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The two dimensional inverse conductivity problem
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Sorbonne Université, 4 place Jussieu, 75252 Paris cedex

22 Février 2018

Abstract

In this article, we introduce a process to reconstruct a Riemann surface with boundary equipped
with a linked conductivity tensor from its boundary and the Dirichlet-Neumann operator asso-
ciated to this conductivity. When initial data comes from a two dimensional real Riemannian
surface equipped with a conductivity tensor, this process recovers its conductivity structure.

Dedication
In January 2016 my friend Gennadi Henkin, with whom I had worked for more than fifteen years,
passed away. This paper, which comes back on a subject he brought, is dedicated to him. The
numerous citations from the articles he authored show the depth of the mathematical thought of
Gennadi.
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This paper is organized as follows. Section |l| gives a short non-exhaustive history of the
subject and Section 2] contains some of our main results. Section [3]is meant to fix definitions and
notation about conductivity structures but also to state some results which, if not new, are not
completely explicit in literature. Nodal manifolds are inevitably involved in the reconstruction
methods proposed here. Section contains what we need about them. Sections and || are
devoted to the proofs of Theorems [5] and [B] Section [6] is about the effective reconstruction of
a bordered Riemann surface from its Dirichlet-Neumann operator. This is a key case for the
inverse conductivity problem. Our method is based on a new a priori analysis of decompositions
of a two variables holomorphic function as a sum of shock waves functions, that is holomorphic
solutions of g—z = h%. Section |7| enables to link the key number p of these sought shock waves

to the Euler characteristic of a computable complex curve of C2.

1 Introduction

We define a (two dimensional) conductivity structure as a couple (M, o) where M is a
connected real surface with boundary equipped with a conductivity o : T*M — T*M, that
is a tensor such that

a Aoy (D)
'_) —
Hp

is a positive symmetric bilinear form, ; being a fixed volume form for M. In the sequel we
get rid of brackets for the action of ¢ on a differential form w by writing ow for o (w), that is
the form M > p +— o, (w,). The above definition of a conductivity is perhaps unusual but is
nothing than an intrinsic reformulation of the one given by [?]. In this paper, conductivities
are assumed to be at least of class C3 though it is not mandatory for all statements.

TM x T;M > (a,b)

I Acknowledgment. I would like to thank the referees for their careful reading and suggestions

2We think of a surface with boundary M as a dense open subset of an oriented two dimensional real manifold
with boundary M whose all connected components are bounded by pure one dimensional real manifolds ; so
the topological boundary bM of M is M\M ; in the sequel M is bM equipped with the natural orientation
induced by M. A Riemann surface with boundary is a connected complex manifold of dimension 1 which is
also a real surface with boundary.

31f we fix a point p in M, some coordinates (x,y) around p and we set as in [?] (£,7) = (dy, —dz) then o (dx) =
ré+tnand o (dy) = ué+sn, for a = aydr+a,dy and b = bydz+b,dy in T,M, o, (b) = (byr + byu) E+(byt + bys)n
and

a Aoy (b) = (azdz + aydy) A [(byr + byu) dy — (byt + bys) dz]
= (ragby + uazby + tayb, + sbyby) de A dy



For any continuous function v : bM — R, we denote E,u the unique solution of the following
Dirichlet problem :
dodU =0 & Ul,,, = u. (1)

Some authors prefer to consider a Riemannian metric ¢ on M and solutions of the Dirichlet
problem (A,U =0 & Ul,,, = u) where A, is the Laplace-Beltrami operator. Writing in co-
ordinates the equations dodU = 0 and A,U = 0, one sees that these two formulations are
equivalent only when det o, = 1 for all p € M.

The positive function s, = +/deto plays a special role in our subject. We call it the
coefficient of o. In Section [3, we establish that o can be uniquely factorized in the form
0 = $,¢, where ¢, is a conductivity of coefficient 1 and also the conjugation operator acting
on T*M of a complex structure C, uniquely associated to o. Thus, the condition that det o is
constant means that (M, o) is nothing more than the Riemann surface (M, C,).

The inverse conductivity problem we consider belongs to Electrical Impedance Tomographic
problems ; in physics, U should be considered as an electrical potential, o (dU) as the electrical
current generated by U and dodU = 0 as the Maxwell divergence equation when there is no
time dependence. The EIT problem is generally thought as the reconstruction of (M, o) from

OM, the boundary bM of M orientated by M, Ty M = LbJMT; M, o 1, 7 and the Dirichlet-
pe

Neumann operator associated to o. This formulation is somehow ambiguous because it doesn’t
tell if M has to be determined as an abstract manifold, an embedded manifold or even more
precisely as a particular submanifold of some standard space. Success depends of the chosen
position. Before going into what can be recovered and how it can be, we have to clarify what
is a Dirichlet-Neumann operator.

To do so, one can use a metric (see Section but we prefer to use the «differential»
Dirichlet-Neumann operator N whose action on a sufficiently smooth function u : bM — R is
defined by

Nju = [od (E;u)]|yy (2)

Hence, in physics, NJu is the measurement along bM of the current generated by the electrical
potential E,u.
When M is a domain in R?, the conductivity is often thought as the matrix (oj;) =

M atgjif’;zgl) (0) which represents at each point p the linear map o, from T;M with (dzy, dzs)

as domain basis to T;‘W with (dxo, —dxq) as range basis, (x1, z2) being the standard coordinates
of R? ; turns to be

0 oU
S (g ) =0 & Ul = )

jk=12

and the conditions constraining ¢ as a conductivity translate into the fact that (o) is sym-
metric and positive.
The task, understood as the reconstruction of (¢j;) from (0M, NJ), has no natural solution
because it is known from a remark of Tartar cited by [?], that when ¢ € C* (M, M) is a diffeo-
i

morphism matching identity on bM and @ is the Jacobian matrix of ¢, (0%;,) = 355'® (0jx) @

defines a conductivity o’ such that N¢' = N¢. However, Lemma of Section |3 shows that ¢ is
a biholomorphism between the Riemann surfaces (M,C,) and (M,C,) where C, (resp. Co) is
the complex structure where o = sc (resp. ¢’ = s'c’), s (resp. s’) being a positive function on
M and c (resp. ) the conjugation operator on T* M associated to C, (resp. C,s). Though they
have the same underlying set, it is more accurate to see (M,C,) and (M,C,/) as two different



embeddings of the same abstract Riemann surface.

This example leads to consider the two dimensional inverse conductivity problem as the
reconstruction of M, an abstract Riemann surface with boundary, and of a function s : M — R%
from the knowledge of bM, s |,a/, the action on T}, M of the conjugation operator ¢ of M and
the Dirichlet-Neumann operator

Ni¢: F (M) 3 u— d°Eseul,,,

where F (M) is any reasonable functions space like C° (bM), C= (bM) or HY? (bM), d° =
i (5 — 8), 0 =d — 0 and 0 is the Cauchy-Riemann operator of M. In particular, even if data
come from a Riemannian manifold (M, g) equipped with a conductivity tensor o, we think our
inverse problem as the reconstruction of the Riemann surface (M, C,) and of the coefficient of
0. Note that this formulation doesn’t mention the auxiliary volume form p because as explained
in section [3] the knowledge of the complex structure of M along bM enables to bypass it.

When (M, o) is a two dimensional conductivity structure embedded in a real or complex
affine space, M can also be endowed the complex structure C induced by restriction of the
ambient space metric. If ¢ denotes the conjugation operator of C acting on T*M, o is said to be
isotropic (relatively to c or C) if there is a function s : M — R* such that o = sc. In another
words, to assume that o is isotropic (relatively to the ambient metric) means to suppose the
complex structure C, associated to ¢ is already known. In such circumstances, the inverse
problem we talk about is to recover the positive function s, = o/c = Vdeto.

At this point, one may ask what can happen if the starting point is a known Riemann
surface X embedded in R?® whose complex structure C is inherited from the standard euclidean
structure of R? and o is any conductivity on X. When ¢ is isotropic relatively to C, C, = C and
the reconstruction task is done by the Henkin-Novikov theorem [1| below. For a non isotropic
conductivity, should an atlas of the abstract Riemann surface (X,C,) be recovered from N7,
any constructive metric embedding X’ of it in R3 could be considered also as recovered from
N7. Of course, X and X’ will be homeomorphic but (X,C) and X’ will be different Riemann
surfaces. Moreover, in practical cases, only the boundary of X may be known. So it is not
necessarily relevant to consider that X is already embedded in some standard space to which
C, would be unrelated. Besides, in the main theorem of [?] quoted by Theorem [2, (M, o) is
given as embedded in R3 but is considered for the proof as embedded in C? with an anisotropic
conductivity while in [?], M is thought as embedded in CPs.

For a bounded domain M of R? equipped with an isotropic conductivity o, it is known that o
is completely determined by its Dirichlet-Neumann operator. This uniqueness is established for
a real analytic conductivity by Kohn and Vogelius in [?]. For a smooth isotropic conductivity,
an effective reconstruction process has been given by Novikov in [?] and for a conductivity with
a positive lower bound and of class W27, p > 1, by Nachman in [?]. Another proof of this result
has been written by Gutarts in [?] for a smooth conductivity. When M is a connected Riemann
surface whose genus is known, Henkin and Novikov in [?, th. 1.2] generalize and correct the
reconstruction results of an isotropic conductivity of [?]. The necessarily technical aspect of
the main result of [?, th. 1.2] limits us to give here only a sketch of it.

Theorem 1 (Henkin-Novikov, 2011) Let M be a Riemann surface of genus g equipped with
an isotropic conductivity o = sc where s € C? (M, ]R*Jr) and c is the conjugation operator of
M acting on 1-forms. Then s can be recovered from the Dirichlet-Neumann operator N7 by
solving g Fredholm equations associated to g generic data of Nj and then by solving g explicit
systems which, in the case where M is a domain of {z € C* P(z) =0}, P € Cy[X], are



linear systems of N (N — 1) equations with N (N — 1) unknowns.

When the conductivity isn’t isotropic, authors have focused on the injectivity up to diffeo-
morphism of ¢ — N7, that is on the reverse of Tartar’s remark. This injectivity is proved
by Nachman [?] for a bounded domain of class C® in R? and a conductivity of class C* after
Sylvester [?] proved it with additional hypothesis. In [?], it is established for a conductivity of
class L™ but for a simply connected domain of R2.

In the special case where the conductivity coefficient is constant, the question is to know
if two conformal structures on M are identical when they share the same Dirichlet-Neumann
operator. A positive answer is claimed by Lassas and Uhlmann in [?] when M is connected
and Belishev confirmed it in [?] by showing that M can be seen as the spectra of the algebra
of restrictions to bM of holomorphic functions on M extending continuously to M.

In [?] and [?], the complete knowledge of the Dirichlet-Neumann operator is necessary to get
the uniqueness of the conformal structure. In [?], it is said that it is determined by the action
of the Dirichlet-Neumann operator on only three generic functions but the proof provided for
this result is correct only if one strengthens a little the generic conditions required for these
functions as it is done in [?]. This uniqueness can also be obtained by increasing the number
of generic functions as in [?]. Theorem [3| below gives a proof with the hypothesis of [?] and at
the end of this section, we propose a new reconstruction of the Riemann surface (M, C,).

