which is a Stein manifold. As M = F (M ) is relatively compact in Y, we can pick up in C 2 a strictly pseudoconvex domain 0 verifying M Y 0 = Y \ 0 .
We use then Proposition 11 and get a Green function for M. The corollary below tells it comes from a Green function for M .

Corollary 12 Hypothesis and notation remains as in Theorem 5 and g is the function de…ned by (18). Then,

g M = F g M M n M is a Green function for (M; C ). Proof. Since F : M ! M is a (c ; c M )-analytic normalization, h = F g is well de…ned on M reg M reg n M reg where M reg = F 1 Reg Q , symmetric
and for all x 2 M , h x = h (:; x) is harmonic on M reg nbM [ fxg, continuous on M reg n fxg and i@ @ h is the Dirac current x of M at x. When p 2 F 1 Sing M \ M and V is a connected open neighborhood of p in M , B = F (V ) is an inner branch of M at q = F (p) and we can set g M;p = F g p;B . Proposition 11 implies that g M so built is a Green function for M . Thus, we can apply the methods of Section 4.2.1 to g M and then push forward their results to M. Meanwhile, as in our problem M and c have to be computed before M can be, it is more relevant to apply directly these methods to M and g. As bM is smooth, Sobolev spaces on bM are de…ned as usual and the discussion of Section 4.2.1 can be readily followed. So the operators T g , D g , A g , N g etc. are de…ned as above (with M instead of S) and lemma 9 holds. We are now ready to prove Theorem 5.

Proof of Theorem 5. Consider u 2 C 1 (bM ) and e u its C -harmonic extension to M . As d = @ + @ and d = i @ @ , we get 2i@ @ = dd and e u is the unique solution in

C 1 M of i@ @ U = 0 & U j bM = u:
and c u is the restriction to bM of the C -holomorphic (1; 0)-form @ e u. By de…nition, when B is a branch of M, there is a (unique) open subset V of M such that the map

F B = F B V is a (c ; c M )-biholomorphism. Since e
u is smooth, we deduce that F e u is smooth along any branch B of M and satis…es i@@ (F B ) e u j B = (F B ) i@ @ e u = 0. Hence, e u (F Reg M ) 1 harmonically extends along branches of M and de…ne on M a distribution W which is the unique continuous solution along branches of M for the problem

i@@W = 0 & W j bM = f u (22)
This yields F W = e u which means that e u j V = F

F (V ) V
W whenever V M is such that F (V ) is a branch of M. Lemma 8 yields that F : M ! M is a holomorphic map from (M; c ) to (M; c M ). Since the complex di¤erential operators of these (nodal) Riemann surfaces are @ and @, we get @ e u = @ F W = F @W and W is the simple harmonic extension c f u of f u to M. So, we get c u = (F @ c f u) j bM . The kernel of B g (in its nodal issue) is a …nite dimensional subspace of C 1 (bM) and when u 2 C 1 (bM; R) is such that f u is orthogonal to it, any solution w of the equation f u = w +A g w is in C 1 (bM; R) and delivers c f u under the form T + g w. Hence, c u = F @T + g w j bM .

Remark. The above proof contains the fact that for any u 2 C 1 (bM ), e u = F c f u and c u = F M c f u where e u is the C -harmonic extension of u to M and c f u is the simple harmonic extension of f u to M.

Proof of the uniqueness Theorem 3

In this section, we prove Theorem 3 and as mentioned in Section 2, we complete so the proof of [?, Theorem 1] and also the isomorphism claim of [?, Th. 1.1]. One of the steps of the proof of Theorem 3 uses lemmas 11 to 14 of [?] which were initially written by the author of these lines to give a complete proof of Theorem 3.

We note (U `) and (U 0 `) the harmonic extensions of u to M and M 0 respectively. By hypothesis F = [@U ] : M ! CP n and F 0 = [@U 0 ] : M 0 ! CP n are well de…ned, coincide on and f = F j = F 0 j embeds in fw 0 6 = 0g where w 0 ; :::; w n are the standard homogeneous coordinates of CP n . We equip = f ( ) with the orientation of brought by f . The regularity hypothesis made on M and M 0 implies that F and F 0 are of class C 1 . We set

Y = F (M ) n ; = F 1 ( ) ; f M = M n ; e F = F CPnn M n ; M r = fdF 6 = 0g & M s = fdF = 0g
Since f is an embedding of in fw 0 6 = 0g which is isomorphic to C n , there exists an open neighborhood G of in M such that F G = F j G is an embedding of G in C 2 ; the orientation of is hence also induced by the natural one of G. When A is a topological space, we note CC (A) the set of the connected components of A. If A M and B F (A), we denote (F; A; B) the degree of F B A if it exists. We agree for M 0 similarly notation to those for M . D p;q (U ) stands for the space of (p; q)-forms of class C 1 compactly supported in an open subset U of a complex manifold. H d (E) denotes the Hausdor¤ d-dimensional measure of a set E when this is meaningful. Proof. If is a compactly supported smooth form of CP n ,

Lemma 13 n is a compact of M and Y is a complex curve of CP n n . Proof. Since F G is embeds G in C 2 , \G = and n = \ M nG is a compact of M . In particular, f M = M n is an open surface Riemann. By construction, e F is proper because if L is a compact of CP n n , e F 1 (L)
hF [M ] ; i = Z M F : F [M ] is thus a current of bidegree (1; 1) supported by F (M ), that is Y . It is positive because if 2 D 1;1 (CP n ) is positive, (F ) j M is a positive (1; 1)-form of M since F is holomorphic and hence hF [M ] ; i > 0. Let 2 C 1 (CP n ) be such that = ! F S
where and ! F S = i 2 @@ ln jwj 2 is the (1; 1)-form de…ning the Fubini-Study metric. We get then

jhF [M ] ; ij 6 Z M j j F ! F S 6 k k 1 Z M F ! F S As k k = sup p2CPn k p k and k p k = max s;t2TpCPn; ksk F S =ktk F S =1 j p : (s; t)j = j (p)j max s;t2TpCPn; ksk F S =ktk F S =1
(! F S ) p : (s; t) = j (p)j ;

we get that the mass of F [M ] is …nite and at most Lemma 16

R M F ! F S . If 2 D (CP n ), hdF [M ] ; i = hF [M ] ; d i = Z M F d = Z M dF = Z F = hF [ ] ; i In other words, dF [M ] = F [ ] = [ ]. In particular, the mass of dF [M ] is …nite ; F [M ]
F [M ] = F [M 0 ] and Y 0 = Y .
Proof. According to Lemma 14, the current

T = F [M ] F 0 [M 0 ] is a boundary less normal current of bidegree (1; 1) supported by Y [ Y 0 . It is hence of the form X 16j6N n j [Z j ]
where (n j ) 2 (Z ) N and the Z j are irreducible compact complex curves of CP n lying in Y [ Y 0 . Let Z one of these curves. Z \ 6 = ? because otherwise F 1 (Z) is a compact complex curve lying in M or M 0 , which is excluded. Proof. Suppose that F 1 (fyg) is in…nite for some y 2 Y . If F 1 (fyg) has an accumulation point in M , F = y on a connected component of M and hence on a non empty open subset of . In the contrary case , F 1 (fyg) has an accumulation point in and dF vanishes at this point. In both case, this contradicts that F j is an embedding.

(B \ Y ) or H 2 (B \ Y 0 ) is positive, says H 2 (B \ Y ) > 0. As B is connected, this implies (4) that B Y . Given that
Suppose that is unbounded. There exists then (y m ) 2 Y N such that ( m ) = ( (y m ))

admits +1 as limit and (y m ) converges to y 2 Y . Since M is compact, there exists in M N a convergent sequence with limit x 0 2 F 1 (fy g) and a strictly increasing ' :

N ! N such that y '(m) = F (x m ) for all m 2 N. If dF x 0 6 = 0, there exists an open neighborhood U 0 of x 0 in M such that V 0 = F (U 0
) is a Riemann surface (with boundary if x 0 2 ) and F V 0 U 0 is a biholomorphism (of Riemann surfaces with boundary if x 0 2 ) ; we set m 0 = 1 in this case. If dF x 0 = 0, x 0 = 2 and we can choose in a neighborhood of y in CP n , holomorphic coordinates ( 1 ; :::; n ) such that the vanishing order m of (d ( 1 F ) ; :::; d ( n F )) at x 0 is also the one of d ( 1 F ) at x 0 . In this case, there exists an open neighborhood U 0 of x 0 in M such that if y 2 V 0 = F (U 0 ), 1 (F (y)) has exactly m 0 preimages by 1 F in U 0 , mutually distinct if y 6 = y ; if y 2 V 0 = F (U 0 ), y has at least one preimage by F in U 0 and at most m 0 .

Suppose that we have got k + 1 mutually distinct points x 0 ; :::; x k in F 1 (y ) and open neighborhoods U 0 ; :::; U k of these points in M such that for all j 2 f1; :::; kg, 1 6 Card F 1 (y )\ U j 6 m j and U j M nV j 1 where

V j 1 = [ 16`6j 1 U `. Then Card F 1 (y ) \ V k 6 P 06j6k m j and
since M nV k+1 is compact, we can …nd a strictly increasing ' : N ! N such that for all m 2 N, F 1 y '(m) \ M nV k+1 contains at least a point x k+1 m which tends, when m goes to in…nity, toward a point x k+1 2 F 1 (fy g). As before, we can then …nd an integer m k+1 and a neighborhood

U k+1 of x k+1 in M such that 1 6 Card F 1 (y ) \ U k 6 m k .
The values of the sequence x k k2N so built are mutually distinct points of M y , which is impossible. is hence bounded.

Lemma 18 Consider h 2 O (M ) \ C 0 M . Then F h is holomorphic and bounded on Reg Y . In addition, F 0 F h = (F h) F 0 2 O (M 0 ) \ C 0 M 0 Proof. By de…nition F h is the function de…ned on Y by (F h) (y) = P x2F 1 (y) h (x). Let y 2 (Reg Y ) nF (fdF = 0g).
Set F 1 (y ) = fx 1 ; :::x k g where k = (y). There exists a neighborhood B of y in Reg Y such that for all j 2 f1; :::; kg, there exists a neighborhood A j of

x j in M for which F j = F B A j is a biholomorphism. Suppose that (y ) 2 B N converges to y and Card F 1 fy n g > k for all n. Then, for each n 2 N there exists a n 2 M n F 1 1 (y n ) ; :::; F 1 k (y n ) such that F (a n ) = y n . Possibly after extracting a subsequence, (a n ) converges to a point a of M which satis…es F (a) = y . Given that y 2 Y = F (M ) nF (bM ), a = 2 bM and there exists j 2 f1; :::; kg such that a = x j . For n big enough, a n and F 1 j (y n ) are then two distinct points of A j sharing the same image y n by F . This is absurd. Hence, F h = P 16j6k h F 1 j is holomorphic in a neighborhood of y. Furthermore, jF hj 6 k khk 1 and k = (y). F h is thus bounded according to Lemma 17. Given that (Reg Y ) \ F (fdF = 0g) is …nite, F h extends holomorphically to Reg Y . This implies that F 0 F h = (F h) F 0 is holomorphic and is bounded on

M 0 nF 0 1 (Sing Y ). As F 0 1 (Sing Y ) is a …nite set, F 0 F h extends holomorphically to M 0 . Lemma 19 If ! 0 2 C 1;0 M 0 \ 1;0 (M 0 ), there exists ! 2 C 1;0 M \ 1;0 (M ) such that ! j = ! 0 j .
Proof. We have to check that ! 0 j veri…es the moment condition when is seen as the boundary of

