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Abstract

In this article, we introduce a process to reconstruct a Riemann surface with boundary equipped
with a linked conductivity tensor from its boundary and the Dirichlet-Neumann operator asso-
ciated to this conductivity. When initial data comes from a two dimensional real Riemannian
surface equipped with a conductivity tensor, this process recovers its conductivity structure.
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This paper(1) is organized as follows. Section 1 gives a short non-exhaustive history of the
subject and Section 2 contains some of our main results. Section 3 is meant to fix definitions and
notation about conductivity structures but also to state some results which, if not new, are not
completely explicit in literature. Nodal manifolds are inevitably involved in the reconstruction
methods proposed here. Section 4.1 contains what we need about them. Sections 4.2 and 5 are
devoted to the proofs of Theorems 5 and 3. Section 6 is about the effective reconstruction of
a bordered Riemann surface from its Dirichlet-Neumann operator. This is a key case for the
inverse conductivity problem. Our method is based on a new a priori analysis of decompositions
of a two variables holomorphic function as a sum of shock waves functions, that is holomorphic
solutions of ∂h

∂y
= h∂h

∂x
. Section 7 enables to link the key number p of these sought shock waves

to the Euler characteristic of a computable complex curve of C2.

1 Introduction

We define a (two dimensional) conductivity structure as a couple (M,σ) where M is a
connected real surface with boundary(2) equipped with a conductivity σ : T ∗M → T ∗M , that
is a tensor such that

T ∗pM × T ∗pM 3 (a, b) 7→ a ∧ σp (b)

µp

is a positive symmetric bilinear form, µ being a fixed volume form for M . In the sequel we
get rid of brackets for the action of σ on a differential form ω by writing σω for σ (ω), that is
the form M 3 p 7→ σp (ωp). The above definition of a conductivity is perhaps unusual but is
nothing than an intrinsic reformulation(3) of the one given by [?]. In this paper, conductivities
are assumed to be at least of class C3 though it is not mandatory for all statements.

1Acknowledgment. I would like to thank the referees for their careful reading and suggestions
2We think of a surface with boundaryM as a dense open subset of an oriented two dimensional real manifold

with boundary M whose all connected components are bounded by pure one dimensional real manifolds ; so
the topological boundary bM of M is M\M ; in the sequel ∂M is bM equipped with the natural orientation
induced by M . A Riemann surface with boundary is a connected complex manifold of dimension 1 which is
also a real surface with boundary.

3If we fix a point p inM , some coordinates (x, y) around p and we set as in [?] (ξ, η) = (dy,−dx) then σ (dx) =
rξ+tη and σ (dy) = uξ+sη, for a = axdx+aydy and b = bxdx+bydy in TpM , σp (b) = (bxr + byu) ξ+(bxt+ bys) η
and

a ∧ σp (b) = (axdx+ aydy) ∧ [(bxr + byu) dy − (bxt+ bys) dx]
= (raxbx + uaxby + taybx + sbxby) dx ∧ dy
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For any continuous function u : bM → R, we denote Eσu the unique solution of the following
Dirichlet problem :

dσdU = 0 & U |bM = u. (1)

Some authors prefer to consider a Riemannian metric g on M and solutions of the Dirichlet
problem (∆gU = 0 & U |bM = u) where ∆g is the Laplace-Beltrami operator. Writing in co-
ordinates the equations dσdU = 0 and ∆gU = 0, one sees that these two formulations are
equivalent only when detσp = 1 for all p ∈M .
The positive function sσ =

√
detσ plays a special role in our subject. We call it the

coeffi cient of σ. In Section 3, we establish that σ can be uniquely factorized in the form
σ = sσcσ where cσ is a conductivity of coeffi cient 1 and also the conjugation operator acting
on T ∗M of a complex structure Cσ uniquely associated to σ. Thus, the condition that detσ is
constant means that (M,σ) is nothing more than the Riemann surface (M, Cσ).

The inverse conductivity problem we consider belongs to Electrical Impedance Tomographic
problems ; in physics, U should be considered as an electrical potential, σ (dU) as the electrical
current generated by U and dσdU = 0 as the Maxwell divergence equation when there is no
time dependence. The EIT problem is generally thought as the reconstruction of (M,σ) from

∂M , the boundary bM of M orientated by M , T ∗bMM = ∪
p∈bM

T ∗pM , σ
∣∣∣T ∗bMM and the Dirichlet-

Neumann operator associated to σ. This formulation is somehow ambiguous because it doesn’t
tell if M has to be determined as an abstract manifold, an embedded manifold or even more
precisely as a particular submanifold of some standard space. Success depends of the chosen
position. Before going into what can be recovered and how it can be, we have to clarify what
is a Dirichlet-Neumann operator.

To do so, one can use a metric (see Section 3) but we prefer to use the «differential»
Dirichlet-Neumann operator Nσ

d whose action on a suffi ciently smooth function u : bM → R is
defined by

Nσ
d u = [σd (Eσu)]|bM (2)

Hence, in physics, Nσ
d u is the measurement along bM of the current generated by the electrical

potential Eσu.
When M is a domain in R2, the conductivity is often thought as the matrix (σjk) =

Mat
(dx2,−dx1)
(dx1,dx2) (σ) which represents at each point p the linear map σp from T ∗pM with (dx1, dx2)

as domain basis to T ∗pM with (dx2,−dx1) as range basis, (x1, x2) being the standard coordinates
of R2 ; (1) turns to be ∑

j,k=1,2

∂

∂xj

(
σjk

∂U

∂xk

)
= 0 & U |bM = u. (3)

and the conditions constraining σ as a conductivity translate into the fact that (σjk) is sym-
metric and positive.
The task, understood as the reconstruction of (σjk) from (∂M,Nσ

d ), has no natural solution
because it is known from a remark of Tartar cited by [?], that when ϕ ∈ C1

(
M,M

)
is a diffeo-

morphism matching identity on bM and Φ is the Jacobian matrix of ϕ, (σ′jk) = 1
det Φ

tΦ (σjk) Φ

defines a conductivity σ′ such that Nσ′
d = Nσ

d . However, Lemma 8 of Section 3 shows that ϕ is
a biholomorphism between the Riemann surfaces (M, Cσ) and (M, Cσ′) where Cσ (resp. Cσ′) is
the complex structure where σ = sc (resp. σ′ = s′c′), s (resp. s′) being a positive function on
M and c (resp. c′) the conjugation operator on T ∗M associated to Cσ (resp. Cσ′). Though they
have the same underlying set, it is more accurate to see (M, Cσ) and (M, Cσ′) as two different
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embeddings of the same abstract Riemann surface.
This example leads to consider the two dimensional inverse conductivity problem as the

reconstruction ofM , an abstract Riemann surface with boundary, and of a function s : M → R∗+
from the knowledge of bM , s |bM , the action on T ∗bMM of the conjugation operator c of M and
the Dirichlet-Neumann operator

N sc
d : F (bM) 3 u 7→ dcEscu|bM

where F (M) is any reasonable functions space like C0 (bM), C∞ (bM) or H1/2 (bM), dc =
i
(
∂ − ∂

)
, ∂ = d − ∂ and ∂ is the Cauchy-Riemann operator of M . In particular, even if data

come from a Riemannian manifold (M, g) equipped with a conductivity tensor σ, we think our
inverse problem as the reconstruction of the Riemann surface (M,Cσ) and of the coeffi cient of
σ. Note that this formulation doesn’t mention the auxiliary volume form µ because as explained
in section 3, the knowledge of the complex structure of M along bM enables to bypass it.

When (M,σ) is a two dimensional conductivity structure embedded in a real or complex
affi ne space, M can also be endowed the complex structure C induced by restriction of the
ambient space metric. If c denotes the conjugation operator of C acting on T ∗M , σ is said to be
isotropic (relatively to c or C) if there is a function s : M → R∗+ such that σ = sc. In another
words, to assume that σ is isotropic (relatively to the ambient metric) means to suppose the
complex structure Cσ associated to σ is already known. In such circumstances, the inverse
problem we talk about is to recover the positive function sσ = σ/c =

√
detσ.

At this point, one may ask what can happen if the starting point is a known Riemann
surface X embedded in R3 whose complex structure C is inherited from the standard euclidean
structure of R3 and σ is any conductivity on X. When σ is isotropic relatively to C, Cσ = C and
the reconstruction task is done by the Henkin-Novikov theorem 1 below. For a non isotropic
conductivity, should an atlas of the abstract Riemann surface (X, Cσ) be recovered from Nσ

d ,
any constructive metric embedding X ′ of it in R3 could be considered also as recovered from
Nσ
d . Of course, X and X ′ will be homeomorphic but (X, C) and X ′ will be different Riemann

surfaces. Moreover, in practical cases, only the boundary of X may be known. So it is not
necessarily relevant to consider that X is already embedded in some standard space to which
Cσ would be unrelated. Besides, in the main theorem of [?] quoted by Theorem 2, (M,σ) is
given as embedded in R3 but is considered for the proof as embedded in C3 with an anisotropic
conductivity while in [?], M is thought as embedded in CP3.

For a bounded domainM of R2 equipped with an isotropic conductivity σ, it is known that σ
is completely determined by its Dirichlet-Neumann operator. This uniqueness is established for
a real analytic conductivity by Kohn and Vogelius in [?]. For a smooth isotropic conductivity,
an effective reconstruction process has been given by Novikov in [?] and for a conductivity with
a positive lower bound and of classW 2,p, p > 1, by Nachman in [?]. Another proof of this result
has been written by Gutarts in [?] for a smooth conductivity. WhenM is a connected Riemann
surface whose genus is known, Henkin and Novikov in [?, th. 1.2] generalize and correct the
reconstruction results of an isotropic conductivity of [?]. The necessarily technical aspect of
the main result of [?, th. 1.2] limits us to give here only a sketch of it.

Theorem 1 (Henkin-Novikov, 2011) LetM be a Riemann surface of genus g equipped with
an isotropic conductivity σ = sc where s ∈ C3

(
M,R∗+

)
and c is the conjugation operator of

M acting on 1-forms. Then s can be recovered from the Dirichlet-Neumann operator Nσ
d by

solving g Fredholm equations associated to g generic data of Nσ
d and then by solving g explicit

systems which, in the case where M is a domain of {z ∈ C2; P (z) = 0}, P ∈ CN [X], are
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linear systems of N (N − 1) equations with N (N − 1) unknowns.

When the conductivity isn’t isotropic, authors have focused on the injectivity up to diffeo-
morphism of σ 7→ Nσ

d , that is on the reverse of Tartar’s remark. This injectivity is proved
by Nachman [?] for a bounded domain of class C3 in R2 and a conductivity of class C3 after
Sylvester [?] proved it with additional hypothesis. In [?], it is established for a conductivity of
class L∞ but for a simply connected domain of R2.
In the special case where the conductivity coeffi cient is constant, the question is to know

if two conformal structures on M are identical when they share the same Dirichlet-Neumann
operator. A positive answer is claimed by Lassas and Uhlmann in [?] when M is connected
and Belishev confirmed it in [?] by showing that M can be seen as the spectra of the algebra
of restrictions to bM of holomorphic functions on M extending continuously to M .
In [?] and [?], the complete knowledge of the Dirichlet-Neumann operator is necessary to get

the uniqueness of the conformal structure. In [?], it is said that it is determined by the action
of the Dirichlet-Neumann operator on only three generic functions but the proof provided for
this result is correct only if one strengthens a little the generic conditions required for these
functions as it is done in [?]. This uniqueness can also be obtained by increasing the number
of generic functions as in [?]. Theorem 3 below gives a proof with the hypothesis of [?] and at
the end of this section, we propose a new reconstruction of the Riemann surface (M, Cσ).
In [?] for a domain of R2 and in [?, Th. 1.1] for the general case of a real two dimensional

connected manifold M , Henkin and Santacesaria made a major breakthrough in the theory by
proving that the Dirichlet-Neumann operator determines the complex structure Cσ of (M,σ)
as a nodal Riemann surface nodal with boundary embedded in C2. We refer to section 4.1 for
definitions and notation about nodal surfaces.

Theorem 2 (Henkin-Santacesaria, 2012) Let (M,σ) be a conductivity structure, σ being
of class C3. Then, there exists in C2 a nodal Riemann surface with boundary M and a C3-
normalization F : M → M such that F∗σ = tcM where t ∈ C3

(
M,R∗+

)
and cM is the

conjugation operator of the complex structure induced by C2 onM. If in addition F : M →M′

is another C3-normalization of the same kind,M andM′ are roughly isomorphic in the sense
of [?]. Lastly, the boundary value of F and in particular bM are determined by bM , σ

∣∣∣T ∗bMM
and the Dirichlet-Neumann operator Nσ

d of (M,σ).

Note that thanks to Lemma 8, F is holomorphic in the sense that for any subset V of M
such that F (V ) is a branch of M, F is analytic from (V, Cσ) to C2. Besides, this theorem’s
proof implies that the singularities ofM are the points of F

(
M
)
with many preimages by F .

So, whenM as no singularity, F is a diffeomorphism fromM ontoM satisfying the hypothesis
of Lemma 8, which makes it an isomorphism of Riemann surfaces with boundary from (M, Cσ)
ontoM.
In [?], it is said that M and M′ are isomorphic without providing a precise meaning for

it. Let us succinctly prove it involves at least rough isomorphism as defined in Section 4.1.
Suppose that F : M → M and G : M → M′ are C3-normalizations of the above kind.
Set Freg = F

∣∣∣RegMF−1(RegM) , Greg = G
∣∣∣RegM′G−1(RegM′) and denotes by Hreg the map from RegM′ ∩

G (F−1 (RegM)) to RegM∩F (RegM′) defined by Hreg (z) = Freg

(
G−1

reg (z)
)
. Because F and

G are normalizations, Hreg extends holomorphically along any branch ofM′ as a (multivalued)
map H from M′ to M. By construction, H (M′) and M are complex curves which are
different at most at a finite number of points. Hence, they are equal and in particular, SingM
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and SingM′ has the same cardinal. It follows thatM andM′ are roughly isomorphic. The
analysis of Theorem 2 is carry on in the next section.

2 Main results

The nodal Riemann surfacesM andM′ involved in Theorem 2 are actually isomorphic in
the strong sense of this article. Indeed, by lifting to M ,M andM′ induce complex structures
on M which coincide on bM and share the same Dirichlet-Neumann operator. Then, Theo-
rem 3 below enables to tell that these lifted Riemann surfaces with boundary are isomorphic
and hence, that M and M′ are so as nodal Riemann surfaces with boundary. The proof of
Theorem 3 is given in Section 3. When n = 2, it completes the proof of Theorem 1 of [?] whose
arguments really had to be corrected. By the way, as said before, Theorem 3 also proves the
isomorphism claim of [?, Th. 1.1].
In the statement below, [w0 : · · · : wn] denotes the standard homogeneous coordinates of

CPn. If ω0, ..., ωn are (1, 0)-forms of CPn without common zero and are pairwise proportional,
we denote by [ω0 : · · · : ωn] or [ω] the map defined on each {ωj 6= 0} by [ω] =

[
ω0
ωj

: · · · : ωn
ωj

]
.

Note that the hypothesis required for (u0, ..., un) in the theorem below is generically verified
within n-uples of smooth functions on the boundary (see [?, ?]).

Theorem 3 (Henkin-Michel, 2007) Let M and M ′, two smooth Riemann surfaces bordered
by the same real curve γ. Set ∂ = d − ∂ (resp. ∂′ = d − ∂′), ∂ (resp. ∂′) being the Cauchy-
Riemann operator of M (resp. M ′). If u ∈ C∞ (γ), denote ũ (resp. û) the harmonic extension
of u to M (resp. M ′) and set θu = (∂ũ) |γ (resp. θ′u = (∂′û) |γ ) ; θ (resp. θ′) is also the
operator θσc defined by (9) when σ is the conjugation operator of M (resp. M ′) acting on
1-forms.
Select u = (u0, ..., un) ∈ C∞ (γ)n+1 where n ∈ N∗, suppose that for all j ∈ {0, ..., n},

θuj = θ′uj, the map [θu] = [θu0 : · · · : θun] = [θ′u] is well defined, realizes an embedding of
γ in {w ∈ CPn; w0 6= 0} and suppose in addition that [∂ũ] (resp. [∂′û]) is well defined on M
(resp. M ′) and extends meromorphically [θu] (resp. [θ′u]) to M (resp. M ′). Under these
conditions, there exists an isomorphism of Riemann surfaces with boundary from M onto M ′

whose restriction to γ is identity.

Hence, the regular part of the nodal Riemann surfaceM produced by the Henkin-Santacesaria
theorem is a model for the complex structure of (M\F−1 (SingM) , σ). This model is effec-
tively computable. Indeed, M is a complex curve of C2\bM which in the sense of currents
satisfies d [M] = F∗ [∂M ] where [M] denotes the integration current onM and [∂M ] the one
of bM oriented by M . In this situation, one knows, essentially since the works of Harvey and
Lawson [?, ?], thatM is computable thanks to Cauchy type formulas (see e.g. [?, Th. 2] or [?,
Prop. 1]). More specifically, becauseM lies in C2, these formulas directly give the symmetric
functions of the functions whose graphs describes the intersections ofM with a chosen family
of complex lines.
Meanwhile, as only the boundary values of F are known, there is an ambiguity on how to

unfold the possible nodes of M. To really know the complex structure Cσ of M , one has to
know an atlas of it or a true embedding of it in some classical space. When the coeffi cient of
σ is constant, it is the same thing as recovering (M, Cσ). This particular case is studied in [?,
Th. 4] and with the remark made at page 327, we readily have the result below for which we
refer to [?] for the precise meaning of generic. Note also that though [?] is formally only about
Riemann surfaces, the only part of the theorem below which isn’t explicit in [?] is the isotropy
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statement but it is a plain consequence of the fact that Θ is a biholomorphism from (M, Cσ) to
S.
The theorem below introduces operators which play a crucial role in this paper. When

(M,σ) is a conductivity structure, we set ∂σ = d − ∂σ and dσ = i
(
∂σ − ∂σ

)
where ∂σ is the

Cauchy-Riemann operator of Riemann surface (M, Cσ). The operator θσc acts on u ∈ C∞ (bM)
by θσc u = (∂σũ) |bM , ũ being the Cσ-harmonic extension to M of u. The theorem doesn’t
mention the regularity of σ because what matters is that (M, Cσ) is a smooth manifold with
boundary so that Stokes formula holds.

Theorem 4 (Henkin-Michel, 2015) Let (M,σ) be a conductivity structure. Then for generic
u = (u0, ..., u3) in C∞ (bM,R)4, the map [θσc u] = [θσc u0 : · · · : θσc u3] is the boundary value of
a map Θ which embeds (M, Cσ) in CP3 as a Riemann surface S with boundary. Moreover,
Θ = [∂σũ] where ũ is the Cσ-harmonic extension of u to M , and Θ∗σ is a conductivity isotropic
relatively to the complex structure of S.

One should be careful here because the operator θσc can’t be thought as directly available
fromNσ

d . Even if σ is the identity on the fibers of T
∗M along bM , what is immediately available

from Nσ
d are the boundary values of the derivatives of solutions of Dirichlet problems dσdU = 0

and U |bM = u while what is required to apply Theorem 4 are the boundary values of the
derivatives of solutions of Dirichlet problems ddσU = 0 and U |bM = u. Unless the coeffi cient
of σ is constant, one can’t expect these boundary values to be the same. To cope with this
diffi culty, we have Theorem 5 which is a new result.
Before stating it, we explain some notation but complete details and proofs are in written in

Section 4.2. We says that the conductivity structure (M̃, σ̃) extends plainly (M,σ) ifM ⊂⊂ M̃ ,
σ̃ is of the same class as σ, σ̃ |M = σ and σ̃ |p = Id

T ∗p M̃
for all p ∈ bM̃ . Let then F , M and

M̃ as below. The nodal Green function g we use for the possibly singular curveM = F (M)
is defined in Corollary 12 of Section 4.2 but for a rough picture, the reader can think it as a
kernel with the usual logarithmic singularities on the diagonal but with no boundary vanishing
condition. Then the double-layer potential Dgu of u ∈ C0 (bM) is defined for any regular
point q of M̃\bM by (Dgu) (q) =

∫
∂M udcgq where gq = g (q, .). When u is suffi ciently smooth,

the functions D+
g u = (Dgu) |M and D−g u = (Dgu)

∣∣∣M̃\M extends up to the boundary into

(nodal) C1-functions whose restrictions to bM are denoted A+
g u and A

−
g u. The conditional

Green operator Bg = Id + N#
g is defined for any u ∈ C∞ (bM) and p ∈ bM by

(
N#
g u
)

(p) =

2PV
(∫

∂M u (q) ∂g
∂νp

(p, q) τ ∗q

)
where PV means principal value and (ν, τ) is a frame for TbMM,

direct and orthonormal with respect to the ambient Hermitian metric of C2, τ being tangent
to bM.

Theorem 5 Let (M,σ) be a conductivity structure, σ being of class C3. Select, which is always
possible, a conductivity structure (M̃, σ̃) extending plainly (M,σ). We denote F : M̃ → M̃ ⊂
C2 the normalization obtained by applying Theorem 2 to (M̃, σ̃) and we set f = F

∣∣∣F (bM)
bM . g,

D±g , A
±
g and Bg and τ are defined as above.

Then, Id+ A−g is an endomorphism of C∞ (bM), its kernel and the kernel of Bg are finite
dimensional subspaces of C∞ (bM) and for any u ∈ C∞ (bM,R) such that

∫
∂M (f∗u)wτ ∗ = 0

when w ∈ kerBg, the equation f∗u = w + A−g w can be solved in C∞ (bM,R) and for any
solution w, θσc u =

(
F ∗∂D+

g w
)
|bM .

The main diffi culty in the proof of Theorem 5 comes from the fact that harmonic Dirichlet
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problems in a nodal curve have unique solutions only if data is specified for nodal points (see
[?, Prop. 2]). By the way, shouldM have no singularity, there would be nothing to do since
M would be already an embedding of (M, Cσ) in C2.
Since the boundary values of F are computable from Nσ

d and since the Green function we
use is so fromM andM is computable from Nσ

d , Theorem 5 gives a tool to compute from Nσ
d

as many θσc u as needed to apply Theorem 4 and so, to get the boundary values of an embedding
Θ of the Riemann surface (M, Cσ) onto a Riemann surface S of CP3 for which Θ∗σ is isotropic.
If S itself is computed, the Henkin-Novikov Theorem 1 enables the reconstruction of the

conductivity coeffi cient s of Θ∗σ. Finally, denoting c the conjugation operator of S, (S, sc) is an
explicit solution of the problem posed if it is understood as producing a conductivity structure,
abstract or embedded in a standard space, whose oriented boundary and Dirichlet-Neumann
operator are those specified.

It remains to explain how to recover the above Riemann surface S, or, which is the same,
the conductivity structure (S, c). As S is a complex submanifold of CP3, the problem is no
longer to recover c but to recover S as a set. Without loss of generality, S is supposed to be a
relatively compact domain in an open Riemann surface S̃ of CP3. For a generic choice of the
4-uple (u0, u1, u2, u3) of functions used in Theorem 4, we can also assume that the projections
π2 : (w0 : w1 : w2 : w3) 7→ (w0 : w1 : w2) and π3 : (w0 : w1 : w2 : w3) 7→ (w0 : w1 : w3) immerse S̃

in CP2 on nodal curves S̃2 and S̃3 such that π−1
3

(
Sing S̃3

)
∩π−1

2

(
Sing S̃2

)
∩ S̃ = ∅. Therefore,

to obtained an atlas of S, it is suffi cient to get one for Qj = πj (S), j = 2, 3, that is for a nodal
Riemann surface with boundary which is a relatively compact domain Q in an open nodal
Riemann surface Q̃ of CP2 and whose oriented boundary ∂Q is known. This reconstruction
problem is studied in [?, Th. 2] but the suggested algorithm is not truly effective since the
polynomials Pm arising from a non empty intersection of Q with {w0 = 0} can’t be computed
as easily as claimed.