In [?] for a domain of R? and in [?, Th. 1.1] for the general case of a real two dimensional
connected manifold M, Henkin and Santacesaria made a major breakthrough in the theory by
proving that the Dirichlet-Neumann operator determines the complex structure C, of (M, o)
as a nodal Riemann surface nodal with boundary embedded in C?. We refer to section for
definitions and notation about nodal surfaces.

Theorem 2 (Henkin-Santacesaria, 2012) Let (M,0) be a conductivity structure, o being
of class C3. Then, there exists in C*> a nodal Riemann surface with boundary M and a C*-
normalization F : M — M such that F.o = tcy where t € C3 (M,Ri) and cyq 1S the
conjugation operator of the complex structure induced by C* on M. If in addition F : M — M’
is another C®-normalization of the same kind, M and M’ are roughly isomorphic in the sense
of [?]. Lastly, the boundary value of F and in particular bM are determined by bM, o

and the Dirichlet-Neumann operator N3 of (M, o).

TJNIM

Note that thanks to Lemma [§, F' is holomorphic in the sense that for any subset V' of M
such that F (V) is a branch of M, F is analytic from (V,C,) to C%. Besides, this theorem’s
proof implies that the singularities of M are the points of F’ (H) with many preimages by F'.
So, when M as no singularity, F is a diffeomorphism from M onto M satisfying the hypothesis
of Lemma [§, which makes it an isomorphism of Riemann surfaces with boundary from (M, C,)
onto M.

In [?], it is said that M and M’ are isomorphic without providing a precise meaning for

it. Let us succinctly prove it involves at least rough isomorphism as defined in Section (.1}
Suppose that ' : M — M and G : M — M’ are C3-normalizations of the above kind.

Set Freg = F ’;e_gf‘&{e er) Greg = G RGeff‘(Af/{eg vy and denotes by Hye, the map from Reg M’ N

G (F~' (Reg M)) to Reg M N F (Reg M') defined by Hieg (2) = Fieg (Grep (2)). Because F and
G are normalizations, H,, extends holomorphically along any branch of M’ as a (multivalued)
map H from M’ to M. By construction, H (M'’) and M are complex curves which are

different at most at a finite number of points. Hence, they are equal and in particular, Sing M



and Sing M’ has the same cardinal. It follows that M and M’ are roughly isomorphic. The
analysis of Theorem [2]is carry on in the next section.

2 Main results

The nodal Riemann surfaces M and M’ involved in Theorem [2] are actually isomorphic in
the strong sense of this article. Indeed, by lifting to M, M and M’ induce complex structures
on M which coincide on bM and share the same Dirichlet-Neumann operator. Then, Theo-
rem (3| below enables to tell that these lifted Riemann surfaces with boundary are isomorphic
and hence, that M and M’ are so as nodal Riemann surfaces with boundary. The proof of
Theorem [3]is given in Section 3] When n = 2, it completes the proof of Theorem 1 of [?] whose
arguments really had to be corrected. By the way, as said before, Theorem [3] also proves the
isomorphism claim of [?, Th. 1.1].

In the statement below, [wq : -+ : w,]| denotes the standard homogeneous coordinates of
CP,. If wy, ...,w, are (1,0)-forms of CP,, without common zero and are pairwise proportional,

we denote by [wp : -+ :wy] or [w] the map defined on each {w; # 0} by [w] = [%j Deee Z—?]

Note that the hypothesis required for (uq, ..., u,) in the theorem below is generically verified
within n-uples of smooth functions on the boundary (see [?, 7]).

Theorem 3 (Henkin-Michel, 2007) Let M and M’, two smooth Riemann surfaces bordered
by the same real curve y. Set 0 = d — 0 (resp. 0 = d— '), O (resp. J') being the Cauchy-
Riemann operator of M (resp. M'). If u € C* (), denote u (resp. @) the harmonic extension
of u to M (resp. M') and set Qu = (Ou) |, (resp. O'u = (0'U)|,) ; 0 (resp. &) is also the
operator 07 defined by (@ when o is the conjugation operator of M (resp. M') acting on
1-forms.

Select u = (ug,...,u,) € C* (y)nJrl where n € N*, suppose that for all j € {0,...,n},
Ou; = O'uj, the map [fu] = [Oug : -+ : Ou,] = [0'u] is well defined, realizes an embedding of
v in {w € CP,; wy # 0} and suppose in addition that [0u] (resp. [0'u]) is well defined on M
(resp. M') and extends meromorphically [0u] (resp. [0'u]) to M (resp. M'). Under these
conditions, there exists an isomorphism of Riemann surfaces with boundary from M onto M’
whose restriction to vy is identity.

Hence, the regular part of the nodal Riemann surface M produced by the Henkin-Santacesaria
theorem is a model for the complex structure of (M\F ! (Sing M), o). This model is effec-
tively computable. Indeed, M is a complex curve of C*\bM which in the sense of currents
satisfies d [M] = F, [0M] where [M)] denotes the integration current on M and [0M] the one
of bM oriented by M. In this situation, one knows, essentially since the works of Harvey and
Lawson [?, 7], that M is computable thanks to Cauchy type formulas (see e.g. [?, Th. 2] or [?,
Prop. 1]). More specifically, because M lies in C?, these formulas directly give the symmetric
functions of the functions whose graphs describes the intersections of M with a chosen family
of complex lines.

Meanwhile, as only the boundary values of F' are known, there is an ambiguity on how to
unfold the possible nodes of M. To really know the complex structure C, of M, one has to
know an atlas of it or a true embedding of it in some classical space. When the coefficient of
o is constant, it is the same thing as recovering (M, C,). This particular case is studied in [?,
Th. 4] and with the remark made at page 327, we readily have the result below for which we
refer to [?] for the precise meaning of generic. Note also that though [?] is formally only about
Riemann surfaces, the only part of the theorem below which isn’t explicit in [?] is the isotropy



statement but it is a plain consequence of the fact that © is a biholomorphism from (M, C,) to
S.

The theorem below introduces operators which play a crucial role in this paper. When
(M, o) is a conductivity structure, we set 9° = d — 0” and d° = i (5" — 8") where 07 is the
Cauchy-Riemann operator of Riemann surface (M, C,). The operator 67 acts on u € C* (bM)
by 09u = (0°u) |par, u being the C,-harmonic extension to M of u. The theorem doesn’t
mention the regularity of o because what matters is that (M,C,) is a smooth manifold with
boundary so that Stokes formula holds.

Theorem 4 (Henkin-Michel, 2015) Let (M, o) be a conductivity structure. Then for generic
u = (ug,...,us) in C® (bM,R)*, the map [07u] = [0%uq : - - : 07us] is the boundary value of
a map © which embeds (M,C,) in CP3 as a Riemann surface S with boundary. Moreover,
© = [07u] where u is the C,-harmonic extension of u to M, and ©.0 is a conductivity isotropic
relatively to the complex structure of S.

One should be careful here because the operator 7 can’t be thought as directly available
from N¢. Even if o is the identity on the fibers of 7% M along bM, what is immediately available
from NJ are the boundary values of the derivatives of solutions of Dirichlet problems dodU = 0
and U |ppy = w while what is required to apply Theorem [4| are the boundary values of the
derivatives of solutions of Dirichlet problems dd°U = 0 and U |,y = u. Unless the coefficient
of o is constant, one can’t expect these boundary values to be the same. To cope with this
difficulty, we have Theorem [5| which is a new result.

Before stating it, we explain some notation but complete details and proofs are in written in
Sectlon . We says that the conductivity structure (M o) extends plainly (M, o) if M CC M,

o is of the same class as 0, 0|y = o and 7|, = Id, ~ forall p € bM. Let then F, M and

M as below. The nodal Green function g we use for the possibly singular curve M = F (M)
is defined in Corollary [12] of Section but for a rough picture, the reader can think it as a
kernel with the usual logarithmic singularities on the diagonal but with no boundary vanishing
condition. Then the double-layer potential Dyu of u € C°(bM) is defined for any regular

point g of ./\A/l/\b/\/l by (Dgu) (q) = [5,, udgq where g, = g (g, .). When u is sufficiently smooth,
the functions Dfu = (Dyu)|m and Dyu = (Dyu) A extends up to the boundary into

(nodal) C!-functions whose restrictions to bM are denoted Afu and AJu. The conditional
Green operator By = Id + N7 is defined for any u € C* (bM) and p € bM by (NFu) (p) =

2PV (fé)/\/l u(q) g—li (p,q) 7'3‘) where PV means principal value and (v, 7) is a frame for Ty, M,

direct and orthonormal with respect to the ambient Hermitian metric of C2, 7 being tangent

to bM.

Theorem 5 Let (M, o) be a conducthty structure, o being of class C®. Select, which is always
possible, a conductivity structure (M o) extending plainly (M o). We denote F' : M— McC

C? the normalization obtained by applying Theorem |3 to (M o) and we set f = F ‘F(bM). g,

Di Ai and B, and T are defined as above.

Then, Id+ A; is an endomorphism of C* (bM), its kernel and the kernel of B, are finite
dimensional subspaces of C* (bM) and for any u € C* (bM,R) such that [, (fiu)wr* =0
when w € ker By, the equation f.u = w + Ajw can be solved in C* (bM,R) and for any
solution w, 09u = (F*ODfw) |y

The main difficulty in the proof of Theorem [5| comes from the fact that harmonic Dirichlet



problems in a nodal curve have unique solutions only if data is specified for nodal points (see
[?, Prop. 2]). By the way, should M have no singularity, there would be nothing to do since
M would be already an embedding of (M,C,) in C2.

Since the boundary values of F' are computable from NJ and since the Green function we
use is so from M and M is computable from N7, Theorem [5| gives a tool to compute from NJ
as many 67u as needed to apply Theorem (4| and so, to get the boundary values of an embedding
© of the Riemann surface (M, C,) onto a Riemann surface S of CP3 for which ©,0 is isotropic.

If S itself is computed, the Henkin-Novikov Theorem [I| enables the reconstruction of the
conductivity coefficient s of ©,0. Finally, denoting ¢ the conjugation operator of S, (.5, sc) is an
explicit solution of the problem posed if it is understood as producing a conductivity structure,
abstract or embedded in a standard space, whose oriented boundary and Dirichlet-Neumann
operator are those specified.

It remains to explain how to recover the above Riemann surface S, or, which is the same,
the conductivity structure (S,c). As S is a complex submanifold of CPs3, the problem is no
longer to recover ¢ but to recover S as a set. Without loss of generality, S is supposed to be a
relatively compact domain in an open Riemann surface S of CPP;. For a generic choice of the
4-uple (ug, u1, usz, us) of functions used in Theorem , we can also assume that the projections
o @ (wp : wy  wy :ws) > (wp :wy : we) and w3 (wo :wy :wsy  ws) — (W wy : ws) immerse S
in CP, on nodal curves §2 and 53 such that 73 * (Sing §3> Nyt <Sing §2> NS = o. Therefore,

to obtained an atlas of S, it is sufficient to get one for Q); = 7; (S), j = 2, 3, that is for a nodal
Riemann surface with boundary which is a relatively compact domain () in an open nodal
Riemann surface () of CPy and whose oriented boundary 9@ is known. This reconstruction
problem is studied in [?, Th. 2] but the suggested algorithm is not truly effective since the
polynomials P, arising from a non empty intersection of ) with {wy = 0} can’t be computed
as easily as claimed.