M . So, let h 2 O (M ) \ C 0 M . According to Lemma 18, g = F 0 F h 2 O (M 0 ) \ C 0 M 0 . Since f [ ] = [ ], Z h! 0 = Z F F (h! 0 ) = Z F (h! 0 ) = Z (F 0 F ) (h! 0 ) = Z M 0 d (F 0 F ) (h! 0 ) = 0: because F 0 F h 2 O (M 0 ) \ C 0 M 0 and ! 0 2 1;0 (M 0 ).
Proof of Thoerem 3. Since by hypothesis (@U `)06`6n is a well de…ned map from M to CP n , we can use the adjonction lemma 12 of [?] which, though written for the particular case n = 2, applies without any change for arbitrary n in N : there exists harmonic functions U n+1 ; :::; U N on M and continuous on M such that (@U `)06`6N is an embedding of M in CP N . Similarly, there exists harmonic functions U 0 N +1 ; :::; U 0 N 0 on M 0 and continuous on M 0 such that h (@U 0 `)`2f0;::;n;N +1;::;N 0 g i is an embedding of M 0 in CP n+N 0 N . When `2 fN + 1; :::; N + N 0 g, Lemma 19 gives that (@U 0 `) j 0 extends to M as a (1; 0)-form holomorphic `. Also, when `2 fn + 1; :::; N g, (@U `) j extends to M 0 as a (1; 0)-form holomorphic 0 `. Consider then = (@U 0 ; :::; @U n ; @U n+1 :::; @U N ; N +1 ; :::; N +N 0 ) def = ( `)06`6L 0 = @U 0 0 ; ::; @U 0 n ; 0 n+1 ; :::; 0 N 0 ; @U 0 N +1 ; :::; @U 0

N +N 0 def = ( 0 `)06`6L
By construction and 0 coincide on . Note (w `)06`6L the natural coordinates of C L+1 . When 0 6 ` 6 n, [ ] f@U `6 =0g can be written (@U `=@U ` ) `6 =` in the natural coordinates of C L identi…ed to fw ` 6 = 0g. Note p ` the natural projection of C L on C N , (z `)`6 =` 7 ! (z `)06`6N , `6 =` . The map (@U `=@U ` ) 06`6N , `6 =` is by construction an embedding of f@U `

6 = 0g in C N . [ ] is moreover injective because M = [ 06`6n f@U `6 = 0g and because a relation of the form [ ] (x) = [ ] (y) impose y 2 \ (@U `)x 6 =0 f@U `6 = 0g. [ ] is thus an embedding of M in CP L . Also, [ 0 ] is an embedding of M 0 in CP L .
Noting that the proof of Lemma 14 doesn't use that F is a canonical map, that is of the form [@U ], or noting that Lemma 8 of [?] shows that and 0 are necessarily of this kind, we conclude that (M ) = 0 (M 0 ) then that M and M 0 are isomorphic through a map whose restriction to is the identity.

Reconstruction of a Riemann surface

As explained in Section 2, one of the steps in the reconstruction of a general conductivity structure is the particular case of the reconstruction of a Riemann surface from its Dirichlet-Neumann operator which itself comes down to the reconstruction from its oriented boundary @Q of a relatively compact domain Q of an open nodal Riemann surface e Q of CP 2 . This last job is done in this section we the help of the Cauchy-Fantapié indicators of Q de…ned by Formula (4). Theorem 39 and Proposition 41which are the main result of this section 6.5 are novelties about characterization and uniqueness of decomposition in sums of shock waves of these indicators.

For the reader's convenience, we list here some of the notation used in this section. U , L z and G k are de…ned with (4); 

Q 1 , q 1 , b q , E 1 , U reg , Z, Z reg , Z + , Z + reg , ,

Decomposition of Cauchy-Fantapié indicators

This section speci…es background notation for Section 6 and recall a result of Dolbeault and Henkin which gives a decomposition of the Cauchy-Fantapié related to intersections of the lines L z with the nodal Riemann surface Q to be reconstructed.

Without loss of generality, we suppose that bQ fw 0 w 1 w 2 6 = 0g. From now, we also assume the generic hypothesis and so little restrictive, that (0 : 0 : 1) ; (0 :

1 : 0) = 2 Q 1 = Q t fw 0 = 0g Reg Q
where t denotes a transverse intersection. In this situation, u 0 = w 0 w 2 can be taken as a coordinate for Q in a neighborhood of points of Q 1 and there exists for each q 2 Q 1 a function g q holomorphic near 0 in C such that in a neighborhood of q in CP 2 , Q coincide with f(u 0 : u 1 : 1) ; u 1 = g q (u 0 )g. We note then ( g q u 0 ) the Taylor expansion of g q at 0. So, for q 2 Q 1 , q = (0 : g q 0 : 1) def = (0 : b q : 1) :

We also set

E 1 = C f 1=b q ; q 2 Q 1 g :
In this section, U is the open subset of C 2 where the G k are de…ned. For any subset X of U , we denote X reg the subset of C 2 made by points z = (x; y) of X such that Q and L z = fw 2 CP 2 ; xw 0 + yw 1 + w 2 = 0g meet transversely at each point of Q \ L z ; we set X sing = XnX reg so that U sing is an analytic subset of U . Though U may be complicated, it contains a convenient open subset. Let us de…ne

= max 0 @ max w2bQ jw 2 =w 1 j ; 5 max w2bQ jw 2 =w 0 j min w2bQ jw 1 =w 0 j 1 A ; e = max f ; j1=b q j ; q 2 Q 1 g (23)
indicators of Q de…ned by ( 4). This result can be extracted as a particular case from Theorem II and Lemma 4.2.2 obtained by Dolbeault and Henkin in [?] ; their proof applies without change when some knots of Q are in Q 1 . In this statement and after, we use the following notation when h 1 ; :::; h p are complex valued functions and k 2 N,

N h;k = X 16j6p h k j & S h;k = X 16j 1 < <jp6k h j 1 h j k : (25) 
The Newton identities state that for all k 2 N ,

N h;k = ( 1) k 1 kS h;k + X 16j6k 1
( 1) k j 1 S h;j N h;k j (26)

S h;k = ( 1) k 1 k N h;k + 1 k X 16j6k 1 ( 1) j 1 S h;j N h;k j (27) We denote C [X; Y ) the set of elements of C (X; Y ) which are polynomials in X. C k [X; Y ) = C (Y ) k [X]
denotes the ring of polynomials in X of degree at most k whose coe¢ cients are algebraic fractions in Y . A shock wave is by de…nition a holomorphic function h on an open subset of C 2 such that in the standard coordinates system (x; y) @h @y = h @h @x (28)

Proposition 21 (Dolbeault-Henkin, 1997) Let z 2 U reg nE 1 and p = Card (L z \ Q). If U is a su¢ ciently small neighborhood of z in U reg , there exists shock waves h 1 ; :::; h p on U whose images are mutually disjoint such that for all z 2 U ,

L z \ Q = f(1 : h j (z) :
x yh j (z)) ; 1 6 j 6 pg :

Moreover, for all k 2 N, there exists

P k 2 C k [X; Y ) such that for all z 2 U G k (z) = N h;k (z) + P k (z) : (29) 
In addition, denoting the natural injection of Q in CP 2 , P k = P q2Q 1

Res k z ; q and

@P k @Y = k k + 1 @P k+1 @X :
In practical terms, the di¢ culty to extract from the equations ( 29) the symmetric functions of the h j comes from the polynomials P k . [?] contains a method when q 1 2 f1; 2g. For the one proposed in this paper, the …rst step is to get precision on (P k ).

Lemma 22 P 0 = q 1 where q 1 = Card Q 1 and setting

P k = P 06 6k X p k; when k 2 N , p k;k = 1 (k 1)! p (k 1) 1;1 & p k; = k ! (k ) p ( ) k ;0 ; 2 f0; ::; k 1g (30) Moreover, if we set B 1 = Y q2Q 1 (1 + Y b q ) (31) Then p 1;1 = X q2Q 1 b q 1 + Y b q = B 10 B 1 (32) p 1;0 = X q2Q 1 g q 1 1 + Y b q def = A 1 B 1 (33) p k;0 = k X j=1 X q2Q 1 p q k;0;j (1 + Y b q ) j = k X j=1 p k;0;j (B 1 ) j ; k 2 N ( 34 
)
where the p q k;0;j are universal polynomials in the coe¢ cients of the jet of order k j + 1 of Q at q and p k;0;j = P q p q k;0;j q 0 6 =q 1 + Y b q 0 j . In particular, P k doesn't depend on z and is entirely determined by the k (q 1 + 1) numbers b q , p q k;0;j , (q; j) 2 Q 1 f1; :::; kg. Furthermore, P k admits a Laurent series expansion of the form P m6 1

P k;m Y m where

P k;m 2 C k 1 [X] when 1 > m > k and P k;m 2 C k [X] when k > m.
Remark. In the case where Q 1 \ Sing Q 6 = ?, Formula (31) becomes

B 1 = Q q2Q 1 (1 + Y b q ) (q)
where (q) denotes the number of branches of Q at q, (32) stay unchanged and in (33), g q 1 has to replaced by P B g B;q

1
where the sum is done on a complete set of inner branches of Q at q and g B;q 1 = g B 0 (0), g B denoting the holomorphic function such that in a neighborhood of 0, an equation of the branch B is u 1 = g B 1 (u 0 ). Proof. Suppose that ( 30) is veri…ed for a positive integer k. Then

P k+1 = P k+1 (0; Y ) + k + 1 k X 06m6k 1 p 0 k;m X m+1 m + 1 + p 0 k;k X k+1 k + 1 ! = p k+1;0 + X 06m6k 1 k + 1 (m + 1)! (k m) p (m+1) k m;0 X m+1 + 1 k! p (k) 1;1 X k+1 = p k+1;0 + X 16m6k k + 1 (m + 1)! (k + 1 m) p (m) k+1 m;0 X m + 1 k! p (k) 1;1
which proves (30) with a recurrence. Let now k 2 N and z = (x; y) 2 U nE 1 . In the a¢ ne coordinates (u 0 ; u 1 ) = w 0 w 2 ; w 1

w 2 of CP 2 , k z has the form k z = u 1 u 0 k d xu 0 +yu 1 +1 u 0 xu 0 +yu 1 +1 u 0 = u 1 u 0 k xdu 0 + ydu 1 xu 0 + yu 1 + 1 du 0 u 0 :
We …x a point q in Q 1 and in order to simplify the scripts, we write g instead of g q (an so, g stands for g q ) and u in place of u 0 . In a neighborhood of q in Q, the form

k z written in the coordinate u is k z = (x + yg 0 ) g k u k (1 + xu + yg) g k u k+1 du:
Denoting by hf; u i the coe¢ cient of u in the Taylor expansion at 0 of a function f holomorphic in a neighborhood of 0, one gets

P q k (z) def = Res k z ; q = Res (x + yg 0 ) g k (1 + xu + yg) u k ; 0 g k ; u k :
In particular P q 0 (z) = 1 and hence P 0 = Card Q 1 . Suppose now k > 1. Then

yg 0 g k 1 + xu + yg = 1 1 + xu 1 + xu + yg g 0 g k 1 and if g 0 g k 1 = P n2N n u n , 1 k g k g k 0 = P n2N n 1 n u n , which gives Res g k u k+1 du; 0 = k k 1 k = Res g 0 g k 1 u k du; 0
This entails,

P q k (z) = Res xg k (1 + xu + yg) u k ; 0 Res 1 + xu (1 + xu + yg) u k g 0 g k 1 ; 0 = Res x (g ug 0 ) g 0 (1 + xu + yg) u k g k 1 ; 0 : Since g g 0 = O (u) and (x; y) = 2 E 1 , 1 + yg 0 6 = 0 and it comes furthermore that for u small enough 1 1 + xu + yg = (1 + yg 0 ) 1 1 + xu+y(g g 0 ) 1+yg 0 = X n2N ( 1) n 1 (1 + yg 0 ) n [xu + y (g g 0 )] n 1 : Burt for all n 2 N [x (g ug 0 ) g 0 ] g k 1 [xu + y (g g 0 )] n 1 = n 1 X m=0 C m n 1 g k 1 x m+1 y n 1 m (g ug 0 ) (g g 0 ) n 1 m u m g 0 x m y n 1 m (g g 0 ) n 1 m u m = n P m=1 C m 1 n 1 x m y n m g k 1 (g ug 0 ) (g g 0 ) n m u m 1 n 1 P m=0 C m n 1 x m y n 1 m g 0 g k 1 (g g 0 ) n 1 m u m = y n 1 g 0 g k 1 (g g 0 ) n 1 + x n g k 1 (g ug 0 ) u n 1 + n 1 P m=1 x m y n 1 m yC m 1 n 1 g k 1 (g ug 0 ) (g g 0 ) C m n 1 g 0 g k 1 u (g g 0 ) n 1 m u m 1
So,