In this paper, we provide a new approach to this problem with an effective method of
computing these polynomials. How this can be done is described below but details and technical
notation are postponed as most as possible to Section 6. Theorem 39 which specifies a linear
system to solve to find some crucial auxiliary polynomials and Proposition 41 which enables
to extract from them functions with geometric meaning are new and part of our main results.
They are written in Sections 6.4 and 6.5.

What we have at our hand is an oriented real curve ∂Q which is known to be the boundary
of a complex curve Q of CP2 ; without loss of generality, we assume that {w0 = 0} ∩ bQ = ∅.
In such a situation, it is classical to use the Cauchy-Fantapié indicators of Q. Denoting U
the open subset of C2 whose elements are points z = (x, y) of C2 such that bQ doesn’t meet
Lz = {w ∈ CP2; xw0 + yw1 + w2 = 0}, these are the functions Gk, k ∈ N, defined on U by

Gk (z) =
1

2πi

∫
∂Q

Ωk
z , Ωk

z =

(
w1

w0

)k
1

x+ yw1
w0

+ w2
w0

d

(
x+ y

w1

w0

+
w2

w0

)
(4)

By Proposition 21, which is a result of Dolbeault and Henkin, we know that for all k ∈ N,
there exists Pk ∈ C (Y )k [X] such that Gk−Pk is the k-nth Newton symmetric function Nh,k of
locally defined shock waves functions h1, ..., hp which determine the intersections of Q with the
lines Lz. The polynomials Pk are generated by points in Q∞ = Q∩ {w0 = 0}. In the favorable
but unlikely case Q∞ = ∅, all Pk are 0, Q is contained in the affi ne space {w0 6= 0} and well
known techniques enable to compute these functions hj.
When the number q∞ of points in Q∞ is 1 or 2, Agaltsov and Henkin [?] give an explicit
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procedure to recoverQ and they claim that it should be effi cient for any value of q∞. Meanwhile,
they provide no proof of it and it is no clear to us how to cope with the algebraic systems
involved.
The new method we propose below focuses on the number p of the involved shock waves

functions and works for any value of p or q∞. For q∞ ∈ {1, 2}, it is diffi cult to compare the
Agaltsov-Henkin procedure to our because fixing p or q∞ to small values are really different
hypothesis ; from Corollary 24, p = q∞+δ where δ ∈ Z is computed fromG1. Our reconstruction
process goes in five steps.

1. If G1 is algebraic in y and affi ne in x, Q is contained, according to Lemma 40, in a
connected algebraic curve K such that K ∩ Lz = Q ∩ Lz for z ∈ Z where as specified
by 24, Z ⊂ U is a domain of the form ∪

|y|>ρ
D (0, α |y|)× {y}. In this situation, we choose

other coordinates in order that at least one of the lines Lz, z ∈ Z, meets Q and K\Q.
Thus, we assume that ∂2G1

∂x2
6= 0 on Z for the remaining of the process.

2. We assume that for some d ∈ N∗, we have found in C [X]d a solution µ = (µ1, ..., µd)
for the differential linear system Sd such that Bµ (0, y) →

y→0∗
1 and ∆µ 6= 0, these three

conditions being specified in Theorem 39. Note that Sd is actually a linear system on the
coeffi cients of µ. According to Theorem 39, G1 = −s1 +1⊗ A

B
+X⊗ B′

B
with A,B ∈ C [Y ],

degA < degB = r = d − δ, B (0) = 1 and sk = eH

1⊗B (
∑

k6j6d
F j−k (µj ⊗ 1)), 1 6 k 6 d,

where H is a function defined on Z+ = Z\ (C× R−) and F is an operator, both being
specified in Definition 30 and computable from G1.

3. According to Corollary 33, outside an analytic subset of Z, the sk are the symmetric
functions of shock waves functions g1, .., gd. Applying to the family (gj) the reduction
described in the beginning of Section 6.5 and applying Proposition 41, we conclude that
d > p where p is the number p of the locally defined shock waves functions hj we are
looking for, r > q∞ and that if (g̃j)16j6p is the set of functions obtained from (gj) by

reduction, {g̃1, ..., g̃p} = {h1, ..., hp} and P1 = 1 ⊗ A
B

+ X ⊗ B′

B
. Consequently, (Pk)k∈N∗

is the algebraic extension of (Gk −Ng̃,k)k∈N∗ where the Ng̃,k are the Newton symmetric
functions of the g̃j.

4. We know from Proposition 21, that there exists a locally constant function π with val-
ues in N such that for z∗ in Z but outside some analytic subset of Z, there exists a
neighborhood Uz∗ of z∗ in Z and mutually distinct shock waves hz∗1 , ..., h

z∗
π(z∗)

such that
Q contains Qz∗ = ∪

16k6π(z∗)

{(
1 : hz∗j (z) : −x− yhz∗j (z)

)
; z ∈ Uz∗

}
and

(
Gk

∣∣
Uz∗

)
k∈N∗ =(

Nhz∗ ,k + Pk
∣∣
Uz∗

)
k∈N∗ where the Nhz∗ ,k are the Newton symmetric functions of the h

z∗
j .

Thanks to Newton’s formulas (27) and what precede, we can hence compute the symmet-
ric functions Shz∗ ,k of the h

z∗
j . Moreover, π (z∗) = G0

∣∣
Uz∗ − q∞ is known. We can hence

individually compute the functions hz∗j , 1 6 j 6 π (z∗) from (Shz∗ ,k)16k6π(z∗)
.

5. Thanks to Lemma 20, Q ∩ {w0 6= 0} and hence Q are known.

From a practical point of view, it would very convenient to know a priori p since it would
enable to write directly a relevant system Sd. Inequality (5) of Theorem 6 below delivers an
upper bound pmax for this number p. Note that data needed to think (5) as effective, mainly
M, (D∂σũ0) |bM and θσc u0 = ∂σũ0 |bM are, as explained its the proof which is given at the end

9



of Section 7, computable from available boundary data. It would be useful to have a formula
delivering X

(
M
)
in terms of Dirichlet-Neumann boundary data but such a formula is not

known andM has to be computed in order get its Euler characteristic.
Theorem 39 implies that Sd has a non trivial solution for some d between 1 and pmax . In

addition, with results of Section 6.5, we know that from any non trivial solution of some Sd, we
can extract the sought shock waves. Hence, in the second step of the above process, we have
at most pmax linear systems Sd to solve and this process may be considered as effective for any
value of p or q∞.
In Theorem 6 below, the generic hypothesis that Q ∈ {Q1, Q2} is assumed to satisfy are

that Q is a well defined nodal open bordered Riemann surface of CP2 whose boundary is a
smooth real curve such that bQ ⊂ {w0w1w2 6= 0}, (0 : 0 : 1) and (0 : 1 : 0) are not in Q∞ =
Q ∩ {w0 = 0} which is supposed to be transversal and contained in RegQ. The number pj
is, according to Proposition 21 when Q ∈ {Q1, Q2}, the number of shock waves functions
hj,1, ..., hj,pj such the function Gk defined by (4) can be written on the set Z defined by (24) in

the form (hj,1)k+ · · ·+
(
hj,pj

)k
+Pj,k where Pj,k ∈ C (Y )k [X]. The complex differential operator

∂σ of (M, Cσ) is defined as before.

Theorem 6 Let (M,σ) be a conductivity structure. We equip the bundle Λ1,0T ∗M of (1, 0)-
forms of (M, Cσ) with an Hermitian metric and a Chern connection D as in Theorem 44.
Denote byM the nodal Riemann surface designed by Theorem 2 and denote χ

(
M
)
the Euler

characteristic ofM. Assume that u = (u0, u1, u2, u3) ∈ C∞ (bM)4 satisfies the following generic
hypothesis : the Cσ-harmonic extension ũ of u is such that [∂σũ] is an embedding of M in CP3

and Qj = [∂σũ0 : ∂σũ1 : ∂σũj] (M), j = 2, 3, satisfies the generic hypothesis stated above. Let
p = max (p2, p3) and δ = max (δ2, δ3) where δj = 1

2πi

∫
∂Qj

d(w1/w0)
w1/w0

is the number δ defined in
Lemma 23 and pj is the number of shock waves functions involved in Proposition 21 when z∗
is in the set Z defined by (24). Then

p 6 δ +
1

2πi

∫
∂M

D∂σũ0

∂σũ0

− χ
(
M
)

(5)

3 Conductivity structures and metrics

Requirements on σ to be a conductivity indicate a metric is involved. It is noticed in [?]
that once a volume form µ is chosen for M , one can design a natural metric gµ,σ on M by
setting for all t, t′ ∈ TM

gµ,σ (t, t′) =
σ−1 (t yµ) ∧ (t′ yµ)

µ
.

Its conformal class or complex structure Cσ doesn’t depend on µ and σ factorizes (see [?])
through Cσ in the sense that there exists a function sσ : M → R∗+ with the same regularity
as σ, called conductivity coeffi cient in this article, such that when (x1, x2) is a couple of local
isothermal coordinates for Cσ,

Mat
(dx2,−dx1)
dx (σp) = sσ (p) I2 (6)

for all p in the open subset ofM where (x1, x2) is defined, I2 being the 2×2 identity matrix and
dx = (dx1, dx2). Denote by detσ the map which to a point p of M associates the determinant
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of the linear map σp ; (6) implies sσ =
√

detσ. If cσ is the conductivity defined by

σ = sσ.cσ =
√

detσ.cσ, (7)

Cσ is also the conformal class associated to cσ ; when (x1, x2) is a couple of local isothermal
coordinates for Cσ,

Matdxdx(cσ) =

(
0 −1
1 0

)
def
= J.

In other words, cσ is also the conjugation operator acting on 1-forms of M . Moreover, if
dσ = cσd, ∂σ = 1

2
(d− idσ) is the Cauchy-Riemann operator associated to Cσ and

dσdU = dsσd
σU

for all functions U ∈ C2
(
M
)
. Note that by definition, ∂σ = ∂cσ , ∂σ = ∂cσ and dσ = dcσ ; these

operators are associated to the complex structure Cσ.
Let us suppose that C is a complex structure on M , that is an atlas for M which makes

M a Riemann surface with boundary. If x1 and x2 are the real and imaginary part of a same
holomorphic coordinate for M , Jacobian matrices relatives to (x1, x2) of holomorphic maps
commute with J . This means that one can define a tensor c : TM → TM by the fact that
in such coordinates, Matdxdx(c) = J . By construction, c is a conductivity whose coeffi cient is

1, c ◦ d = i
(
∂ − ∂

) def
= dc and c is the conjugation operator of C and also the Hodge star

operator acting on 1-forms when M is equipped the metric dual of the one given on each T ∗pM
by 〈a, b〉µ = a ∧ ∗b = 1√

detσ
a ∧ σ (b).

So, decomposition (7) shows a complex structure naturally associated to σ. It is unique in
the sense that if c′ is the conjugation operator of T ∗M associated to a complex structure C ′
and if s′ ∈

(
R∗+
)M ′
, the identity σ = s′.c′ forces, because det cσ = 1 = det c′, first sσ = s′ and

then cσ = c′.
Formula (6) shows that for all p ∈ M , σp commute with the orthogonal automorphisms of(

TpM, (gµ,σ)p

)
. When M is a submanifold embedded in R3, in particular if M is a domain of

R2, and when gµ,σ is induced by the standard metric of R3, this means that σ is isotropic in
the usual sense (see [?] and [?] for example). The proposition below sums up what precedes.

Proposition 7 Let M be a real two dimensional surface with boundary. A complex structure C
on M defines a conductivity tensor with coeffi cient equal to 1. Reciprocally, for all conductivity
σ on M , there exists a unique complex structure Cσ such that σ =

√
detσcσ where cσ is the

conjugation operator associated to Cσ.

Hence, it is natural to say that a complex valued function f defined on an open set U of M
is σ-holomorphic if ∂σf = 0, or equivalently, when for all charts z : V → C of the holomorphic
atlas of (M, Cσ), f ◦ z−1 is holomorphic on z−1 (U) in the usual sense.
If (M ′, σ′) is an another conductivity structure, a map f from an open subset U of M to

M ′ is said (σ, σ′)-analytic if for all holomorphic charts z′ : V ′ → C of (M ′, Cσ′), z′ ◦ f is σ-
holomorphic on f−1 (V ′) ∩ U , that is if z′ ◦ f ◦ z−1 is holomorphic on z−1 (f−1 (V ′) ∩ U) in the
usual sense for all holomorphic charts z : V → C of (M, Cσ). This also can be characterized by
the following lemma.

Lemma 8 Let (M,σ) and (M ′, σ′) be two conductivity structures, U an open subset of M and
f : U → M ′ a differentiable map. Then f is (σ, σ′)-analytic if and only if (tDf) ◦ cσ′ =
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cσ ◦ (tDf). When f realizes a diffeomorphism ϕ from U to f (U), ϕ is (σ, σ′)-analytic if and
only if ϕ∗cσ = cσ′ and in particular if ϕ∗σ = σ′.

Proof. Consider holomorphic charts z : V → C and z′ : V ′ → C of (M, Cσ) and (M ′, Cσ′).
Set F = Mat

(dx′,dy′)
(dx,dy) (Df) where (x, y) = (Re z, Im z) and (x′, y′) = (Re z′, Im z′). Then

Mat
(dx,dy)
(dx′,dy′)

((
tDf

)
◦ cσ′

)
= Mat

(dx,dy)
(dx′,dy′)

(
tDf

)
Mat

(dx′,dy′)
(dx′,dy′) (cσ′) = tFJ

Mat
(dx,dy)
(dx′,dy′)

(
cσ ◦

(
tDf

))
= Mat

(dx,dy)
(dx,dy) (cσ)Mat

(dx,dy)
(dx′,dy′)

(
tDf

)
= J tF

So, the equality (tDf) ◦ cσ′ = cσ ◦ (tDf) holds if and only if JF = FJ . Translating this on
matrix coeffi cients, this is equivalent to the fact that Re f and Im f satisfy the Cauchy-Riemann
equations, that is ∂f

∂z
= 0.

Suppose now that ϕ = f
∣∣∣f(U)
U is a diffeomorphism. Since by definition, ϕ∗cσ = (tDf)

−1
ψ ◦

(cσ) ψ ◦ t (Dϕ)ψ where ϕ = ψ−1, the preceding point gives that ϕ is (σ, σ′)-analytic if and only

if ϕ∗cσ = cσ′ . Besides, ϕ∗cσ = (detσ)ψ .ϕ∗cσ = det (σψ) .ϕ∗cσ. So, σ′ = ϕ∗σ = (tDf)
−1
ψ ◦ (cσ) ψ ◦

t (Dϕ) forces det cσ′ = det (σψ) and ϕ∗cσ = cσ′ .

This lemma enables to justify our comment in the introduction about Tartar’s remark. The
conductivity σ′ is defined byMat

(dx2,−dx1)
(dx1,dx2) (σ′) = 1

det Φ
tΦ (σjk) Φ where Φ is the Jacobian matrix

of ϕ. ButMat
(dx1,dx2)
(dx1,dx2) (σ) = JMat

(dx2,−dx1)
(dx1,dx2) (σ) and the same holds for σ′. Since −1

det Φ
J tΦJ = Φ−1

and J2 = −I2, we get Mat
(dx1,dx2)
(dx1,dx2) (σ′) = Φ−1Mat

(dx1,dx2)
(dx1,dx2) (σ) Φ which means σ′ = ϕ∗σ. Hence,

ϕ is a biholomorphic map between (M, Cσ) and (M ′, Cσ′).

We now turn our attention to the Dirichlet-Neumann operator itself. Assume again that
M is also equipped with an arbitrary Riemannian metric g ; this in particular the case when
M is a real surface in R3 with a non isotropic conductivity. Denote by ν and τ vector fields
defined along bM such that for all p ∈ bM , (νp, τp) is a direct g-orthonormal basis for TpM and
τp ∈ TpbM . The «normal» Dirichlet-Neumann operator Nσ

ν is then defined for any suffi ciently
smooth function u : bM → R by

Nσ
ν u =

∂Eσu

∂ν

∣∣∣∣
bM

(8)

where Eσu is the unique solution of (1). So, when u : bM → R is suffi ciently smooth

dEσu = (Eσu.ν) ν∗ + (Eσu.τ) τ ∗ = (Nσ
ν u) ν∗ + (du.τ) τ ∗.

This formula shows that data from Nσ
ν which depends of a choice of metric, can be replaced by

data from the «differential» Dirichlet-Neumann operator Nσ
d = σdEσ defined by (2).

In the particular case where detσ = 1, σ = cσ and it is noticed in [?] that ∂cσEcσu|bM =
(Lcσν u) (ν∗ + iτ ∗) where ∂cσ = d− ∂σ and ∂cσ is the Cauchy-Riemann operator of (M, Cσ) and
where Lcσν u = 1

2

(
N cσ
ν u− i∂u∂τ

)
. So, one can consider in this case the «complex» Dirichlet-

Neumann operator θσc defined on suffi ciently smooth functions u : bM → R by

θσc u = ∂cσEcσu|bM = (Lcσν u) (ν∗ + iτ ∗) (9)

For a general detσ, we still let θσc = θcσc . This means that for u ∈ C∞ (bM), θσc u is still defined
by (9) even if σ and cσ are no longer equal. Hence, θσc and N

σ
d correspond to Dirichlet problems

associated to different operators, namely dcσd for the first and dσd = dsσcσd for the second.
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To end this section, we explain how to get rid of the auxiliary volume form µ. As in the
inverse problem studied here, T ∗bMM and σ

∣∣∣T ∗bMM are supposed to be known, the conjugation

operator cσ associated to the complex structure Cσ of (M,σ) is known when it acts on T ∗bMM .
Having chosen a smooth generating section τ ∗ of T ∗bM , we set ν∗s = − (cσ)s τ

∗
s for any s ∈ bM .

By definition of conductivity, bM 3 s 7→ τ ∗s ∧ ν∗s is then a smooth section of the volume forms
bundle of M and can be extended to a smooth volume form µ on M . Though this extension is
not unique, any tensor which would be a conductivity for one of these extensions would be so
for any.

4 Recovering the complex Dirichlet-Neumann operator

Nodal Riemann surfaces are discussed in [?] and the reader can refer to it. Meanwhile,
for sake of simplicity [?] doesn’t consider the case where nodes are allowed in the boundary.
Since the nodal Riemann surface we have to consider is produced as the solution of a boundary
problem for a real smooth curve and since as pointed out in [?, section 3.2] such complex curves
may present this type of singularity, we give some basics in Section 4.1. Then, we prove the
existence of nodal Green functions for such surfaces. At the end of this section, is written the
proof of Theorem 5 which enables the recovering of the complex Dirichlet-Neumann operator
θσc . This result is new wether or not nodes at the boundary are present. Besides, existence of
such nodes should be considered as exceptional.

4.1 Nodal Riemann surfaces and harmonic distributions

In this article a nodal Riemann surface with boundary Q is a set of the form
(
S/R

)
\π (bS)

where S is a Riemann surface with boundary, R a nodal relation which means that R is an
equivalence relation on S identifying a finite number of points of S but such that two distinct
points of bS are in two different classes and π is the natural projection of S on S/R. In
particular, πbS = π

∣∣bS
bS is a bijection.

We equip S/R with the quotient topology so that Q is an open subset, Q = S/R and
bQ = π (bS). One denotes by RegQ the set of points of Q having only one preimage by π and
we set SingQ = Q\RegQ ; RegQ and SingQ are defined similarly.
If q ∈ Q (resp. q ∈ bQ), an inner (resp. boundary) branch of Q at q is any subset B of Q

(resp. Q) for which there exists an open connected subset V of S (resp. S) and s ∈ V ∩π−1 (q)
such that V \ {s} ⊂ π−1

(
RegQ

)
, π realizes a bijection from V to B and, if q ∈ bQ, V ∩ bS is

a neighborhood of s in bS. A set of inner branches at a point q of Q is complete if their union
with the possible boundary branch of Q at q is a neighborhood of q in Q.

Q carries a natural (nodal) complex structure which is characterized by the fact that for
any inner branch B of Q, there exists an open connected subset V of S such that π is a
biholomorphism from V to B. Likewise, one gives a natural meaning to notions of nodal
conductivities (for which considerations of the preceding section apply) and to nodal function
or maps between nodal Riemann surfaces, holomorphic or of class Ck, 0 6 k 6∞. With such
definitions, π : S → Q becomes a normalization of Q.

As pointed out in [?, prop. 2], isomorphisms between nodal Riemann surfaces are a little
bit trickier since nodes can be mixed. Let us consider another nodal Riemann surface with
boundary Q′ which is the quotient of a Riemann surface with boundary S ′ and denote π′ the
natural projection of S ′ to Q′. Take a nodal map ϕ : Q −→ Q′ ; so, ϕ is univalued on RegQ
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and multivalued on SingQ. We say that ϕ is an isomorphism of nodal Riemann surfaces with
boundary if the following conditions are satisfied :
i) ϕ is an homeomorphism from ϕ−1

(
RegQ′

)
∩ RegQ onto ϕ

(
RegQ

)
∩ RegQ′.

ii) For all inner (resp. boundary) branches B′ of Q′, there exists an inner (resp. boundary)
branch B of Q such that ϕ

(
B ∩ RegQ

)
= B′ ∩ RegQ′ and the continuous extension ϕ

∣∣B′
B

of the map B ∩ RegQ → B′, q 7→ ϕ (q), is an isomorphism of Riemann surfaces (resp. with
boundary).
iii) For all q ∈ Q, the branches of Q′ at ϕ (q) are the images by ϕ of the branches of Q at q.

If ϕ satisfies only (i) and (ii), we says as in [?, prop. 2] that ϕ is a rough isomorphism.
Distributions and currents are defined on nodal Riemann surfaces as usual by duality and

of course, harmonic distributions are by definition those in the kernel of ddc. According to [?,
prop. 2] whose proof applies without change to the case

(
SingQ

)
∩ bQ 6= ∅, a distribution u

on a open setW of Q is harmonic if and only if it is harmonic in the usual sense onW ∩RegQ,
continuous on W ∩ RegQ as well as in all boundary branches of Q contained in W , and if for
any singular point q of Q the two conditions below are satisfied :

1) for all inner branches B of Q at q suffi ciently small so it admits a holomorphic
coordinate z centered at q, there exists cB ∈ C such that u

∣∣
Qq,j\{q} − 2cB ln |z| extends to B as

a usual harmonic function.
2)
∑
B∈B

cB = 0 where B is a complete set of inner branches of Q at q.

This implies that a same continuous function u on bQ extends to Q in many harmonic
distribution ; the Dirichlet problem for u is well posed only if for the extension U , one specifies
for all q ∈ SingQ and all inner branches B of Q at q, the residue cB of ∂U |B at q. In particular,
û denoting the harmonic extension of u ◦π−1

bS to S, π∗û is the only harmonic distribution which
is continuous along any branch of Q and coincides with u on bQ ; we call it the simple harmonic
extension of u.
For a nodal Riemann surface Q, we define the complex Dirichlet-Neumann operator as the

operator θQc = θ
cQ
c where cQ is the conjugation operator associated to the complex structure of

Q and where in (9) simple harmonic extensions are used.