In this paper, we provide a new approach to this problem with an effective method of
computing these polynomials. How this can be done is described below but details and technical
notation are postponed as most as possible to Section [l Theorem [39] which specifies a linear
system to solve to find some crucial auxiliary polynomials and Proposition [41] which enables
to extract from them functions with geometric meaning are new and part of our main results.

They are written in Sections [6.4] and

What we have at our hand is an oriented real curve dQ) which is known to be the boundary
of a complex curve @) of CP, ; without loss of generality, we assume that {wy =0} NbQ = 2.
In such a situation, it is classical to use the Cauchy-Fantapié indicators of (). Denoting U
the open subset of C? whose elements are points z = (z,%) of C? such that bQ doesn’t meet
L, ={w € CPy; zwy+ yw; + we = 0}, these are the functions Gy, k € N, defined on U by

1 w1 F 1 wp | We
Gp(2)=— [ of o= () — g L 4
k (Z) 27ri 50 z) z (wO) T+ yz(l) 4 w2 <£If + ywo + wo ( )

wo

By Proposition |21}, which is a result of Dolbeault and Henkin, we know that for all k£ € N,
there exists P, € C(Y), [X] such that G, — P is the k-nth Newton symmetric function N, of
locally defined shock waves functions Ay, ..., h, which determine the intersections of ) with the
lines L,. The polynomials P, are generated by points in Q@ = @ N {wy = 0}. In the favorable
but unlikely case Q> = @, all P are 0, @ is contained in the affine space {wy # 0} and well
known techniques enable to compute these functions h;.

When the number ¢ of points in Q> is 1 or 2, Agaltsov and Henkin [?] give an explicit

8



procedure to recover () and they claim that it should be efficient for any value of ¢*°. Meanwhile,
they provide no proof of it and it is no clear to us how to cope with the algebraic systems
involved.

The new method we propose below focuses on the number p of the involved shock waves
functions and works for any value of p or ¢®. For ¢> € {1,2}, it is difficult to compare the
Agaltsov-Henkin procedure to our because fixing p or ¢* to small values are really different
hypothesis ; from Corollary 24} p = ¢>°+9 where § € Z is computed from G;. Our reconstruction
process goes in five steps.

1. If G; is algebraic in y and affine in z, ) is contained, according to Lemma in a
connected algebraic curve K such that K N L, = QN L, for 2 € Z where as specified

by , Z C U is a domain of the form ‘ IU D (0, |y|) x {y}. In this situation, we choose
y|>p
other coordinates in order that at least one of the lines L,, z € Z, meets @ and K\Q.

Thus, we assume that 8;521 # 0 on Z for the remaining of the process.

2. We assume that for some d € N*, we have found in C[X]* a solution p = (1, ..., i)
for the differential linear system S; such that B, (0,y) = 1 and A, # 0, these three
y—0*

conditions being specified in Theorem [39, Note that Sy is actually a linear system on the

coeflicients of p. According to Theorem |39} G; = —s1+1® % +X® % with A, B € C[Y],

degA <degB=r=d—46, B(0) =1 and s, = 1ZTHB( S FIR(uy 1)), 1 < k< d,
k<j<d

where H is a function defined on Z* = Z\ (C x R_) and F is an operator, both being

specified in Definition |30 and computable from G;.

3. According to Corollary [33] outside an analytic subset of Z, the s are the symmetric
functions of shock waves functions gy, .., g4. Applying to the family (g;) the reduction
described in the beginning of Section and applying Proposition 41, we conclude that
d > p where p is the number p of the locally defined shock waves functions h; we are

looking for, 7 > ¢> and that if (g;),;., is the set of functions obtained from (g;) by

reduction, {¢1,...,9p} = {h1,...hp} and P, = 1@ 4 + X ® %. Consequently, (P),cx-
is the algebraic extension of (G — Ny ) wen+ Where the Ny are the Newton symmetric

functions of the g;.

4. We know from Proposition [2I] that there exists a locally constant function = with val-
ues in N such that for z, in Z but outside some analytic subset of Z, there exists a

neighborhood U, of z, in Z and mutually distinct shock waves hi*, ..., hfr*(z*) such that
() contains Q,, = U {(1: hi(z) 1 —x — yh3r (2)); z€U..} and (G |u.. )keN* -

1<k<m(24)
(th* x+ P, ) LeN where the Nj-.; are the Newton symmetric functions of the hj
Thanks to Newton’s formulas and what precede, we can hence compute the symmet-
ric functions Sz i, of the h7*. Moreover, m (2¢) = Go |v., — ¢> is known. We can hence
individually compute the functions h}*, 1 < j < 7 (2.) from (Shes )

1<k<m(ze)"

5. Thanks to Lemma Q N {wy # 0} and hence @ are known.

From a practical point of view, it would very convenient to know a priori p since it would
enable to write directly a relevant system S;. Inequality of Theorem @ below delivers an
upper bound pp.x for this number p. Note that data needed to think as effective, mainly
M, (DO%uy) |ppr and 07ug = 0%ug |pas are, as explained its the proof which is given at the end
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of Section [7 computable from available boundary data. It would be useful to have a formula
delivering X (ﬂ) in terms of Dirichlet-Neumann boundary data but such a formula is not
known and M has to be computed in order get its Euler characteristic.

Theorem [39 implies that S; has a non trivial solution for some d between 1 and pp.. . In
addition, with results of Section [6.5 we know that from any non trivial solution of some Sy, we
can extract the sought shock waves. Hence, in the second step of the above process, we have
at most py.x linear systems Sy to solve and this process may be considered as effective for any
value of p or ¢*.

In Theorem [f] below, the generic hypothesis that @ € {Q1, @2} is assumed to satisfy are
that @) is a well defined nodal open bordered Riemann surface of CP, whose boundary is a
smooth real curve such that bQ C {wowywy # 0}, (0:0:1) and (0:1:0) are not in Q*° =
() N {wo = 0} which is supposed to be transversal and contained in Reg(@. The number p,
is, according to Proposition when @ € {Q1,Q2}, the number of shock waves functions
hj1, ..., hjp, such the function G}, defined by (4f) can be written on the set Z defined by in

the form (R, )" +-- -+ (h; )k + P, where P; ), € C(Y), [X]. The complex differential operator

7,Pj

07 of (M,C,) is defined as before.

Theorem 6 Let (M, o) be a conductivity structure. We equip the bundle AY°T*M of (1,0)-
forms of (M,C,) with an Hermitian metric and a Chern connection D as in Theorem [44]
Denote by M the nodal Riemann surface designed by Theorem |9 and denote x (ﬂ) the Fuler
characteristic of M. Assume that u = (ug, u1, us, us) € C® (bM)” satisfies the following generic
hypothesis : the Cy-harmonic extension U of u is such that [0°1] is an embedding of M in CPs
and Q; = [0%up : 0%uy : 0%u;| (M), j = 2,3, satisfies the generic hypothesis stated above. Let
p = max (p2,p3) and § = max (0y,03) where §; = 5= fan dwi/wo) ;o the number § defined in

27 w1 /wo
Lemma and p; is the number of shock waves functions involved in Proposition when z,

is in the set Z defined by (24). Then

1 Do%uy ——
< _ —
PO+ o— o X (M) (5)

3 Conductivity structures and metrics

Requirements on o to be a conductivity indicate a metric is involved. It is noticed in [?]
that once a volume form p is chosen for M, one can design a natural metric Ju,c O M by
setting for all t,¢’ € TM

ot (tap) A ap)

Guo (t,1) = .
g u

Its conformal class or complex structure C, doesn’t depend on p and o factorizes (see [?])
through C, in the sense that there exists a function s, : M — R% with the same regularity
as o, called conductivity coefficient in this article, such that when (z1,z5) is a couple of local
isothermal coordinates for C,,

Mat$> =D (g,) = s, (p) I (6)

for all p in the open subset of M where (21, 5) is defined, I, being the 2 x 2 identity matrix and
dx = (dx1,dz). Denote by det o the map which to a point p of M associates the determinant
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of the linear map o, ; @ implies s, = Vdeto. If ¢, is the conductivity defined by
0 = S,.C, = Vdeto.c,, (7)

C, is also the conformal class associated to ¢, ; when (z1,x2) is a couple of local isothermal
coordinates for C,,

Mat¥(cy) = ( (1) _01 ) “y

In other words, ¢, is also the conjugation operator acting on 1-forms of M. Moreover, if

d’ = c,d, 0° = % (d — id?) is the Cauchy-Riemann operator associated to C, and

dodU = ds,d’U

for all functions U € C? (H) Note that by definition, 97 = 9%, 9° = 0° and d° = d°; these
operators are associated to the complex structure C,.

Let us suppose that C is a complex structure on M, that is an atlas for M which makes
M a Riemann surface with boundary. If x; and x, are the real and imaginary part of a same
holomorphic coordinate for M, Jacobian matrices relatives to (x1,z2) of holomorphic maps
commute with .J. This means that one can define a tensor ¢ : TM — TM by the fact that
in such coordinates, Mat%*(c) = J. By construction, ¢ is a conductivity whose coefficient is

1, cod = i(g — E)) “/ g¢ and ¢ is the conjugation operator of C and also the Hodge star
operator acting on 1-forms when M is equipped the metric dual of the one given on each T M
by (a,b) u = a A xb = \/ﬁa/\a(b).

So, decomposition @) shows a complex structure naturally associated to o. It is unique in
the sense that if ¢’ is the conjugation operator of T*M associated to a complex structure C’
and if s’ € (Ri)M/, the identity o = s'.¢’ forces, because det ¢, = 1 = det ¢, first s, = s’ and
then ¢, = (.

Formula shows that for all p € M, 0, commute with the orthogonal automorphisms of
(TpM , (glw)p . When M is a submanifold embedded in R?, in particular if M is a domain of

R? and when g, , is induced by the standard metric of R*, this means that o is isotropic in
the usual sense (see [?] and [?] for example). The proposition below sums up what precedes.

Proposition 7 Let M be a real two dimensional surface with boundary. A complex structure C
on M defines a conductivity tensor with coefficient equal to 1. Reciprocally, for all conductivity
o on M, there exists a unique complex structure C, such that o = v/detoc, where c, is the
conjugation operator associated to C,.

Hence, it is natural to say that a complex valued function f defined on an open set U of M
is o-holomorphic if 97 f = 0, or equivalently, when for all charts z : V' — C of the holomorphic
atlas of (M,C,), f o271 is holomorphic on 27! (U) in the usual sense.

If (M',0") is an another conductivity structure, a map f from an open subset U of M to
M' is said (o, 0’)-analytic if for all holomorphic charts 2’ : V! — C of (M',Cy), 2’ o f is o-
holomorphic on f~! (V') N U, that is if 2’ o f o 2! is holomorphic on 27! (f~* (V') N U) in the
usual sense for all holomorphic charts z : V' — C of (M, C,). This also can be characterized by
the following lemma.

Lemma 8 Let (M,0) and (M',0’) be two conductivity structures, U an open subset of M and
f U — M a differentiable map. Then [ is (o,0')-analytic if and only if (*Df) o cor =
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¢y o (‘Df). When [ realizes a diffeomorphism ¢ from U to f (U), ¢ is (o,0")-analytic if and
only if .c, = ¢, and in particular if g0 = o’.