P q k (z) = k X n=1 ( 1) n (1 + yg 0 ) n 0 @ y n 1 g 0 g k 1 (g g 0 ) n 1 ; u k 1 + x n g k 1 (g ug 0 ) ; u k n + n 1 P m=1 x m y n 1 m yC m 1 n 1 g k 1 (g ug 0 ) (g g 0 ) C m n 1 g 0 g k 1 u (g g 0 ) n 1 m ; u k m Hence P q k (z) = k P m=0 p q k;m (y) x m with p q k;0 = k X n=1 ( 1) n Y n 1 (1 + Y g 0 ) n g 0 g k 1 (g g 0 ) n 1 ; u k 1 ; p q k;k = ( 1) k+1 g k 0 (1 + Y g 0 ) k
and for 1 6 m 6 k 1,

p q k;m = k X n=m+1 ( 1) n Y n 1 m (1 + Y g 0 ) n Y C m 1 n 1 g k 1 (g ug 0 ) (g g 0 ) + C m n 1 g 0 g k 1 u (g g 0 ) n 1 m ; u k m
In particular,

p q 1;0 = g 1 1 + Y g 0 & p q 1;1 = g 0 1 + Y g 0 :
Furthermore, for all n 2 N,

( 1

) n Y n 1 (1 + Y g 0 ) n = ( 1) n g n 1 0 (1 + Y g 0 ) 1 1 1 + Y g 0 n 1 = ( 1) n n X j=1 ( 1) j 1 C j 1 n 1 g (n 1) 0 (1 + Y g 0 ) j ; Hence p q k;0 = k X j=1 ( 1) j 1 (1 + Y g 0 ) j k X n=j ( 1) n C j 1 n 1 g n 1 0 g 0 g k 1 (g g 0 ) n 1 ; u k 1 = g k 1 (1 + Y g 0 ) k + k 1 X j=1 ( 1) j 1 (1 + Y g 0 ) j k X n=j ( 1) n C j 1 n 1 g n 1 0 g 0 g k 1 (g g 0 ) n 1 ; u k 1 Note that D g 0 g k 1 (g g 0 ) k 1 ; u k 1 E = g 1 g k 1 0 g k 1 1 = g k 1 g k 1 0 and D g 0 g k 1 (g g 0 ) k 2 ; u k 1 E = g 1 + 2g 2 u + O u 2 g 0 + g 1 u + O u 2 k 1 g 1 u + g 2 u 2 + O u 3 k 2 = (g 1 + 2g 2 u) g k 1 0 + (k 1) g k 2 0 g 1 u g k 2 1 u k 2 + (k 2) g k 3 1 g 2 u k 1 + O u k = g 1 g k 1 0 + 2g 2 g k 1 0 + (k 1) g k 2 0 g 2 1 u g k 2 1 u k 2 + (k 2) g k 3 1 g 2 u k 1 + O u k = g k 1 1 g k 1 0 u k 2 + g 1 g k 1 0 (k 2) g k 3 1 g 2 + 2g 2 g k 1 0 + (k 1) g k 2 0 g 2 1 g k 2 1 u k 1 + O u k = g k 1 1 g k 1 0 u k 2 + kg k 1 0 g k 2 1 g 2 + (k 1) g k 2 0 g k 1 u k 1 + O u k which gives ( 1) k C k 1 k 1 g k 1 0 g 0 g k (g g 0 ) n 1 ; u k 1 = ( 1) k g k 1 and k X n=k 1 ( 1) n C k 2 n 1 g n 1 0 g 0 g k (g g 0 ) n 1 ; u k 1 = ( 1) k (k 1) g k 1 0 D g 0 g k (g g 0 ) k 1 ; u k 1 E + ( 1) k 1 g k 2 0 D g 0 g k (g g 0 ) k 2 ; u k 1 E = ( 1) k (k 1) g k 1 + ( 1) k 1 g k 2 0 kg k 1 0 g k 2 1 g 2 + (k 1) g k 2 0 g k 1 = ( 1) k (k 1) g k 1 kg 0 g k 2 1 g 2 + (k 1) g k 1 = k ( 1) k g 0 g k 2 1 g 2 So, p q k;0 = g k 1 (1 + Y g 0 ) k + kg 0 g k 2 1 g 2 (1 + Y g 0 ) k 1 + k 2 X j=1 p q k;0;j (1 + Y g 0 ) j with p q k;0;j = ( 1) j 1 k X n=j ( 1) n C j 1 n 1 g n 1 0 g 0 g k 1 (g g 0 ) n 1 ; u k 1
Summing on the elements q of Q 1 the above equalities, we get the relations claimed in the statement.

Writing the Laurent series at in…nity of p k; , 0 6 6 k, in the form

P m6 1 hp k; Y m i Y m , we get P k = P m6 1 P k;m Y m and P k;m = P 06 6k
hp k; ; Y m i X for any m. Since (30) implies

hp k;k ; Y m i = 0 when m > k, we obtain that P k;m = P 06j<k p m k;j ; Y m X j 2 C k 1 [X] for 1 > m > k and that P k;m = P 06j6k p m k;j ; Y m X j 2 C k [X] for k > m.

Expansion of indicators

The form of fractions P k given by Lemma 22 suggests to study the functions G k on the domain Z de…ned by (24). In this section and after, (@Q) 0 stands for the real orientated curve of C 2 which is the image of @Q by the coordinates map w 7 ! w 1 w 0 ; w 2 w 0 .

Lemma 23 We note the integer

1 2 i R @Q d(w 1 =w 0 ) w 1 =w 0 . G 0 is constant on Z and for all k 2 N , G k admits on Z a Laurent expansion of the form G k (x; y) = X n2N G k; n (x) y n = ( 1) k x k y k + X n2N e G k; n (x) y n (35) 
with normal convergence on Z and where for all n 2 N , e

G k; n = P 06 <n G k; n X is a polyno- mial of degree at most n 1. In particular, G k;0 = k;0 , G k; n = k;n ( 1) n X n + e G k; n 2 C n 1+ k;n [X] and G 1 (x; y) = G 0 1; 1 x y + X n>2 G 1; n (x) y n (36) with G 0 1; 1 = 1 2 i R @Q w 2 w 1 d w 1 w 0 . Proof. Fix k in N . Let (x; y) 2 Z. Then for all (z 1 ; z 2 ) 2 (@Q) 0 , x+z 2 yz 1 < 1 2 since by de…nition of , jx + z 2 j 6 jyj + max j 2 j ( 1 ; 2 )2(@Q) 0 < 1 2 jyj min j 1 j ( 1 ; 2 )2(@Q) 0 6 1 2 jyz 1 j. Hence G k (x; y) = 1 2 i Z (@Q) 0 z k 1 1 dz 1 + 1 2 i Z (@Q) 0 z k 1 1 z 1 dz 2 (x + z 2 ) dz 1 x + yz 1 + z 2 = 0 + 1 2 i Z (@Q) 0 z k 2 1 y z 1 dz 2 (x + z 2 ) dz 1 1 + x+z 2 yz 1 = 1 2 i Z (@Q) 0 X 2N ( 1) z k 2 1 y +1 (x + z 2 ) (z 1 dz 2 (x + z 2 ) dz 1 ) = X n2N G k; n (x) y n
with normal convergence on Z and for any n 2 N

G k; n (x) = ( 1) n 1 2 i Z (@Q) 0 z k n 1 1 (x + z 2 ) n 1 (z 1 dz 2 (x + z 2 ) dz 1 ) :
Hence, G k; n is a polynomial of degree at most n. Let us write it

P 06 6n G k; n X n . The coe¢ cient G n k; n of X n in G k; n is given by the formula G n k; n = ( 1) n 2 i Z (@Q) 0 z k n 1 1 dz 1 = k;n ( 1) n : With e G k; n = P 06 <n G k; n X , we get G k (x; y) = X n2N k;n ( 1) n x n + e G k; n (x) y n = ( 1) k x k y k + X n2N e G k; n (x) y n Besides, G 1; 1 (x) = 1 2 i Z (@Q) 0 z 1 1 (z 1 dz 2 (x + z 2 ) dz 1 ) = G 0 1; 1 + xG 1 1; 1 with G 0 1; 1 = 0 + 1 2 i R w2(@Q) 0 w 2 w 1 d w 1 w 0 and G 1 1; 1 = 1 2 i R (@Q) 0 z 1 1 dz 1 = . By de…nition, G 0 is the function U 3 (x; y) 7 ! 1 2 i R @Q d[(xw 0 +yw 1 +w 2 )=w 0 )]
xw 0 +yw 1 +w 2 =w 0 . Hence, it is continuous and integer valued. So it is constant on Z and equal to its limit value when x = 0 and y ! 1, that is . Thus, G 0; n = 0 for all n 2 N .

Corollary 24 The number p of functions h 1 ; :::; h p involved in Proposition 21 is the same for all points of Z reg nE 1 : p = + q 1 where q 1 = Card Q 1 .

Proof. Denote temporarily p (z) the number of functions h 1 ; :::; h p(z) involved in Proposition 21 when z 2 U reg . Since P 0 = q 1 , we know that G 0 (z) = p (z) q 1 and so that p is an integer valued function continuous on the connected set Z reg nE 1 . It is thus constant and since G 0 (x; y) = + P m2N G 0;m (x) y m when (x; y) 2 Z reg , we conclude that = p q 1 .

Remarks. In the case where Q 1 \ Sing Q 6 = ?, q 1 = P q2Q 1 (q). Corollary 45 of Section 7

gives a formula linking q 1 and the genus of Q via the Dirichlet-Neumann operator.

Lemma 27 (Henkin-Michel, 2007) Let D be a domain of C 2 , N 2 O (D) and d 2 N . There exists mutually distinct local shock waves h 1 ; :::; h d such that N = h 1 + + h d if and only if there exists s 1 ; :::; s d 2 O (D) such that s 1 = N and

s d @N @x + @s d @y = 0; s k @N @x + @s k @y = @s k+1 @x ; 1 6 k 6 d 1; (37) 
and if the discriminant of the polynomial

= T d +s 1 T d 1 + +s d 2 O (D) [T ]
is not identically zero on D. In this case, we say that N is a d-shock waves.

In order to de…ne integro-di¤erential operators adapted to the resolution of the system (37), we introduce notation linked to Laurent series and their primivitization. For m 2 Z, we set

e m : C 3 y 7 ! ( 1) jmj 1 (jmj 1)! y m if m 6 1 (38) e m : C 3 y 7 ! 1 m! y m if m > 0
and we denote by m = em e m 1 the real number such that e m (y) = m y m for any y 2 C . We also make use of the notation r m = r m r m when 0 6 r 6 m. The main reason of this normalization is that for any m 2 Zn f 1g, e m+1 is a primitive of e m . Note that 1 = 1 = 1. We denote by L the principal determination of the logarithm on CnR .

De…nition 28 For (k; r) 2 Z N, we denote by S k;r the set of holomorphic functions F on Z + such that there exists a family (c m;s ) m6k; 06s6r of entire functions such that for each s 2 f0; :::; rg, the series ( P 

P (e m ) = e m+1 if m 6 = 1, Pe 1 = L P (e m L s ) = ( 1) 0 A 0 s a 0 m e m+1 L s + + ( 1) s A s s a s m e m+1 L 0 if m 6 = 1; P (e 1 L s ) = 1 s+1 L s+1 = 1 s+1 e 0 L s+1
where a m = m if m 6 2 and a m = 1 m+1 if m > 0.