4.2 Recovering of θσc , proof of Theorem 5

4.2.1 Green functions in the smooth case

This section is about classical facts on Green functions for a smooth open bordered Rie-
mann surface S which are generalized to the nodal case in Section 4.2.2.
A Green function for S is a function g defined on S × S without its diagonal ∆S such that

for all q ∈ S, gq = g (q, .) is harmonic on S\ {q}, continuous on S\ {q} and has an isolated
logarithmic singularity at q, which means that given a holomorphic coordinate z of S defined
near q and centered at q, gq− 1

2π
ln |z| extends harmonically around q. g is said principal if it is

symmetric, real valued and its partial functions gq vanishes on bS. The Perron method shows
that such a function exists and the maximum principle implies it is unique.
The problem we want to address is the computation from g of the operator θSc which to

u ∈ C∞ (bS) associates (∂ũ) |bS where ũ is the harmonic extension of u to S. Without loss of
generality, we assume that S is a relatively compact domain in an open Riemann surface S̃ for
which g is a Green function. We also assume that g is symmetric and real valued.
First, one builds the operator Tg which to u ∈ C0 (bS) associates the harmonic function Tgu
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defined on S̃\bS by
Tgu : S̃\bS 3 q 7→ 2

i

∫
∂S

u∂gq (10)

and which splits in T±g u = (Tgu) |S± where S+ = S and S− = S̃\S. Let us choose an Hermitian
metric for S̃ and for T S̃ near bS, a direct orthonormal frame (ν, τ) such that τ |bS ∈ TbSS.
When f is differentiable function near bS, we can write

∂f =
1

2

(
∂f

∂ν
− i∂f

∂τ

)
(ν∗ + iτ ∗) . (11)

Since the pull back of ν∗ by the natural injection of bS into S̃ is 0, we get that for any u ∈ C1 (bS)

and q ∈ S̃\bS,
(Tgu) (q) =

∫
∂S

u
∂gq
∂ν

τ ∗ + i

∫
∂S

u′gqτ
∗ def= Dgu+ iSgu

′ (12)

where u′ = ∂u
∂τ
and where Dgu and Sgu′ are the so called double-layer and single-layer potentials

of u and u′. Since dc = i
(
∂ − ∂

)
, we also get from (11) that for any u ∈ C0 (bS) and q ∈ S̃\bS,

(Dgu) (q) =

∫
∂S

udcgq (13)

Like Tg, Dg and Sg split in sided operators D±g and S
±
g . Then it is well known that for any

u ∈ C2 (bS), D±g u = (Dgu) |S± and S±g u = (Sgu) |S± extend to S± as C1-functions, that Sg is

continuous on S̃ and that if u ∈ C2 (bS), the boundary values A±g u =
(
D±g u

)
|bS satisfy

A+
g u− A−g u = u & A+

g u+ A−g u = Ngu (14)

where Ngu is defined for p ∈ bS by

(Ngu) (p) = 2PV

(∫
∂S

udcgq

)
,

PV standing for principal value. According to (12), when u ∈ C2 (bS), T±g u also extend to S±

as C1-functions which verify

A+
g,cu− A−g,cu = u & A+

g,cu+ A−g,cu = Ng,cu

where A±g,cu =
(
T±g u

)
|bS = A±g u− iSgu′ and where Ng,cu is defined for p ∈ bS by

(Ng,cu) (p) = 2PV

(
2

i

∫
∂S

u∂gq

)
This goes back to the works of Sohotksy in 1873 or, later, of Plemelj and can be found in
many books. The reader can refer for example to [?, chp. 7, §§11 ] where these operators and
formulas are proven to make sense for u in the distributional sense in Sobolev spaces. A direct
proof for Tg,c and C2-functions can be found as a particular case in [?] which addresses similar
problems in Stein manifolds.
We also use the operator N#

g defined on any Sobolev space Hs (bS) by density of C∞ (bS)
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and by, when u ∈ C∞ (bS),

∀p ∈ bS,
(
N#
g u
)

(p) = 2PV

(∫
∂S

u (q)
∂g

∂νp
(p, q) τ ∗q

)
From [?, Prop. 11.3], we know that in the distributional sense

∀p ∈ bS,
(
N#
g u
)

(p) = u (p) + 2 lim
ε→0+

∂S−u

∂ν
(p− ενp) (15)

Assume that for some u ∈ C∞ (bS) and we have found a solution w ∈ C∞ (bS) to the
equation

u = w + A−g w, (16)

that is, u belongs to the range of Id + A−G. Then D
+
g w is a smooth function on S such that(

D+
g w
)
|bS = A+

g w = w + A−g w = u, which entails that D+
g w is the harmonic extension ũ of

u to S and that θSc u =
(
∂D+

g w
)
|bS can be computed, which is our goal. Thus, the question

which arises is the characterization of the range of Id+ A−G.

As g is symmetric and real, we know (see e.g. [?, chp. 7, §§11 ]) that for any real s,
Id + A−g is a Fredholm operator from Hs (bS) to itself and has index 0. This implies that the
obstruction to solve (16) in Hs (bS) for data in Hs (bS) is only finite dimensional and that
Id + A−g is an isomorphism if it is injective or surjective. Consider the standard identification
H−s (bS) of the dual of Hs (bS) by defining the duality pairing 〈., .〉 by density of C∞ (bS)2 in
Hs (bS)×H−s (bS) and by

〈u,w〉 =

∫
∂S

uwτ ∗

when u,w ∈ C∞ (bS). Then we can define the adjoint L∗ of any operator L of Hs (bS) and
get the identity ImL = (kerL∗)⊥. Since Id + A−g has a closed range as a Fredholm operator,

we get Im
(
Id+ A−g

)
=
(
ker
(
Id+ A−g

)∗)⊥
. From (14), it comes Id + A−g = 1

2
(Id+Ng) and

Ng = I + 2A−g . For w ∈ C∞ (bS), we obtain that for any p ∈ bS,

(Ngw) (p) = w (p) + 2lim
ε→0

(
D−g w

)
(p− ενp)

in the distributional sense. With (15) and the Fubini theorem, we deduce that for u,w ∈
C∞ (bS)

〈u,Ngw〉 = 〈u,w〉+ 2 lim
ε→0+

∫
∂S

u (p)
(
D−g w

)
(p− ενp) τ ∗p

= 〈u,w〉+ 2 lim
ε→0+

∫
∂S

u (p)

(∫
∂S

w (q)
∂g

∂νq
(p− ενp, q) τ ∗p

)
τ ∗q

= 〈u,w〉+ 2 lim
ε→0+

∫
∂S

w (q)

(∫
∂S

u (p)
∂g

∂νq
(p− ενp, q) τ ∗q

)
τ ∗p =

〈
w,N#

g u
〉
.

This proves that (Ng)
∗ = N#

g , which entails ker
(
Id+ A−g

)∗
= ker

(
Id+N#

g

)
. We summarize

the above discussion within the following lemma.

Lemma 9 (1) Let Bg = Id + N#
g . Then kerBg ⊂ C∞ (bS) and a function u ∈ Hs (bS) is in

the range of Id+ A−g if and only if 〈u,w〉 = 0 for any w ∈ kerBg.
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(2) Let u ∈ C∞ (bS,R) be orthogonal to kerBg and w ∈ Hs (bS) such that u = w + A−g w.
Then w ∈ C∞ (bS,R) and θSc u =

(
∂D+

g w
)
|bS .

(3) When G is the principal Green function for of S, T+
G = D+

G and Id + A−G is an auto-
morphism of Hs (bS).

Proof. (1) and (2) have been already proved except for w ∈ C∞ (bS) and kerBg ⊂ C∞ (bS).
Both are consequences of the fact that N#

g and A
−
g are a pseudo-differential operators of order

−1 (see [?]). For a smooth real valued u and its harmonic extension ũ to S, Stokes Formula
applied on S without an arbitrary small conformal disc ∆ε around q ∈ S gives(

T+
G u
)

(q) =
2

i

∫
∂S

(
ũ∂Gq +Gq∂ũ

)
=

2

i

∫
∂∆ε

(
ũ∂Gq +Gq∂ũ

)
+

2

i

∫
S\∆ε

(
∂ũ ∧ ∂Gq + ∂Gq ∧ ∂ũ

)
=

2

i

∫
∂∆ε

ũ∂Gq +O (ε ln ε) + 0 →
ε→0

ũ (q)

As G and u are real valued,

T+
G u = −2

i

∫
∂S

(
ũ∂Gq +Gq∂ũ

)
= −2

i

∫
∂S

[d (ũGq)− ũ∂Gq] = T+
G u

This yields D+
Gu = T+

G u = ũ. Thus, A+
G = Id+ A−G is surjective and, because its index is 0, an

isomorphism of Hs (bS) as claimed in (3).

Remark. It is also known that Id+A−g is an isomorphism of H
s (bS) when S ⊂ C is bounded

and has a connected complement (see e.g. [?]). In the general case, it is not diffi cult to prove
that functions in ker

(
Id+ A−g

)
are boundary values of holomorphic function on S̃\S smooth up

to the boundary and that the Dirichlet-Neumann operator N : C∞ (bS) 3 u 7→ ∂ũ
∂ν
|bS realizes

an isomorphism from kerBg to ker
(
Id+ A−g

)
.

Thus, to have at hand the principal Green function of S enables to bypass the resolution of
(16). Unhappily, the standard method introduced by Fredholm in 1900 to build principal Green
functions consists precisely in finding for each q ∈ S a function wq such that gq = wq + A−g wq
and then to set Gq = gq − D+

g wq. Happily, in our problem it is not necessarily relevant to
compute G because we only have to to compute suffi ciently many θSc u.

As mentioned in the next session, all of these considerations readily apply to the nodal
setting.

4.2.2 Green functions in the nodal case

Definition 10 Let Z be an open complex curve, possibly singular, of an open subset of C2.
A Green function for Z is a function g defined on (RegZ × RegZ) \∆RegZ such that for all
q∗ ∈ RegZ, gq∗ = g (q∗, .) extends to Z as a current and i∂∂gq∗ is the Dirac current δq∗
supported by {q∗} - this implies in particular that ∂gq∗ is a weakly holomorphic (1, 0)-form on
Z\ {q∗} in the sense of [?].
When Z is an open nodal Riemann surface, quotient of Σ, an open Riemann surface, by

an equivalence relation and when π is the canonical projection of Σ onto Z, a simple Green
function for Z is a is symmetric function g defined on (RegZ × RegZ) \∆RegZ for which there
exists a real valued Green function g̃ for Σ such that g = π∗g̃ in the following sense : for any
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branch B of Z at q∗, image by π of an open subset V of Σ such that V \ {s∗} ⊂ π−1 (RegZ)
where s∗ ∈ π−1 (q∗), gq |B = π∗ (g̃s∗ |V ) in a neighborhood of q∗ in B.
A principal Green function for a nodal bordered Riemann surface Z is a symmetric real

valued simple Green function g such that if B is any boundary branch of Z, g |B extends con-
tinuously to B with the value 0 on B ∩ bZ.

Let us now detail the explicit formula of [?, proposition 17] establishing the existence of
Green functions for a 1-parameter family of complex curves whose possible singularities are
arbitrary. Consider a complex curve Y in an open subset of C2, Ω a Stein neighborhood of Y
in C2, Φ a holomorphic function on Ω such that Y = {Φ = 0} and dΦ |Y 6= 0 then a strictly
pseudoconvex domain Ω0 of C2 verifying

Y0 = Y ∩ Ω0 ⊂ Ω,

and lastly a symmetric function Ψ ∈ O (Ω× Ω,C2) such that for all (z, z′) ∈ C2,

Φ (z′)− Φ (z) = 〈Ψ (z′, z) , z′ − z〉

where 〈v, w〉 = v1w1 + v2w2 when v, w ∈ C2. We define on RegY a (1, 0)-form ω by setting

ω =
−dz1

∂Φ/∂z2

on Y1 = Y ∩ {∂Φ/∂z2 6= 0}

ω =
+dz2

∂Φ/∂z1

on Y2 = Y ∩ {∂Φ/∂z1 6= 0}

and we consider

k (z′, z) = det

[
z′ − z
|z′ − z|2

,Ψ (z′, z)

]
.

When q∗ ∈ RegY0, [?, prop. 17 ] tells that the formula

gc (q∗, q) = gc,q∗ (q) =
1

4π2

∫
q′∈Y0

k (q′, q)k (q∗, q
′) iω (q′) ∧ ω (q′) . (17)

defines a Green function for Y0. In addition, the proof of [?, prop. 17 ] gives that if q∗ ∈ RegY0

∂gc,q∗ = k̃q∗ω

where k̃q∗ = 1
2π
k (., q∗). The proposition below gives a useful complement.

Proposition 11 Suppose Y0 has only nodal singularities. Then, the function

g (q∗, q) = Re gc (q∗, q) =
1

4π2

∫
q′∈Y0

1

2

(
k (q′, q)k (q∗, q

′) + k (q′, q) k (q∗, q′)
)
iω (q′)∧ω (q′) (18)

is a simple Green function for Y0.

Proof. Let us begin by proving that q∗ being fixed in RegY0, gc,q∗ extends as a usual har-
monic function along the branches of Y0\ {q∗}. As gc,q∗ is a harmonic distribution on Y0\ {q∗},
we already know that gc,q∗

∣∣
(RegY0)\{q∗} is a usual harmonic function and according to [?, prop.

2], that for any branch B of Y0 at q, gc,q∗ |B has at most an isolated logarithmic singularity at
q. Equivalently, this means that ∂gc,q∗ has at most a simple pole at q. Fix q in SingY0 and B
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a branch of Y0 at q. Decreasing B and with a possible change of coordinates, we get the case
where q = 0 and Φ is in a neighborhood of 0 of the form

Φ (z) = (z2 − ϕ (z1)) Θ (z) (19)

with ϕ holomorphic in a suffi ciently small disc V = D (0, r) and Θ |B vanishing only at 0. In
particular, there exists a function holomorphic θ on V such that θ (0) 6= 0 and Θ (z1, ϕ (z1)) =
zν−1

1 θ (z1) when z1 ∈ V , ν being the number of branches of Y0 at q. On B\ {q}, we get hence
ω = dz1

θ(z1)zν−11

. Consider then a (0, 1)-form χ compactly supported in B ; so χ = ξdz1 with

ξ ∈ D (V ). Hence, by definition,

〈∂gc,q∗ , χ〉 = lim
ε↓0+

∫
z1∈V \D(0,ε)

k̂q∗ (z1) ξ (z1)

θ (z1) zν−1
1

idz1 ∧ dz1

where k̂q∗ (z1) = k̃q∗ (z1, ϕ (z1)). Let us write

k̂q∗ (z1) ξ (z1)

θ (z1)
=

∑
α+β<ν−1

cα,βz
α
1 z1

β +

∫ 1

0

(1− t)ν−2

(ν − 2)!
Dν−1

(
k̂q∗ξ/θ

)∣∣∣
tz1
.zν−2

1 dt idz1 ∧ dz1

where Dpf |w .zp is understood has the value taken by the total differential of order p of f at w
on the vector (z, ..., z). Since

∫ 2π

0
eiθ(α−β−ν+1)dθ = 0 when α + β < ν − 1, we get

〈∂gc,q∗ , χ〉 =

∫
z1∈V

∫ 1

0

(1− t)ν−2

(ν − 2)!
Dν−1

(
k̂q∗ξ/θ

)∣∣∣
tz1
.1ν−1dt idz1 ∧ dz1 (20)

Moreover, there exists c ∈ C and h ∈ O (V ) such that the expression of ∂gc,q∗ |B is c
z1
dz1 +hdz1

in the coordinate z. Hence

〈∂gc,q∗ , χ〉 = lim
ε↓0+

∫
z1∈V \D(0,ε)

(
c

z1

+ h (z1)

)
ξ (z1) idz1 ∧ dz1

Let us write ξ (z1) = ξ (0) + ξ1,0z1 + ξ0,1z1 +
∫ 1

0
(1− t) D2ξ|tz1 .z

2
1dt. Then comes

〈∂gc,q∗ , χ〉 = πr2ξ1,0c+

∫
z1∈V

h (z1) ξ (z1) idz1 ∧ dz1 (21)

As (20) shows no derivation of the Dirac measure at 0, comparison with (21) forces c = 0.
Hence gc,q∗ |B and gq∗ |B are usual harmonic functions.
Next, we check that i∂∂gc,q∗ is the Dirac current at q∗. Since gc,q∗ has no singularity in any

branch of Y0\ {q0}, we get thanks to the nodal version of Stokes formula that for that any test
function χ on Y0,

〈
i∂∂gc,q∗ , χ

〉
=
〈
i∂gc,q∗ , ∂f

〉
is the limit when ε→ 0+ of 1

i

∫
∂∆ε

χ∂gc,q∗ where
∆ε is a conformal disk of radius ε centered at q∗. Using the same notation as above with ν = 1
and q replaced by q∗ which we can assume to be 0, we find that

〈
i∂∂gc,q∗ , χ

〉
=

Ψ2 (0, 0)− ϕ′ (0) Ψ1 (0, 0)

θ (0)
(
1 + |ϕ′ (0)|2

) χ (q∗)

From (19) we get by differentiation that Ψ2 (0, 0) = θ (0) and Ψ1 (0, 0) = −ϕ′ (0). Hence,〈
i∂∂gc,q∗ , χ

〉
= χ (q∗) which means i∂∂gc,q∗ = δq∗. Since δq∗ is real valued on real valued test
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functions, this entails i∂∂gq∗ = δq∗.
Fix now qs in SingY0. Consider a branch B of Y0 at qs suffi ciently small so we have for it a

holomorphic coordinate z centered at qs. Since g is symmetric from (17), what precedes implies
that when q∗ ∈ B\ {qs}, q 7→ gq∗ (q) − 1

2π
ln |z (q)− z (q∗)| = gq (q∗) − 1

2π
ln |z (q)− z (q∗)| is a

usual harmonic function on B. Hence, when q∗ ∈ B\ {qs} tends to qs, gq∗ − 1
2π

ln |z − z (q∗)|
converges uniformly on B to a harmonic function of the form gBB,qs −

1
2π

ln |z| where gBB,qs is
harmonic on B\ {qs}. For the same reason, if B′ is another branch of Y0 at qs or a branch of
Y0 relatively compact in Y0\ {qs}, gq∗ converges uniformly on B′ to a harmonic function gB

′
B,qs

when q∗ ∈ B\ {qs} tends to qs. When B′ describes the set of branches of Y0, these functions
gB
′
B,qs match into a function gB,qs which is harmonic on B′\bY0 for all branches B′ of Y0\B, whose
restriction to B has a logarithmic singularity at qs and such that gq∗ tends to gB,qs in the sense
of currents when q∗ ∈ B\ {qs} tends to qs. Proceeding so for all singulars point of Y0, we find
that g is a simple Green function for Y0.

We now apply what precedes to the situation of Theorem 5. We recall that F : M̃ → C2

is the map obtained by applying Theorem 2 to a plain extension (M̃, σ̃) of (M,σ). We set
Y = F (M̃) and we fix a Stein neighborhood Ω of Y in C2, that is a neighborhood of Y which
is a Stein manifold. AsM = F (M) is relatively compact in Y, we can pick up in C2 a strictly
pseudoconvex domain Ω0 verifyingM⊂⊂ Y0 = Y ∩ Ω0 ⊂ Ω. We use then Proposition 11 and
get a Green function forM. The corollary below tells it comes from a Green function for M .

Corollary 12 Hypothesis and notation remains as in Theorem 5 and g is the function defined
by (18). Then, gM = F ∗g

∣∣∣M×M\∆M
is a Green function for (M, Cσ).

Proof. Since F : M →M is a (cσ, cM)-analytic normalization, h = F ∗g is well defined on
M reg ×M reg\∆Mreg

where M reg = F−1
(
RegQ

)
, symmetric and for all x ∈ M , hx = h (., x) is

harmonic on M reg\bM ∪ {x}, continuous on M reg\ {x} and i∂σ∂σh is the Dirac current δx of
M at x. When p ∈ F−1

(
SingM

)
∩M and V is a connected open neighborhood of p in M ,

B = F (V ) is an inner branch ofM at q = F (p) and we can set gM,p = F ∗gp,B. Proposition 11
implies that gM so built is a Green function for M .

Thus, we can apply the methods of Section 4.2.1 to gM and then push forward their results
toM. Meanwhile, as in our problemM and θσc have to be computed before M can be, it is
more relevant to apply directly these methods toM and g. As bM is smooth, Sobolev spaces
on bM are defined as usual and the discussion of Section 4.2.1 can be readily followed. So the
operators Tg, Dg, A±g , Ng etc. are defined as above (withM instead of S) and lemma 9 holds.
We are now ready to prove Theorem 5.

Proof of Theorem 5. Consider u ∈ C∞ (bM) and ũ its Cσ-harmonic extension to M . As
d = ∂σ+∂σ and dσ = i

(
∂σ − ∂σ

)
, we get 2i∂σ∂σ = ddσ and ũ is the unique solution in C∞

(
M
)

of
i∂σ∂σU = 0 & U |bM = u.

and θσc u is the restriction to bM of the Cσ-holomorphic (1, 0)-form ∂σũ. By definition, when B
is a branch ofM, there is a (unique) open subset V of M such that the map FB = F

∣∣B
V is a

(cσ, cM)-biholomorphism. Since ũ is smooth, we deduce that F∗ũ is smooth along any branch
B ofM and satisfies

(
i∂∂ (FB) ∗ũ

)
|B = (FB) ∗i∂

σ∂σũ = 0. Hence, ũ ◦ (FRegM)−1 harmonically
extends along branches ofM and define onM a distributionW which is the unique continuous
solution along branches ofM for the problem

i∂∂W = 0 & W |bM = f∗u (22)

20



This yields F ∗W = ũ which means that ũ |V =
(
F
∣∣∣F (V )
V

)∗
W whenever V ⊂ M is such that

F (V ) is a branch ofM. Lemma 8 yields that F : M →M is a holomorphic map from (M, cσ)
to (M, cM). Since the complex differential operators of these (nodal) Riemann surfaces are ∂σ

and ∂, we get ∂σũ = ∂σF ∗W = F ∗∂W and W is the simple harmonic extension f̂∗u of f∗u to
M. So, we get θσc u = (F ∗∂f̂∗u) |bM .
The kernel of Bg (in its nodal issue) is a finite dimensional subspace of C∞ (bM) and

when u ∈ C∞ (bM,R) is such that f∗u is orthogonal to it, any solution w of the equation f∗u =

w+A−g w is in C
∞ (bM,R) and delivers f̂∗u under the form T+

g w. Hence, θ
σ
c u =

(
F ∗∂T+

g w
)
|bM .

Remark. The above proof contains the fact that for any u ∈ C∞ (bM), ũ = F ∗f̂∗u and
θσc u = F ∗θMc f∗u where ũ is the Cσ-harmonic extension of u toM and f̂∗u is the simple harmonic
extension of f∗u toM.

5 Proof of the uniqueness Theorem 3

In this section, we prove Theorem 3 and as mentioned in Section 2, we complete so the
proof of [?, Theorem 1] and also the isomorphism claim of [?, Th. 1.1]. One of the steps of the
proof of Theorem 3 uses lemmas 11 to 14 of [?] which were initially written by the author of
these lines to give a complete proof of Theorem 3.
We note (U`) and (U ′`) the harmonic extensions of u toM andM ′ respectively. By hypothesis

F = [∂U ] : M −→ CPn and F ′ = [∂U ′] : M ′ −→ CPn are well defined, coincide on γ
and f = F |γ = F ′ |γ embeds γ in {w0 6= 0} where w0, ..., wn are the standard homogeneous
coordinates of CPn. We equip δ = f (γ) with the orientation of γ brought by f . The regularity
hypothesis made on M and M ′ implies that F and F ′ are of class C1. We set

Y = F (M) \δ, Γ = F−1 (δ) ,

M̃ = M\Γ, F̃ = F
∣∣∣CPn\δM\Γ ,

M r = {dF 6= 0} & Ms = {dF = 0}

Since f is an embedding of γ in {w0 6= 0} which is isomorphic to Cn, there exists an open
neighborhood G of γ in M such that FG = F |G is an embedding of G in C2; the orientation of
δ is hence also induced by the natural one of G. When A is a topological space, we note CC (A)
the set of the connected components of A. If A ⊂ M and B ⊂ F (A), we denote ν (F,A,B)
the degree of F

∣∣B
A if it exists. We agree for M ′ similarly notation to those for M . Dp,q (U)

stands for the space of (p, q)-forms of class C∞ compactly supported in an open subset U of a
complex manifold. Hd (E) denotes the Hausdorff d-dimensional measure of a set E when this
is meaningful.