Proof. Consider holomorphic charts z : V' — C and 2’ : V! — C of (M,C,) and (M’',C,).
Set F = Mat'™ ™) (Df) where (z,y) = (Rez,Im z) and (z/,3/) = (Re 2/, Im 2/). Then

(dz,dy)
(dz,dy) o (dz,dy) (da’ ,dy’) B
Ma/t(dxlély/) ((th> o Co”) - Ma/t(d$/7gy/) (th) Mat(dx,’dz,) (CU’) — tFJ
(dz.dy) _ (dz,dy) (dx,dy) -
Mat(d$/75y/) (CO. o (th)) — Mat(d%dz) (CU) Mat(dz’?(‘[yy/) (th) — JtF

So, the equality (*Df) o ¢y = ¢, o (*Df) holds if and only if JF = FJ. Translating this on
matrix coefficients, this is equivalent to the fact that Re f and Im f satisfy the Cauchy-Riemann
equations, that is % = 0.

Suppose now that ¢ = f ‘5([]) is a diffeomorphism. Since by definition, ¢.c, = (*Df )1; ‘o
(co)y o' (D), where p = Y1, the preceding point gives that ¢ is (o, 0’)-analytic if and only
if ., = cpr. Besides, p.c, = (det o), .puc, = det (o) .pxco. So, 0’ = .0 = (th);l o(cy)ypo
" (D) forces det ¢,r = det (o) and p.c, = cor. B

This lemma enables to justify our comment in the introduction about Tartar’s remark. The
conductivity ¢’ is defined by Mat!®> %) (5/) = -'® (0;,) ® where ® is the Jacobian matrix

(dz1,dz2) T det®
of ¢. But Matgx:gij; (o) = JMatEZﬁjigj:)I)(a) and the same holds for o’. Since =J'®J = ¢+
and J? = —1I,, we get Mat&lgﬁigg (') = é_lMatE;lii:Ziig (0) ® which means o’ = p,0. Hence,

¢ is a biholomorphic map between (M, C,) and (M’,C,/).

We now turn our attention to the Dirichlet-Neumann operator itself. Assume again that
M is also equipped with an arbitrary Riemannian metric g ; this in particular the case when
M is a real surface in R? with a non isotropic conductivity. Denote by v and 7 vector fields
defined along bM such that for all p € bM, (v, 7,) is a direct g-orthonormal basis for T}, M and
7, € T,bM. The «normal» Dirichlet-Neumann operator N7 is then defined for any sufficiently

smooth function u : bM — R by
0FE,
Noy= 2274 (8)

v
o |y

where F,u is the unique solution of . So, when u : bM — R is sufficiently smooth
dE,u = (E,uv)v* + (Eyut) 7" = (NJuw) v* + (du.T) 7.

This formula shows that data from N7 which depends of a choice of metric, can be replaced by
data from the «differential» Dirichlet-Neumann operator Nj = odE, defined by .
In the particular case where deto = 1, 0 = ¢, and it is noticed in [?] that 0% E. ul|,,, =
(Leou) (v* +it*) where 0% = d — 0° and 0° is the Cauchy-Riemann operator of (M, C,) and
0

where L{7u = % (N,f"u — ZB—Z) So, one can consider in this case the «complex» Dirichlet-

Neumann operator 67 defined on sufficiently smooth functions v : bAM — R by
02u = 0“ E ulyy, = (Lyvu) (V* +i77) 9)

For a general det o, we still let #7 = 0% . This means that for u € C*° (bM), 6% is still defined
by @ even if o and ¢, are no longer equal. Hence, 67 and NJ correspond to Dirichlet problems
associated to different operators, namely dc,d for the first and dod = ds,c,d for the second.
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To end this section, we explain how to get rid of the auxiliary volume form p. As in the
inverse problem studied here, Tb*MM and o T 31 Are supposed to be known, the conjugation

operator ¢, associated to the complex structure C, of (M, o) is known when it acts on T}, M.
Having chosen a smooth generating section 7* of T*0M, we set v} = — (¢,), 72 for any s € bM.
By definition of conductivity, bM > s — 75 A v is then a smooth section of the volume forms
bundle of M and can be extended to a smooth volume form p on M. Though this extension is
not unique, any tensor which would be a conductivity for one of these extensions would be so
for any.

4 Recovering the complex Dirichlet-Neumann operator

Nodal Riemann surfaces are discussed in [?] and the reader can refer to it. Meanwhile,
for sake of simplicity [?] doesn’t consider the case where nodes are allowed in the boundary.
Since the nodal Riemann surface we have to consider is produced as the solution of a boundary
problem for a real smooth curve and since as pointed out in [?, section 3.2] such complex curves
may present this type of singularity, we give some basics in Section [4.1l Then, we prove the
existence of nodal Green functions for such surfaces. At the end of this section, is written the
proof of Theorem [5| which enables the recovering of the complex Dirichlet-Neumann operator
07. This result is new wether or not nodes at the boundary are present. Besides, existence of
such nodes should be considered as exceptional.

4.1 Nodal Riemann surfaces and harmonic distributions

In this article a nodal Riemann surface with boundary @ is a set of the form (S/R) \7 (bS)
where S is a Riemann surface with boundary, R a nodal relation which means that R is an
equivalence relation on S identifying a finite number of points of S but such that two distinct
points of bS are in two different classes and 7 is the natural projection of S on S/R. In
particular, m,s = 7 |53 is a bijection.

We equip S/R with the quotient topology so that @ is an open subset, Q@ = S/R and
bQ = 7 (bS). One denotes by Reg @ the set of points of @) having only one preimage by = and
we set Sing Q = Q\ Reg Q ; Reg @ and Sing @ are defined similarly.

If g € Q (resp. g € bQ), an inner (resp. boundary) branch of Q at ¢ is any subset B of Q
(resp. Q) for which there exists an open connected subset V of S (resp. S) and s € VN7~!(q)
such that V\ {s} c 77! (Reg @), 7 realizes a bijection from V' to B and, if ¢ € bQ, V NbS is
a neighborhood of s in bS. A set of inner branches at a point ¢ of @ is complete if their union
with the possible boundary branch of @ at ¢ is a neighborhood of ¢ in Q.

() carries a natural (nodal) complex structure which is characterized by the fact that for
any inner branch B of Q, there exists an open connected subset V of S such that 7 is a
biholomorphism from V to B. Likewise, one gives a natural meaning to notions of nodal
conductivities (for which considerations of the preceding section apply) and to nodal function
or maps between nodal Riemann surfaces, holomorphic or of class C*, 0 < k < co. With such
definitions, 7 : S — @Q becomes a normalization of Q.

As pointed out in [?, prop. 2], isomorphisms between nodal Riemann surfaces are a little
bit trickier since nodes can be mixed. Let us consider another nodal Riemann surface with
boundary )" which is the quotient of a Riemann surface with boundary S’ and denote 7’ the
natural projection of S’ to Q’. Take a nodal map ¢ : Q — Q' ; so, ¢ is univalued on Reg Q
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and multivalued on Sing Q. We say that ¢ is an isomorphism of nodal Riemann surfaces with
boundary if the following conditions are satisfied :

i) ¢ is an homeomorphism from ¢! (Reg @) N Reg @ onto ¢ (Reg @) N Reg Q'

ii) For all inner (resp. boundary) branches B’ of @, there exists an inner (resp. boundary)
branch B of @ such that ¢ (B N Reg @) = B’ N Reg @’ and the continuous extension ¢ |§'
of the map BN Reg@ — B’, ¢ — ¢(q), is an isomorphism of Riemann surfaces (resp. with
boundary).

iii) For all ¢ € @, the branches of @’ at ¢ (¢) are the images by ¢ of the branches of Q at q.
If o satisfies only (i) and (ii), we says as in [?, prop. 2] that ¢ is a rough isomorphism.

Distributions and currents are defined on nodal Riemann surfaces as usual by duality and
of course, harmonic distributions are by definition those in the kernel of dd°. According to [?,
prop. 2] whose proof applies without change to the case (Sing @) N bQ # I, a distribution «
on a open set W of Q is harmonic if and only if it is harmonic in the usual sense on W NReg Q,
continuous on W N Reg @ as well as in all boundary branches of Q contained in W, and if for
any singular point ¢ of Q the two conditions below are satisfied :

1) for all inner branches B of Q at ¢ sufficiently small so it admits a holomorphic
coordinate z centered at ¢, there exists cg € C such that u |Qq‘j\{q} —2cpIn |z| extends to B as
a usual harmonic function.

2) 3 cp = 0 where B is a complete set of inner branches of @ at q.
BeB
This implies that a same continuous function v on b(@) extends to () in many harmonic

distribution ; the Dirichlet problem for u is well posed only if for the extension U, one specifies
for all ¢ € Sing @ and all inner branches B of Q at ¢, the residue cg of OU |p at q. In particular,
u denoting the harmonic extension of u o 7rb_sl to S, m,u is the only harmonic distribution which
is continuous along any branch of @ and coincides with u on bQ ; we call it the simple harmonic
extension of w.

For a nodal Riemann surface (), we define the complex Dirichlet-Neumann operator as the
operator 09 = 0. where cg is the conjugation operator associated to the complex structure of
@ and where in @ simple harmonic extensions are used.

4.2 Recovering of 07, proof of Theorem
4.2.1 Green functions in the smooth case

This section is about classical facts on Green functions for a smooth open bordered Rie-

mann surface S which are generalized to the nodal case in Section

A Green function for S is a function g defined on S x S without its diagonal Az such that
for all ¢ € S, g, = g(g,.) is harmonic on S\ {g}, continuous on S\ {¢} and has an isolated
logarithmic singularity at ¢, which means that given a holomorphic coordinate z of S defined
near ¢ and centered at ¢, g, — % In |z| extends harmonically around ¢. ¢ is said principal if it is
symmetric, real valued and its partial functions g, vanishes on bS. The Perron method shows
that such a function exists and the maximum principle implies it is unique.

The problem we want to address is the computation from ¢ of the operator #3 which to
u € C* (bS) associates (0u) |,s where u is the harmonic extension of u to S. Without loss of
generality, we assume that S is a relatively compact domain in an open Riemann surface S for
which g is a Green function. We also assume that g is symmetric and real valued.