Lemma 29 For any

F = P m6k; 06s6r c m;s e m L s 2 S k;r , PF 2 c k;r e k+1 L r + c 1;r r+1 L r+1 + S k;r
and PF is a partial primitive of F in the sense that @ @y PF = F . De…nition 30 Let H be the function de…ned on Z + by

H = P @G 1 @x = L + X m6 1 G 0 1;m 1 m 1 e m = L + e H
We then de…ne operators D, E and F on S ; in the following way

D = e H @ @x e H = @ @x + @H @x ; E = P D & F = E (39)
where is the operator which to F = P The lemma below collects some basic facts about the crucial function H.

Lemma 31 e H = I + J where for any (x; y) 2 Z,

I (x; y) = 1 2 i Z (@Q) 0 z 1 dz 2 (x + z 2 ) dz 1 x + yz 1 + z 2 J (x; y) = 1 2 i Z (@Q) 0 L x + yz 1 + z 2 yz 1 dz 1 H = L + P m6 1
H m e m with H m 2 C jmj 1 [X] for any m 6 1 and 

@H @y = @G 1 @x : (40) 
Proof. Formula (40) is the main purpose of setting H = P @G 1 @x , (41) just takes in account that 2 Z and (42) follows from (41). For any m 6 1,

H m = 1 2 G 0 1;m 1 2 C jm 1j 2 [X] = C jmj 1 [X].
To prove that e H = I + J, we note that for (x; y) 2 U ,

@G 1 @x (x; y) = 1 2 i Z (@Q) 0 yz 1 dz 1 + z 1 dz 2 (x + yz 1 + z 2 ) 2 = 1 2 i Z (@Q) 0 dz 1 x + yz 1 + z 2 + 1 2 i Z (@Q) 0 (x + z 2 ) dz 1 z 1 dz 2 (x + yz 1 + z 2 ) 2 = 1 2 i Z (@Q) 0 dz 1 x + yz 1 + z 2
+ @I @y (x; y) :

When (z 1 ; z 2 ) 2 (@Q) 0 , x+yz 1 +z 2 yz 1 2 R only if y 2 i 0; x z 2 z 1 i , which can't happen since x z 2 z 1 6 minj 1 j ( 1 ; z 2 )2(@Q) 0 jyj + max j 2 j
( 1 ; z 2 )2(@Q) 0 6 1 2 jyz 1 j < jyz 1 j. Hence J is well de…ned on Z and

@J @y = 1 2 i Z (@Q) 0 1 x + yz 1 + z 2 1 yz 1 dz 1 = y + 1 2 i Z (@Q) 0 dz 1 x + yz 1 + z 2
Thus, @(I+J) @y = @ e H @y and since both H (x; :) and (I + J) (x; :) have limit 0 at in…nity when x is …xed, we get I + J = e H. The operator F enables to design a machinery adapted to the system (37). Proposition 32 Let s 1 ; :::; s d 2 O (ZnE 1 ). Then (s 1 ; :::; s d ) is a solution of (37) with N = G 1 P if and only if each (1 B) s j extends holomorphically to Z and there exists 1 ; :::; d 2 O (C) which satisfy the system below on Z + , = k e 0 + X k+16j6d P e H @ @x e H F j k 1 ( j e 0 ) = X 16j6d F j k 1 ( j e 0 ) :

(1 B) s k = F 0 ( k e 0 ) + + F d k ( d e 0 ) e H ; d > k > 1 (43) Proof. Since N = G 1 A B Id B 0 B ,
We derive from Proposition 32 a process to construct a priori some functions which may be multiple shock wave. Since e H = 1 e 1 e e H , Proposition 32 gives that (s k ( ; B)) 16k6d veri…es system (37). When s 1 ( ; B) = G 1 P , ( ; B) 6 = 0 ensures that s 1 ( ; B) is the sum of d shock waves mutually distinct whose symmetric functions are the ( 1) k s k ( ; B).

The proposition below shows that the system (43) can bee seen as a classical di¤erential system with unknowns 1 ; :::; d .

Proposition 34 We de…ne holomorphic functions F k;k ; :::; F k;0 on Z for all k 2 N by the following relations F k;k = 1 e k ; F k+1;0 = F k P @H @x ; F k+1;j = PF k;j 1 + FF k;j ; 1 6 j 6 k where F k; = 0 if < 0. Then for all f 2 O (C),

F k (f e 0 ) = X 06j6k f (j) e 0 F k;j :
Proof. By de…nition, for all f 2 O (C), D (f e 0 ) = f 0 e 0 + (f e 0 ) @H @x and hence F (f e 0 ) = PD (f e 0 ) = (f 0 e 0 ) F 1;1 + (f e 0 ) F 1;0 with F 1;1 = 1 e 1 and F 1;0 = PH. Suppose lemma's result true for a given k 2 N . Then for f 2 O (C) j) e 0 P F k;j @H @x which gives the expected formula with

F k+1 (f e 0 ) = X 06j6k P @ @x f (j) e 0 F k;j + P @H @x X 06j6k f (j) e 0 F k;j ! = X 06j6k P f (j+1) e 0 F k;j + f (j) e 0 @F k;j @x + X 06j6k f (j) e 0 P F k;j @H @x = X 06j6k f (j+1) e 0 PF k;j + X 06j6k f (j) e 0 P @F k;j @x + X 06j6k f ( 
F k+1;k+1 = PF k;k = P (1 e k ) = 1 e k+1 ;
F k+1;j = PF k;j 1 + P @F k;j @x + F k;j @H @x = PF k;j 1 + FF k;j ; 1 6 j 6 k;

F k+1;0 = P @F k;0 @x + F k;0 @H @x = FF k;0 = FF k 1 P @H @x = F k P @H @x :
Going further in the analysis of (37), we are about to prove that the functions j are polynomials. We start by two elementary lemmas. Proof. Let k and F be as above. Since FF = PDF and hP (e j L s ) ; e 0 i = 0 for any (j; s), we get hFF; e 0 i = 0. Furthermore,

P @F @x = X m6k c 0 m Pe m 2 c 0 k e k+1 + S k;r :
As H 1 is constant, @H @x = P m6 2

H 0 m e m and the expected relation follows from

P F @H @x = P X j6k X 6 2 c j H 0 j j+ e +j = P X `6k 2 ( X +j=` 6 2 & j6k j j+ c j H 0 ) e = X 06 =m6k 1 ( X +j=m 1 6 2 & j6k j j+ c j H 0 ) e m 2 S ; k;r :
Lemma 36 Denote by B q 1 the leading coe¢ cient of B. Then, there exists

( m ) 2 C [X] Z such that e H 1 B = 1 B q 1 X m60 m e m e p = p (47) 
with 0 = 1 and deg m 6 jmj 1 for all m 2 Z .

Proof. For a suitable family

(B 1;m ) 2 C Z , 1 B = q 1
B q 1 e q 1 P m60 B 1;m e m with B 1;0 = 1.

Since H = L + P m6 1 H m e m , e H = e " 1 + X n2N 1 n! X 6 1 H e ! n # = e X m60
h m e m with h 0 = 1 and for m 2 N , h m = P 16n6jmj

( 1) n n! P 2(Z )

n ; 1 + + n=m H 1 H n 2 C jmj 1 [X]
because if 2 Z n and 1 + + n = m, deg H 1 H n 6 P 16j6n (j j j 1) = jmj n 6 jmj 1. As p = + q 1 , q 1 e e q 1 = p ep and we get (47) with 0 = 1 and for all m 2 Z , m = P r+s=m; 0>r;s h r B 1;s which is a polynomial of degree at most max 0>r>m deg h r , that is jmj 1.

Proposition 37 Let f 2 O (C) and k 2 N . Then, F k (f e 0 ) = f (k) e k + X m6k 2 P k;m (f ) e m = X m6k P k;m (f ) e m with P k;k = @ k @x k , P k;k 1 = P k;0 = 0 and for m 2 Z \ ] 1; k 1], P k;m = P (m+1) + 6j6k 1 P j k;m @ j @x j
where for any j, P j k;m 2 C j m 1 [X] which means that P j k;m = 0 when j < m + 1. Proof. Note that if 2 Z , deg H 0 = (j j 1) 1 = j j 2. Set F = f e 0 and for m 2 Z, F k F; e m = c k;m . By de…nition of F, F 1 F = f 0 e 1 + P Let k 2 Nn f0; 1g be such that c 48) and the induction hypothesis give

k;m = 0 when m 2 Z \ [k; +1[, c k;k = f (k) , c k;k 1 = c k;0 = 0 whereas for m 2 Z \ ] 1; k 1], c k;m = P k;m (f ) with P k;m = P 06j6k 1 P j k;m @ j @x j and P j k;m 2 C j m 1 [X] for all j. Since H 0 1 = 0, with r m = r m r m , we get F k+1 F = EF k F = X 06 =m6k+1 c 0 k;m 1 e m + P( X r6k c k;r e r )( X s6 2 H 0 s e s ) = X 06 =m6k+1 c 0 k;m 1 e m + P X m6k 2 ( X m+26r6k r m c k;r H 0 m r ) e m = c 0 k;k e k+1 + c 0 k;k 1 e k + X 06 =m6k 1 (c 0 k;m 1 + X m+16r6k r m 1 c k;r H 0 m 1 r ) e m Thus c k+1;k+1 = c 0 k;k = f (k+1) , c k+1;k = c 0 k;k 1 = 0 and c k+1;m = 0 if m > k + 1 where m = 0. For m 2 Z \ ] 1; k], it comes c k+1;m = c 0 k;m 1 + X m+16r6k r m 1 H 0 m 1 r c k;r (48) Let m 2 Z \ ] 1; k 1]. Formula (
c k+1;m = ( X (m+1) + 6j6k 1 P j k;m 1 f (j) ) 0 + X m+16r6k X (m+1) + 6j6k 1 r m 1 P j k;r H 0 m 1 r f (j) = X (m+1) + 6j6k 1 (P j k;m 1 f (j) ) 0 + X (m+1) + 6j6k 1 [ X m+16r6k r m 1 P j k;r H 0 m 1 r ]f (j) = P k+1;m (f )
with P k+1;m = P (m+1) + 16j6k P j k+1;m @ @x j and = p!B q 1 where B q 1 = q2Q 1 b q is the leading coe¢ cient of B. Moreover, for all j 2 f1; :::; p 1g, j is a polynomial of degree at most p 1.