Lemma 13 Γ\γ is a compact of M and Y is a complex curve of CPn\δ.

Proof. Since FG is embeds G in C2, Γ∩G = γ and Γ\γ = Γ∩
(
M\G

)
is a compact ofM . In

particular, M̃ = M\Γ is an open surface Riemann. By construction, F̃ is proper because if L is
a compact of CPn\δ, F̃−1 (L) is a compact of M which doesn’t meet Γ and hence is a compact
of M̃ . By a theorem of Remmert, unnecessary in the very simple case n = 1, Y = F̃ (M̃) is an
analytic subset of CPn\δ.

Lemma 14 F∗ [M ] is a normal positive current supported by Y and dF∗ [M ] = [δ].
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Proof. If χ is a compactly supported smooth form of CPn,

〈F∗ [M ] , χ〉 =

∫
M

F ∗χ.

F∗ [M ] is thus a current of bidegree (1, 1) supported by F (M), that is Y . It is positive because
if χ ∈ D1,1 (CPn) is positive, (F ∗χ) |M is a positive (1, 1)-form ofM since F is holomorphic and
hence 〈F∗ [M ] , χ〉 > 0. Let ξ ∈ C∞ (CPn) be such that χ = ξωFS where and ωFS = i

2π
∂∂ ln |w|2

is the (1, 1)-form defining the Fubini-Study metric. We get then

|〈F∗ [M ] , χ〉| 6
∫
M

|ξ|F ∗ωFS 6 ‖ξ‖∞
∫
M

F ∗ωFS

As ‖χ‖ = sup
p∈CPn

‖χp‖ and

‖χp‖ = max
s,t∈TpCPn, ‖s‖FS=‖t‖FS=1

|χp. (s, t)|

= |ξ (p)| max
s,t∈TpCPn, ‖s‖FS=‖t‖FS=1

∣∣∣(ωFS)p . (s, t)
∣∣∣ = |ξ (p)| ,

we get that the mass of F∗ [M ] is finite and at most
∫
M
F ∗ωFS. If χ ∈ D (CPn),

〈dF∗ [M ] , χ〉 = 〈F∗ [M ] , dχ〉 =

∫
M

F ∗dχ =

∫
M

dF ∗χ =

∫
γ

F ∗χ = 〈F∗ [γ] , χ〉

In other words, dF∗ [M ] = F∗ [γ] = [δ]. In particular, the mass of dF∗ [M ] is finite ; F∗ [M ] is a
normal current supported by Y .

Lemma 15 F∗ [M ]
∣∣CPn\δ is a positive holomorphic chain of CPn\δ supported by Y .

Proof. Given that T = F∗ [M ] is supported by Y and that Y = Y \δ, S = T
∣∣CPn\δ is a

normal, and hence locally rectifiable, current of CPn\δ, without boundary and supported by
Y . According to the structure theorem 2.1 of [?], there exists hence (nj)16j6N ∈ ZN such that
S =

∑
16j6N

nj [Yj] where (Yj) is the family of irreducible components of Y . S being moreover a

positive current according to Lemma 14, the nj are natural integers.

Lemma 16 F∗ [M ] = F∗ [M ′] and Y ′ = Y .

Proof. According to Lemma 14, the current T = F∗ [M ] − F ′∗ [M ′] is a boundary less
normal current of bidegree (1, 1) supported by Y ∪ Y ′. It is hence of the form

∑
16j6N

nj [Zj]

where (nj) ∈ (Z∗)N and the Zj are irreducible compact complex curves of CPn lying in Y ∪ Y ′.
Let Z one of these curves. Z ∩ δ 6= ∅ because otherwise F−1 (Z) is a compact complex curve
lying in M or M ′, which is excluded. One of the connected components of δ, says β, is hence
contained in Z; we equip β of the orientation induce by δ. β being smooth, there exists in Z a
Riemann (smooth) surface B such that B\β is included in (CPn\δ) ∩ Reg Y ∩ Reg Y ′ and has
only two connected components, B− and B+.
By construction, B− is an open connected Riemann surface included in the complex curve

Y ∪ Y ′ and hence, at least one of the two numbers H2 (B− ∩ Y ) or H2 (B− ∩ Y ′) is positive,
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says H2 (B− ∩ Y ) > 0. As B− is connected, this implies(4) that B− ⊂ Y . Given that β is a
subset of the boundaries of Y and B, we infer that after decreasing B if necessary, Y ∩B ⊂ Z
and hence Y ∩B ⊂ B− ∪B+.
Suppose that H2 (B+ ∩ Y ) = 0. Then, as B ⊂ Reg Y , B+ ∩ Y = ∅, Y ∩ B = B− and, by

force, B+ ⊂ Y ′. Suppose in addition that H2 (B− ∩ Y ′) = 0, then, decreasing B if necessary,
we get as before Y ′ ∩B = B+ and so d [Y ] = −d [Y ′] near β. This doesn’t match the fact that
F∗ [M ] and F ′∗ [M ′] are two positive holomorphic chains of CPn\δ supported respectively by Y
and Y ′. So, H2 (B− ∩ Y ′) > 0 and hence, B− ⊂ Y ′. Hence B ⊂ Y ′ and Z ⊂ Y ′, which is again
a contradiction. Going back to our first assumption, we get that H2 (B+ ∩ Y ) > 0 and hence
B ⊂ Y , still an impossibility. The lemma is proven.

Lemma 17 When y ∈ Y , My = F−1 ({y}) is a finite set and ν : Y : y 7→ CardMy is bounded.

Proof. Suppose that F−1 ({y}) is infinite for some y ∈ Y . If F−1 ({y}) has an accumulation
point in M , F = y on a connected component of M and hence on a non empty open subset
of γ. In the contrary case , F−1 ({y}) has an accumulation point in γ and dF vanishes at this
point. In both case, this contradicts that F |γ is an embedding.
Suppose that ν is unbounded. There exists then (ym) ∈ Y

N
such that (νm) = (ν (ym))

admits +∞ as limit and (ym) converges to y∗ ∈ Y . Since M is compact, there exists in M
N

a convergent sequence with limit x0
∗ ∈ F−1 ({y∗}) and a strictly increasing ϕ : N → N such

that yϕ(m) = F (xm) for all m ∈ N. If dF
∣∣
x0∗ 6= 0, there exists an open neighborhood U0 of x0

∗
in M such that V0 = F (U0) is a Riemann surface (with boundary if x0

∗ ∈ γ) and F
∣∣V0
U0
is a

biholomorphism (of Riemann surfaces with boundary if x0
∗ ∈ γ) ; we set m0

∗ = 1 in this case. If
dF
∣∣
x0∗ = 0, x∗0 /∈ γ and we can choose in a neighborhood of y∗ in CPn, holomorphic coordinates

(ζ1, ..., ζn) such that the vanishing order m∗ of (d (ζ1 ◦ F ) , ..., d (ζn ◦ F )) at x0
∗ is also the one

of d (ζ1 ◦ F ) at x0
∗. In this case, there exists an open neighborhood U0 of x0

∗ in M such that
if y ∈ V0 = F (U0), ζ1 (F (y)) has exactly m0

∗ preimages by ζ1 ◦ F in U0, mutually distinct if
y 6= y∗ ; if y ∈ V0 = F (U0), y has at least one preimage by F in U0 and at most m0

∗.
Suppose that we have got k + 1 mutually distinct points x0

∗, ..., x
k
∗ in F

−1 (y∗) and open
neighborhoods U0, ..., Uk of these points inM such that for all j ∈ {1, ..., k}, 1 6 CardF−1 (y∗)∩
Uj 6 mj

∗ and Uj ⊂ M\Vj−1 where Vj−1 = ∪
16`6j−1

U`. Then CardF−1 (y∗) ∩ Vk 6
∑

06j6k
mj
∗ and

since M\Vk+1 is compact, we can find a strictly increasing ϕ : N → N such that for all
m ∈ N, F−1

(
yϕ(m)

)
∩
(
M\Vk+1

)
contains at least a point xk+1

m which tends, when m goes to
infinity, toward a point xk+1

∗ ∈ F−1 ({y∗}). As before, we can then find an integer mk+1
∗ and a

neighborhood Uk+1 of xk+1
∗ in M such that 1 6 CardF−1 (y∗) ∩ Uk 6 mk

∗.
The values of the sequence

(
xk∗
)
k∈N so built are mutually distinct points of My, which is

impossible. ν is hence bounded.

Lemma 18 Consider h ∈ O (M)∩C0
(
M
)
. Then F∗h is holomorphic and bounded on Reg Y .

In addition, F ′∗F∗h = (F∗h) ◦ F ′ ∈ O (M ′) ∩ C0
(
M ′
)

Proof. By definition F∗h is the function defined on Y by (F∗h) (y) =
∑

x∈F−1(y)

h (x). Let

y∗ ∈ (Reg Y ) \F ({dF = 0}). Set F−1 (y∗) = {x∗1, ...x∗k} where k = ν (y). There exists a
neighborhood B of y in Reg Y such that for all j ∈ {1, ..., k}, there exists a neighborhood Aj of

4Since B− ∩ δ = ∅, B− = (B− ∩ Y ) ∪
(
B−\Y

)
. B− ∩ Y is an open subset B− because by construction,

B− ⊂ Reg Y ∩ Reg Y ′. It is non empty by hypothesis. Hence B− = B− ∩ Y ⊂ Y .
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x∗j inM for which Fj = F
∣∣∣BAj is a biholomorphism. Suppose that (yν) ∈ BN converges to y∗ and

CardF−1 {yn} > k for all n. Then, for each n ∈ N there exists an ∈M\
{
F−1

1 (yn) , ..., F−1
k (yn)

}
such that F (an) = yn. Possibly after extracting a subsequence, (an) converges to a point a of
M which satisfies F (a) = y∗. Given that y ∈ Y = F (M) \F (bM), a /∈ bM and there exists
j ∈ {1, ..., k} such that a = x∗j. For n big enough, an and F−1

j (yn) are then two distinct
points of Aj sharing the same image yn by F . This is absurd. Hence, F∗h =

∑
16j6k

h ◦ F−1
j is

holomorphic in a neighborhood of y. Furthermore, |F∗h| 6 k ‖h‖∞ and k = ν (y). F∗h is thus
bounded according to Lemma 17. Given that (Reg Y ) ∩ F ({dF = 0}) is finite, F∗h extends
holomorphically to Reg Y . This implies that F ′∗F∗h = (F∗h)◦F ′ is holomorphic and is bounded
on M ′\F ′−1 (Sing Y ). As F ′−1 (Sing Y ) is a finite set, F ′∗F∗h extends holomorphically to M ′.

Lemma 19 If ω′ ∈ C1,0
(
M ′
)
∩ Ω1,0 (M ′), there exists ω ∈ C1,0

(
M
)
∩ Ω1,0 (M) such that

ω |γ = ω′ |γ .

Proof. We have to check that ω′ |γ verifies the moment condition when γ is seen as the
boundary of M . So, let h ∈ O (M) ∩ C0

(
M
)
. According to Lemma 18, g = F ′∗F∗h ∈

O (M ′) ∩ C0
(
M ′
)
. Since f∗ [γ] = [δ],∫

γ

hω′ =

∫
γ

F ∗F∗ (hω′) =

∫
δ

F∗ (hω′)

=

∫
γ

(F ′∗F∗) (hω′) =

∫
M ′
d (F ′∗F∗) (hω′) = 0.

because F ′∗F∗h ∈ O (M ′) ∩ C0
(
M ′
)
and ω′ ∈ Ω1,0 (M ′).

Proof of Thoerem 3. Since by hypothesis
[
(∂U`)06`6n

]
is a well defined map from M

to CPn, we can use the adjonction lemma 12 of [?] which, though written for the particular
case n = 2, applies without any change for arbitrary n in N∗ : there exists harmonic functions
Un+1, ..., UN onM and continuous onM such that

[
(∂U`)06`6N

]
is an embedding ofM in CPN .

Similarly, there exists harmonic functions U ′N+1, ..., U
′
N ′ on M

′ and continuous on M ′ such that[
(∂U ′`)`∈{0,..,n,N+1,..,N ′}

]
is an embedding of M ′ in CPn+N ′−N . When ` ∈ {N + 1, ..., N +N ′},

Lemma 19 gives that (∂U ′`) |γ′ extends to M as a (1, 0)-form holomorphic Σ`. Also, when
` ∈ {n+ 1, ..., N}, (∂U`) |γ extends to M ′ as a (1, 0)-form holomorphic Σ′`. Consider then

Σ = (∂U0, ..., ∂Un, ∂Un+1..., ∂UN ,ΣN+1, ...,ΣN+N ′)
def
= (Σ`)06`6L

Σ′ =
(
∂U ′0, .., ∂U

′
n,Σ

′
n+1, ...,Σ

′

N ′ , ∂U
′
N+1, ..., ∂U

′
N+N ′

)
def
= (Σ′`)06`6L

By construction Σ and Σ′ coincide on γ. Note (w`)06`6L the natural coordinates of CL+1. When
0 6 `∗ 6 n, [Σ]

∣∣{∂U` 6=0} can be written (∂U`/∂U`∗)` 6=`∗ in the natural coordinates of CL identified
to {w`∗ 6= 0}. Note p`∗ the natural projection of CL on CN , (z`)`6=`∗ 7→ (z`)06`6N , ` 6=`∗ . The map
(∂U`/∂U`∗)06`6N , ` 6=`∗ is by construction an embedding of {∂U` 6= 0} in CN . [Σ] is moreover
injective because M = ∪

06`6n
{∂U` 6= 0} and because a relation of the form [Σ] (x) = [Σ] (y)

impose y ∈ ∩
(∂U`)x 6=0

{∂U` 6= 0}. [Σ] is thus an embedding of M in CPL. Also, [Σ′] is an

embedding ofM ′ in CPL. Noting that the proof of Lemma 14 doesn’t use that F is a canonical
map, that is of the form [∂U ], or noting that Lemma 8 of [?] shows that Σ and Σ′ are necessarily
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of this kind, we conclude that Σ (M) = Σ′ (M ′) then that M and M ′ are isomorphic through a
map whose restriction to γ is the identity.

6 Reconstruction of a Riemann surface

As explained in Section 2, one of the steps in the reconstruction of a general conductivity
structure is the particular case of the reconstruction of a Riemann surface from its Dirichlet-
Neumann operator which itself comes down to the reconstruction from its oriented boundary
∂Q of a relatively compact domain Q of an open nodal Riemann surface Q̃ of CP2.
This last job is done in this section we the help of the Cauchy-Fantapié indicators of Q

defined by Formula (4). Theorem 39 and Proposition 41which are the main result of this
section 6.5 are novelties about characterization and uniqueness of decomposition in sums of
shock waves of these indicators.
For the reader’s convenience, we list here some of the notation used in this section. U , Lz

and Gk are defined with (4); Q∞, q∞, bq, E∞, Ureg, Z, Zreg, Z+, Z+
reg, ρ, ρ̃ are defined at the

beginning of Section 6.1; Nh,k and Sh,k : (25); C [X, Y ) and Ck [X, Y ) : Proposition 21; NQ
k

and SQk : end of Section 6.1; Pk : (29); B
∞ and pk,ν : (31); δ, Gk,m and G̃k,m : Lemma 23;

(∂Q)0 : beginning of section 6.2; em, κm, κ
r
m, L : (38); Sk,r and P : Definition 28; H, E , Π, F :

Definition 30; Fk: Corollary 33.

6.1 Decomposition of Cauchy-Fantapié indicators

This section specifies background notation for Section 6 and recall a result of Dolbeault
and Henkin which gives a decomposition of the Cauchy-Fantapié related to intersections of the
lines Lz with the nodal Riemann surface Q to be reconstructed.
Without loss of generality, we suppose that bQ ⊂ {w0w1w2 6= 0}. From now, we also assume

the generic hypothesis and so little restrictive, that

(0 : 0 : 1) , (0 : 1 : 0) /∈ Q∞ = Q t {w0 = 0} ⊂ RegQ

where t denotes a transverse intersection. In this situation, u0 = w0
w2
can be taken as a co-

ordinate for Q in a neighborhood of points of Q∞ and there exists for each q ∈ Q∞ a func-
tion gq holomorphic near 0 in C such that in a neighborhood of q in CP2, Q coincide with
{(u0 : u1 : 1) ; u1 = gq (u0)}. We note then (Σgqνu

ν
0) the Taylor expansion of gq at 0. So, for

q ∈ Q∞,
q = (0 : gq0 : 1)

def
= (0 : bq : 1) .

We also set
E∞ = C× {−1/bq; q ∈ Q∞} .

In this section, U is the open subset of C2 where the Gk are defined. For any subset X
of U , we denote Xreg the subset of C2 made by points z = (x, y) of X such that Q and
Lz = {w ∈ CP2; xw0 + yw1 + w2 = 0} meet transversely at each point of Q ∩ Lz ; we set
Xsing = X\Xreg so that Using is an analytic subset of U .
Though U may be complicated, it contains a convenient open subset. Let us define

ρ = max

max
w∈bQ

|w2/w1| , 5
max
w∈bQ

|w2/w0|

min
w∈bQ

|w1/w0|

 , ρ̃ = max {ρ, |1/bq| ; q ∈ Q∞} (23)
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and pick a real α such that 0 < α < 1
4

min
w∈bQ

|w1/w0|. Then the sets defined below are contained
in U and play a crucial role :

Z =
{

(x, y) ∈ C2; ρ < |y| & |x| < α |y|
}

& Z+ = Z\ (C× R−) (24)

Z̃ =
{

(x, y) ∈ C2; ρ̃ < |y| & |x| < α |y|
}

& Z̃+ = Z̃\ (C× R−)

Remark. The hypothesis (0 : 1 : 0) , (0 : 0 : 1) /∈ Q (which ensures Q∞ ⊂ {w1w2 6= 0}) and
Q∞ ⊂ RegQ simplifies some statements and calculus but are not all mandatory. We indicate
for some formulas a version for the case Q∞ ∩ SingQ 6= ∅.

The lemma below ensures that the reconstruction process initiated by Proposition 21 ends
to a complete knowledge of Q ; thorough this paper D, is the unit open disk of C.

Lemma 20 For all w∗ ∈ Q ∩ {w0 6= 0} and all R ∈ R∗+, there exists z ∈ Ureg ∩
(
C× C\RD

)
such that w∗ ∈ Lz.

Proof. Let R ∈ [ρ̃,+∞[ and w∗ ∈ Q such that w∗0 6= 0. Set ζ∗ =
(
w∗1
w∗0

, w∗2
w∗0

)
. The points

z = (x, y) of C2 such that w∗ ∈ Lz form the line L∗w∗ of equation x + yζ∗1 + ζ∗2 = 0. If
L∗w∗ (R) = L∗w∗ ∩

(
C× C\RD

)
doesn’t meet U , for all y ∈ C\RD, there exists in bQ an element

w = (1 : ζ1 : ζ2) which is also in L(−yζ∗1−ζ∗2,y) so that y = − ζ∗2−ζ2
ζ∗1−ζ1 . Given that bQ is a real

curve, C\RD can’t be contained in the image of bQ by ζ 7→ − ζ∗2−ζ2
ζ∗1−ζ1 . Hence, L

∗
w∗ (R) ∩ U is a

non empty open subset of L∗w∗.
Cover Q ∩ {w0 6= 0} by a locally finite family B of branches of Q. For each B ∈ B, we pick

a function f holomorphic in an open subset VB of C2 such that

B = {(1 : ζ1 : ζ2) ; (ζ1, ζ2) ∈ VB & fB (ζ1, ζ2) = 0}

and dfB doesn’t vanish in B. Denote E (R) the set of points z ∈ L∗w∗ (R) such that Lz and Q
are tangential at some point of Lz ∩Q. A point z = (x, y) ∈ C2 belongs to E (R) when |y| > R
and there exists B ∈ B and ζ ∈ VB verifying the conditions

fB (ζ) = 0, x+ yζ∗1 + ζ∗2 = 0, x+ yζ1 + ζ2 = 0,

∂fB
∂ζ2

(ζ) 6= 0, y =
∂fB/∂ζ1

∂fB/∂ζ2

(ζ) , x = −∂fB/∂ζ1

∂fB/∂ζ2

(ζ) ζ∗1 − ζ∗2

When ζ 6= ζ∗, this forces ζ∗1 6= ζ1 and −∂fB/∂ζ1
∂fB/∂ζ2

(ζ) = ζ∗2−ζ2
ζ∗1−ζ1 . The points ζ satisfying this

equation form an analytic subset CB of B. For this reason, CB is either discrete, or equal to B.
Suppose that CB = B for an element B of B. Then ∂fB/∂ζ2 doesn’t vanish in VB and

we can find locally a holomorphic function ϕ such that fB (ζ) = 0 if and only if ζ2 = ϕ (ζ1).

The function ϕ verifies then ϕ′ (ζ1) + 1
ζ∗1−ζ1ϕ (ζ1) = ζ∗2

ζ∗1−ζ1 , that is
(

1
ζ∗1−ζ1ϕ (ζ1)

)′
=
(

ζ∗2
ζ∗1−ζ1

)′
.

Hence ϕ (ζ1) = (ζ1 − ζ∗1) c+ ζ∗2 where c is a constant. In this case, B is an open subset of the
line defined by the equation ζ2 = (ζ1 − ζ∗1) c + ζ∗2. Since Q is connected and has only nodal
singularities, this implies that Q itself lies in this line. It suffi ces then to pick any y suffi ciently
large to get that L(−yζ∗1−ζ∗2,y) meets Q only not tangentially. When CB is a discrete subset of
B, the set E (R,B) of elements z in L∗w∗ (R) such that Lz are B are tangential at some point of
Lz ∩ B is contained, because of the above relations, in a discrete set. Since B is locally finite,
the study of these two cases shows that L∗w∗ (R) meets Ureg ∩

(
C× C\RD

)
.

The starting point of all this section is Proposition 21 below about the Cauchy-Fantapié
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indicators of Q defined by (4). This result can be extracted as a particular case from Theorem II
and Lemma 4.2.2 obtained by Dolbeault and Henkin in [?] ; their proof applies without change
when some knots of Q are in Q∞. In this statement and after, we use the following notation
when h1, ..., hp are complex valued functions and k ∈ N,

Nh,k =
∑

16j6p
hkj & Sh,k =

∑
16j1<···<jp6k

hj1 · · ·hjk. (25)

The Newton identities state that for all k ∈ N∗,

Nh,k = (−1)k−1 kSh,k +
∑

16j6k−1

(−1)k−j−1 Sh,jNh,k−j (26)

Sh,k =
(−1)k−1

k
Nh,k +

1

k

∑
16j6k−1

(−1)j−1 Sh,jNh,k−j (27)

We denote C [X, Y ) the set of elements of C (X, Y ) which are polynomials in X. Ck [X, Y ) =
C (Y )k [X] denotes the ring of polynomials in X of degree at most k whose coeffi cients are
algebraic fractions in Y . A shock wave is by definition a holomorphic function h on an open
subset of C2 such that in the standard coordinates system (x, y)

∂h

∂y
= h

∂h

∂x
(28)

Proposition 21 (Dolbeault-Henkin, 1997) Let z∗ ∈ Ureg\E∞ and p = Card (Lz∗ ∩Q). If
U∗ is a suffi ciently small neighborhood of z∗ in Ureg, there exists shock waves h1, ..., hp on U∗
whose images are mutually disjoint such that for all z ∈ U∗,

Lz ∩Q = {(1 : hj (z) : −x− yhj (z)) ; 1 6 j 6 p} .