First, one builds the operator T, which to u € C° (bS) associates the harmonic function T,u
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defined on S\bS by

- 2
Tyu:S\bS>q— — [ udg, (10)
tJos

and which splits in T;7u = (Tyu) |s= where ST = S and S~ = S\S. Let us choose an Hermitian

metric for S and for TS near bS , a direct orthonormal frame (v,7) such that 7,5 € TpsS.
When f is differentiable function near bS, we can write

of = % (% - @'%) (V" +ir"). (11)

Since the pull back of v* by the natural injection of b5 into Sis 0, we get that for any u € C* (bS)
and ¢ € S\bS,

0 e .
(Tyu) (q) = U%T* + z/ u' g, e/ Dyu + iS,u’ (12)
as as
where v/ = % and where D,u and Sy’ are the so called double-layer and single-layer potentials

of u and «'. Since d° =i (9 — 0), we also get from || that for any u € C° (bS) and ¢ € S\bS,

(D,u) (g) = / g, (13)

Like Ty, D, and S, split in sided operators D and S;. Then it is well known that for any
u € C*(bS), DFfu = (Dyu)|s+ and SFu = (Syu)|s+ extend to ST as C'-functions, that S, is
continuous on S and that if u € C2 (bS), the boundary values A¥u = (DFu) |ps satisfy

Afu—Aju=u & Afu+ Aju= Nyu (14)

where Nyu is defined for p € bS by

(N,u) (p) = 2PV ( /a S udcgq) |

PV standing for principal value. According to , when u € C? (bS), Tu also extend to S*
as C''-functions which verify

- - + — =
Aju—A  u=u & Aju+ A, u=Ny.u

where A u = (Tgiu) lbs = Aju — iSgu’ and where Ny u is defined for p € bS by

(N, 1) (p) = 2PV (% /8 S uagq)

This goes back to the works of Sohotksy in 1873 or, later, of Plemelj and can be found in
many books. The reader can refer for example to [?, chp. 7, §§11 | where these operators and
formulas are proven to make sense for u in the distributional sense in Sobolev spaces. A direct
proof for T, . and C?-functions can be found as a particular case in [?] which addresses similar
problems in Stein manifolds.

We also use the operator N} defined on any Sobolev space H* (bS) by density of C* (bS)
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and by, when u € C* (bS),

wets, (50 ) =20V ([ (o) g% )

S Vp

From [?, Prop. 11.3], we know that in the distributional sense

Vp € bS, (Ng#u) (p) = u(p) + 2 lim 05 u (p—evp) (15)

e—0t 14

Assume that for some v € C* (bS) and we have found a solution w € C* (bS) to the
equation
u=w+ Ajw, (16)

that is, u belongs to the range of Id + A;. Then D;w is a smooth function on S such that
(D;w) lbs = A;w =w+ A;w = u, which entails that D;w is the harmonic extension u of
u to S and that 05u = (8D;'w) lbs can be computed, which is our goal. Thus, the question
which arises is the characterization of the range of Id + A.

As ¢ is symmetric and real, we know (see e.g. [?, chp. 7, §§11 |) that for any real s,
Id + A is a Fredholm operator from H* (bS) to itself and has index 0. This implies that the
obstruction to solve in H* (bS) for data in H® (bS) is only finite dimensional and that
Id + A; is an isomorphism if it is injective or surjective. Consider the standard identification

H~*(bS) of the dual of H* (bS) by defining the duality pairing (.,.) by density of C* (bS)? in
H? (bS) x H=* (bS) and by
(u,w) = / uwT*
08

when u,w € C* (bS). Then we can define the adjoint L* of any operator L of H* (bS) and
get the identity Im L = (ker L*)L. Since Id + A, has a closed range as a Fredholm operator,

we get Im (Id—i—A;) = (ker (Id+Ag_)*)l. From , it comes Id + A; = 3 (Id+ N,) and
Ny =1+2A,. For w € C* (bS), we obtain that for any p € bS,

(Ngw) (p) = w (p) + 2lim (D, w) (p — evy)
in the distributional sense. With and the Fubini theorem, we deduce that for u,w €

0> (bS)

(u, Ngw) = (u,w) + 2611%1+ » u(p) (D;w) (p—evp) o

. a * *
= (u,w) +21lim [ u(p) (/ w(Q>a_g(p_5Vp>q)7—p> T
as as Vq

e—0t+

e—0t

= (u,w) + 2 lim w (q) </ u(p)a—g(p_syp,q)Tq)Tp:<w,Ng#u>.
as s Vq

This proves that (N,)* = N#, which entails ker (/d + A;)* = ker (Id+ N} ). We summarize

g b
the above discussion within the following lemma.

Lemma 9 (1) Let By = Id+ N¥. Then ker By C C* (bS) and a function u € H* (bS) is in
the range of Id + A if and only if (u,w) = 0 for any w € ker B,.
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(2) Let u € C (bS,R) be orthogonal to ker By and w € H* (bS) such that u = w + Ajw.
Then w € C* (bS,R) and 05u = (0Dfw) |ys -

(3) When G is the principal Green function for of S, Tg = D} and Id + Ag is an auto-
morphism of H® (bS).

Proof. (1) and (2) have been already proved except for w € C*° (bS) and ker B, C C* (bS).
Both are consequences of the fact that N, g# and A are a pseudo-differential operators of order
—1 (see [?]). For a smooth real valued u and its harmonic extension u to S, Stokes Formula
applied on S without an arbitrary small conformal disc A, around ¢ € S gives

(T5u) (g) = 2 /d (@06, + G, 71)

1
2 / (@G, + G, 75) + > / (3 A OG, + 0G, A7)
OA. S\Ae

7 ]

:3/ 10G, + O (cne) + 0 — ii(q)
A, e—0

]

As GG and u are real valued,

Thu— -2 / (@G, + G,00) = —2 / d (3G,) — §0G,) = Thu
t Jas t Jos

This yields Dfu = TZu = . Thus, A}, = Id + A is surjective and, because its index is 0, an
isomorphism of H* (bS) as claimed in (3). m

Remark. It is also known that Id + A is an isomorphism of H* (bS) when S C C is bounded
and has a connected complement (see e.g. [?]). In the general case, it is not difficult to prove
that functions in ker (I d+ A;) are boundary values of holomorphic function on S \S smooth up
to the boundary and that the Dirichlet-Neumann operator N : C* (bS) 3 u +— 2—2 lbs realizes
an isomorphism from ker By to ker (I d+ Ag_).

Thus, to have at hand the principal Green function of S enables to bypass the resolution of
. Unhappily, the standard method introduced by Fredholm in 1900 to build principal Green
functions consists precisely in finding for each ¢ € S a function w, such that g, = w, + Ajw,
and then to set Gy = g, — D;wq. Happily, in our problem it is not necessarily relevant to
compute G because we only have to to compute sufficiently many 65u.

As mentioned in the next session, all of these considerations readily apply to the nodal
setting.

4.2.2 Green functions in the nodal case

Definition 10 Let Z be an open complex curve, possibly singular, of an open subset of C2.
A Green function for Z is a function g defined on (Reg Z x Reg Z) \Agegz such that for all
¢ € RegZ, g,. = 9(q.,.) extends to Z as a current and i00g,, is the Dirac current &,
supported by {q.} - this implies in particular that 0g,, is a weakly holomorphic (1,0)-form on
Z\ {q.} in the sense of [?].

When Z is an open nodal Riemann surface, quotient of X, an open Riemann surface, by
an equivalence relation and when 7 is the canonical projection of ¥ onto Z, a simple Green
function for Z is a is symmetric function g defined on (Reg Z x Reg Z) \Ageg z for which there
exists a real valued Green function g for 3 such that g = m,.g in the following sense : for any
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branch B of Z at q., image by © of an open subset V of ¥ such that V\ {s.} C 7! (Reg 2)
where s, € T (q.), 9418 = 7 (s, |v) in a neighborhood of q. in B.

A principal Green function for a nodal bordered Riemann surface Z is a symmetric real
valued simple Green function g such that if B is any boundary branch of Z, g |z extends con-
tinuously to B with the value 0 on BN bZ.

Let us now detail the explicit formula of [?, proposition 17] establishing the existence of
Green functions for a 1-parameter family of complex curves whose possible singularities are
arbitrary. Consider a complex curve ) in an open subset of C2, Q a Stein neighborhood of )
in C?, ® a holomorphic function on € such that Y = {® =0} and d® |y # 0 then a strictly
pseudoconvex domain Qg of C? verifying

yO =Jyn QO C Qa
and lastly a symmetric function ¥ € O (Q x Q, C?) such that for all (z,2') € C2,
() =P (2) = (¥ (¢, 2), 2" = 2)

where (v, w) = viw; + vowy when v,w € C?. We define on Reg) a (1,0)-form w by setting

= L—yn{od/0 0
w 8(1)/8z20ny Y N{0®/9z # 0}
+dz
— a@/@; on Y* =Y N{0®/0z # 0}
and we consider _
k(7 z) = det {LZQ,\IJ (7', 2)
|2 — 2]
When ¢, € Reg o, [?, prop. 17 ] tells that the formula
1 / . / — /
9e (Ger @) = e, (@) = p/ k(q', )k (gv,q) iw(d) AT (d)- (17)
T Jqevo

defines a Green function for )y. In addition, the proof of [?, prop. 17 ] gives that if ¢. € Reg My

0Gc.q. = kg.w

*

where Eq* = %k‘ (., q«). The proposition below gives a useful complement.

Proposition 11 Suppose Vy has only nodal singularities. Then, the function

9000 = Reg:(00) = 15 | 5 (Kb @) + (0 0) (0w ) i )13 (@) (09

is a simple Green function for V.

Proof. Let us begin by proving that g, being fixed in Reg )y, ¢4, extends as a usual har-
monic function along the branches of Yo\ {¢.}. As g.,. is a harmonic distribution on Mo\ {¢.},
we already know that g.q, |(Regyo)\{¢.} 1S @ usual harmonic function and according to [?, prop.
2], that for any branch B of ), at ¢, ¢.,. |s has at most an isolated logarithmic singularity at
q. Equivalently, this means that dg.,, has at most a simple pole at ¢. Fix ¢ in Sing ), and B
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a branch of ) at ¢q. Decreasing B and with a possible change of coordinates, we get the case
where ¢ = 0 and @ is in a neighborhood of 0 of the form

D (2) = (22— ¢ (21)) O (2) (19)

with ¢ holomorphic in a sufficiently small disc V' = D (0,r) and O |z vanishing only at 0. In
particular, there exists a function holomorphic 6 on V' such that 6 (0) # 0 and O (z1, ¢ (21)) =
2Y710 (21) when z; € V, v being the number of branches of )y at g. On B\ {¢}, we get hence
w = 0(2?)211’71' Consider then a (0,1)-form x compactly supported in B ; so x = £dz; with
¢ € D (V). Hence, by definition,

(09c,q., x) = lim w

idzy N\ dzq
elot S ev\D(0,e) 9(21)21

where Eq* (21) = kq, (21,0 (21)). Let us write

M = Z cawngéz_lﬁ-l-/lw I (Eq*§/9>
0 t

2Y72dt idzy A dZ
9 (Zl) atBey—1 (V — 2)' 1

Z1

where DPf| .2P is understood has the value taken by the total differential of order p of f at w
on the vector (z, ..., 2). Since fozw e0=B=v+1)d0 — 0 when o + f < v — 1, we get

(09e.q.r X) = /Zlev / 1y_f2 D! @*5/9)

Moreover, there exists ¢ € C and h € O (V') such that the expression of dg. 4,
in the coordinate z. Hence

177t idzy A d7E (20)
tz1

B is idzl + hle

(0Ge.q.,x) = lim <£ +h (21)) € (z1)idzy N dzy

elot J eviD(o,e)

Let us write & (z1) = £ (0) + &1021 + 0171 + fol (1 —t) D?¢|,, .27dt. Then comes

(Oge.s x) = 7100 + / h(22) € (22) idea A do7 (21)

z21€EV

As shows no derivation of the Dirac measure at 0, comparison with forces ¢ = 0.
Hence g4, |5 and g,, | are usual harmonic functions.