P k k+1;m = P k 1 k;m 1 (49) P j k+1;m = P j 1 k;m 1 + P j k;m 1 0 + k X r=m+1 r m 1 P j k;r H 0 m 1 r ; (m + 1) + 6 j < k (50) 
P (m+1) + 1 k+1;m = P (m+1) + 1 k;m 1 0 + X m+16r6k r m 1 P (m+1) + 1 k;r H 0 m 1 r ( 
Proof. The proof relies on a downward induction starting on p and on the comparison of the Laurent series of s 1 , series we have to compute, to the expansion of G 1 + P 1 which we know because of lemmas 23 and 22 :

G 1 = X m6 1 G 1;m m e m and P 1 = X m6 1 P 1;m m e m with G 1; 1 = G 0 1;1 x, G 1;m 2 C jmj 1 [X]
when m 6 2, P 1;1 = q 1 X + hp 1;0 ; e 1 i and P 1;m 2 C 1 [X] for all m. Thanks to Proposition 37 and to (47), we get Thus, e

s 1 = e H 1 B X 16j6d F j 1 ( j e 0 ) = e H 1 B X 16j6d X m6j 1 P j 1;m ( j ) e m = 1 B q 1 X m60 m e m e p = p ! X m6d 1 ( X m + +16j6p P j 1;m ( j )) e s = 1 B q 1 X m6d 1 X m d+16r60 0 @ X (m r) + +16j6d r m r P j 1;m r ( j ) 1 A e m e p = p = 1 B q 1 X m6d 
P m+1 1;m ( m+1 ) = 0 m P m;m ( m+1 ) = (m) m+1 since 0 m = 1. So e s 1;m = (m) m+1 + X m+26j6d e P j 1;m ( j ) (52) 
Moreover,

e P j 1;m ( j ) = X 06t6j 2 P t j 1;m (t) j + m j+1 m m j+1 P j 1;j 1 ( j ) + X m j+26r6 1 X 06t6j 2 r m r P (t) j 1;m r (t) j = m j+1 m m j+1 (j 1) j + X 06t6j 2 P t j 1;m + X m j+26r6 1 r m r P t j 1;m r ! (t) j Formula (52) implies e s 1;d 1 = (p 1) d so that s 1 2 d 1 B q 1 (d 1) d e d p 1 + S d p 2;0 . Yet, s 1 = N 1 = G 1 + P 1 , G 1 2 G 0 1;1
Id e 1 + S 2;0 and P 1 2 (q 1 Id + hp 1;0 ; e 1 i) e 1 + S 2;0 . So, d p 1 has to be equal to 1, that is d = p, and

(p 1) p = B q 1 p 1 pId G 0 1;1 hp 1;0 ; e 1 i = p!B q 1 Id (p 1)!B q 1 G 0 1;1 hp 1;0 ; e 1 i
In particular, p 2 C p [X] and

(p) p = p!B q 1 . Assume now that 0 6 m 6 p 2 and that p , ..., m+2 are polynomials. Then for m + 2 6 j 6 p, e P j 1;m ( j ) is of the same kind and as 

deg m j+1 (j 1) j 6 (j m 1) 1 + deg j j + 1 = deg j m 1 deg P t j 1;m ( 
= (m) m+1 + R m & deg R m 6 max m+26j6p deg j m 1 Moreover, G 1;m p + P 1;m p = s 1;m p = 1 B q 1 m m p e s 1;m ; G 1;m p 2 C jmj 1 [X] since m p 6 2 and P 1;m 2 C 1 [X]. From (m) m+1 = B q 1 m p m ( G 1;m p + P 1;m p ) + R m ;
we …rst recover that the functions j are all polynomials then, with m = p 2 that deg 

A linear system

According to Proposition 21, Lemma 22 and Corollary 25, there exists A

1 ; B 1 2 C [Y ] with deg A < deg B 1 = q 1 and B 1 (0) = 1 such that on ZnE 1 , G 1 = N Q 1 + X B 10 B 1 + 1 A 1 B 1
where N Q 1 is locally the sum of the shock wave functions h 1 ; :::; h p involved in Proposition 21. According to Lemma 27, Corollary 25, Proposition 32 and Proposition 38, these local functions de…ne on ZnE 1 global symmetric functions ( 1) k s Q k , 1 6 k 6 p, which can be written in the form

s Q k = e H 1 B 1 F k Q ; p > k > 1;
where

Q = Q 1 ; :::; Q p 2 C [X]
p is such that and deg Q j < deg Q p = p when 1 6 j 6 p. In the above formula, F k is de…ned for any 2 C [X] d and arbitrary (d; k) 2 N N by

F 0 ( ) = FF 1 ( ) & F k ( ) = X k6j6d F j k ( j e 0 ) ; k > 1; ( 53 
)
where F is the operator de…ned by (39).

In Theorem 39 below, the system S d de…ned by the equations ( 54) to ( 58) is a linear system whose nature is to have in…nitely many solutions when the zero function is not the only one. The …rst part of Theorem 39 says in other words that, because bM is known to be the boundary of a Riemann surface, 0 is not the only solution of S d at least when d = q 1 + = p. The second part of Theorem 39 is a kind of reverse. If we manage to …nd a non zero solution to S d where d is some positive integer, one gets a decomposition (62) of the kind we are looking for. Meanwhile, it is not clear that such a decomposition is really meaningful. The next section clari…es this point : the right decomposition can be deduced from (62) by tossing some parasite terms.

Theorem 39 Assume that @ 2 G 1 @x 2 6 = 0, …x d in N , set r = d and consider = ( 1 ; :::

; d ) 2 C [X] d such that for j 2 f1; :::; d 1g, deg j < deg d = d.
1) Assume that d = p and = Q . Then r = q 1 and @ @y 1 @ 2 G 1 =@x 2 @ @y e H @ @x F 0 ( ) = 0 (54) @ @x e H F 0 ( ) @H=@x @ 2 G 1 =@x 2 e H @ @y e H @ @x F 0 ( ) e H @ @x 1 @ 2 G 1 =@x 2 @ @y e H @ @x F 0 ( ) = 0

@ 2 G 1 @x 2 @ r+1 @y r+1 e H F 0 ( ) ( @ r+1 e H @y r+1 ) @ @y e H @ @x F 0 ( ) = 0 (56)

@ 2 G 1 @x 2 @ r @y r e H (G 1 F 0 ( ) + F 1 ( ))
@ r e H G 1 @y r @ @y e H @ @x F 0 ( ) = 0 (57)

EF 1 ( ) = EF 1 ( ) = FF 1 ( ) = F 0 ( ) (58) 
and B = e H F 0 ( )

1 @ 2 G 1 =@x 2 @ @y e H @ @x F 0 ( ) satis…es B (0; y) ! C 3y!0 1.
2) Assume that satis…es the di¤erential linear system S d de…ned by the equations ( 54) to (58) and that B (0; y) ! C 3y!0 1. Then there exists (c 0 ; A

; B) 2 O (C) C r 1 [Y ] C r [Y ] with B (0) = 1 and such that c 0 1 = 1 @ 2 G 1 =@x 2 @ @y e H @ @x F 0 ( ) (59) 1 B = (F 0 ( ) c 0 1) e H (60) 1 A = (1 B) G 1 + e H F 1 ( ) X B 0 (61) 
Moreover, taking in account that e H extends holomorphically to Z, s 1 = e H 1 B F 1 ( ) de…ne a holomorphic function on ZnE 1 such that

G 1 = s 1 + X B 0 B + 1 A B ( 62 
)
and which is a d-shock waves outside the zero locus of the discriminant of

T d + P 16k6d s k T d k where (s k ) = e H 1 B F d k ( ) d>k>1 .
Proof. 1) Set (A; B) = (A 1 ; B 1 ). According to the results quoted in the beginning of this section, we know that

1 A = (1 B) G 1 + e H F 1 ( ) X B 0 (63) 
In particular, the right member of ( 63) is independent of X. Since @G 1 @x = @H @y , we get

0 = e H @ (1 A) @x = e H (1 B) @H @y (1 B 0 ) + e H @ @x e H F j ( ) = @ (1 B) e H @y + DF 1 ( ) (64) 
Hence @(1 B)e H @y = DF 1 ( ) and we get an entire function c 0 such that

PDF 1 ( ) = P @ @y (1 B) e H = (1 B) e H + c 0 1: (65) 
As e H has a usual Laurent series on e Z, PDF 1 ( ) can't have any logarithmic term, which means that (58) is satis…ed. Then, (65) implies that B is given by (60) though we don't know yet c 0 . As B doesn't depend on x, we obtain 0 = @ @x e H F 0 ( ) (c 0 1) @H @x e H (c 0 0 1) e H (66)

As @H @y = @G 1 @x , this entails 0 = @ @y e H @ @x F 0 ( ) (c 0 1) @ 2 G 1 @x 2 ; which implies that c 0 is actually de…ned by (59). With this value of c 0 , (54) is the statement that c 0 doesn't depend on y and (66) become the compatibility equation ( 55). As the right member 60) have to be in C r [Y ], we also get 0 = @ r+1 @y r+1 (F 0 ( ) c 0 1) e H = @ r+1 @y r+1 F 0 ( ) e H (c 0 1) @ r+1 e H @y r+1 which become (56) when ( 59) is used for c 0 . Moreover, as the right member of (63) have to be in C r 1 [Y ], deg B < r and as (59) has been already proven, we also get 0 = @ r @y r (1 B) G 1 X B 0 + e H F 1 ( ) = @ r @y r (1 B) G 1 + e H F 1 ( ) = @ r @y r (F 0 ( ) c 0 1) e H G 1 + e H F 1 ( ) = @ r @y r e H (G 1 F 0 ( ) + F 1 ( )) (c 0 1) @ r @y r e H G 1 which becomes (57) when ( 59) is used for c 0 . Note that S d is a di¤erential linear system because of Proposition 34.

2) Conversely, assume that @ 2 G 1 @x 2 6 = 0 and that the system S d is satis…ed by . Then, thanks to (54), the right member of (59) depends only of its …rst variable so it de…nes a function c 0 . As @ @x (F 0 ( ) c 0 1) e H is equal to the right member of ( 66), (55) means that (F 0 ( ) c 0 1) e H doesn't depend on x so that (60) de…nes correctly a function B. Since @ r+1 @y r+1 (F 0 ( ) c 0 1) e H = @ r @y r F 0 ( ) e H (c 0 1) @ r e H @y r ;

(56) tells that B is a polynomial of degree at most r. As B = e H (F 0 ( ) c 0 1) = 1 B, B (0) = lim y!0 B (0; y) = 1. Denote by A the right member of (61). Then e H @A @x = e H (1 B) @H @y (1 B 0 ) + e H @ @x e H F 1 ( ) = DF 1 ( ) @ (1 B) e H @y = DF 1 ( ) @ (F 0 ( ) c 0 1) @y = DF 1 ( ) @ @y F 0 ( ) so that @A @x = 0 because of (58). Hence (61) de…nes correctly a function A, which because of (57), is a polynomial of degree at most r 1. The other claims of (2) are now consequences of Corollary 33. 1 can be seen as a kind of nomalization of B. However, the theorem doesn't address uniqueness.

For a given d, the system S d can be explicitly written thanks to Proposition 34 which gives formulas for the coe¢ cients of the operators F k and F 0 . The case d = 0 is impossible when @ 2 G 1 =@x 2 6 = 0. The case d = 1 corresponds to the case where the complex lines L z , z 2 Z, meets Q only one time. In this case, S 1 is an over determined system on the coe¢ cients of only one a¢ ne function 1 . It can easily be written but is already space-consuming. For example,(54) fh 1 ; :::; h p g fg 1 ; :::; g d g. Hence, P p< 6d

g is an algebraic function a¢ ne in x, which is impossible due to the reduction made on (g j ) 16j6d . So, t = min (p; d).

If t = d < p, the relation N g;1 +P = N h;1 +P 1 reads also h t+1 + +h p = P 1 P 2 C (Y ) 1 [X] and the theorem of Wood implies, since Q is connected, that Q is contained in an algebraic curve which is excluded by hypothesis. If t = p < d, g t+1 + +g d = N g;1 N h;1 +P P 1 2 C (Y ) 1 [X] which is excluded by to the reduction made on the family (g j ).

Finally t = p = d, fh 1 ; :::; h p g = fg 1 ; :::; g d g and P 1 = R.

2) Suppose now that Q is contained in an algebraic curve b Q, minimal with respect to inclusion. By hypothesis (0 : 1 : 0) = 2 b Q, and b QnQ is bounded by @Q. Up to a change of reference point z and a decrease of U , we can suppose that for all z 2 U , L z meets transversely b Q. We note then h p+1 ; :::; h b p the shock waves on U such that for all z 2 U , 

N g;1 + b N 1 = N g;1 N h;1 + N b Q;1 = P 1 R + N b Q;1 2 C (Y ) 1 [X]
The sum N g;1 + b N 1 can be written P 16 6s c f where f 1 ; :::f s are the mutually distinct functions of the union of fg ; 1 6 6 qg and fh ; p + 1 6 6 b pg and where c = 2 if f is in the intersection of this two sets and 1 otherwise. As previously we can choose z and U in order that the functions f has images mutually disjoint. We can then introduce the form which on F = f(1 : f (z) : x yf (z)) ; z 2 U g is d w 1 w 0 if c = 1 and 2d w 1 w 0 if c = 2. The form P F is an algebraic curve whose intersections with the L z , z 2 U , are parametrized with a sub-family of the g j . This is impossible since because of hypothesis, d 6 = 0 and no sub-family of (g j ) has a sum algebraic in y and a¢ ne in x. Thus, b Q = e F and when z 2 U , b Q \ L z is the union of ( b QnQ) \ L z and of f(1 : g j (z) : x yg (z)) ; 1 6 j 6 dg. This entails fh 1 ; :::; h p g = fg 1 ; :::; g d g and P 1 = R..