Moreover, for all k ∈ N, there exists Pk ∈ Ck [X, Y ) such that for all z ∈ U∗

Gk (z) = Nh,k (z) + Pk (z) . (29)

In addition, η denoting the natural injection of Q in CP2, Pk =
∑

q∈Q∞
Res

(
η∗Ωk

z , q
)
and

∂Pk
∂Y

=
k

k + 1

∂Pk+1

∂X
.

In practical terms, the diffi culty to extract from the equations (29) the symmetric functions
of the hj comes from the polynomials Pk. [?] contains a method when q∞ ∈ {1, 2}. For the one
proposed in this paper, the first step is to get precision on (Pk).

Lemma 22 P0 = −q∞ where q∞ = CardQ∞ and setting Pk =
∑

06ν6k
Xν ⊗ pk,ν when k ∈ N∗,

pk,k =
1

(k − 1)!
p

(k−1)
1,1 & pk,ν =

k

ν! (k − ν)
p

(ν)
k−ν,0, ν ∈ {0, .., k − 1} (30)

Moreover, if we set
B∞ =

∏
q∈Q∞

(1 + Y bq) (31)
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Then

p1,1 =
∑
q∈Q∞

bq

1 + Y bq
=
B∞′

B∞
(32)

p1,0 = −
∑
q∈Q∞

gq1
1 + Y bq

def
=

A∞

B∞
(33)

pk,0 =
k∑
j=1

∑
q∈Q∞

pqk,0,j

(1 + Y bq)j
=

k∑
j=1

pk,0,j
(B∞) j

, k ∈ N (34)

where the pqk,0,j are universal polynomials in the coeffi cients of the jet of order k − j + 1 of Q

at q and pk,0,j =
∑
q

pqk,0,j Π
q′ 6=q

(
1 + Y bq

′)j
. In particular, Pk doesn’t depend on z∗ and is entirely

determined by the k (q∞ + 1) numbers bq, pqk,0,j, (q, j) ∈ Q∞ × {1, ..., k}.
Furthermore, Pk admits a Laurent series expansion of the form

∑
m6−1

Pk,m ⊗ Y m where

Pk,m ∈ Ck−1 [X] when −1 > m > −k and Pk,m ∈ Ck [X] when −k > m.

Remark. In the case where Q∞∩SingQ 6= ∅, Formula (31) becomes B∞ =
∏

q∈Q∞
(1 + Y bq)ν(q)

where ν (q) denotes the number of branches of Q at q, (32) stay unchanged and in (33), gq1 has
to replaced by

∑
B

gB,q1 where the sum is done on a complete set of inner branches of Q at q and

gB,q1 =
(
gB
)′

(0), gB denoting the holomorphic function such that in a neighborhood of 0, an
equation of the branch B is u1 = gB1 (u0).
Proof. Suppose that (30) is verified for a positive integer k. Then

Pk+1 = Pk+1 (0, Y ) +
k + 1

k

( ∑
06m6k−1

p′k,m
Xm+1

m+ 1
+ p′k,k

Xk+1

k + 1

)

= pk+1,0 +
∑

06m6k−1

k + 1

(m+ 1)! (k −m)
p

(m+1)
k−m,0X

m+1 +
1

k!
p

(k)
1,1X

k+1

= pk+1,0 +
∑

16m6k

k + 1

(m+ 1)! (k + 1−m)
p

(m)
k+1−m,0X

m +
1

k!
p

(k)
1,1

which proves (30) with a recurrence.

Let now k ∈ N and z = (x, y) ∈ U\E∞. In the affi ne coordinates (u0, u1) =
(
w0
w2
, w1
w2

)
of

CP2, Ωk
z has the form

Ωk
z =

(
u1

u0

)k dxu0+yu1+1
u0

xu0+yu1+1
u0

=

(
u1

u0

)k (
xdu0 + ydu1

xu0 + yu1 + 1
− du0

u0

)
.

We fix a point q in Q∞ and in order to simplify the scripts, we write g instead of gq (an so, gν
stands for gqν) and u in place of u0. In a neighborhood of q in Q, the form η∗Ωk

z written in the
coordinate u is

η∗Ωk
z =

(
(x+ yg′) gk

uk (1 + xu+ yg)
− gk

uk+1

)
du.

Denoting by 〈f, uν〉 the coeffi cient of uν in the Taylor expansion at 0 of a function f holomorphic
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in a neighborhood of 0, one gets

P q
k (z)

def
= Res

(
η∗Ωk

z , q
)

= Res

(
(x+ yg′) gk

(1 + xu+ yg)uk
, 0

)
−
〈
gk, uk

〉
.

In particular P q
0 (z) = −1 and hence P0 = −CardQ∞. Suppose now k > 1. Then

yg′gk

1 + xu+ yg
=

(
1− 1 + xu

1 + xu+ yg

)
g′gk−1

and if g′gk−1 =
∑
n∈N

αnu
n, 1

k

(
gk − gk0

)
=
∑
n∈N∗

αn−1
n
un, which gives

Res

(
gk

uk+1
du, 0

)
= k

αk−1

k
= Res

(
g′gk−1

uk
du, 0

)
This entails,

P q
k (z) = Res

(
xgk

(1 + xu+ yg)uk
, 0

)
− Res

(
1 + xu

(1 + xu+ yg)uk
g′gk−1, 0

)
= Res

(
x (g − ug′)− g′
(1 + xu+ yg)uk

gk−1, 0

)
.

Since g − g0 = O (u) and (x, y) /∈ E∞, 1 + yg0 6= 0 and it comes furthermore that for u small
enough

1

1 + xu+ yg
=

(1 + yg0)−1

1 + xu+y(g−g0)
1+yg0

=
∑
n∈N∗

(−1)n−1

(1 + yg0)n
[xu+ y (g − g0)]n−1 .

Burt for all n ∈ N∗

[x (g − ug′)− g′] gk−1 [xu+ y (g − g0)]n−1

=
n−1∑
m=0

Cm
n−1g

k−1

(
xm+1yn−1−m (g − ug′) (g − g0)n−1−m um

−g′xmyn−1−m (g − g0)n−1−m um

)

=

n∑
m=1

Cm−1
n−1 x

myn−mgk−1 (g − ug′) (g − g0)n−m um−1

−
n−1∑
m=0

Cm
n−1x

myn−1−mg′gk−1 (g − g0)n−1−m um

=
−yn−1g′gk−1 (g − g0)n−1 + xngk−1 (g − ug′)un−1

+
n−1∑
m=1

xmyn−1−m
(
yCm−1

n−1 g
k−1 (g − ug′) (g − g0)

−Cm
n−1g

′gk−1u

)
(g − g0)n−1−m um−1

So,

P q
k (z)

= −
k∑

n=1

(−1)n

(1 + yg0)n

 −yn−1
〈
g′gk−1 (g − g0)n−1 , uk−1

〉
+ xn

〈
gk−1 (g − ug′) , uk−n

〉
+

n−1∑
m=1

xmyn−1−m
〈(

yCm−1
n−1 g

k−1 (g − ug′) (g − g0)
−Cm

n−1g
′gk−1u

)
(g − g0)n−1−m , uk−m

〉 
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Hence P q
k (z) =

k∑
m=0

pqk,m (y)xm with

pqk,0 =
k∑

n=1

(−1)n Y n−1

(1 + Y g0)n
〈
g′gk−1 (g − g0)n−1 , uk−1

〉
, pqk,k =

(−1)k+1 gk0

(1 + Y g0)k

and for 1 6 m 6 k − 1,

pqk,m

= −
k∑

n=m+1

(−1)n Y n−1−m

(1 + Y g0)n
〈(
Y Cm−1

n−1 g
k−1 (g − ug′) (g − g0) + Cm

n−1g
′gk−1u

)
(g − g0)n−1−m , uk−m

〉
In particular,

pq1,0 =
−g1

1 + Y g0

& pq1,1 =
g0

1 + Y g0

.

Furthermore, for all n ∈ N,

(−1)n Y n−1

(1 + Y g0)n
=

(−1)n

gn−1
0 (1 + Y g0)

(
1− 1

1 + Y g0

)n−1

= (−1)n
n∑
j=1

(−1)j−1Cj−1
n−1g

−(n−1)
0

(1 + Y g0)j
,

Hence

pqk,0 =
k∑
j=1

(−1)j−1

(1 + Y g0)j

k∑
n=j

(−1)nCj−1
n−1

gn−1
0

〈
g′gk−1 (g − g0)n−1 , uk−1

〉
=

−gk1
(1 + Y g0)k

+
k−1∑
j=1

(−1)j−1

(1 + Y g0)j

k∑
n=j

(−1)nCj−1
n−1

gn−1
0

〈
g′gk−1 (g − g0)n−1 , uk−1

〉
Note that

〈
g′gk−1 (g − g0)k−1 , uk−1

〉
= g1g

k−1
0 gk−1

1 = gk1g
k−1
0 and〈

g′gk−1 (g − g0)k−2 , uk−1
〉

=
(
g1 + 2g2u+O

(
u2
)) (

g0 + g1u+O
(
u2
))k−1 (

g1u+ g2u
2 +O

(
u3
))k−2

= (g1 + 2g2u)
(
gk−1

0 + (k − 1) gk−2
0 g1u

) (
gk−2

1 uk−2 + (k − 2) gk−3
1 g2u

k−1
)

+O
(
uk
)

=
(
g1g

k−1
0 +

(
2g2g

k−1
0 + (k − 1) gk−2

0 g2
1

)
u
) (
gk−2

1 uk−2 + (k − 2) gk−3
1 g2u

k−1
)

+O
(
uk
)

= gk−1
1 gk−1

0 uk−2 +
[
g1g

k−1
0 (k − 2) gk−3

1 g2 +
[
2g2g

k−1
0 + (k − 1) gk−2

0 g2
1

]
gk−2

1

]
uk−1 +O

(
uk
)

= gk−1
1 gk−1

0 uk−2 +
[
kgk−1

0 gk−2
1 g2 + (k − 1) gk−2

0 gk1
]
uk−1 +O

(
uk
)

which gives
(−1)k Ck−1

k−1

gk−1
0

〈
g′gk (g − g0)n−1 , uk−1

〉
= (−1)k gk1
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and

k∑
n=k−1

(−1)nCk−2
n−1

gn−1
0

〈
g′gk (g − g0)n−1 , uk−1

〉
=

(−1)k (k − 1)

gk−1
0

〈
g′gk (g − g0)k−1 , uk−1

〉
+

(−1)k−1

gk−2
0

〈
g′gk (g − g0)k−2 , uk−1

〉
= (−1)k (k − 1) gk1 +

(−1)k−1

gk−2
0

[
kgk−1

0 gk−2
1 g2 + (k − 1) gk−2

0 gk1
]

= (−1)k
(
(k − 1) gk1 −

[
kg0g

k−2
1 g2 + (k − 1) gk1

])
= −k (−1)k g0g

k−2
1 g2

So,

pqk,0 =
−gk1

(1 + Y g0)k
+
−kg0g

k−2
1 g2

(1 + Y g0)k−1
+

k−2∑
j=1

pqk,0,j

(1 + Y g0)j

with

pqk,0,j = (−1)j−1
k∑
n=j

(−1)nCj−1
n−1

gn−1
0

〈
g′gk−1 (g − g0)n−1 , uk−1

〉
Summing on the elements q of Q∞ the above equalities, we get the relations claimed in the
statement.
Writing the Laurent series at infinity of pk,ν , 0 6 ν 6 k, in the form

∑
m6−1

〈pk,νY m〉Y m,

we get Pk =
∑

m6−1

Pk,m ⊗ Y m and Pk,m =
∑

06ν6k
〈pk,ν , Y m〉Xν for any m. Since (30) implies

〈pk,k, Y m〉 = 0 when m > −k, we obtain that Pk,m =
∑

06j<k

〈
pmk,j, Y

m
〉
Xj ∈ Ck−1 [X] for

−1 > m > −k and that Pk,m =
∑

06j6k

〈
pmk,j, Y

m
〉
Xj ∈ Ck [X] for −k > m.

6.2 Expansion of indicators

The form of fractions Pk given by Lemma 22 suggests to study the functions Gk on the
domain Z defined by (24). In this section and after, (∂Q)0 stands for the real orientated curve

of C2 which is the image of ∂Q by the coordinates map w 7→
(
w1
w0
, w2
w0

)
.

Lemma 23 We note δ the integer 1
2πi

∫
∂Q

d(w1/w0)
w1/w0

. G0 is constant on Z and for all k ∈ N∗, Gk

admits on Z a Laurent expansion of the form

Gk (x, y) =
∑
n∈N∗

Gk,−n (x)

yn
= (−1)k δ

xk

yk
+
∑
n∈N∗

G̃k,−n (x)

yn
(35)

with normal convergence on Z and where for all n ∈ N∗, G̃k,−n =
∑

06ν<n
Gν
k,−nX

ν is a polyno-

mial of degree at most n − 1. In particular, Gk,0 = δk,0δ, Gk,−n = δk,n (−1)n δXn + G̃k,−n ∈
Cn−1+δk,n [X] and

G1 (x, y) =
G0

1,−1 − δx
y

+
∑
n>2

G1,−n (x)

yn
(36)

with G0
1,−1 = −1

2πi

∫
∂Q

w2
w1
dw1
w0
.
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Proof. Fix k in N∗. Let (x, y) ∈ Z. Then for all (z1, z2) ∈ (∂Q)0,
∣∣∣x+z2
yz1

∣∣∣ < 1
2
since by

definition of ρ, |x+ z2| 6 α |y|+ max |ζ2|
(ζ1,ζ2)∈(∂Q)0

< 1
2
|y| min |ζ1|

(ζ1,ζ2)∈(∂Q)0

6 1
2
|yz1|. Hence

Gk (x, y) =
1

2πi

∫
(∂Q)0

zk−1
1 dz1 +

1

2πi

∫
(∂Q)0

zk−1
1

z1dz2 − (x+ z2) dz1

x+ yz1 + z2

= 0 +
1

2πi

∫
(∂Q)0

zk−2
1

y

z1dz2 − (x+ z2) dz1

1 + x+z2
yz1

=
1

2πi

∫
(∂Q)0

∑
ν∈N

(−1)ν zk−2−ν
1

yν+1
(x+ z2)ν (z1dz2 − (x+ z2) dz1) =

∑
n∈N∗

Gk,−n (x)

yn

with normal convergence on Z and for any n ∈ N∗

Gk,−n (x) =
(−1)n−1

2πi

∫
(∂Q)0

zk−n−1
1 (x+ z2)n−1 (z1dz2 − (x+ z2) dz1) .

Hence, Gk,−n is a polynomial of degree at most n. Let us write it
∑

06ν6n
Gν
k,−nX

n. The coeffi cient

Gn
k,−n of X

n in Gk,−n is given by the formula

Gn
k,−n =

(−1)n

2πi

∫
(∂Q)0

zk−n−1
1 dz1 = δk,n (−1)n δ.

With G̃k,−n =
∑

06ν<n
Gν
k,−nX

ν , we get

Gk (x, y) =
∑
n∈N∗

δk,n (−1)n δxn + G̃k,−n (x)

yn
= (−1)k δ

xk

yk
+
∑
n∈N∗

G̃k,−n (x)

yn

Besides,

G1,−1 (x) =
1

2πi

∫
(∂Q)0

z−1
1 (z1dz2 − (x+ z2) dz1) = G0

1,−1 + xG1
1,−1

with G0
1,−1 = 0 + −1

2πi

∫
w∈(∂Q)0

w2
w1
dw1
w0
and G1

1,−1 = −1
2πi

∫
(∂Q)0

z−1
1 dz1 = −δ.

By definition, G0 is the function U 3 (x, y) 7→ 1
2πi

∫
∂Q

d[(xw0+yw1+w2)/w0)]
xw0+yw1+w2/w0

. Hence, it is
continuous and integer valued. So it is constant on Z and equal to its limit value when x = 0
and y →∞, that is δ. Thus, G0,−n = 0 for all n ∈ N∗.

Corollary 24 The number p of functions h1, ..., hp involved in Proposition 21 is the same for
all points of Zreg\E∞ : p = δ + q∞ where q∞ = CardQ∞.

Proof. Denote temporarily p (z) the number of functions h1, ..., hp(z) involved in Proposi-
tion 21 when z ∈ Ureg. Since P0 = −q∞, we know that G0 (z) = p (z)− q∞ and so that p is an
integer valued function continuous on the connected set Zreg\E∞. It is thus constant and since
G0 (x, y) = δ +

∑
m∈N∗

G0,m(x)

ym
when (x, y) ∈ Zreg, we conclude that δ = p− q∞.

Remarks. In the case where Q∞ ∩ SingQ 6= ∅, q∞ =
∑

q∈Q∞
ν (q). Corollary 45 of Section 7

gives a formula linking q∞ and the genus of Q via the Dirichlet-Neumann operator.
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Corollary 25 Notation and hypothesis remains as stated in Proposition 21. For all k ∈ N∗,
Nh,k extends to Z\E∞ as a holomorphic function NQ

k which doesn’t depend of z∗ and which ex-

pands in Laurent series on Z̃ in the form NQ
k (x, y) =

∑
n∈N∗

NQ
k,n(x)

yn
where the NQ

k,n are polynomials

of degree at most n. Moreover, for all z ∈ Zreg, there exists shock waves hz1, ..., h
z
p whose images

are mutually distinct and such for z′ suffi ciently close to z,
(
NQ
k (z′)

)
k∈N

= (Nhz ,k (z′))k∈N and

Lz′ ∩Q = {(1 : hj (z′) : −x− yhj (z′)) ; 1 6 j 6 p}.

Proof. Let k ∈ N. We know that Nh,k = Gk − Pk on U∗ and thanks to Lemma 22 that
Pk is an algebraic fraction which doesn’t depend on z∗ and which is defined on Z\E∞. Hence,
NQ
k = Gk − Pk extends Nh,k as a holomorphic function on Z. Applying Proposition 21 and

Corollary 24 with an arbitrary point z of Zreg\E∞, we obtain shock waves hz1, ..., hzp with the
claimed properties. Furthermore, Lemma 22 also gives that

Pk =
∑

06ν6k
pk,νX

ν =
1

(k − 1)!
p

(k−1)
1,1 Xk +

∑
06νw<k

k

ν! (k − ν)
p

(ν)
k−ν,0X

ν

with p1,1 =
∑

q∈Q∞
bq

1+Y bq
and pν,0 =

ν∑
j=1

∑
q∈Q∞

pqν,0,j

(1+Y bq)j
. For |y| > ρ̃, one get

p1,1 (y) =
∑
n∈N∗

(−1)n−1

y

∑
q∈Q∞

(bq) n−1 =
∑
n∈N∗

(−1)n−1 Sb,n−1

yn

pν,0 (y) =
ν∑
j=1

∑
n∈N∗

(j − 1)! (−1)n+j−1

yn+j−1

∑
q∈Q∞

bqpqν,0,j =
∑
m∈N∗

p∞,mν,0

ym

with p∞,mν,0 = (−1)m
∑

(n,j)∈N∗×{1,...,ν}, n+j=m+1

(j − 1)!
∑

q∈Q∞
(bq) −npqν,0,j. It suffi ces then to combine

these formulas with Lemma 23 in order to get the announced statements.

Corollary 26 Notation and hypothesis remain as stated in Proposition 21. Denote by SQk ,
k ∈ N∗, the functions obtained from (26) and

(
NQ
k

)
k∈N∗

which is defined in Corollary (25 ;

locally the SQk are the symmetric functions of the functions h1, .., hp of Proposition 21. Then
for all k ∈ N∗, SQk expands in Laurent series on Z̃.

6.3 A genesis of multiple shock wave

Let A,B ∈ C [Y ] with degA < r = degB, B (0) = 1. Define P ∈ C [X, Y ) and N by

P (X, Y ) =
A (Y )

B (Y )
+
B′ (Y )

B (Y )
X & N = G1 − P.

In this section, we look for a characterization of when N is a multiple shock wave, that is a sum
of shock waves. Theorem 4 of [?] gives a characterization of such sums but in this article, we
use one which is more adapted to the present situation. This two characterizations correspond
more or less to emphasize one of the variables x or y and rely on the following lemma whose
proof is omitted since it follows easily from [?, Lemma 16] and the proof of [?, Proposition 17]
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Lemma 27 (Henkin-Michel, 2007) Let D be a domain of C2, N ∈ O (D) and d ∈ N∗.
There exists mutually distinct local shock waves h1, ..., hd such that N = h1 + · · · + hd if and
only if there exists s1, ..., sd ∈ O (D) such that s1 = −N and

− sd
∂N

∂x
+
∂sd
∂y

= 0, −sk
∂N

∂x
+
∂sk
∂y

=
∂sk+1

∂x
, 1 6 k 6 d− 1, (37)

and if the discriminant of the polynomial Σ = T d+s1T
d−1+· · ·+sd ∈ O (D) [T ] is not identically

zero on D. In this case, we say that N is a d-shock waves.

In order to define integro-differential operators adapted to the resolution of the system (37),
we introduce notation linked to Laurent series and their primivitization. For m ∈ Z, we set

em : C∗ 3 y 7→ (−1)|m|−1 (|m| − 1)! ym if m 6 −1 (38)

em : C∗ 3 y 7→ 1

m!
ym if m > 0

and we denote by κm = em
em1
the real number such that em (y) = κmy

m for any y ∈ C∗. We also
make use of the notation κrm = κrκm−r

κm
when 0 6 r 6 m. The main reason of this normalization

is that for any m ∈ Z\ {−1}, em+1 is a primitive of em. Note that κ1 = κ−1 = 1. We denote by
L the principal determination of the logarithm on C\R−.

Definition 28 For (k, r) ∈ Z × N, we denote by Sk,r the set of holomorphic functions F
on Z+ such that there exists a family (cm,s)m6k, 06s6r of entire functions such that for each
s ∈ {0, ..., r}, the series (

∑
m6k

cm,s ⊗ em) is normally convergent on subsets of Z whose first

projection is bounded and such that F =
∑

m6k, 06s6r
cm,s ⊗ emLs on Z+.

We define an operator P on S∗,∗ = ∪
(k,r)∈Z×N

Sk,r by setting PF =
∑

m6k, 06s6r
cm,s ⊗P (emL

s)

when F =
∑

m6k, 06s6r
cm,s ⊗ emLs ∈ Sk,r, the action of P on emLs being defined by

P (em) = em+1 if m 6= −1, Pe−1 = L

P (emL
s) = (−1)0A0

sa
0
mem+1L

s + · · ·+ (−1)sAssa
s
mem+1L

0 if m 6= −1,

P (e−1L
s) = 1

s+1
Ls+1 = 1

s+1
e0L

s+1

where am = −m if m 6 −2 and am = 1
m+1

if m > 0.

Lemma 29 For any F =
∑

m6k, 06s6r
cm,s⊗emLs ∈ Sk,r, PF ∈ ck,r⊗ek+1L

r + c−1,r
r+1
⊗Lr+1 +Sk,r

and PF is a partial primitive of F in the sense that ∂
∂y
PF = F .