Next, we check that i00g..,, is the Dirac current at ¢,. Since g.,, has no singularity in any
branch of Vy\ {qo}, we get thanks to the nodal version of Stokes formula that for that any test
function x on ), <i3590,q*, X) = <iagc,q*,5f> is the limit when ¢ — 0% of 1 fBAE X0Ge,q, Where
A, is a conformal disk of radius ¢ centered at ¢,. Using the same notation as above with v =1
and ¢ replaced by ¢, which we can assume to be 0, we find that

Uy (0> 0) - (0) vy (07 0)
6(0) (1+ |¢ (0))

From we get by differentiation that W, (0,0) = 6(0) and ¥, (0,0) = —¢’(0). Hence,
(i009eq., x) = X (¢.) which means i9g.,. = &, . Since d,, is real valued on real valued test

<i85.gc,q*7 X> = X (Q*)
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functions, this entails i00g,, = d,, .

Fix now ¢, in Sing ). Consider a branch B of ) at ¢, sufficiently small so we have for it a
holomorphic coordinate z centered at g,. Since g is symmetric from , what precedes implies
that when ¢. € B\{q}, ¢ = g4, (0) — 5z In|2(0) — 2 (¢)] = 94 (¢:) — 3z In[2(q) — 2 ()] is a
usual harmonic function on B. Hence, when ¢. € B\ {¢} tends to g5, g, — 5= In|z — 2 (.|
converges uniformly on B to a harmonic function of the form gg§  — 5-1In|z| where g3 is
harmonic on B\ {¢s}. For the same reason, if B’ is another branch of ); at ¢, or a branch of
Yo relatively compact in Yo\ {gs}, g, converges uniformly on B’ to a harmonic function ggqu
when ¢, € B\ {¢,} tends to ¢;. When B’ describes the set of branches of ), these functions
gg:qs match into a function gg ,, which is harmonic on B'\b)), for all branches B’ of },\B, whose
restriction to B has a logarithmic singularity at ¢, and such that g,, tends to gs,, in the sense
of currents when ¢, € B\ {¢;} tends to g;. Proceeding so for all singulars point of )y, we find
that g is a simple Green function for ). m

We now apply what precedes to the situation of Theorem |5, We recall that F' : M — C2
is the map obtained by applying Theorem [2| to a plain extension (M,a) of (M,o). We set
y=F (M ) and we fix a Stein neighborhood Q2 of ) in C2?, that is a neighborhood of ) which
is a Stein manifold. As M = F (M) is relatively compact in ), we can pick up in C? a strictly
pseudoconvex domain 2y verifying M CC Yy = Y N Qs C Q. We use then Proposition [11] and

get a Green function for M. The corollary below tells it comes from a Green function for M.

Corollary 12 Hypothesis and notation remains as in Theorem[J and g is the function defined
by . Then, g = F*g )MXM\AM is a Green function for (M,C,).

Proof. Since F': M — M is a (c,, cp)-analytic normalization, h = F*g is well defined on
M g % Mreg\Aﬂreg where Mo, = F~1 (Reg @), symmetric and for all z € M, h, = h(.,x) is
harmonic on M, \bM U {z}, continuous on M\ {z} and i9°07h is the Dirac current §, of
M at . When p € F! (Singﬂ) N M and V is a connected open neighborhood of p in M,
B = F (V) is an inner branch of M at ¢ = F (p) and we can set gys,, = F*g, p. Proposition
implies that g); so built is a Green function for M. m

Thus, we can apply the methods of Section to gy and then push forward their results
to M. Meanwhile, as in our problem M and 67 have to be computed before M can be, it is
more relevant to apply directly these methods to M and g. As bM is smooth, Sobolev spaces
on bM are defined as usual and the discussion of Section can be readily followed. So the
operators 1, Dy, A;‘E, N, etc. are defined as above (with M instead of S) and lemma @ holds.
We are now ready to prove Theorem

Proof of Theorem Consider u € C*° (bM) and u its C,-harmonic extension to M. As
d=040% and d’ =1 (8” — 8"), we get 210707 = dd° and wu is the unique solution in C'* (M)
of

i0°0°U =0 & Uy = u.

and 07w is the restriction to bM of the C,-holomorphic (1,0)-form 0°u. By definition, when B
is a branch of M, there is a (unique) open subset V' of M such that the map Fg = F |€ is a
(¢y, €a)-biholomorphism. Since w is smooth, we deduce that F,u is smooth along any branch
B of M and satisfies (i00 (Fp) .u) |p = (F) +i0°9°u = 0. Hence, U o (Fregm)~ " harmonically
extends along branches of M and define on M a distribution W which is the unique continuous
solution along branches of M for the problem

i0OW =0 & W | = fou (22)
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This yields F*W = w which means that |y = <F ‘5”’) W whenever V' C M is such that

F (V) is a branch of M. Lemma [§ yields that F': M — M is a holomorphic map from (M, ¢,)
to (M, ca). Since the complex differential operators of these (nodal) Riemann surfaces are 07
and 0, we get 07u = 07 F*W = F*OW and W is the simple harmonic extension f*u of f.u to
M. So, we get 0%u = (F* ofu ) lbas -

The kernel of B, (in its nodal issue) is a finite dimensional subspace of C'* (bM) and
when u € C* (bM, R) is such that f,u is orthogonal to it, any solution w of the equation f,u =
w+Ajw is in C* (bM,R) and delivers .u under the form T w. Hence, 07u = (F*OT, w) [y -
n
Remark. The above proof contains the fact that for any v € C* (bM), v = F* ﬁi and
0%u = F*0M f.u where @ is the C,-harmonic extension of u to M and ]?*;L is the simple harmonic
extension of f,u to M.

5 Proof of the uniqueness Theorem

In this section, we prove Theorem [3] and as mentioned in Section [2 we complete so the
proof of [?, Theorem 1] and also the isomorphism claim of [?, Th. 1.1]. One of the steps of the
proof of Theorem [3| uses lemmas 11 to 14 of [?] which were initially written by the author of
these lines to give a complete proof of Theorem [3]

We note (Up) and (Uy) the harmonic extensions of u to M and M’ respectively. By hypothesis

= [0U] : M — CP, and F' = [0U'] : M’ — CP, are well defined, coincide on 7

and f = F'|, = F'|, embeds 7 in {wo # 0} where wy, ..., w,, are the standard homogeneous

coordinates of CPP,,. We equip 0 = f () with the orientation of 7 brought by f. The regularity
hypothesis made on M and M’ implies that F' and I’ are of class C'. We set

Y =F(M)\6, T =F1(),

~ =~ CPL\S
M=M\T, F=F|[;’

M, ={dF #0} & M, = {dF =0}

Since f is an embedding of v in {wg # 0} which is isomorphic to C", there exists an open
neighborhood G of v in M such that Fg = F|g is an embedding of G in C?; the orientation of
d is hence also induced by the natural one of G. When A is a topological space, we note C'C (A)
the set of the connected components of A. If A C M and B C F (A), we denote v (F, A, B)
the degree of F'|% if it exists. We agree for M’ similarly notation to those for M. D, (U)
stands for the space of (p, ¢)-forms of class C*° compactly supported in an open subset U of a
complex manifold. H¢ (FE) denotes the Hausdorff d-dimensional measure of a set £ when this
is meaningful.

Lemma 13 T'\vy is a compact of M and 'Y is a complex curve of CPP,\0.

Proof. Since Fg is embeds G in C2, TNG = yand '\y =T'N (M\G) is a compact of M. In

particular, M=M \F is an open surface Riemann. By construction, Fis proper because if L is
a compact of CP,\d, - 1 (L) is a compact of M which doesn’t meet I' and hence is a compact

of M. By a theorem of Remmert, unnecessary in the very simple case n =1, Y = F (M ) is an
analytic subset of CP,\d. m

Lemma 14 F, [M] is a normal positive current supported by Y and dF, [M] = [6].
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Proof. If y is a compactly supported smooth form of CP,,,

uuanszw.

M

F, [M] is thus a current of bidegree (1, 1) supported by F (M), that is Y. It is positive because
if x € D11 (CP,,) is positive, (F*x) | is a positive (1, 1)-form of M since F' is holomorphic and
hence (F, [M],x) > 0. Let { € C* (CP,) be such that x = £wps where and wpg = 5-001n |w]|?
is the (1, 1)-form defining the Fubini-Study metric. We get then

Mfa[ﬂ4},x>|<Q/;|5|ﬁ”wstg|mua)/;,F*wFs

As |Ix]l = sup [[xp|| and

peCPy,
= max NEN
Dl = e, S om0 (520
= max w s, ‘ =
€0y o (s, (0] = € @),

we get that the mass of F, [M] is finite and at most fM F*wpg. It x € D (CP,),

@F.[M)) = (R 1)) = [ Fax= [ dPx= [ o= (Rl

M M o

In other words, dF. [M] = F\ [y] = []. In particular, the mass of dF, [M] is finite ; F. [M] is a
normal current supported by Y. m

Lemma 15 F, [M]|cp,\s is a positive holomorphic chain of CP,\é supported by Y .

Proof. Given that T = F, [M] is supported by Y and that Y = Y\d, S = T ‘(Cpn\(; is a
normal, and hence locally rectifiable, current of CP,\d, without boundary and supported by
Y. According to the structure theorem 2.1 of [?], there exists hence (n;), ;v € ZN such that

S = Z n; [Y;] where (Y;) is the family of irreducible components of Y. S being moreover a
1<<N
positive current according to Lemma the n; are natural integers. m

Lemma 16 F,[M]=F,.[M'| andY' =Y.

Proof. According to Lemma [14] the current T' = F, [M] — F/[M’] is a boundary less
normal current of bidegree (1,1) supported by Y U Y”. It is hence of the form Z n; [Z;]

1<j<N

where (n;) € (Z*)" and the Z; are irreducible compact complex curves of CP,, lying in Y UY”.
Let Z one of these curves. Z N§ # & because otherwise F~! (Z) is a compact complex curve
lying in M or M’, which is excluded. One of the connected components of d, says /3, is hence
contained in Z; we equip 3 of the orientation induce by 6. 3 being smooth, there exists in Z a
Riemann (smooth) surface B such that B\J3 is included in (CP,\6) N RegY N RegY” and has
only two connected components, B~ and B™.

By construction, B~ is an open connected Riemann surface included in the complex curve
Y UY’ and hence, at least one of the two numbers H? (B~ NY) or H2 (B~ NY") is positive,
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says H*(B~NY) > 0. As B~ is connected, this implies that B~ C Y. Given that [ is a
subset of the boundaries of Y and B, we infer that after decreasing B if necessary, Y N B C Z
and hence Y N B C B~ U B™.

Suppose that H2 (BT NY) = 0. Then, as B C RegY, B*NY = @, YN B = B~ and, by
force, BT C Y’. Suppose in addition that H? (B~ NY’) = 0, then, decreasing B if necessary,
we get as before Y/ N B = B* and so d[Y] = —d [Y'] near 3. This doesn’t match the fact that
F,[M] and F][M'] are two positive holomorphic chains of CP,\d supported respectively by Y’
and Y. So, H? (B~ NY’) > 0 and hence, B~ C Y’. Hence B C Y’ and Z C Y, which is again
a contradiction. Going back to our first assumption, we get that H* (BT NY) > 0 and hence
B C Y, still an impossibility. The lemma is proven. m

Lemma 17 Wheny €Y, M, = F~({y}) is a finite set and v : Y : y — Card M, is bounded.