Genus of a Riemann surface with boundary

Formula (71) of Theorem 44 links the genus g (M ) of M to data associated to the complex structure C of (M; ). It is probably well known to specialists but we didn't …nd a reference for it. The link with the complex Dirichlet-Neumann operator c comes from Corollary 45. The formula so obtained is not yet e¤ective because we don't know the Euler characteristic of M . But as explained in Theorem 6 whose proof is given at the end of this section, Theorem 2 and Lemma 47 enable to deduce from Corollary 45 an e¤ective bound for the key number p of unknown shock waves sought in the reconstruction process described in Section 2 .

Let us recall that g (M ) is by de…nition the genus of the compact manifold obtained by gluing (pairwise disjoint) conformal discs along the connected components of bM . In [?],

For simplicity of notation, we set in this section @ = @ = d @ where @ = @ is the Cauchy-Riemann operator of (M; C ). We equip 1;0 T M with the metric h de…ned for s 2 M and ; 2 1;0 T s M by is the connection form of D associated to the holomorphic frame e, the curvature = d e = @ e of D doesn't depend of e and if ! = e, 2 C 1 (W ), is any smooth section of 1;0 T s M over W , D! is the 1-form valued in 1;0 T W M given by D! = (d ) e + e !. If ! is also holomorphic in W \ M , we get D! ! = @ + e . Note that in particular, e = De e .

When

T bM M is assumed to be known, so it is for D! ! j bS when ! is a (1; 0)-form near bM . Indeed, thanks to Theorem 5, we know that with the nodal Riemann surface M designed by Theorem 2, we can …nd smooth non vanishing sections of 1;0 T bM M which extends holomorphically to M by computing c u for adequate u 2 C 1 (bM ). For such an u and its C -harmonic extension to M , @e u is a holomorphic frame for 1;0 T W M where W = f@e u 6 = 0g and (69) becomes D@e u @e u = @ e u = @ ln h (@e u; @e u) = @ ln @e u ^ @e u ! (70)

Since the complex structure of M is known along bM and since @e u is holomorphic, the Cauchy-Riemann equations enable to compute the normal derivative of @e u from its tangential derivative. This means that in (70), derivatives coming from @e u are computable on bM from available boundary data. As the volume form is tangential to bM , its normal derivative is zero on bM and its tangential derivative is known on bM . Hence D@ e u @ e u j bM , that is @ e u j bM , is computable from available boundary data, what we had to check.

Note that for the computation of a connection form along bM , it is not mandatory to use a holomorphic frame of the form @e u. Indeed, let F : M ! M be the normalization of the nodal complex curve M of C 2 designed by Theorem 2 and let be an open subset of bM. We can choose any non vanishing smooth section ' of 1;0 T M which extends into a (1; 0)-form e ' smooth on W and holomorphic on WnbM where W is an open subset of M containing and such that WnbM Reg M. Let W = F 1 (W) [ f 1 ( ) where f = F bM bM . Then F WnBM W nbM e ', which we abbreviate into F e ', is a holomorphic (1; 0)-form of (M; C ) which extends smoothly to W and whose restriction to f 1 ( ) is F '. The connection form F e ' = @ ln h (F e '; F e ') associated to F e ' is computable on bM from available boundary data as before. Moreover, since F is holomorphic from (M; C ) to M, we can also make computation on M C 2 and then pull back the result to bM by F : F e ' = F @ ln @ e ' ^ @ e ' F where here @ = d @ and @ is the Cauchy-Riemann operator of M and its Hodge star operator.

We can now state Theorem 44. It is more about the Riemann surface (M; C ) than (M; ).

Theorem 44 Let (M; ) be a conductivity structure and the number of connected components of bM . Choose a volume form as in Lemma 43, equip the bundle 1;0 T M of (1; 0)-forms of (M; C ) with the metric h de…ned by (68) and denote by D its Chern connection. Then, when ! is a C -meromorphic (1; 0)-form on M , without pole or zero on bM ,

1 2 i Z @M D! ! = N z (!) N p (!) + 2 2g (M ) (71) 
where N z (!) and N p (!) are respectively the number of zeros and of poles of ! counted with their multiplicity or order.

Remark. Suppose that 0 is a volume form for M with the same properties as . The function : M ! R such that = e 2 0 satis…es D = D 0 @ , which gives R

@M D ! ! = R @M D 0 ! !
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  x dx+a y dy and b = b x dx+b y dy in T p M , p (b) = (b x r + b y u) +(b x t + b y s) and a ^ p (b) = (a x dx + a y dy) ^[(b x r + b y u) dy (b x t + b y s) dx] = (ra x b x + ua x b y + ta y b x + sb x b y ) dx ^dy For any continuous function u : bM ! R, we denote E u the unique solution of the following Dirichlet problem : d dU = 0 & U j bM = u:

M

  for all p 2 b f M . Let then F , M and f M as below. The nodal Green function g we use for the possibly singular curve M = F (M )

  6) for all p in the open subset of M where (x 1 ; x 2 ) is de…ned, I 2 being the 2 2 identity matrix and dx = (dx 1 ; dx 2 ). Denote by det the map which to a point p of M associates the determinant of the linear map p ; (6) implies s = p det . If c is the conductivity de…ned by = s :c = p det :c ;

  is a compact of M which doesn't meet and hence is a compact of f M . By a theorem of Remmert, unnecessary in the very simple case n = 1, Y = e F ( f M ) is an analytic subset of CP n n . Lemma 14 F [M ] is a normal positive current supported by Y and dF [M ] = [ ].

  is a normal current supported by Y . Lemma 15 F [M ] CPnn is a positive holomorphic chain of CP n n supported by Y . Proof. Given that T = F [M ] is supported by Y and that Y = Y n , S = T CPnn is a normal, and hence locally recti…able, current of CP n n , without boundary and supported by Y . According to the structure theorem 2.1 of [?], there exists hence (n j ) 16j6N 2 Z N such that S = X 16j6N n j [Y j ] where (Y j ) is the family of irreducible components of Y . S being moreover a positive current according to Lemma 14, the n j are natural integers.

  is a subset of the boundaries of Y and B, we infer that after decreasing B if necessary, Y \ B Z and hence Y \ B B [ B + . Suppose that H 2 (B + \ Y ) = 0. Then, as B Reg Y , B + \ Y = ?, Y \ B = B and, by force, B + Y 0 . Suppose in addition that H 2 (B \ Y 0 ) = 0, then, decreasing B if necessary, we get as before Y 0 \ B = B + and so d [Y ] = d [Y 0 ] near . This doesn't match the fact that F [M ] and F 0 [M 0 ] are two positive holomorphic chains of CP n n supported respectively by Y and Y 0 . So, H 2 (B \ Y 0 ) > 0 and hence, B Y 0 . Hence B Y 0 and Z Y 0 , which is again a contradiction. Going back to our …rst assumption, we get that H 2 (B + \ Y ) > 0 and hence B Y , still an impossibility. The lemma is proven. Lemma 17 When y 2 Y , M y = F 1 (fyg) is a …nite set and : Y : y 7 ! Card M y is bounded.

m6kc

  m;s e m ) is normally convergent on subsets of Z whose …rst projection is bounded and such that F = P m6k; 06s6r c m;s e m L s on Z + . We de…ne an operator P on S ; = [ (k;r)2Z N S k;r by setting PF = P m6k; 06s6r c m;s P (e m L s ) when F = P m6k; 06s6r c m;s e m L s 2 S k;r , the action of P on e m L s being de…ned by

Proof.

  We only need to check that for a given (m; s) 2 Z N, [P (e m L s )] 0 = e m L s . The cases m = 1 or (s = 0 & m 6 = 1) are quite evident. Assume s 6 = 0 and m 6 = 1. Then Z [1;y] (e m L s ) ( ) d = [e m+1 L s ]

e

  m+1 ( ) s L s 1 ( ) d If m 6 2, e m+1 ( ) 1 = ( 1) jmj jmj! m = me m and if m > 0, e m+1 ( ) L s ) ( ) d = e m+1 L s sa m Z [1;y] e m L s 1 ( ) d = A 0 s a 0 m e m+1 L s + + ( 1) s 1 A s 1 s a s 1 m e m+1 L 1 + ( 1) m e m+1 L s + + ( 1) s A s s a s m e m+1 L 0 = P (e m L s )and P (e m L s ) is indeed a primitive of e m L s .

  s e m L s 2 S k;r associates P m6k c m;0 e m .

e

  H extends holomorphically to Z and e H = 1 e 1 e e H (41) so that D is in fact de…ned on O (Z). Furthermore, is given for all x 2 C by the formula = lim jyj!+1 ln e H(x;y) ln jyj :

Corollary 33

 33 For 1 ; :::; d 2 O (C), we de…ne on Z holomorphic functions s k ( ; B), 1 6 k 6 d, bys k ( ; B) = e e H 1 e 1 B F k ( ) & F k ( ) = d X j=k F j k ( j e 0 ) ; 1 6 k 6 d: Let C B [Y ] = fB 2 C [Y ] ; B (0) = 1g. Then the map O (C) d C B [Y ] 3 ( ; B) 7 ! (s k ( ; B)) 16k6d is injective. Moreover, s 1 ( ; B) is a d-shock waves on Z if and only if s 1 ( ; B) = G 1 P and the discriminant ( ; B) of S ( ; B) = T d + s 1 ( ; B) T d 1 + + s d ( ; B) 2 O (Z) [T ] is not identically zero.Proof. Suppose that ( ; B) and( ; C) are two elements of O (C) d C B [Y ] such that (s k ( ; B)) 16k6n = (s k ( ; C)) 16k6d . Then on ZnE 1 , d 1 B = d 1 B . As B; C 2 C B [Y ],this implies B = C and d = d . Suppose that j = j when d > j > k > 1. The relation s k 1 ( ; B) = s k 1 ( ; C) can be then written F k 1 ( ) = F k 1 ( ) and this gives immediately k 1 = k 1 . Hence, = .

Lemma 35

 35 Let k 2 N and F = P m6k c m e m 2 S k;r . Then FF 2 c 0 k e k+1 + S k;r and hFF; e 0 i = 0.

  e m . As when m 2 Z , P 1;m def = P 0 1;m def = H 0 m 1 has degree jmj 1, the claims are true for k = 1.

k

  deg P m k;m 1 = m (m 1) 1 = 0 and that when m + 1 6 r 6 k, P m k;r = 0 since m 6 r 1 < r + 1. Hence P m k+1;m = 0. When m + 1 6 j 6 k 1, degP j 1 k;m 1 6 j 1 (m 1) 1 = j m 1, deg P j k;m 1 0 6 (j (m 1) 1) 1 = j m 1 and for m + 1 6 r 6 k, deg P j k;r H 0 m 1 r 6 (j r 1) + (r + 1 m) 2 = j m 2.Thus, (50) gives that deg P j k+1;m 6 j m 1. Lastly, deg P k k+1;m = deg P k 1 k;m 1 6 k 1 (m 1) 1 = k m 1. Assume now m 6 1. Degree computations for P k k+1;m and P j k+1;m when 1 6 j 6 k 1 are still valid. Formula (51) becomes P 0 k+1;m = P 0 0 k;r H 0 m 1 r and gives deg P 0 k+1;m 6 0 m 1 because deg P 0 k;m 1 0 6 (0 (m 1) 1) 1 = m 1 and for m + 1 6 r 6 k, deg P 0 k;r H 0 m 1 r 6 (0 r 1) + (r + 1 m) 2 = m 2. The proof is complete.

  max fp (p 2) 1; 1; deg p (p 2) 1g = 1 and hence that deg p 1 6 p 1. Assuming deg j 6 p 1 when m + 2 6 j 6 p 1, we obtain deg (m) m+1 6 max fp m 1; 1; p m 1g = p m 1 and thus deg m+1 6 p 1, which end this induction proof.