Proof. We only need to check that for a given (m, s) ∈ Z × N, [P (emL
s)]′ = emL

s. The
cases m = −1 or (s = 0 & m 6= −1) are quite evident. Assume s 6= 0 and m 6= −1. Then∫

[1;y]

(emL
s) (τ) dτ = [em+1L

s]y1 −
∫

[1;y]

em+1 (τ)
s

τ
Ls−1 (τ) dτ
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If m 6 −2, em+1 (τ) 1
τ

= (−1)|m| |m|!τm = −mem and if m > 0, em+1 (τ) 1
τ

= 1
(m+1)!

τm =
1

m+1
em. Thus∫

[1;y]

(emL
s) (τ) dτ = em+1L

s − sam
∫

[1;y]

(
emL

s−1
)

(τ) dτ

= A0
sa

0
mem+1L

s + · · ·+ (−1)s−1As−1
s as−1

m em+1L
1 + (−1)sAssa

s
m

∫
[1;y]

em (τ) dτ

= A0
sa

0
mem+1L

s + · · ·+ (−1)sAssa
s
mem+1L

0 = P (emL
s)

and P (emL
s) is indeed a primitive of emLs.

Definition 30 Let H be the function defined on Z+ by

H = P ∂G1

∂x
= −δ ⊗ L+

∑
m6−1

G′1,m−1

κm−1

⊗ em = −δ ⊗ L+ H̃

We then define operators D, E and F on S∗,∗ in the following way

D = e−H
∂

∂x
eH =

∂

∂x
+
∂H

∂x
, E = P ◦ D & F = ΠE (39)

where Π is the operator which to F =
∑

m6k, 06s6r
cm,s ⊗ emLs ∈ Sk,r associates

∑
m6k

cm,0 ⊗ em.

The lemma below collects some basic facts about the crucial function H.

Lemma 31 H̃ = I + J where for any (x, y) ∈ Z,

I (x, y) =
1

2πi

∫
(∂Q)0

z1dz2 − (x+ z2) dz1

x+ yz1 + z2

J (x, y) =
−1

2πi

∫
(∂Q)0

L

(
x+ yz1 + z2

yz1

)
dz1

H = −δ ⊗ L+
∑

m6−1

Hm ⊗ em with Hm ∈ C|m|−1 [X] for any m 6 −1 and

∂H

∂y
=
∂G1

∂x
. (40)

eH extends holomorphically to Z and

eH =
(
1⊗ e−δ1

)
eH̃ (41)

so that D is in fact defined on O (Z). Furthermore, δ is given for all x ∈ C by the formula

δ = lim
|y|→+∞

ln
∣∣e−H(x,y)

∣∣
ln |y| . (42)

Proof. Formula (40) is the main purpose of setting H = P ∂G1
∂x
, (41) just takes in account

that δ ∈ Z and (42) follows from (41). For any m 6 −1, Hm = − 1
κ−2

G′1,m−1 ∈ C|m−1|−2 [X] =
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C|m|−1 [X]. To prove that H̃ = I + J , we note that for (x, y) ∈ U ,

∂G1

∂x
(x, y) =

−1

2πi

∫
(∂Q)0

yz1dz1 + z1dz2

(x+ yz1 + z2)2

=
−1

2πi

∫
(∂Q)0

dz1

x+ yz1 + z2

+
1

2πi

∫
(∂Q)0

(x+ z2) dz1 − z1dz2

(x+ yz1 + z2)2

=
−1

2πi

∫
(∂Q)0

dz1

x+ yz1 + z2

+
∂I

∂y
(x, y) .

When (z1, z2) ∈ (∂Q)0,
x+yz1+z2

yz1
∈ R∗− only if y ∈

]
0; −x−z2

z1

]
, which can’t happen since

∣∣∣−x−z2z1

∣∣∣ 6
α

min|ζ1|
(ζ1,ζz2)∈(∂Q)0

|y|+ max |ζ2|
(ζ1,ζz2)∈(∂Q)0

6 1
2
|yz1| < |yz1|. Hence J is well defined on Z and

∂J

∂y
=
−1

2πi

∫
(∂Q)0

(
1

x+ yz1 + z2

− 1

yz1

)
dz1 =

δ

y
+
−1

2πi

∫
(∂Q)0

dz1

x+ yz1 + z2

Thus, ∂(I+J)
∂y

= ∂H̃
∂y
and since both H (x, .) and (I + J) (x, .) have limit 0 at infinity when x is

fixed, we get I + J = H̃.

The operator F enables to design a machinery adapted to the system (37).

Proposition 32 Let s1, ..., sd ∈ O (Z\E∞). Then (s1, ..., sd) is a solution of (37) with N =
G1−P if and only if each (1⊗B) sj extends holomorphically to Z and there exists µ1, ..., µd ∈
O (C) which satisfy the system below on Z+,

(1⊗B) sk =
[
F0 (µk ⊗ e0) + · · ·+ Fd−k (µd ⊗ e0)

]
eH , d > k > 1 (43)

Proof. Since N = G1 − A
B
− Id⊗ B′

B
, we note that if s ∈ O (Z) and B̃ = 1⊗B

B̃

(
−s∂N

∂x
+
∂s

∂y

)
= s

(
−B̃ ∂G1

∂x
+ B̃′

)
+ B̃

∂s

∂y

= −
(
B̃s
) ∂G1

∂x
+
∂B̃s

∂y
= eH

∂e−HB̃s

∂y

As eH extends holomorphically to Z, (s1, ..., sd) ∈ O (Z\E∞)d is a solution of (37) if and only
if the equations

∂e−HB̃sd
∂y

= 0 &
∂e−HB̃sk

∂y
= e−H

∂B̃sk+1

∂x
, 1 6 k 6 d− 1 (44)

are satisfied on Z\E∞. The first one is equivalent to the existence of a function µd defined on
C such that for all (x, y) ∈ Z\E∞,

B (y) sd (x, y) = µd (x) eH(x,y) (45)

Such a function µd is actually holomorphic on C since for all y ∈ C\ρ̃D, it would be given
on D (0, α |y|) by the formula µd = sd (., y) eH(.,y)

B(y)
. Hence, (45) also implies that B̃sd holo-

morphically extends to Z. Suppose that for k ∈ {1, ..., d− 1}, µd, ..., µk ∈ O (C) satisfy on
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Z\E∞
B̃sj =

[
F0 (µj ⊗ e0) + · · ·+ Fd−j (µd ⊗ e0)

]
eH

when d > j > k + 1 and that each of these B̃sj extends holomorphically to Z. The equation
∂
∂y

(
B̃ske

−H
)

= e−H ∂
∂x

(
B̃sk+1

)
is then equivalent to the existence of a function µk defined on

C such that for all (x, y) ∈ Z+\E∞,

B (y) sk (x, y) e−H(x,y) = µk (x) + P
(
e−H

∂

∂x
(Bsk+1)

)
(x, y) . (46)

Since B̃sk+1 and e−H extends holomorphically to Z, the only logarithmic term (46) may have
comes from P applied to some elements of O (C)⊗ e−1. As B̃ske−H expands in usual Laurent
series in Z̃, theses logarithmic terms have to compensate. Hence, it turns out that the right side
of (46) expands in usual Laurent series in Z, which yields that B̃sk holomorphically extends to
Z and µk ∈ O (C). We also get

B̃ske
−H = Π

((
1⊗ B̃

)
ske
−H
)

= µk ⊗ e0 + ΠP
(
e−H

∂

∂x

(
B̃sk+1

))
= µk ⊗ e0 + Π

∑
k+16j6d

P
(
e−H

∂

∂x

(
eHF j−k−1 (µj ⊗ e0)

))
=
∑

16j6d
F j−k−1 (µj ⊗ e0) .

We derive from Proposition 32 a process to construct a priori some functions which may be
multiple shock wave.

Corollary 33 For µ1, ..., µd ∈ O (C), we define on Z holomorphic functions sk (µ,B), 1 6 k 6
d, by

sk (µ,B) =
eH̃

1⊗ eδ1B
Fk (µ) & Fk (µ) =

d∑
j=k

F j−k (µj ⊗ e0) , 1 6 k 6 d.

Let CB [Y ] = {B ∈ C [Y ] ; B (0) = 1}. Then the mapO (C)d×CB [Y ] 3 (µ,B) 7→ (sk (µ,B))16k6d
is injective. Moreover, −s1 (µ,B) is a d-shock waves on Z if and only if

−s1 (µ,B) = G1 − P

and the discriminant ∆ (µ,B) of S (µ,B) = T d + s1 (µ,B)T d−1 + · · ·+ sd (µ,B) ∈ O (Z) [T ] is
not identically zero.

Proof. Suppose that (µ,B) and (ν, C) are two elements of O (C)d × CB [Y ] such that
(sk (µ,B))16k6n = (sk (ν, C))16k6d. Then on Z\E∞, µd ⊗ 1

B
= νd ⊗ 1

B
. As B,C ∈ CB [Y ],

this implies B = C and µd = νd. Suppose that µj = νj when d > j > k > 1. The relation
sk−1 (µ,B) = sk−1 (ν, C) can be then written Fk−1 (µ) = Fk−1 (ν) and this gives immediately
µk−1 = νk−1. Hence, µ = ν.
Since eH =

(
1⊗ e−δ1

)
eH̃ , Proposition 32 gives that (sk (µ,B))16k6d verifies system (37).

When −s1 (µ,B) = G1 − P , ∆ (µ,B) 6= 0 ensures that −s1 (µ,B) is the sum of d shock waves
mutually distinct whose symmetric functions are the (−1)k sk (µ,B).
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The proposition below shows that the system (43) can bee seen as a classical differential
system with unknowns µ1, ..., µd.

Proposition 34 We define holomorphic functions Fk,k, ...,Fk,0 on Z for all k ∈ N by the
following relations

Fk,k = 1⊗ ek, Fk+1,0 = FkΠP ∂H
∂x

, Fk+1,j = ΠPFk,j−1 + FFk,j, 1 6 j 6 k

where Fk,ν = 0 if ν < 0. Then for all f ∈ O (C),

Fk (f ⊗ e0) =
∑

06j6k

(
f (j) ⊗ e0

)
Fk,j.

Proof. By definition, for all f ∈ O (C), D (f ⊗ e0) = f ′ ⊗ e0 + (f ⊗ e0) ∂H
∂x
and hence

F (f ⊗ e0) = ΠPD (f ⊗ e0) = (f ′ ⊗ e0)F1,1 +(f ⊗ e0)F1,0 with F1,1 = 1⊗e1 and F1,0 = ΠPH.
Suppose lemma’s result true for a given k ∈ N∗. Then for f ∈ O (C)

Fk+1 (f ⊗ e0)

=
∑

06j6k
ΠP ∂

∂x

(
f (j) ⊗ e0

)
Fk,j + ΠP

(
∂H

∂x

∑
06j6k

(
f (j) ⊗ e0

)
Fk,j

)

=
∑

06j6k
ΠP

((
f (j+1) ⊗ e0

)
Fk,j +

(
f (j) ⊗ e0

) ∂Fk,j
∂x

)
+
∑

06j6k

(
f (j) ⊗ e0

)
ΠP

(
Fk,j

∂H

∂x

)
=
∑

06j6k

(
f (j+1) ⊗ e0

)
ΠPFk,j +

∑
06j6k

(
f (j) ⊗ e0

)
ΠP ∂Fk,j

∂x
+
∑

06j6k

(
f (j) ⊗ e0

)
ΠP

(
Fk,j

∂H

∂x

)
which gives the expected formula with

Fk+1,k+1 = ΠPFk,k = ΠP (1⊗ ek) = 1⊗ ek+1,

Fk+1,j = ΠPFk,j−1 + ΠP
(
∂Fk,j
∂x

+ Fk,j
∂H

∂x

)
= ΠPFk,j−1 + FFk,j, 1 6 j 6 k,

Fk+1,0 = ΠP
(
∂Fk,0
∂x

+ Fk,0
∂H

∂x

)
= FFk,0 = FFk−1ΠP ∂H

∂x
= FkΠP ∂H

∂x
.

Going further in the analysis of (37), we are about to prove that the functions µj are
polynomials. We start by two elementary lemmas.

Lemma 35 Let k ∈ N and F =
∑
m6k

cm ⊗ em ∈ Sk,r. Then FF ∈ c′k ⊗ ek+1 + Sk,r and

〈FF, e0〉 = 0.

Proof. Let k and F be as above. Since FF = ΠPDF and 〈P (ejL
s) , e0〉 = 0 for any (j, s),

we get 〈FF, e0〉 = 0. Furthermore,

P ∂F
∂x

=
∑
m6k

c′m ⊗ Pem ∈ c′k ⊗ ek+1 + Sk,r.
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As H−1 is constant, ∂H∂x =
∑

m6−2

H ′m ⊗ em and the expected relation follows from

ΠP
(
F
∂H

∂x

)
= ΠP

∑
j6k

∑
ν6−2

cjH
′
ν ⊗

κjκν
κj+ν

eν+j

= ΠP
∑
`6k−2

(
∑
ν+j=`

ν6−2 & j6k

κjj+ν cjH
′
ν)⊗ e`

=
∑

0 6=m6k−1

(
∑

ν+j=m−1
ν6−2 & j6k

κjj+νcjH
′
ν)⊗ em ∈ S

ρ,δ
k,r .

Lemma 36 Denote by Bq∞ the leading coeffi cient of B. Then, there exists (λm) ∈ C [X]Z−

such that
eH

1⊗B =
1

Bq∞

∑
m60

λm ⊗
em
ep/κp

(47)

with λ0 = 1 and deg λm 6 |m| − 1 for all m ∈ Z∗−.

Proof. For a suitable family (B−1,m) ∈ CZ− , 1
B

=
κq∞

Bq∞eq∞

∑
m60

B−1,mem with B−1,0 = 1.

Since H = −δL+
∑

m6−1

Hm ⊗ em,

e−H =
κδ
eδ

[
1 +

∑
n∈N∗

1

n!

(
−
∑
ν6−1

Hν ⊗ eν

)n]
=
κδ
eδ

∑
m60

hm ⊗ em

with h0 = 1 and for m ∈ N∗, hm =
∑

16n6|m|

(−1)n

n!

∑
ν∈(Z∗−)

n
; ν1+···+νn=m

Hν1 · · ·Hνn ∈ C|m|−1 [X]

because if ν ∈
(
Z∗−
)n
and ν1 + · · · + νn = m, degHν1 · · ·Hνn 6

∑
16j6n

(|νj| − 1) = |m| − n 6

|m| − 1. As p = δ + q∞, κδκq∞

eδeq∞
=

κp

ep
and we get (47) with λ0 = 1 and for all m ∈ Z∗−,

λm =
∑

r+s=m, 0>r,s
hrB−1,s which is a polynomial of degree at most max

0>r>m
deg hr, that is |m| − 1.

Proposition 37 Let f ∈ O (C) and k ∈ N∗. Then,

Fk (f ⊗ e0) = f (k) ⊗ ek +
∑

m6k−2

Pk,m (f)⊗ em =
∑
m6k

Pk,m (f)⊗ em

with Pk,k = ∂k

∂xk
, Pk,k−1 = Pk,0 = 0 and for m ∈ Z ∩ ]−∞, k − 1], Pk,m =

∑
(m+1)+6j6k−1

P j
k,m

∂j

∂xj

where for any j, P j
k,m ∈ Cj−m−1 [X] which means that P j

k,m = 0 when j < m+ 1.

Proof. Note that if ν ∈ Z∗−, degH ′ν = (|ν| − 1) − 1 = |ν| − 2. Set F = f ⊗ e0 and for
m ∈ Z,

〈
FkF, em

〉
= ck,m. By definition of F , F1F = f ′ ⊗ e1 +

∑
m6−1

H ′m−1f ⊗ em. As when

m ∈ Z∗−, P1,m
def
= P 0

1,m

def
= H ′m−1 has degree |m| − 1, the claims are true for k = 1.
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Let k ∈ N\ {0, 1} be such that ck,m = 0 when m ∈ Z∩ [k,+∞[, ck,k = f (k), ck,k−1 = ck,0 = 0

whereas for m ∈ Z ∩ ]−∞, k − 1], ck,m = Pk,m (f) with Pk,m =
∑

06j6k−1

P j
k,m

∂j

∂xj
and P j

k,m ∈

Cj−m−1 [X] for all j. Since H ′−1 = 0, with κrm = κrκm−r
κm

, we get

Fk+1F = ΠEFkF =
∑

06=m6k+1

c′k,m−1 ⊗ em + ΠP(
∑
r6k

ck,r ⊗ er)(
∑
s6−2

H ′s ⊗ es)

=
∑

06=m6k+1

c′k,m−1 ⊗ em + ΠP
∑

m6k−2

(
∑

m+26r6k
κrmck,rH

′
m−r)⊗ em

= c′k,k ⊗ ek+1 + c′k,k−1 ⊗ ek +
∑

06=m6k−1

(c′k,m−1 +
∑

m+16r6k
κrm−1ck,rH

′
m−1−r)⊗ em

Thus ck+1,k+1 = c′k,k = f (k+1), ck+1,k = c′k,k−1 = 0 and ck+1,m = 0 if m > k + 1 where m = 0.
For m ∈ Z∗ ∩ ]−∞, k], it comes

ck+1,m = c′k,m−1 +
∑

m+16r6k
κrm−1H

′
m−1−rck,r (48)

Let m ∈ Z∗ ∩ ]−∞, k − 1]. Formula (48) and the induction hypothesis give

ck+1,m = (
∑

(m+1)+6j6k−1

P j
k,m−1f

(j))′ +
∑

m+16r6k

∑
(m+1)+6j6k−1

κrm−1P
j
k,rH

′
m−1−rf

(j)

=
∑

(m+1)+6j6k−1

(P j
k,m−1f

(j))′ +
∑

(m+1)+6j6k−1

[
∑

m+16r6k
κrm−1P

j
k,rH

′
m−1−r]f

(j) = Pk+1,m (f)

with Pk+1,m =
∑

(m+1)+−16j6k
P j
k+1,m

∂
∂xj

and

P k
k+1,m = P k−1

k,m−1 (49)

P j
k+1,m = P j−1

k,m−1 +
(
P j
k,m−1

)′
+

k∑
r=m+1

κrm−1P
j
k,rH

′
m−1−r, (m+ 1)+ 6 j < k (50)

P
(m+1)+−1
k+1,m =

(
P

(m+1)+−1
k,m−1

)′
+

∑
m+16r6k

κrm−1P
(m+1)+−1
k,r H ′m−1−r (51)

Assume 1 6 m 6 k− 1. Then (51) becomes Pm
k+1,m =

(
Pm
k,m−1

)′
+

∑
m+16r6k

κrm−1P
m
k,rH

′
m−1−r.

We know that degPm
k,m−1 = m − (m− 1) − 1 = 0 and that when m + 1 6 r 6 k, Pm

k,r = 0

since m 6 r − 1 < r + 1. Hence Pm
k+1,m = 0. When m + 1 6 j 6 k − 1, degP j−1

k,m−1 6
j − 1 − (m− 1) − 1 = j −m − 1, deg

(
P j
k,m−1

)′ 6 (j − (m− 1)− 1) − 1 = j −m − 1 and for
m+ 1 6 r 6 k, degP j

k,rH
′
m−1−r 6 (j − r − 1) + (r + 1−m)− 2 = j −m− 2. Thus, (50) gives

that degP j
k+1,m 6 j−m−1. Lastly, degP k

k+1,m = degP k−1
k,m−1 6 k−1−(m− 1)−1 = k−m−1.

Assume now m 6 −1. Degree computations for P k
k+1,m and P j

k+1,m when 1 6 j 6 k − 1

are still valid. Formula (51) becomes P 0
k+1,m =

(
P 0
k,m−1

)′
+

∑
m+16r6k

κrm−1P
0
k,rH

′
m−1−r and gives

degP 0
k+1,m 6 0 − m − 1 because deg

(
P 0
k,m−1

)′ 6 (0− (m− 1)− 1) − 1 = −m − 1 and for
m + 1 6 r 6 k, degP 0

k,rH
′
m−1−r 6 (0− r − 1) + (r + 1−m) − 2 = −m − 2. The proof is
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complete.

Proposition 38 Assume that (s1, ..., sd) ∈ O (Z\E∞)d is a solution of (37) with −s1 = G1−P1

and let (µ1, ..., µd) ∈ O (C)d satisfies the system (43). Then d = p, µp is a polynomial of degree
p and µ(p)

p = p!Bq∞ where Bq∞ = Π
q∈Q∞

bq is the leading coeffi cient of B. Moreover, for all

j ∈ {1, ..., p− 1}, µj is a polynomial of degree at most p− 1.

Proof. The proof relies on a downward induction starting on p and on the comparison
of the Laurent series of s1, series we have to compute, to the expansion of −G1 + P1 which
we know because of lemmas 23 and 22 : G1 =

∑
m6−1

G1,m
κm
⊗ em and P1 =

∑
m6−1

P1,m
κm
⊗ em with

G1,−1 = G0
1,1− δx, G1,m ∈ C|m|−1 [X] when m 6 −2, P1,1 = q∞X+ 〈p1,0, e−1〉 and P1,m ∈ C1 [X]

for all m. Thanks to Proposition 37 and to (47), we get

s1 =
eH

1⊗B
∑

16j6d
F j−1 (µj ⊗ e0) =

eH

1⊗B
∑

16j6d

∑
m6j−1

Pj−1,m (µj)⊗ em

=
1

Bq∞

(∑
m60

λm ⊗
em
ep/κp

) ∑
m6d−1

(
∑

m++16j6p

Pj−1,m (µj))⊗ es

=
1

Bq∞

∑
m6d−1

∑
m−d+16r60

 ∑
(m−r)++16j6d

κrmλrPj−1,m−r (µj)

⊗ em
ep/κp

=
1

Bq∞

∑
m6d−1

κm
κm−p

s̃1,m ⊗ em−p

with for m 6 p − 1, s̃1,m =
∑

m−d+16r60

∑
(m−r)++16j6d

κrmλrPj−1,m−r (µj). In particular, when

0 6 m 6 d− 1,

s̃1,m =
∑

m+16j6d

∑
m−j+16r60

κrmλrdj−1,m−r (µj) =
∑

m+16j6d
P̃ j

1,m (µj)

where for m+ 1 6 j 6 d,

P̃ j
1,m =

∑
m−j+16r60

κrmλrPj−1,m−r = κ0
mPj−1,m +

∑
m−j+16r6−1

κrmλrPj−1,m−r

Thus, P̃m+1
1,m (µm+1) = κ0

mPm,m (µm+1) = µ
(m)
m+1 since κ

0
m = 1. So

s̃1,m = µ
(m)
m+1 +

∑
m+26j6d

P̃ j
1,m (µj) (52)

Moreover,

P̃ j
1,m (µj) =

∑
06t6j−2

P t
j−1,mµ

(t)
j + κm−j+1

m λm−j+1Pj−1,j−1 (µj) +
∑

m−j+26r6−1

∑
06t6j−2

κrmλrP
(t)
j−1,m−rµ

(t)
j

= κm−j+1
m λm−j+1µ

(j−1)
j +

∑
06t6j−2

(
P t
j−1,m +

∑
m−j+26r6−1

κrmλrP
t
j−1,m−r

)
µ

(t)
j
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Formula (52) implies s̃1,d−1 = µ
(p−1)
d so that s1 ∈ κd−1

Bq∞
µ

(d−1)
d ed−p−1 + Sd−p−2,0. Yet, s1 =

−N1 = −G1 + P1, G1 ∈
(
G0

1,1 − δId
)
⊗ e−1 + S−2,0 and P1 ∈ (q∞Id+ 〈p1,0, e−1〉)⊗ e−1 + S−2,0.

So, d− p− 1 has to be equal to −1, that is d = p, and

µ(p−1)
p =

Bq∞

κp−1

(
pId−G0

1,1 − 〈p1,0, e−1〉
)

= p!Bq∞Id− (p− 1)!Bq∞
[
G0

1,1 − 〈p1,0, e−1〉
]

In particular, µp ∈ Cp [X] and µ(p)
p = p!Bq∞ .