Proof. Suppose that F~! ({y}) is infinite for some y € Y. If F~! ({y}) has an accumulation
point in M, F' = y on a connected component of M and hence on a non empty open subset
of 4. In the contrary case , F~! ({y}) has an accumulation point in v and dF vanishes at this
point. In both case, this contradicts that F'|, is an embedding.

Suppose that v is unbounded. There exists then (y,,) € Y such that (Um) = (v (ym))
N

admits +oo as limit and (y,,) converges to 3, € Y. Since M is compact, there exists in M
a convergent sequence with limit 2% € F~!({y.}) and a strictly increasing ¢ : N — N such
that y,m) = F (zm) for all m € N. If dF }xg # 0, there exists an open neighborhood Uy of z9
in M such that Vo = F (Up) is a Riemann surface (with boundary if 20 € v) and F |g‘; is a
biholomorphism (of Riemann surfaces with boundary if 22 € ) ; we set m? = 1 in this case. If
dF ‘wg =0, x5 ¢ v and we can choose in a neighborhood of y, in CPP,,, holomorphic coordinates
(¢1,...,¢,) such that the vanishing order m, of (d((; o F),...,d (¢, o F)) at 2¥ is also the one
of d(¢; o F) at z2. In this case, there exists an open neighborhood Uy of 22 in M such that
if y € Vo = F(Uy), ¢ (F (y)) has exactly m? preimages by ¢; o F in Uy, mutually distinct if
y# vy, ; ify € Vo= F(Up), y has at least one preimage by F in Uy and at most m?.

Suppose that we have got k + 1 mutually distinct points 22, ...,2% in F~! (y,) and open

neighborhoods Uy, ..., Uy, of these points in M such that forall j € {1,...,k}, 1 < Card F~* (y,)N
Ui <mi and U; C M\V;_; where V;_y = U U,. Then Card F~! (y,) NV, < > mJ and

105 -1 0< <k
since M\V,41 is compact, we can find a strictly increasing ¢ : N — N such that for all
m € N, F7! (ypm)) N (M\Vit1) contains at least a point 2! which tends, when m goes to

m

infinity, toward a point 3! € F~" ({s.}). As before, we can then find an integer m/™" and a
neighborhood Uy, of %! in M such that 1 < Card '~ (y,) N Uy, < m?”. -
The values of the sequence (:c’,f)keN so built are mutually distinct points of M,, which is

impossible. v is hence bounded. m

Lemma 18 Consider h € O (M)NC° (M). Then F.h is holomorphic and bounded on Reg .
In addition, F**F.h = (F.h)o F' € O (M') N C° (M)

Proof. By definition F,h is the function defined on Y by (F.h) (y) = >, h(z). Let

reF~1(y)
v« € (RegY)\F ({dF =0}). Set F'(y.) = {Zs1,...vax} where k = v (y). There exists a
neighborhood B of y in Reg Y such that for all j € {1, ..., k}, there exists a neighborhood A; of

4Since B-Né =9, B~ = (B~ NY)U (B_\?). B~ NY is an open subset B~ because by construction,

B~ C RegY NRegY’. It is non empty by hypothesis. Hence B~ =B~ NY CY.
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2.j in M for which Fj = F' | is a biholomorphism. Suppose that (y,) € B" converges to y, and

Card F~* {y,} > k for all n. Then, for each n € N there exists a,, € M\ {F{ " (y5), ... F;, ' (yn) }
such that F' (a,) = y,. Possibly after extracting a subsequence, (a,,) converges to a point a of
M which satisfies I (a) = y,. Given that y € Y = F (M)\F (bM), a ¢ bM and there exists
j € {1,...,k} such that a = z,;. For n big enough, a, and Fj_l (yn) are then two distinct
points of A; sharing the same image y,, by F. This is absurd. Hence, F,h = > ho Fj’1 is

1<k
holomorphic in a neighborhood of y. Furthermore, |F.h| < k ||h|| and k = v (y). Fih is thus
bounded according to Lemma Given that (RegY) N F ({dF = 0}) is finite, F.h extends
holomorphically to Reg Y. This implies that F"*F,h = (F,h)oF" is holomorphic and is bounded
on M'\F'~!(SingY’). As F'"!(SingY’) is a finite set, F"*F,h extends holomorphically to M’.
n

Lemma 19 If o' € C*° (M) N QY (M), there exists w € C*0 (M) N QY0 (M) such that
wly = w'ly.

Proof. We have to check that «'|, verifies the moment condition when ~ is seen as the
boundary of M. So, let h € O (M) n C° (H) According to Lemma , g = F*F.h €
O (M')NC° (M'). Since f.[y] = [d]

A h! = /7 FF, (ho') = /5 F, (ho!)

_ / (F"F,) (h!) = / d(F*F,) (he) = 0.
- ,

because F*F.h € O (M')NC° (M) and ' € Q0 (M'). =

Proof of Thoerem Since by hypothesis [(8[]@)0@,@} is a well defined map from M
to CP,,, we can use the adjonction lemma 12 of [?] which, though written for the particular
case n = 2, applies without any change for arbitrary n in N* : there exists harmonic functions
Unit,s ..., Uy on M and continuous on M such that KaUﬁ)ogegN} is an embedding of M in CPy.
Similarly, there exists harmonic functions U}, 1, ..., Uy, on M’ and continuous on M’ such that

|:(aUé)Ze{O,..,n,N+1,..,N’}] is an embedding of M’ in CP,,n/_y. When ¢ € {N +1,.... N + N'},

Lemma (19 gives that (0Uj) |, extends to M as a (1,0)-form holomorphic 3,. Also, when
te{n+1,..,N}, (0U)) |, extends to M’ as a (1,0)-form holomorphic 3. Consider then
5 = (OUp, +vvy Oy O 1., UN, Syt oo Svint) 2 (S0)gcper

S = (008, s OV Tl 1o et U1 o WUk ) . (S

By construction ¥ and X' coincide on 7. Note (wy), ., the natural coordinates of CE*+1. When
0 < 4 <, [] o, 20y can be written (OU,/0Uy, ), ¢~ in the natural coordinates of C* identified
to {wy, # 0}. Note pg, the natural projection of C* on C, (2/) ., = (20)o<s< n. ¢¢.- The map
(OUe/OUL, ) oy . 120, 18 by construction an embedding of {dU; # 0} in CN. [X] is moreover
injective because M = U {0U,; # 0} and because a relation of the form [¥] (z) = [¥] (y)

0i<n

impose y € (8UQ 20 {0U, #0}. [¥)] is thus an embedding of M in CP;. Also, [¥'] is an
£ x

embedding of M’ in CP;. Noting that the proof of Lemma [14] doesn’t use that F'is a canonical
map, that is of the form [0U], or noting that Lemma 8 of [?] shows that ¥ and ¥’ are necessarily
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of this kind, we conclude that ¥ (M) = X' (M') then that M and M’ are isomorphic through a
map whose restriction to 7y is the identity. m

6 Reconstruction of a Riemann surface

As explained in Section [2| one of the steps in the reconstruction of a general conductivity
structure is the particular case of the reconstruction of a Riemann surface from its Dirichlet-
Neumann operator which itself comes down to the reconstruction from its oriented boundary
0Q) of a relatively compact domain ) of an open nodal Riemann surface () of CP,.

This last job is done in this section we the help of the Cauchy-Fantapié indicators of ()
defined by Formula . Theorem and Proposition hich are the main result of this
section are novelties about characterization and uniqueness of decomposition in sums of
shock waves of these indicators.

For the reader’s convenience, we list here some of the notation used in this section. U, L,
and G}, are defined with ; Q>, ¢, b1, E®, Ureg, Z, Zreg, £, Zity, p, p are defined at the
beginning of Section ; Np i and Sp, : ; C[X,Y) and Ci [X,Y) : Proposition ; N
and S,? : end of Section ; P, : 1) B> and py, : ; 0, Gjm and ékm : Lemma ;
(0Q), : beginning of section 6.2} €, fim; Ky, L 2 (38); Sk, and P : Definition 28 H, &, 11, F :
Definition [30) F: Corollary [33]

6.1 Decomposition of Cauchy-Fantapié indicators

This section specifies background notation for Section [6] and recall a result of Dolbeault
and Henkin which gives a decomposition of the Cauchy-Fantapié related to intersections of the
lines L, with the nodal Riemann surface () to be reconstructed.

Without loss of generality, we suppose that bQ) C {wowiws # 0}. From now, we also assume
the generic hypothesis and so little restrictive, that

(0:0:1),(0:1:0)¢ Q* =@ th {wy =0} C Reg@Q

where M denotes a transverse intersection. In this situation, uy = g—g can be taken as a co-
ordinate for () in a neighborhood of points of ()>° and there exists for each ¢ € Q> a func-
tion g? holomorphic near 0 in C such that in a neighborhood of ¢ in CP5y, ) coincide with
{(uop :uy : 1); ug = g7 (up)}. We note then (Xglug) the Taylor expansion of g? at 0. So, for
q€QQ™,

g=0:g0:1) Y ©0:07:1).

We also set
E* =Cx{-1/b%; g€ Q>}.

In this section, U is the open subset of C? where the G}, are defined. For any subset X
of U, we denote X, the subset of C* made by points z = (x,y) of X such that @ and
L, = {w € CPy; zwy+ yw; + we = 0} meet transversely at each point of @ N L, ; we set
Xsing = X\ Xieg 50 that Ugyg is an analytic subset of U.

Though U may be complicated, it contains a convenient open subset. Let us define

2%%5 |wa/wo|

, p=max{p, [1/b]; ¢ € Q} (23)

p = max gle%%hl}g/wﬂ .5

min [un /1|
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and pick a real o such that 0 < a < im'}% |wy /wp|. Then the sets defined below are contained
we

in U and play a crucial role :

Z={(ey) €C p<lyl & lal <alyl} & Z*=2\(CxR) 1)
Z = {(x, )GC2 p<lyl & o] <alyl} & ZF=Z\(CxR)

Remark. The hypothesis (0:1:0),(0:0:1) ¢ @ (which ensures Q> C {wjws # 0}) and
Q> C Reg @ simplifies some statements and calculus but are not all mandatory. We indicate
for some formulas a version for the case Q> N Sing Q) # .

The lemma below ensures that the reconstruction process initiated by Proposition [21] ends
to a complete knowledge of @) ; thorough this paper D, is the unit open disk of C.

Lemma 20 For all w, € Q N {wo # 0} and all R € RY,, there exists z € Uy N (C x C\RD)
such that w, € L,.

W0’ Wx0
z = (x,y) of C* such that w, € L, form the line L} of equation = 4+ y(, + (o = 0. If
L: (R)=L; N(Cx C\RD) doesn’t meet U, for all y € C\RD, there exists in b() an element

W

w = (1:¢ : () which is also in L_yc,,—¢,,y) so that y = gf g? Given that b(Q is a real

curve, C\RD can’t be contained in the image of bQ by ¢ — gj_gi Hence, L, (R)NU is a
non empty open subset of L, .