Remark.

  If c 2 C , (cA; cB) 2 C [Y ] 2 also veri…es G 1 = s 1 + X B 0 +1 A B. Hence, the condition B (0; y) ! C 3y!0

  L z = f(1 : h (z) : x yh (z)) ; p + 1 6 6 b pg : Since b Q is an algebraic curve, N b Q;1 < def = N h;1 + N h p+1 ;:::;h b p def = N h;1 + b N 1is algebraic and a¢ ne in x. Hence

  is the Abel-Radon transform ^[F ] where F = [F . This one being algebraic, the principal theorem of Henkin in [?] applies and gives in particular the existence of an algebraic curve eF and an algebraic form such that for all , j F = and for all z 2 U , eF \ L z = [L z \F . Given that b Q\ e F contains ( b QnQ) [ z2U L z , b Q e F . If e F 6 = b Q, b Qn e

  by D the Chern connection of h. A de…nition can be found in [?], [?, p. 73] or [?] but we recall here some basics. Consider a …xed non vanishing smooth section e of 1;0 T M over an open set W of M , holomorphic in W \ M , and let jej h = p h (e; e) be the point wise norm of e with respect to h . Then,

  One of the connected components of , says , is hence contained in Z; we equip of the orientation induce by . being smooth, there exists in Z a

Riemann (smooth) surface B such that Bn is included in (CP n n ) \ Reg Y \ Reg Y 0 and has only two connected components, B and B + . By construction, B is an open connected Riemann surface included in the complex curve Y [ Y 0 and hence, at least one of the two numbers H 2

  e are de…ned at the beginning of Section 6.1; N h;k and S h;k : (25); C [X; Y ) and C k [X; Y ) : Proposition 21; N Q (@Q) 0 : beginning of section 6.2; e m , m , r

k and S Q k : end of Section 6.1; P k : (29); B 1 and p k; : (31); , G k;m and e G k;m : Lemma 23; m , L : (38); S k;r and P : De…nition 28; H, E, , F : De…nition 30; F k : Corollary 33.

  As e H extends holomorphically to Z, (s 1 ; :::; s d ) 2 O (ZnE 1 ) d is a solution of (37) if and only if the equations Such a function d is actually holomorphic on C since for all y 2 Cne D, it would be given on D (0; jyj) by the formula d = s d (:; y) e H(:;y) B(y) . Hence, (45) also implies that e Bs d holomorphically extends to Z. Suppose that for k 2 f1; :::; d 1g, d ; :::; k 2 O (C) satisfy on Bs j = F 0 ( j e 0 ) + + F d j ( d e 0 ) e H when d > j > k + 1 and that each of these e Bs j extends holomorphically to Z. The equation Bs k+1 is then equivalent to the existence of a function k de…ned on C such that for all (x; y) 2 Z + nE 1 , Bs k+1 and e H extends holomorphically to Z, the only logarithmic term (46) may have comes from P applied to some elements of O (C) e 1 . As eBs k e H expands in usual Laurent series in e Z, theses logarithmic terms have to compensate. Hence, it turns out that the right side of (46) expands in usual Laurent series in Z, which yields that e Bs k holomorphically extends to Z and k 2 O (C). We also get

	ZnE 1								
			e							
	@ @y	e Bs k e H = e H @ @x	e						
		B (y) s k (x; y) e H(x;y) = k (x) + P e H @ @x	(Bs k+1 ) (x; y) :	(46)
	Since e								
		e Bs k e H =		1 e B s k e H = k e 0 + P e H @ @x	e Bs k+1
								we note that if s 2 O (Z) and e B = 1 B
		e B	s	@N @x	+	@s @y	= s	e B	@G 1 @x	+ e B 0 + e B	@s @y
							=	e Bs		@G 1 @x	+	@ e Bs @y	Bs = e H @e H e @y
		@e H e Bs d @y	= 0 &	@e H e Bs k @y	= e H @ e Bs k+1 @x	; 1 6 k 6 d 1	(44)
	are satis…ed on ZnE 1 . The …rst one is equivalent to the existence of a function d de…ned on
	C such that for all (x; y) 2 ZnE 1 ,				
						B (y) s d (x; y) = d (x) e H(x;y)	(45)

  Proposition 38 Assume that (s 1 ; :::; s d ) 2 O (ZnE 1 ) d is a solution of (37) with s 1 = G 1 P 1 and let ( 1 ; :::; d ) 2 O (C) d satis…es the system (43). Then d = p, p is a polynomial of degree p and

	(p)
	p

Since B \ = ?, B = (B \ Y ) [ B nY . B \ Y is an open subset B because by construction, B Reg Y \ Reg Y 0 . It is non empty by hypothesis. Hence B = B \ Y Y .

and pick a real such that 0 < < 1 4 min w2bQ jw 1 =w 0 j. Then the sets de…ned below are contained in U and play a crucial role :

Remark. The hypothesis (0 : 1 : 0) ; (0 : 0 : 1) = 2 Q (which ensures Q 1 fw 1 w 2 6 = 0g) and Q 1 Reg Q simpli…es some statements and calculus but are not all mandatory. We indicate for some formulas a version for the case Q 1 \ Sing Q 6 = ?.

The lemma below ensures that the reconstruction process initiated by Proposition 21 ends to a complete knowledge of Q ; thorough this paper D, is the unit open disk of C.

Lemma 20 For all w 2 Q \ fw 0 6 = 0g and all R 2 R + , there exists z 2 U reg \ C CnRD such that w 2 L z .

Proof. Let R 2 [e ; +1[ and w 2 Q such that w 0 6 = 0. Set = w 1 w 0 ; w 2 w 0 . The points z = (x; y) of C 2 such that w 2 L z form the line L w of equation x + y 1 + 2 = 0. If L w (R) = L w \ C CnRD doesn't meet U , for all y 2 CnRD, there exists in bQ an element w = (1 : 1 : 2 ) which is also in L ( y 1 2 ;y) so that y = 2 2 1 1 . Given that bQ is a real curve, CnRD can't be contained in the image of bQ by 7 ! 

and df B doesn't vanish in B. Denote E (R) the set of points z 2 L w (R) such that L z and Q are tangential at some point of L z \ Q. A point z = (x; y) 2 C 2 belongs to E (R) when jyj > R and there exists B 2 B and 2 V B verifying the conditions f B ( ) = 0; x + y 1 + 2 = 0; x + y 1 + 2 = 0; @f B @ 2 ( ) 6 = 0; y = @f B =@ 1 @f B =@ 2 ( ) ; x = @f B =@ 1 @f B =@ 2 ( ) 1 2

When 6 = , this forces 1 6 = 1 and @f B =@ 1 @f B =@ 2 ( ) = 2 2 1 1 . The points satisfying this equation form an analytic subset C B of B. For this reason, C B is either discrete, or equal to B.

Suppose that C B = B for an element B of B. Then @f B =@ 2 doesn't vanish in V B and we can …nd locally a holomorphic function ' such that f B ( ) = 0 if and only if 2 = ' ( 1 ).

The function ' veri…es then '

where c is a constant. In this case, B is an open subset of the line de…ned by the equation 2 = ( 1 1 ) c + 2 . Since Q is connected and has only nodal singularities, this implies that Q itself lies in this line. It su¢ ces then to pick any y su¢ ciently large to get that L ( y 1 2 ;y) meets Q only not tangentially. When C B is a discrete subset of B, the set E (R; B) of elements z in L w (R) such that L z are B are tangential at some point of L z \ B is contained, because of the above relations, in a discrete set. Since B is locally …nite, the study of these two cases shows that L w (R) meets U reg \ C CnRD .

The starting point of all this section is Proposition 21 below about the Cauchy-Fantapié Corollary 25 Notation and hypothesis remains as stated in Proposition 21. For all k 2 N , N h;k extends to ZnE 1 as a holomorphic function N Q k which doesn't depend of z and which expands in Laurent series on e Z in the form

where the N Q k;n are polynomials of degree at most n. Moreover, for all z 2 Z reg , there exists shock waves h z 1 ; :::; h z p whose images are mutually distinct and such for z 0 su¢ ciently close to z, N

Proof. Let k 2 N. We know that N h;k = G k P k on U and thanks to Lemma 22 that P k is an algebraic fraction which doesn't depend on z and which is de…ned on ZnE 1 . Hence,

Applying Proposition 21 and Corollary 24 with an arbitrary point z of Z reg nE 1 , we obtain shock waves h z 1 ; :::; h z p with the claimed properties. Furthermore, Lemma 22 also gives that

1+Y b q and p ;0 = P j=1 P q2Q 1 p q ;0;j (1+Y b q ) j . For jyj > e , one get

;0 y m with p 1;m ;0 = ( 1) m P (n;j)2N f1;:::; g; n+j=m+1 (j 1)! P q2Q 1 (b q ) n p q ;0;j . It su¢ ces then to combine these formulas with Lemma 23 in order to get the announced statements.

Corollary 26 Notation and hypothesis remain as stated in Proposition 21. Denote by S Q k , k 2 N , the functions obtained from (26) and N Q k k2N which is de…ned in Corollary (25 ; locally the S Q k are the symmetric functions of the functions h 1 ; ::; h p of Proposition 21. Then for all k 2 N , S Q k expands in Laurent series on e Z.

A genesis of multiple shock wave

In this section, we look for a characterization of when N is a multiple shock wave, that is a sum of shock waves. Theorem 4 of [?] gives a characterization of such sums but in this article, we use one which is more adapted to the present situation. This two characterizations correspond more or less to emphasize one of the variables x or y and rely on the following lemma whose proof is omitted since it follows easily from [?, Lemma 16] and the proof of [?, Proposition 17] which means that some function of the two variables x and y actually depends only on one of them, takes some space even for d = p = 1. In this case q 1 = 1 , 2 Z \ ] 1; 1] and taking in account 53, De…nition 30, writing e H = X m6q 1 1 e h m e m and 1

g 1;m e m , we get after some calculus that

So the vanishing of the y-derivative of the left member of the above equation yields in…nitely many linear equations on the two coe¢ cients of 1 . Certainty 0 is not the only solution comes only from the fact that we have assumed that p is equal to 1. For a general p, the number of j increases but also their degree. Hence, Theorem 6 which gives an upper bound for p is of practical importance. In this article, we spare space by avoiding to write out completely explicitly S d .

Uniqueness of shock wave decompositions

1 and 6 = 0 where B and are de…ned in Theorem 39 . This theorem tells that R p 6 = ? and that if 2 R d , produces by explicit formulas a decomposition of G 1 in the form

and B (0) = 1. Thus, we know thanks to Proposition 33 that for z 2 Z outside a proper analytic subset S of Z and for a su¢ ciently small neighborhood U of z , there exists shock waves g 1 ; :::; g d on U whose images are mutually distinct such that for all z 2 U ,

where the functions h j are the shock waves h z j de…ned in Corollary 25, that is the shock waves generated by the collision of Q with the lines L z , z 2 U .

A priori, nothing guaranties that fg 1 ; :::; g d g = fh 1 ; :::; h p g because for example, it may happen that there exists a …nite non empty subset J of f1; :::; dg such that P Iterating this reduction, arrises the situation where

The case d = 0 happens at the end of these iterations only if at the beginning, P 16j6d g j and so

The lemma below studies this case.