Assume now that 0 6 m 6 p− 2 and that µp, ..., µm+2 are polynomials. Then for m+ 2 6
j 6 p, P̃ j

1,m (µj) is of the same kind and as

deg λm−j+1µ
(j−1)
j 6 (j −m− 1)− 1 + deg µj − j + 1 = deg µj −m− 1

degP t
j−1,mµ

(t)
j 6 (t−m− 1) + deg µj − t = deg µj −m− 1

deg λrP
t
j−1,m−rµ

(t)
j 6 (|r| − 1) + (t−m+ r) + deg µj − t = deg µj −m− 1

we get
deg P̃ j

1,m (µj) 6 deg µj −m− 1

Thus, s̃1,m is polynomial and there exists a polynomial Rm such that

deg s̃1,m = µ
(m)
m+1 +Rm & degRm 6 max

m+26j6p
deg µj −m− 1

Moreover,

−G1,m−p + P1,m−p = s1,m−p =
1

Bq∞

κm
κm−p

s̃1,m,

G1,m−p ∈ C|m|−1 [X] since m− p 6 −2 and P1,m ∈ C1 [X]. From

µ
(m)
m+1 = Bq∞

κm−p
κm

(−G1,m−p + P1,m−p) +Rm,

we first recover that the functions µj are all polynomials then, with m = p− 2 that

deg µ
(p−2)
p−1 6 max {p− (p− 2)− 1, 1, deg µp − (p− 2)− 1} = 1

and hence that deg µp−1 6 p− 1. Assuming deg µj 6 p− 1 when m+ 2 6 j 6 p− 1, we obtain

deg µ
(m)
m+1 6 max {p−m− 1, 1, p−m− 1} = p−m− 1

and thus deg µm+1 6 p− 1, which end this induction proof.

6.4 A linear system

According to Proposition 21, Lemma 22 and Corollary 25, there exists A∞, B∞ ∈ C [Y ]
with degA < degB∞ = q∞ and B∞ (0) = 1 such that on Z\E∞,

G1 = NQ
1 +X ⊗ B∞′

B∞
+ 1⊗ A∞

B∞
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where NQ
1 is locally the sum of the shock wave functions h1, ..., hp involved in Proposition 21.

According to Lemma 27, Corollary 25, Proposition 32 and Proposition 38, these local functions
define on Z\E∞ global symmetric functions (−1)k sQk , 1 6 k 6 p, which can be written in the
form

sQk =
eH

1⊗B∞Fk
(
µQ
)
, p > k > 1,

where µQ =
(
µQ1 , ..., µ

Q
p

)
∈ C [X]p is such that and deg µQj < deg µQp = p when 1 6 j 6 p. In

the above formula, Fk is defined for any µ ∈ C [X]d and arbitrary (d, k) ∈ N∗ × N by

F0 (µ) = FF1 (µ) & Fk (µ) =
∑
k6j6d

F j−k (µj ⊗ e0) , k > 1, (53)

where F is the operator defined by (39).
In Theorem 39 below, the system Sd defined by the equations (54) to (58) is a linear system

whose nature is to have infinitely many solutions when the zero function is not the only one.
The first part of Theorem 39 says in other words that, because bM is known to be the boundary
of a Riemann surface, 0 is not the only solution of Sd at least when d = q∞+δ = p. The second
part of Theorem 39 is a kind of reverse. If we manage to find a non zero solution to Sd where d is
some positive integer, one gets a decomposition (62) of the kind we are looking for. Meanwhile,
it is not clear that such a decomposition is really meaningful. The next section clarifies this
point : the right decomposition can be deduced from (62) by tossing some parasite terms.

Theorem 39 Assume that ∂
2G1
∂x2
6= 0, fix d in N∗, set r = d− δ and consider µ = (µ1, ..., µd) ∈

C [X]d such that for j ∈ {1, ..., d− 1}, deg µj < deg µd = d.
1) Assume that d = p and µ = µQ. Then r = q∞ and

∂

∂y

(
1

∂2G1/∂x2

∂

∂y

[
e−H

∂

∂x
F0 (µ)

])
= 0 (54)

∂

∂x
eHF0 (µ)− ∂H/∂x

∂2G1/∂x2
eH

∂

∂y

[
e−H

∂

∂x
F0 (µ)

]
− eH ∂

∂x

(
1

∂2G1/∂x2

∂

∂y

[
e−H

∂

∂x
F0 (µ)

])
= 0

(55)

∂2G1

∂x2

∂r+1

∂yr+1

[
eHF0 (µ)

]
− (

∂r+1eH

∂yr+1
)
∂

∂y

[
e−H

∂

∂x
F0 (µ)

]
= 0 (56)

∂2G1

∂x2

∂r

∂yr
[
eH (G1F0 (µ) + F1 (µ))

]
− ∂reHG1

∂yr
∂

∂y

[
e−H

∂

∂x
F0 (µ)

]
= 0 (57)

EF1 (µ) = ΠEF1 (µ) = FF1 (µ) = F0 (µ) (58)

and Bµ = eH
(
F0 (µ)− 1

∂2G1/∂x2
∂
∂y
e−H ∂

∂x
F0 (µ)

)
satisfies Bµ (0, y) →

C∗3y→0
1.

2) Assume that µ satisfies the differential linear system Sd defined by the equations (54) to
(58) and that Bµ (0, y) →

C∗3y→0
1. Then there exists (c0, A,B) ∈ O (C)× Cr−1 [Y ]× Cr [Y ] with
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B (0) = 1 and such that

c0 ⊗ 1 =
1

∂2G1/∂x2

∂

∂y
e−H

∂

∂x
F0 (µ) (59)

1⊗B = (F0 (µ)− c0 ⊗ 1) eH (60)

1⊗ A = (1⊗B)G1 + eHF1 (µ)−X ⊗B′ (61)

Moreover, taking in account that eH extends holomorphically to Z, sµ1 = eH

1⊗BF1 (µ) define a
holomorphic function on Z\E∞ such that

G1 = −s1 +X ⊗ B′

B
+ 1⊗ A

B
(62)

and which is a d-shock waves outside the zero locus of the discriminant ∆µ of T d+
∑

16k6d
skT

d−k

where (sµk) =
(

eH

1⊗BFd−k (µ)
)
d>k>1

.

Proof. 1) Set (A,B) = (A∞, B∞). According to the results quoted in the beginning of
this section, we know that

1⊗ A = (1⊗B)G1 + eHF1 (µ)−X ⊗B′ (63)

In particular, the right member of (63) is independent of X. Since ∂G1
∂x

= ∂H
∂y
, we get

0 = e−H
∂ (1⊗ A)

∂x
= e−H

[
(1⊗B)

∂H

∂y
− (1⊗B′)

]
+ e−H

∂

∂x
eHFj (µ)

= −∂ (1⊗B) e−H

∂y
+DF1 (µ) (64)

Hence ∂(1⊗B)e−H

∂y
= DF1 (µ) and we get an entire function c0 such that

PDF1 (µ) = P ∂

∂y
(1⊗B) e−H = (1⊗B) e−H + c0 ⊗ 1. (65)

As e−H has a usual Laurent series on Z̃, PDF1 (µ) can’t have any logarithmic term, which
means that (58) is satisfied. Then, (65) implies that B is given by (60) though we don’t know
yet c0. As B doesn’t depend on x, we obtain

0 =
∂

∂x
eHF0 (µ)− (c0 ⊗ 1)

∂H

∂x
eH − (c′0 ⊗ 1) eH (66)

As ∂H
∂y

= ∂G1
∂x
, this entails

0 =
∂

∂y
e−H

∂

∂x
F0 (µ)− (c0 ⊗ 1)

∂2G1

∂x2
,

which implies that c0 is actually defined by (59). With this value of c0, (54) is the statement
that c0 doesn’t depend on y and (66) become the compatibility equation (55). As the right
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member 60) have to be in Cr [Y ], we also get

0 =
∂r+1

∂yr+1

[
(F0 (µ)− c0 ⊗ 1) eH

]
=

∂r+1

∂yr+1

[
F0 (µ) eH

]
− (c0 ⊗ 1)

∂r+1eH

∂yr+1

which become (56) when (59) is used for c0. Moreover, as the right member of (63) have to be
in Cr−1 [Y ], degB < r and as (59) has been already proven, we also get

0 =
∂r

∂yr
[
(1⊗B)G1 −X ⊗B′ + eHF1 (µ)

]
=

∂r

∂yr
[
(1⊗B)G1 + eHF1 (µ)

]
=

∂r

∂yr
[
(F0 (µ)− c0 ⊗ 1) eHG1 + eHF1 (µ)

]
=

∂r

∂yr
[
eH (G1F0 (µ) + F1 (µ))

]
− (c0 ⊗ 1)

∂r

∂yr
[
eHG1

]
which becomes (57) when (59) is used for c0. Note that Sd is a differential linear system because
of Proposition 34.
2) Conversely, assume that ∂2G1

∂x2
6= 0 and that the system Sd is satisfied by µ. Then,

thanks to (54), the right member of (59) depends only of its first variable so it defines a
function c0. As ∂

∂x

[
(F0 (µ)− c0 ⊗ 1) eH

]
is equal to the right member of (66), (55) means that

(F0 (µ)− c0 ⊗ 1) eH doesn’t depend on x so that (60) defines correctly a function B. Since

∂r+1

∂yr+1

[
(F0 (µ)− c0 ⊗ 1) eH

]
=

∂r

∂yr
[
F0 (µ) eH

]
− (c0 ⊗ 1)

∂reH

∂yr
,

(56) tells that B is a polynomial of degree at most r. As Bµ = eH (F0 (µ)− c0 ⊗ 1) = 1 ⊗ B,
B (0) = lim

y→0∗
Bµ (0, y) = 1. Denote by A the right member of (61). Then

e−H
∂A
∂x

= e−H
[
(1⊗B)

∂H

∂y
− (1⊗B′)

]
+ e−H

∂

∂x

[
eHF1 (µ)

]
= DF1 (µ)− ∂ (1⊗B) e−H

∂y

= DF1 (µ)− ∂ (F0 (µ)− c0 ⊗ 1)

∂y
= DF1 (µ)− ∂

∂y
F0 (µ)

so that ∂A
∂x

= 0 because of (58). Hence (61) defines correctly a function A, which because of
(57), is a polynomial of degree at most r− 1. The other claims of (2) are now consequences of
Corollary 33.

Remark. If c ∈ C∗, (cA, cB) ∈ C [Y ]2 also verifies G1 = −s1 + X⊗B′+1⊗A
B

. Hence, the condition
Bµ (0, y) →

C∗3y→0
1 can be seen as a kind of nomalization of B. However, the theorem doesn’t

address uniqueness.

For a given d, the system Sd can be explicitly written thanks to Proposition 34 which gives
formulas for the coeffi cients of the operators Fk and F0. The case d = 0 is impossible when
∂2G1/∂x

2 6= 0. The case d = 1 corresponds to the case where the complex lines Lz, z ∈ Z, meets
Q only one time. In this case, S1 is an over determined system on the coeffi cients of only one
affi ne function µ1. It can easily be written but is already space-consuming. For example,(54)
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which means that some function of the two variables x and y actually depends only on one of
them, takes some space even for d = p = 1. In this case q∞ = 1− δ, δ ∈ Z∩ ]−∞, 1] and taking
in account 53, Definition 30, writing e−H =

∑
m6q∞−1

h̃m ⊗ em and 1
∂2G1/∂x2

=
∑
m62

g1,m ⊗ em, we

get after some calculus that

1

∂2G1/∂x2

∂

∂y

[
e−H

∂

∂x
F0 (µ)

]
=

∑
m6q∞−1

q∞−3∑
t=m−2

(
−1∑

s=t−q∞+2

g1,m−t

(
µ1G

′′
1,s−2

)′
κs−2

h̃t+1−s)⊗ em

So the vanishing of the y-derivative of the left member of the above equation yields infinitely
many linear equations on the two coeffi cients of µ1. Certainty 0 is not the only solution comes
only from the fact that we have assumed that p is equal to 1. For a general p, the number
of µj increases but also their degree. Hence, Theorem 6 which gives an upper bound for p is
of practical importance. In this article, we spare space by avoiding to write out completely
explicitly Sd.

6.5 Uniqueness of shock wave decompositions

Assume that ∂2G1
∂x2
6= 0 and let R = ∪

d∈N∗
Rd where Rd is the set of µ = (µ1, ..., µd) ∈ C [X]d

with deg µj < d = deg µd for j ∈ {1, ..., d} such that µ is a solution of Sd, Bµ (0, y) →
y→0∗

1 and

∆µ 6= 0 where Bµ and ∆µ are defined in Theorem 39 . This theorem tells that Rp 6= ∅ and that
if µ ∈ Rd, µ produces by explicit formulas a decomposition ofG1 in the form−s1+X⊗B′

B
+1⊗A

B

where −s1 is a d-shock waves function in Z\ (E∞ ∪ {∆µ = 0}) and where A,B ∈ C [Y ] with
degA < degB = r− δ and B (0) = 1. Thus, we know thanks to Proposition 33 that for z∗ ∈ Z
outside a proper analytic subset S of Z and for a suffi ciently small neighborhood U∗ of z∗, there
exists shock waves g1, ..., gd on U∗ whose images are mutually distinct such that for all z ∈ U∗,

−s1 (z) = Ng,1 (z)

Ng,1 (z) + P (z) = G1 (z) = Nh,1 (z) + P1 (z) = NQ,1 (z) + P1

where the functions hj are the shock waves h
z∗
j defined in Corollary 25, that is the shock waves

generated by the collision of Q with the lines Lz, z ∈ U∗.
A priori, nothing guaranties that {g1, ..., gd} = {h1, ..., hp} because for example, it may

happen that there exists a finite non empty subset J of {1, ..., d} such that
∑
j∈J

gj extends as an

element of the space C (Y )1 [X] of rational functions which are affi ne in X. In this case, G1 =

Ng̃,1− P̃ with P̃ = P −
∑
j∈J

gj ∈ C (Y )1 [X] and
{
g̃1, ..., g̃d̃

}
where d̃ = d−Card J̃ ∈ {0, .., d− 1}.

Iterating this reduction, arrises the situation where

∀J ∈ P ({1, .., d}) \ {∅} ,
∑
j∈J

gj /∈ C (Y )1 [X] . (67)

The case d = 0 happens at the end of these iterations only if at the beginning,
∑

16j6d
gj and so

G1, extends as an element of C (Y )1 [X]. The lemma below studies this case.

Lemma 40 We use notation of Corollary 25. G1 extends as an element of C (Y )1 [X] if and
only if Q is a domain in a compact connected curve K such that for all z∗ in Zreg and z in a
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suffi ciently small neighborhood U∗ of z∗ in Zreg,

K ∩ Lz =
{(

1 : hz∗j (z) : −x− yhz∗j (z)
)

; 1 6 j 6 p
}

= Q ∩ Lz.

Proof. Suppose at first that K is a compact curve with the above properties. Fix z∗
and U∗ as in the statement. Since K is an algebraic curve, we know from Abel’s work that∑
16j6p

hz∗j ∈ C (Y )1 [X] (see e.g. [?]). It follows that G1 = Nhz∗ ,1 + P1 is, on U∗ and so on Z,

rational in y and affi ne in x.
Conversely, suppose that G1 ∈ C (Y )1 [X]. Then Nhz∗ ,1 = G1 − P1 is on U∗ algebraic in

y and affi ne at x. Since
{(

1 : hz∗j (z) : −x− yhz∗j (z)
)

; 1 6 j 6 p
}

= Q ∩ Lz for all z ∈ U∗, a
theorem of Wood [?] states the existence of a compact algebraic curve K of degree p containing
Q. Since the degree of K is p, K ∩ Lz = {(1 : hj (z) : −x− yhj (z)) ; 1 6 j 6 λ} = Q ∩ Lz for
all z ∈ U .
In case G1 is algebraic in y and affi ne in x, the algebraic curve K of Lemma 40 is known

in a neighborhood of bQ. We can then pick generically homogeneous coordinates w in order
at least one line Lz, z ∈ U , meets K\Q. We are thus brought back to the general case since
Lemma 40 ensures then that even after reduction, d isn’t zero.
With Proposition 41 which is proved thanks to results of Henkin [?] and of Collion [?], we

know that when this reduction ends, the remaining shock waves functions are those we are
looking for.

Proposition 41 Notation remains as stated in this section and we suppose (67) verified. For
the case where Q is contained in an algebraic curve, Q̂ denoting then the smallest one with this
property, we suppose that (0 : 1 : 0) /∈ Q̂ and at at least one of the lines Lz, z ∈ U , meets Q
and Q̂\Q. That being so, {g1, ..., gd} = {h1, ..., hp} and P = P1.

Proof. After a possible renumbering, we assume that gν = hν , 1 6 ν 6 t ∈ N and
{gt+1, ..., gd} ∩ {ht+1, ..., hp} = ∅.
1) Suppose that Q isn’t contained in an algebraic curve. Then d ∈ N∗ because otherwise,

Nh,1 ∈ C (Y )1 [X] and G1, which is the sum of Nh,1 and P1, appears to be the restriction to U
of an element of C (Y )1 [X]. According to lemma 40, this would contradict our hypothesis.
Suppose t < min (p, d). Up to a change of the reference point z∗ and a decrease of U∗,

we suppose that the curves Hν = {(1 : hν (z) : −x− yhν (z)) ; z ∈ U∗}, t + 1 6 ν 6 p and
Cν = {(1 : gν (z) : −x− ygν (z)) ; z ∈ U∗}, t+1 6 ν 6 d are smooths and mutually disjoint. We
then denote ϕ the differential form defined on the union C of this curves curves by ϕ |Hν = dw1

w0
when t + 1 6 ν 6 p and ϕ |Cν = −dw1

w0
when t + 1 6 ν 6 d. We note AR the Abel-Radon

transform of the current ϕ ∧ [C]. By definition (see [?], [?] or [?]),

AR = d(
∑

t+16ν6p
hν −

∑
t+16ν6q

gν).

But hypothesis imply, ∑
t+16ν6p

hν −
∑

t+16ν6q
gν = Nh,1 −Ng,1 = R− P1.

AR is hence algebraic in the sense of [?] so that Theorem 1.2 of [?] applies and gives in
particular the existence of an algebraic curve Λ containing C. Since Q isn’t contained in
Λ, the connectedness of Q entails that none of the curves Hν is contained in Λ and thus that
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{h1, ..., hp} ⊂ {g1, ..., gd}. Hence,
∑

p<ν6d
gν is an algebraic function affi ne in x, which is impossible

due to the reduction made on (gj)16j6d. So, t = min (p, d).
If t = d < p, the relationNg,1+P = Nh,1+P1 reads also ht+1+· · ·+hp = P1−P ∈ C (Y )1 [X]

and the theorem of Wood implies, sinceQ is connected, thatQ is contained in an algebraic curve
which is excluded by hypothesis. If t = p < d, gt+1 + · · ·+gd = Ng,1−Nh,1 +P−P1 ∈ C (Y )1 [X]
which is excluded by to the reduction made on the family (gj).
Finally t = p = d, {h1, ..., hp} = {g1, ..., gd} and P1 = R.
2) Suppose now that Q is contained in an algebraic curve Q̂, minimal with respect to

inclusion. By hypothesis (0 : 1 : 0) /∈ Q̂, and Q̂\Q is bounded by −∂Q. Up to a change
of reference point z∗ and a decrease of U∗, we can suppose that for all z ∈ U∗, Lz meets
transversely Q̂. We note then hp+1, ..., hp̂ the shock waves on U∗ such that for all z ∈ U ,

(Q̂\Q) ∩ Lz = {(1 : hν (z) : −x− yhν (z)) ; p+ 1 6 ν 6 p̂} .

Since Q̂ is an algebraic curve, NQ̂,1 <
def
= Nh,1 + Nhp+1,...,hp̂

def
= Nh,1 + N̂1 is algebraic and affi ne

in x. Hence

Ng,1 + N̂1 = Ng,1 −Nh,1 +NQ̂,1 = P1 −R +NQ̂,1 ∈ C (Y )1 [X]

The sum Ng,1 + N̂1 can be written
∑

16λ6s
cλfλ where f1, ...fs are the mutually distinct functions

of the union of {gν ; 1 6 ν 6 q} and {hν ; p+ 1 6 ν 6 p̂} and where cλ = 2 if fλ is in the
intersection of this two sets and 1 otherwise. As previously we can choose z∗ and U∗ in order
that the functions fλ has images mutually disjoint. We can then introduce the form ψ which
on Fλ = {(1 : fλ (z) : −x− yfλ (z)) ; z ∈ U} is dw1

w0
if cλ = 1 and 2dw1

w0
if cλ = 2. The form∑

16λ6s
cλdfλ is the Abel-Radon transform ψ ∧ [F ] where F = ∪Fλ. This one being algebraic, the

principal theorem of Henkin in [?] applies and gives in particular the existence of an algebraic
curve F̃ and an algebraic form Ψ such that for all λ, Ψ |Fλ = ψ and for all z ∈ U∗, F̃ ∩ Lz =

∪Lz∩Fλ. Given that Q̂∩F̃ contains (Q̂\Q) ∪
z∈U∗

Lz, Q̂ ⊂ F̃ . If F̃ 6= Q̂, Q̂\F̃ is an algebraic curve
whose intersections with the Lz, z ∈ U∗, are parametrized with a sub-family of the gj. This
is impossible since because of hypothesis, d 6= 0 and no sub-family of (gj) has a sum algebraic
in y and affi ne in x. Thus, Q̂ = F̃ and when z ∈ U∗, Q̂ ∩ Lz is the union of (Q̂\Q) ∩ Lz and
of {(1 : gj (z) : −x− ygλ (z)) ; 1 6 j 6 d}. This entails {h1, ..., hp} = {g1, ..., gd} and P1 = R..

7 Genus of a Riemann surface with boundary

Formula (71) of Theorem 44 links the genus g (M) ofM to data associated to the complex
structure Cσ of (M,σ). It is probably well known to specialists but we didn’t find a reference
for it. The link with the complex Dirichlet-Neumann operator θσc comes from Corollary 45.
The formula so obtained is not yet effective because we don’t know the Euler characteristic of
M . But as explained in Theorem 6 whose proof is given at the end of this section, Theorem 2
and Lemma 47 enable to deduce from Corollary 45 an effective bound for the key number p of
unknown shock waves sought in the reconstruction process described in Section 2 .

Let us recall that g (M) is by definition the genus of the compact manifold obtained by
gluing κ (pairwise disjoint) conformal discs along the κ connected components of bM . In [?],

48



Belishev gives for a connected boundary the formula

2g (M) = rg
(
T + (NνJ)2 T

)
where T is the tangential derivation, N ν is the Dirichlet-Neumann operator of (M, Cσ) in its
metric issue, that is the one which to u ∈ C∞ (bM) associates the normal derivative along bM
of the harmonic extension of u to M and J is the natural primivitization operator defined on
the space of function u whose integral over ∂M is 0. However, a priori calculus of the rank of
T + (N νJ)2 T isn’t easy and this formula is limited to connected boundaries. To bypass this
diffi culty, [?] and [?] propose to use Dirichlet-Neumann operators acting on forms. This gives
simple formulas for g (M) when the conductivity reduces to a complex structure but it is not
clear that these operators have physics meaning.

To produce formulas whose ingredients are computable from Nσ
d , we use special volume

forms for M and special metrics for the bundle Λ1,0T ∗M of the (1, 0)-forms on M .

Definition 42 Let M be a Riemann surface with boundary and ρ a defining function of bM ,
which means that ρ ∈ C∞

(
M,R

)
is such that ρ |M < 0, ρ |bM = 0 and (dρ)s 6= 0 for any

s ∈ bM . Under these conditions, any section ω of Λp,qT ∗M of class Ck, k > 1, on an open
subset U of M can be written in the form ω0 + ρω1 where ωj, j = 0, 1, is a section of Λp,qT ∗M

on U of class Ck−j, the couple (ω
(0)
ρ , ω

(1)
ρ ) = (ω0 |U∩bM , ω1 |U∩bM ) being the same for all (ω0, ω1)

such that ω = ω0 + ρω1. The fact that ω
(1)
ρ vanishes doesn’t depend of the choice of the chosen

defining function ρ. ω is said tangent to bM when ω(1)
ρ = 0.

The existence of a decomposition ω = ω0 + ρω1 follows from the fact that ρ can be chosen
as part of a system of real coordinates for M near bM . Uniqueness of (ω

(0)
ρ , ω

(1)
ρ ) proceed from

the same reason and if ρ′ is another defining function of bM , one can write ρ′ = λρ where λ is
a never vanishing function, so that vanishing of ω(1)

ρ′ = λ |M ω
(1)
ρ and ω(1)

ρ are simultaneous.
Note that when M is equipped with a Hermitian metric and ρ is the distance to bM ,

ω
(1)
ρ = ∂ω

∂ρ
|bM is nothing else that the derivative of ω with respect to the unitary vector directing

the exterior normal to M at points of bM . The lemma below ensures the existence of volume
forms satisfying the hypothesis of this section’s main theorem.

Lemma 43 Let (M,σ) be a conductivity structure. Then M admits a volume form of class
C2 tangential to its boundary and whose restriction to bM is computable from boundary data
associated to (M,σ).

Proof. As it is pointed out at the end of Section 3, we can design from boundary data a
smooth section µ0 over bM of the bundle of volume forms ofM . Let M̂ be the double ofM (see
the proof of Theorem 44 for a detailed construction), V an arbitrary volume form of class C2 on
M̂ and ρ ∈ C∞(M̂,R) such that M = {ρ < 0}, bM = {ρ = 0} and (dρ)s 6= 0 for any s ∈ bM .
Using the Whitney extension theorem (see [?, prop. 2.2]), one can constructs a section Ṽ of
Λ1,1TM̂ of class C2 such that Ṽ |bM = µ0 and V

(1)
ρ = ∂Ṽ

∂ρ
|bM = 0. By continuity, there exists a

neighborhood Σ of bM in M̂ such that Ṽ |Σ is a volume form. Choose χ ∈ C∞ (M, [0, 1]) equal
to 1 in a neighborhood of bM in Σ and whose support is contained in Σ. W = χṼ + (1− χ)V

is a volume form W of class C2 on M̂ such that W (1)
ρ = ∂W

∂ρ
|bM = 0.

Let (M,σ) be a conductivity structure and µ a volume form forM as in Lemma 43. Denote
∗ and Λ1,0T ∗M the conjugation operator and the bundle of (1, 0)-forms associated to (M, Cσ).
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For simplicity of notation, we set in this section ∂ = ∂σ = d− ∂ where ∂ = ∂σ is the Cauchy-
Riemann operator of (M, Cσ). We equip Λ1,0T ∗M with the metric h∗ defined for s ∈ M and
α, β ∈ Λ1,0T ∗sM by

h∗s (α, β) =
α ∧ ∗sβ
µs

(68)

Denote by D the Chern connection of h. A definition can be found in [?], [?, p. 73] or [?]
but we recall here some basics. Consider a fixed non vanishing smooth section e of Λ1,0T ∗M
over an open set W of M , holomorphic in W ∩M , and let |e|h∗ =

√
h∗ (e, e) be the point wise

norm of e with respect to h∗. Then,

ηe =
∂ |e|2h∗
|e|2h∗

= ∂ lnh∗ (e, e) (69)

is the connection form of D associated to the holomorphic frame e, the curvature Θ = dηe = ∂ηe
of D doesn’t depend of e and if ω = λe, λ ∈ C∞ (W ), is any smooth section of Λ1,0T ∗sM over
W , Dω is the 1-form valued in Λ1,0T ∗WM given by Dω = (dλ) e+ ηeω. If ω is also holomorphic
in W ∩M , we get Dω

ω
= ∂λ

λ
+ ηe. Note that in particular, ηe = De

e
.

When σ
∣∣∣T ∗bMM is assumed to be known, so it is for Dω

ω
|bS when ω is a (1, 0)-form near

bM . Indeed, thanks to Theorem 5, we know that with the nodal Riemann surface M de-
signed by Theorem 2, we can find smooth non vanishing sections of Λ1,0T ∗bMM which extends
holomorphically to M by computing θσc u for adequate u ∈ C∞ (bM). For such an u and its
Cσ-harmonic extension to M , ∂ũ is a holomorphic frame for Λ1,0T ∗WM where W = {∂ũ 6= 0}
and (69) becomes

D∂ũ

∂ũ
= η∂ũ = ∂ lnh∗ (∂ũ, ∂ũ) = ∂ ln

(
∂ũ ∧ ∗∂ũ

µ

)
(70)

Since the complex structure ofM is known along bM and since ∂ũ is holomorphic, the Cauchy-
Riemann equations enable to compute the normal derivative of ∂ũ from its tangential derivative.
This means that in (70), derivatives coming from ∂ũ are computable on bM from available
boundary data. As the volume form µ is tangential to bM , its normal derivative is zero on bM
and its tangential derivative is known on bM . Hence D∂ũ

∂ũ
|bM , that is η∂ũ |bM , is computable

from available boundary data, what we had to check.

Note that for the computation of a connection form along bM , it is not mandatory to
use a holomorphic frame of the form ∂ũ. Indeed, let F : M → M be the normalization of
the nodal complex curve M of C2 designed by Theorem 2 and let γ be an open subset of
bM. We can choose any non vanishing smooth section ϕ of Λ1,0T ∗γM which extends into a
(1, 0)-form ϕ̃ smooth on W and holomorphic on W\bM where W is an open subset of M
containing γ and such that W\bM ⊂ RegM. Let W = F−1 (W) ∪ f−1 (γ) where f = F

∣∣bM
bM .

Then
(
F
∣∣∣W\BMW\bM

)∗
ϕ̃, which we abbreviate into F ∗ϕ̃, is a holomorphic (1, 0)-form of (M, Cσ)

which extends smoothly to W and whose restriction to f−1 (γ) is F ∗ϕ. The connection form
ηF ∗ϕ̃ = ∂ lnh∗ (F ∗ϕ̃, F ∗ϕ̃) associated to F ∗ϕ̃ is computable on bM from available boundary data
as before. Moreover, since F is holomorphic from (M, Cσ) toM, we can also make computation
onM⊂ C2 and then pull back the result to bM by F :

ηF ∗ϕ̃ = F ∗∂ ln
∂ϕ̃ ∧ ∗∂ϕ̃
F∗µ
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where here ∂ = d − ∂ and ∂ is the Cauchy-Riemann operator of M and ∗ its Hodge star
operator.

We can now state Theorem 44. It is more about the Riemann surface (M, Cσ) than (M,σ).

Theorem 44 Let (M,σ) be a conductivity structure and κ the number of connected components
of bM . Choose a volume form µ as in Lemma 43, equip the bundle Λ1,0T ∗M of (1, 0)-forms of
(M, Cσ) with the metric h∗ defined by (68) and denote by D its Chern connection. Then, when
ω is a Cσ-meromorphic (1, 0)-form on M , without pole or zero on bM ,

1

2πi

∫
∂M

Dω

ω
= Nz (ω)−Np (ω) + 2− 2g (M)− κ (71)

where Nz (ω) and Np (ω) are respectively the number of zeros and of poles of ω counted with
their multiplicity or order.

Remark. Suppose that µ′ is a volume form for M with the same properties as µ. The
function λ : M → R such that µ = e2λµ′ satisfies Dµ = Dµ′ − ∂λ, which gives

∫
∂M

Dµω

ω
=∫

∂M

Dµ′ω

ω
−
∫
∂M

j∗bM∂λ. (71) indicates then
∫
∂M

j∗bM∂λ = 0. To check this a priori, let us
consider a defining function ρ of bM . From the relation ∂µ

∂ρ
= eλ ∂µ

′

∂ρ
+ µ′ ∂λ

∂ρ
which holds on bM ,

we get ∂λ
∂ρ
|bM = 0. Equip M with a Hermitian metric and consider a smooth section (ν, τ)

of
(
TbMM

)2
such that for any s ∈ bM , (νs, τs) is an orthonormal direct basis of TsM . Then,

for all s ∈ bM , (∂λ)s = 1
2

((νλ)s − i (τλ)s) (τ ∗s + iν∗s ) where (τ ∗s , ν
∗
s ) is the dual basis of (νs, τs).

When s ∈ bM , the fact that ∂λ
∂ρ

(s) = 0 indicates that (dλ)s ∈ Rτ ∗s and hence (νλ)s = 0, which
gives (∂λ)s = 1

2i
(τλ)s (τ ∗s − iν∗s ). Thus, j∗bM∂λ = 1

2i
(τλ) τ ∗ |M = 1

2i
j∗bMdλ. So, j

∗
bM∂λ is exact

and its integral over ∂M is zero.

With Formula (74) below, we obtain Corollary 45 as a particular case of Theorem 44.

Corollary 45 Hypothesis and notation remains as in Theorem 44. Let u ∈ C∞ (bM), ũ its Cσ-
harmonic extension to M and q the number Nz (∂σũ) of zeros of ∂σũ counted with multiplicity
where ∂σ = d − ∂σ and ∂σ is the Cauchy-Riemann operator of (M, Cσ). We assume that ∂σũ
has no zero on bM . Then

q =
1

2πi

∫
∂M

D∂σũ

∂σũ
− χ

(
M
)
. (72)

Proof of Theorem 44. Let us begin by detailing a construction of the double M̂ of M
which for example can be found in [?]. Let U be an atlas ofM . We use the following notation :
for ν ∈ {−1,+1} and X ⊂ M , Xν = X × {ν} and if (s, ν) ∈ M1 ∪M−1, π (s, ν) = s ; when
s ∈ bM , the points of M̂ = M1 ∪M−1 of the form (s,−1) and (s, 1) are identified and form
the real curve γ. M1 is equipped with the complex structure associated to the atlas U1 formed
by the maps ϕ1 : U1 3 p 7→ ϕ (π (p)) where ϕ : U → C is arbitrary U . For M−1, we use the
atlas U−1 of the maps ϕ−1 : U−1 3 p 7→ −ϕ (π (p)), ϕ : U → C arbitrary in U . One gets an
atlas Û = U1 ∪ Ub ∪ U−1 giving to M̂ a complex structure by letting Ub be the set of maps
ϕb defined as follows : consider a boundary chart for M that is ϕ ∈ C∞ (U,C) where U is an
open subset of M such bUM = U ∩ bM is open in bM , ϕ (U\M) = D+ = D ∩ {Im > 0} and
ϕ (bUM) = ]−1, 1[ ; ϕb is the map from Ub = U1∪U−1 to C obtained by setting ϕb (s, 1) = ϕ (s)
and ϕb (s,−1) = ϕ (s) for any s ∈ U .
We define volume forms µ1 and µ−1 on M1 and M−1 by letting when ϕ : U → C is a chart
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of M ,

(ϕ1∗µ1)z = (ϕ∗µ)z = λϕ (z) idz ∧ dz, z ∈ U
(ϕ−1∗µ−1)w = (ϕ∗µ)−w = λϕ (−w) idw ∧ dw, −w ∈ U

This definition is obviously coherent for µ1. Suppose ψ : V → C is another chart of M and
ψ∗µ = λψidz ∧ dz. Denote Φ : ψ (U ∩ V ) 3 z 7→ ϕ (ψ−1 (z)) the change of chart from ψ to ϕ.
Hence, λψ = |Φ′|2 λϕ ◦ Φ. The transition map from ψ−1 : V−1 → C to ϕ−1 : U−1 → C is then
the map Φ−1 defined on ψ−1 (V−1 ∩ U−1) = −ψ (U ∩ V ) by

Φ−1 (w) = ϕ−1

(
(ψ−1)−1w

)
= ϕ−1

(
ψ−1 (−w) ,−1

)
= −ϕ

(
ψ−1 (−w)

)
= −Φ (−w).

Thus,

Φ∗−1 (λϕ (−z) idz ∧ dz) = λϕ (Φ (−w)) i

(
−∂Φ (−w)

∂w
dw

)
∧
((
−∂Φ (−w)

∂w
dw

))
= λϕ (Φ (−w)) |Φ′ (−w)|2 idw ∧ dw = λψ (−w) idw ∧ dw,

which proves the coherency of the definition of µ−1.
The forms µ1 and µ−1 continuously glue along γ in a volume form µ̂ for M̂ . Indeed,

consider a boundary chart ϕ : U → C and M and the chart ϕb : Ub → C defined as above.
Set ϕ∗µ = λϕidz ∧ dz . When s ∈ U , ϕb (s,−1) = ϕ (s) and ϕ−1 (s,−1) = −ϕ (s). Hence, the
transition map from ϕb to ϕ−1 is U → −U , z 7→ −z. Thus,

((ϕb)∗ µ−1)z = λϕ (z) idz ∧ dz = (ϕ1∗µ1)z

for all z ∈ D− ∪ ]−1, 1[ where D− = D ∩ {Im > 0}. Given that ϕ (bUM) = ]−1, 1[, this shows
that µ−1 = µ1 at each point of γ∩U . Develop in a neighborhood in D+∪ ]−1, 1[ the function λϕ
under the form λϕ,0 (x)+λϕ,1 (x) y+λϕ,2 (x) y2 +o (y2). As µ is tangential to bM by hypothesis,
0 = λϕ,1 on bM and it appears that µ̂ is of class C2.
One can now equip Λ1,0T ∗p M̂ , p ∈ M̂ , with the metric ĥ∗p defined by

ĥ∗p (α, β) =
α ∧ ∗β
µ̂p

for all α, β ∈ Λ1,0T ∗p M̂ . The Chern connection D of ĥ∗ is thus of class C2. Consider a
meromorphic (1, 0)-form ω on M without pole nor zero on bM . As recalled previously, when e
is a local holomorphic frame for Λ1,0T ∗M̂ and ω = λe, Dω

ω
= dλ

λ
+ η̂ where η̂ is the connection

form of D associated to e. Since λ has to be meromorphic with same zeros and poles as ω
where the formula ω = λe is valid and since dη̂ is the curvature Θ̂ of D, the Stokes formula,
applied to the domains obtained by removing from M1 arbitrary small conformal disks around
the zeros and poles of ω, gives

1

2πi

∫
∂M

Dω

ω
=

1

2πi

∫
∂M1

Dω

ω
= Nz (ω)−Np (ω)− 1

2π

∫
M1

iΘ̂ (73)

If one agrees that 1
2π

∫
M1
iΘ̂ = 1

2π

∫
M−1

iΘ̂, (71) results from (73) and (74) because, since M̂ is

compact and D of class C2, we get then 1
2π

∫
M1
iΘ̂ = 1

2
1

2π

∫
M̂
iΘ̂ = 1

2
c1(M̂) = g(M̂) − 1 where
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c1(M̂) is the first Chern class of M̂ . A proof of the last equality can be found for example in [?,
Th. 9.1 p. 284 of 1st ed.] or in [?, p. 319] where it is called Hurwitz’s formula.
Denote j the natural symmetry of M̂ with respect to γ and c the conjugation of C. When

ϕ : U → C is a chart of M , the expression of j in the charts ϕ1 and ϕ−1 is ϕ−1 ◦ j ◦ (ϕ1)−1 that

is −c
∣∣∣UU . Thus, j exchange the orientations of M1 and M−1 which gives∫

M1

Θ̂ = −
∫
M−1

j∗Θ̂.

When ψ : V → C is a chart of M̂ , the map ψ̃ : j (V )→ C defined by ψ̃ = ψ◦j is also a chart
of M̂ . This enables (see [?] for example) starting with a section ω of ΛT ∗M̂ on a subset X of
M̂ , to define a section ω̃ of ΛT ∗M̂ on j (X) by setting for any chart ψ : V → C of M̂ such that

V ∩ X 6= ∅,
(
ψ̃∗ω̃

)
w

= β (w) dw + α (w) dw when ψ∗ω = αdz + βdz and w ∈ ψ (V ∩X). In

particular, ω being a fixed section of Λ1,0T ∗M without zero on M , holomorphic on bM and of
class C∞ on M , ω1 = π∗ω (resp. ω−1 = ω̃1) is a section of Λ1,0T ∗M̂ without zero on X1 (resp.
X−1), holomorphic on X1 (resp. X−1) and of class C∞ on (resp. X−1). Setting fν = ln ĥ (ων)

2,
we then knows that

Θ̂ |Mν = d∂fν , ν = ±1.

Fix a chart ϕ : U → C and set ϕ∗ω = αdz. Then (ϕ1)∗ ω1 = αdz and (ϕ̃1)∗ ω−1 = α (w)dw.
Since ∗ acts on (0, 1)-forms as multiplication by i

2
, one gets

(ϕ̃1)∗ (ω−1 ∧ ∗ω−1) = α (w)dw ∧ i

2
α (w) dw = |α (w)|2 i

2
dw ∧ dw

Set µ = λϕ
i
2
dz ∧ dz. In the chart ϕ−1, µ−1 writes as ϕ−1∗µ−1 = λϕ (−z) i

2
dz ∧ dz. ϕ̃1 is also a

chart defined on j (U1) = U−1 and the transition map from ϕ̃1 to ϕ−1 is the map Φ which to
w ∈ ϕ̃1 (U−1) = U associates the number Φ (w) defined by

Φ (w) = ϕ̃1

(
(ϕ−1)−1 (w)

)
= (ϕ1 ◦ j)

(
ϕ−1 (−w) ,−1

)
= ϕ1 (ϕ−1 (−w) , 1) = ϕ (ϕ−1 (−w)) = −w.

Thus, for w ∈ D− ∪ [−1, 1],

((ϕ̃1)∗ µ−1)w =
(
(ϕ̃1) −1

)∗
ϕ∗−1ϕ−1∗µ−1 =

(
ϕ−1 ◦ (ϕ̃1) −1

)∗
ϕ−1∗µ−1

=
(
Φ−1

)∗
ϕ−1∗µ−1 =

(
Φ−1

)∗(
λϕ (−z)

i

2
dz ∧ dz

)
= λϕ (w)

i

2
dw ∧ dw = (ϕ1∗µ1)w

and hence (
(ϕ̃1)∗ ĥ (ω−1)

)
(w) =

(ϕ̃1)∗ (ω−1 ∧ ∗ω−1)

ϕ−1∗µ−1

(w) =
|α (w)|2

λ (w)

= (ϕ1)∗

(
ĥ (ω1)

)
(w)

We infer ĥ (ω−1) ◦ ϕ̃1
−1 = ĥ (ω1) ◦ (ϕ1)−1 ◦ c and so (ϕ̃1)∗ f−1 = (ϕ1)∗ f1 ◦ c (which gives also
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f−1 = f1 ◦ j). Derivating twice this relation and using d∂ = −d∂, one gets finally j∗Θ̂ = −Θ̂

and hence
∫
M1

Θ̂ =
∫
M−1

Θ̂, which ends the proof provided Lemma 46 below is proved.

Lemma 46 Let M be a Riemann surface with boundary. Denote κ the number of connected
components of bM and M̂ the double of M . The genus g(M̂) of M̂ and the Euler characteristic
χ
(
M
)
of M are linked to the genus g (M) of M by the formulas

g(M̂) = 2g (M) + κ− 1 & χ
(
M
)

= 2− 2g (M)− κ. (74)

Proof. Consider a triangulation T of M . When α is in the set C of connected components
of γ = bM , we denote Σγ the set of vertices of elements of T which lie on γ and Aγ the one of
edges of elements of T which are contained in γ. We set Σb = ∪

γ∈C
Mγ and Ab = ∪

γ∈C
Tγ. For each

γ ∈ C, |Σγ| = |Aγ| and assuming, up to a change of triangulation, that the sets ∪
t∈T, T∩Mγ 6=∅

are pairwise disjoint when γ describes C, one gets
∣∣Σb
∣∣ =

∣∣Ab∣∣. Lastly, denotes by σ (T ) the
number of vertices of T , a (T ) the number of edges of T , f (T ) the number of faces of T and set
M̃ = M̂\M . Denotes T̃ the triangulation of M̃ obtained by symmetrization of T , that is the
one obtained by letting act on T the natural involution of M̂ . T̂ = T ∪ T̃ is then a triangulation
of M̂ . Par definition of the Euler characteristic, one gets then

χ(M̂) = σ
(
T̂
)
− a

(
T̂
)

+ f
(
T̂
)

=
[
2
(
σ (T )− Σb

)
+ Σb

]
−
[
2
(
a (T )− Ab

)
+ Ab

]
+ 2f (T )

=
[
2σ (T )− Σb

]
−
[
2a (T )− Ab

]
+ 2f (T )

= 2σ (T )− 2a (T ) + 2f (T ) = 2χ
(
M
)
.

Thanks to the usual theory of compact Riemann surfaces, χ(M̂) = 2− 2g(M̂). Thus, g(M̂) =
1 − χ

(
M
)
. Denotes M ′ the surface obtained by gluing κ conformal disks along connected

components of γ. Then χ (M ′) = χ
(
M
)

+ κ and by definition, g (M) = g (M ′). Thus,

χ
(
M
)

= χ (M ′)− κ = 2− 2g (M)− κ

and
g(M̂) = 1− (2− 2g (M)− κ) = 2g (M) + κ− 1.

We need one last lemma before proving Theorem 6.

Lemma 47 Let Q be a nodal Riemann surface with boundary which is a quotient of a Riemann
surface with boundary S. For q ∈ SingQ, denote by ν (q) the number of branches of Q at q.
Then the Euler characteristics of S and Q are linked by the relation

χ
(
S
)

= χ
(
Q
)

+
∑

q∈SingQ

(ν (q)− 1) .

Proof. Let π be the natural projection of S onto Q and consider a triangulation T of S such
that any point of X = π−1

(
SingQ

)
is a vertex of T . We can also assume that T is suffi ciently

refined so that a same triangle of T contains at most one point of X. Denote by V the set
of vertices of T , E its sets of edges and F its set of faces. Then π and T induce a natural
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triangulation π∗T of Q whose set π∗V of its vertices is π (V \X) ∪
(
SingQ

)
. As any triangle of

T contains at most one point of X, π∗T and T have the same number of edges and faces while

|π∗V | = |π (V \X)|+
∣∣SingQ

∣∣ = |V | − |X|+
∣∣SingQ

∣∣ = |V | −
∑

q∈SingQ

(ν (q)− 1)

Lemma 46 gives that χ
(
S
)

= 1− g (S)− κ. Thus,

χ
(
S
)

= |V | − |E|+ |F |
= |π∗V | − |E|+ |F |+

∑
q∈SingQ

(ν (q)− 1) = χ
(
Q
)

+
∑

q∈SingQ

(ν (q)− 1) .

Proof of Theorem 6. Let j ∈ {1, 2} and q∞j = CardQj ∩{w0 = 0}. Then, pj = δj + q∞ 6
δj +Nz (∂σũ0). Thus, Formula (72) gives

p 6 δ +
1

2πi

∫
∂M

D∂σũ0

∂σũ0

− χ
(
M
)

AsM is a nodal quotient of M by the nodal relation induced by F , we can apply Lemma 47.
So, χ

(
M
)
> χ

(
M
)
and we get the sought inequality. As mentioned after Theorem 2, M

is computable from boundary data and as explained above in this section with Formula (70),
D∂σũ0
∂σũ0

|bM is computable from available boundary data. The proof is complete.
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