Lemma 40 We use notation of Corollary 25. G 1 extends as an element of C (Y ) 1 [X] if and only if Q is a domain in a compact connected curve K such that for all z in Z reg and z in a su¢ ciently small neighborhood U of z in Z reg ,

Proof. Suppose at …rst that K is a compact curve with the above properties. Fix z and U as in the statement. Since K is an algebraic curve, we know from Abel's work that

(see e.g. [?]). It follows that G 1 = N h z ;1 + P 1 is, on U and so on Z, rational in y and a¢ ne in x.

Conversely, suppose that

In case G 1 is algebraic in y and a¢ ne in x, the algebraic curve K of Lemma 40 is known in a neighborhood of bQ. We can then pick generically homogeneous coordinates w in order at least one line L z , z 2 U , meets KnQ. We are thus brought back to the general case since Lemma 40 ensures then that even after reduction, d isn't zero.

With Proposition 41 which is proved thanks to results of Henkin [?] and of Collion [?], we know that when this reduction ends, the remaining shock waves functions are those we are looking for.

Proposition 41 Notation remains as stated in this section and we suppose (67) veri…ed. For the case where Q is contained in an algebraic curve, b Q denoting then the smallest one with this property, we suppose that (0 : 1 : 0) = 2 b Q and at at least one of the lines L z , z 2 U , meets Q and b

QnQ. That being so, fg 1 ; :::; g d g = fh 1 ; :::; h p g and P = P 1 .

Proof. After a possible renumbering, we assume that g = h , 1 6 6 t 2 N and fg t+1 ; :::; g d g \ fh t+1 ; :::; h p g = ?.

1) Suppose that Q isn't contained in an algebraic curve. Then d 2 N because otherwise, N h;1 2 C (Y ) 1 [X] and G 1 , which is the sum of N h;1 and P 1 , appears to be the restriction to U of an element of C (Y ) 1 [X]. According to lemma 40, this would contradict our hypothesis.

Suppose t < min (p; d). Up to a change of the reference point z and a decrease of U , we suppose that the curves H = f(1 : h (z) : x yh (z)) ; z 2 U g, t + 1 6 6 p and C = f(1 : g (z) : x yg (z)) ; z 2 U g, t+1 6 6 d are smooths and mutually disjoint. We then denote ' the di¤erential form de…ned on the union C of this curves curves by ' j H = d w 1 w 0 when t + 1 6 6 p and ' j C = d w 1 w 0 when t + 1 6 6 d. We note AR the Abel-Radon transform of the current ' ^

g ):

AR is hence algebraic in the sense of [?] so that Theorem 1.2 of [?] applies and gives in particular the existence of an algebraic curve containing C. Since Q isn't contained in , the connectedness of Q entails that none of the curves H is contained in and thus that Belishev gives for a connected boundary the formula

where T is the tangential derivation, N is the Dirichlet-Neumann operator of (M; C ) in its metric issue, that is the one which to u 2 C 1 (bM ) associates the normal derivative along bM of the harmonic extension of u to M and J is the natural primivitization operator de…ned on the space of function u whose integral over @M is 0. However, a priori calculus of the rank of T + (N J) 2 T isn't easy and this formula is limited to connected boundaries. To bypass this di¢ culty, [?] and [?] propose to use Dirichlet-Neumann operators acting on forms. This gives simple formulas for g (M ) when the conductivity reduces to a complex structure but it is not clear that these operators have physics meaning.

To produce formulas whose ingredients are computable from N d , we use special volume forms for M and special metrics for the bundle 1;0 T M of the (1; 0)-forms on M .

De…nition 42 Let M be a Riemann surface with boundary and a de…ning function of bM , which means that 2 C 1 M ; R is such that j M < 0, j bM = 0 and (d ) s 6 = 0 for any s 2 bM . Under these conditions, any section ! of p;q T M of class C k , k > 1, on an open subset U of M can be written in the form ! 0 + ! 1 where ! j , j = 0; 1, is a section of p;q T M on U of class C k j , the couple (! (0) ; ! (1) ) = (! 0 j U \bM ; ! 1 j U \bM ) being the same for all (! 0 ; ! 1 ) such that ! = ! 0 + ! 1 . The fact that ! (1) vanishes doesn't depend of the choice of the chosen de…ning function . ! is said tangent to bM when ! (1) = 0.

The existence of a decomposition ! = ! 0 + ! 1 follows from the fact that can be chosen as part of a system of real coordinates for M near bM . Uniqueness of (! (0) ; ! (1) ) proceed from the same reason and if 0 is another de…ning function of bM , one can write 0 = where is a never vanishing function, so that vanishing of !

(1)

(1) and !

(1) are simultaneous. Note that when M is equipped with a Hermitian metric and is the distance to bM , !

(1) = @! @ j bM is nothing else that the derivative of ! with respect to the unitary vector directing the exterior normal to M at points of bM . The lemma below ensures the existence of volume forms satisfying the hypothesis of this section's main theorem.

Lemma 43 Let (M; ) be a conductivity structure. Then M admits a volume form of class C 2 tangential to its boundary and whose restriction to bM is computable from boundary data associated to (M; ).

Proof. As it is pointed out at the end of Section 3, we can design from boundary data a smooth section 0 over bM of the bundle of volume forms of M . Let c M be the double of M (see the proof of Theorem 44 for a detailed construction), V an arbitrary volume form of class C 2 on c M and 2 C 1 ( c M ; R) such that M = f < 0g, bM = f = 0g and (d ) s 6 = 0 for any s 2 bM . Using the Whitney extension theorem (see [?, prop. 2.2]), one can constructs a section e V of 1;1 T c M of class C 2 such that e V j bM = 0 and V (1) = @ e V @ j bM = 0. By continuity, there exists a neighborhood of bM in c M such that e V j is a volume form. Choose 2 C 1 (M; [0; 1]) equal to 1 in a neighborhood of bM in and whose support is contained in .

M such that W

(1) = @W @ j bM = 0. Let (M; ) be a conductivity structure and a volume form for M as in Lemma 43. Denote and 1;0 T M the conjugation operator and the bundle of (1; 0)-forms associated to (M; C ). R @M j bM @ . (71) indicates then R @M j bM @ = 0. To check this a priori, let us consider a de…ning function of bM . From the relation @ @ = e @ 0 @ + 0 @ @ which holds on bM , we get @ @ j bM = 0. Equip M with a Hermitian metric and consider a smooth section ( ; ) of T bM M 2 such that for any s 2 bM , ( s ; s ) is an orthonormal direct basis of T s M . Then, for all s 2 bM , (@ ) s = 1 2 (( ) s i ( ) s ) ( s + i s ) where ( s ; s ) is the dual basis of ( s ; s ). When s 2 bM , the fact that @ @ (s) = 0 indicates that (d ) s 2 R s and hence ( ) s = 0, which gives (@ ) s = 1 2i ( ) s ( s i s ). Thus, j bM @ = 1 2i ( ) j M = 1 2i j bM d . So, j bM @ is exact and its integral over @M is zero.

With Formula (74) below, we obtain Corollary 45 as a particular case of Theorem 44.

Corollary 45 Hypothesis and notation remains as in Theorem 44. Let u 2 C 1 (bM ), e u its Charmonic extension to M and q the number N z (@ e u) of zeros of @ e u counted with multiplicity where @ = d @ and @ is the Cauchy-Riemann operator of (M; C ). We assume that @ e u has no zero on bM . Then

Proof of Theorem 44. Let us begin by detailing a construction of the double c M of M which for example can be found in [?]. Let U be an atlas of M . We use the following notation : for 2 f 1; +1g and X M , X = X f g and if

of the form (s; 1) and (s; 1) are identi…ed and form the real curve . M 1 is equipped with the complex structure associated to the atlas U 1 formed by the maps ' 1 : U 1 3 p 7 ! ' ( (p)) where ' : U ! C is arbitrary U. For M 1 , we use the atlas U 1 of the maps ' 1 :

M a complex structure by letting U b be the set of maps ' b de…ned as follows : consider a boundary chart for

and ' b (s; 1) = ' (s) for any s 2 U .

We de…ne volume forms 1 and 1 on M 1 and M 1 by letting when ' :

This de…nition is obviously coherent for 1 . Suppose : V ! C is another chart of M and = idz ^dz. Denote : (U \ V ) 3 z 7 ! ' ( 1 (z)) the change of chart from to '. Hence, = j 0 j 2

'

. The transition map from

Thus,

which proves the coherency of the de…nition of 1 .

The forms 1 and 1 continuously glue along in a volume form b for c M . Indeed, consider a boundary chart ' : U ! C and M and the chart A proof of the last equality can be found for example in [?, Th. 9.1 p. 284 of 1st ed.] or in [?, p. 319] where it is called Hurwitz's formula.

Denote j the natural symmetry of c M with respect to and c the conjugation of C. When ' : U ! C is a chart of M , the expression of j in the charts ' 1 and ' 1 is ' 1 j (' 1 ) 1 that is c U U . Thus, j exchange the orientations of M 1 and M 1 which gives

M , the map e : j (V ) ! C de…ned by e = j is also a chart of c M . This enables (see [?] for example) starting with a section ! of T c M on a subset X of c M , to de…ne a section e ! of T c M on j (X) by setting for any chart : V ! C of c M such that V \ X 6 = ?, e e ! w = (w) dw + (w) dw when ! = dz + dz and w 2 (V \ X). In particular, ! being a …xed section of 1;0 T M without zero on M , holomorphic on bM and of class

) is a section of 1;0 T c M without zero on X 1 (resp. X 1 ), holomorphic on X 1 (resp. X 1 ) and of class C 1 on (resp. X 1 ). Setting f = ln b h (! ) 2 , we then knows that b j M = d@f ; = 1:

Fix a chart ' : U ! C and set ' ! = dz. Then (' 1 ) ! 1 = dz and (f ' 1 ) ! 1 = (w)dw.

Since acts on (0; 1)-forms as multiplication by i 2 , one gets

In the chart ' 1 , 1 writes as ' 1 1 = ' ( z) i 2 dz ^dz. f ' 1 is also a chart de…ned on j (U 1 ) = U 1 and the transition map from f ' 1 to ' 1 is the map which to w 2 f ' 1 (U 1 ) = U associates the number (w) de…ned by We need one last lemma before proving Theorem 6.

Lemma 47 Let Q be a nodal Riemann surface with boundary which is a quotient of a Riemann surface with boundary S. For q 2 Sing Q, denote by (q) the number of branches of Q at q. Then the Euler characteristics of S and Q are linked by the relation

( (q) 1) :

Proof. Let be the natural projection of S onto Q and consider a triangulation T of S such that any point of X = 1 Sing Q is a vertex of T . We can also assume that T is su¢ ciently re…ned so that a same triangle of T contains at most one point of X. Denote by V the set of vertices of T , E its sets of edges and F its set of faces. Then and T induce a natural triangulation T of Q whose set V of its vertices is (V nX) [ Sing Q . As any triangle of T contains at most one point of X, T and T have the same number of edges and faces while j V j = j (V nX)j + Sing Q = jV j jXj + Sing Q = jV j X q2Sing Q ( (q) 1)

Lemma 46 gives that S = 1 g (S)

. Thus, S = jV j jEj + jF j = j V j jEj + jF j + X q2Sing Q ( (q) 1) = Q + X q2Sing Q ( (q) 1) :

Proof of Theorem 6. Let j 2 f1; 2g and q 1 j = Card Q j \ fw 0 = 0g. Then, p j = j + q 1 6 j + N z (@ e u 0 ). Thus, Formula (72) gives

D@ e u 0 @ e u 0 M

As M is a nodal quotient of M by the nodal relation induced by F , we can apply Lemma 47. So, M > M and we get the sought inequality. As mentioned after Theorem 2, M is computable from boundary data and as explained above in this section with Formula (70), D@ f u 0 @ f u 0 j bM is computable from available boundary data. The proof is complete.