Cover Q N {wy # 0} by a locally finite family B of branches of (). For each B € B, we pick
a function f holomorphic in an open subset Vg of C? such that

B={1:0:¢); ((1,¢) €Vs & fp(¢1,¢) =0}

and dfp doesn’t vanish in B. Denote E (R) the set of points z € L (R) such that L, and Q
are tangential at some point of L. N Q. A point z = (z,y) € C? belongs to £ (R) when |y| > R
and there exists B € B and ¢ € Vg veritying the conditions

Proof. Let R € [p,+oo[ and w, € @ such that w,g # 0. Set (, = (u u) The points

[B(Q)=0, 24+yla+C2=0, 2+yG+G=0,

dfs _ O0fp/0G _0fB/0G B
aCQ ( ) 7&0 afB/aCQ (C)? afB/aC2 (C) C*l C*Q
When ( # (,, this forces (,; # (; and —g;ﬁ?gg () = % The points ¢ satisfying this

equation form an analytic subset Cg of B. For this reason, Cg is either discrete, or equal to B.
Suppose that Cz = B for an element B of B. Then 0fp/0(s doesn’t vanish in Vg and
we can find locally a holomorphic function ¢ such that fz(¢) = 0 if and only if {; = ¢ ((1)

The function ¢ verifies then ¢’ ((;) + ﬁg@ (¢1) = C*f*—ZCN that is ( = (C1)> = <<*f’fcl>

Hence ¢ (1) = (¢1 — (1) ¢ + Cuo where ¢ is a constant. In this case, B is an open subset of the
line defined by the equation (5 = ({1 — (s1) ¢ + Cu2. Since @ is connected and has only nodal
singularities, this implies that @) itself lies in this line. It suffices then to pick any y sufficiently
large to get that L(_,¢,, —¢.,,y) meets @) only not tangentially. When Cp is a discrete subset of
B, the set E (R, B) of elements z in L} (R) such that L, are B are tangential at some point of
L. N B is contained, because of the above relations, in a discrete set. Since B is locally finite,
the study of these two cases shows that L}, (R) meets Uz N (C x C\RD). m

The starting point of all this section is Proposition below about the Cauchy-Fantapié
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indicators of () defined by . This result can be extracted as a particular case from Theorem II
and Lemma 4.2.2 obtained by Dolbeault and Henkin in [?] ; their proof applies without change
when some knots of @ are in Q. In this statement and after, we use the following notation
when hy, ..., hy, are complex valued functions and k& € N,

Npi = Z hf & Shr = Z by, -+ . (25)

1<y<p 1< < <jp<k

The Newton identities state that for all £ € N*,

Nog = (=) " kSps + Z (=" S Nokj (26)
1<<k—1
(—1)*! 1 j-1
Shk = p Ny + z Z (=1)" Shj N (27)
1<<k—1

We denote C[X,Y") the set of elements of C(X,Y) which are polynomials in X. C; [X,Y) =
C(Y), [X] denotes the ring of polynomials in X of degree at most k& whose coefficients are
algebraic fractions in Y. A shock wave is by definition a holomorphic function h on an open
subset of C? such that in the standard coordinates system (z,y)

oh h@h

Proposition 21 (Dolbeault-Henkin, 1997) Let z, € Ues\E™ and p = Card (L,, N Q). If
U, is a sufficiently small neighborhood of z, in Useg, there exists shock waves hq, ..., h, on U,
whose images are mutually disjoint such that for all z € Uy,

L.nQ=A{(1:h;(2): —z—yh;(2)); 1<j<p}
Moreover, for all k € N, there exists P, € Cy [X,Y') such that for all z € U,
Gi(2) = Npi (2) + P (2) . (29)

In addition, n denoting the natural injection of Q in CPy, P, = > Res (n*Q’j, q) and
qeQ™

oP,  k 0P
Y k+1 0X

In practical terms, the difficulty to extract from the equations the symmetric functions
of the h; comes from the polynomials Py. [?] contains a method when ¢> € {1,2}. For the one
proposed in this paper, the first step is to get precision on (FPy).

Lemma 22 P, = —¢™ where ¢ = Card Q> and setting P, = Y, X" ® pi, when k € N*,
o<v<k
k w
vl (k — V)pk*”’m

1 _
Pek = oyt & P = ve{0..k-1} (30)

Moreover, if we set
B~ = [ @+vw) (31)

qeQ>
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Then

bq BOO/
M= e B (52
qeQ>
q oo
_ 91 def A
PO 2 Tiym - B (33)
€Q>
k pq k D
k,0,5 k,0,5
D S . T SR o
= sege (LY (BX)?

where the p%,o,j are universal polynomz'als in the coefficients of the jet of order k — j+ 1 of Q

at q and pro,; = sz 0. ,l;Ié (1 + qu) In particular, P, doesn’t depend on z, and is entirely

determined by the k(g™ + 1) numbers b9, pkoja (q,7) € Q> x {1,....k}.

Furthermore, P, admits a Laurent series expansion of the form > Pim @ Y™ where
m<—1

Py € Cyy [X] when —1 = m > —k and Py, € Cy [X]| when —k > m
Remark. In the case where Q> NSing ) # @, Formula 1} becomes B® = [] (1+ Yb9)"@
(32

qeQ>
where v (q) denotes the number of branches of @) at ¢, (32)) stay unchanged and in , g1 has

to replaced by ) gf ! where the sum is done on a complete set of inner branches of ) at ¢ and
B

gf 1= (gB ), (0), g% denoting the holomorphic function such that in a neighborhood of 0, an
equation of the branch B is u; = g (uy).
Proof. Suppose that is verified for a positive integer k. Then

]{Z—l-l Xm+l Xk:-i—l
P..1=DP 0,V _ /
k41 1 (0,Y) + 2 <0<ﬂ; 1p +1+pk;kk+1

= + Xm+1 _ Xk+1
= Pk+1,0 0<m§<k (1) m)pk—m,O TP

3 ’f+1 (m) m L
= Pk+1,0 T Prs+1- m()X + P11
et (m+D(k+1—m) k!

which proves with a recurrence.
Let now & € N and z = (z,y) € U\E™. In the affine coordinates (ug,u1) = (g—g, Z’}—;) of
CP,, QF has the form

Qk . U1 k dmuo+lz)ul+1 . U1 k xduo + ydu1 duo
= \wp ) mwetymtl o\ gy Tug+yur +1 ug )

uo

We fix a point ¢ in Q> and in order to simplify the scripts, we write ¢ instead of g? (an so, g,
stands for g¢) and u in place of ug. In a neighborhood of ¢ in @, the form n*Q* written in the

coordinate u is Nk k
Sk — (@+yg)g” 9\
z ub (1+2u+yg) ubt! '

Denoting by (f, u”) the coefficient of u” in the Taylor expansion at 0 of a function f holomorphic
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in a neighborhood of 0, one gets

e +y9') 9"
7 (2) = Res (77 Z,q) Res (1+:pu+yg)uk’0 <g U >

In particular Py (z) = —1 and hence Py = — Card Q*°. Suppose now k > 1. Then

yg'g" _(1_ 1+ au )/kl
1+a2u+yg 1+a2u+yg 79

and if ¢'¢" 1t = 3 apu”, 1 (6" —gf) = X “=Lu”, which gives
neN neN*

k / k—1
Res ( du O) L Res (gg du,0>

ukt1l k uk

This entails,

k
xg 1+2u k1
P! =R 0] —R 0
e (2) es((l—l—xu—i—yg)uk’ ) es((1+xu+yg)ukgg ’ )

_Res(ﬂf(g—ug) 9 0>

(14 zu+yg) uk?

Since g — go = O (u) and (z,y) ¢ E*, 1 + ygo # 0 and it comes furthermore that for u small
enough

1 ~ (4yg)" (-1 ! -
1+autyg 14 zutvle—g) Z (14 ygo)" [zu+y (9 — 90)]
1+ygo neN*

Burt for all n € N*

[z (g —ug)—¢1g" " zu+y(g—g0)]""
_ Z ( Ty (g — ug') (9 = go)" " )
—g ™y (g — go)" T U™

20 Gy (g —ugf) (g = go) "

_ Zoom ™ n 1—- mg/gk 1(g_go)n—1—mum
yn 1glgk l(g_go) + gk—l (g_ug/>un 1
-1

Cm 1 . ! o nelem
+ Z My ( C'm g <19u ug') (9 = 9o) ) (9 — 90) L=m gm=1
m=1 n—1

So,
P (2)
i O AN A )"‘171’“:}”“ (9" (g —ug') . ub")
== — yCpoy (g —ug') (9 — 90) n-l-m -
m, n—1l—m _ k—m
2 gy 8 amye (VG0 (9 — 90"
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Yn 1-m e .
== Z Hygo (O™ (g — ug) (9= go) + Cilg'g" ) (g — g0)" " uh ™)
=m-+1

In particular,
Pl = —9 P = 9o
1,0 1 + Ygo 1,1 1 + Yg() N

Furthermore, for all n € N,

('Y (Y <1_ ! ): ey ED G Y

(1+Yg)" g (1+Yg) \' 1+Ygq = (1Y)
Hence
k i—1 k 1
—1y (—1)" i
q ( n—1 -1 k—1
Pho = . — 99" (g—g0)" " u
k,0 ; (1+Ygo)] nzj g[) 1 < >
k—1 ] 1 k j—1
_91 ( ) Cn 1/ 1 k— 1 n—1 k-1
- + — 99" (9—90)"  ,u
(1—|—Ygok ; 1+Yg Z 9% " (o's )

Note that < Igk—1 (g _go)k_l ,u’“_1> _ 9195 1gf 1 _ glfggfl and

<g’g’“ 1(9—go)k*2,uk_1>
ZwﬁﬂwwHNQD@HWW+O(QVAQW+mﬁ+O())
(91+292U)( b+ (k—1) gg 91“) (gf 4 (k- 2) 91 gzuk 1)+0( k)

= (g6 "+ (20206 + (k = 1) gb 2g7) u) (98 P2 + (K — 2) gf Pgou ™) + O (uF)
=gt b+ [gigb T (K —2) gV P ga + (20096 + (K — k 297 v P W+ O (uF)

= gV lgb T [kgl g g + (k= 1) g 2] ’“+O( )

which gives
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and

n=k—1 Y0
LN - _1)kt I
_ ! );ffl )<gg (g—g0)" " u* 1>+<T<g’g’“(g—go)k P 1>
90 9o

L)kt
= (-1 (k-1gF+ ( gk)z [kgs ™ av %92 + (k — 1) g5 29t]
0

= (1" ((k — 1) g — [kgogt 292 + (k — 1) gF]) = —k (=1)" gogt 2go

So,
_ k—2
a —glf —k:gogf 292 Pz,o,j
Pro = i 1 T Z j
(1+Yg)" (14 Ygo) = (1+Yg)
with
j 1
1 n — n—1 —
Pioj = )" Z (g (g —go)" W)

Summing on the elements ¢ of Q*° the above equalities, we get the relations claimed in the
statement.
Writing the Laurent series at infinity of py,, 0 < v < k, in the form > (pr,Y™) Y™,

m<—1
we get P, = >, Py @Y™ and Py, = Y. (Pry, Y™) XV for any m. Since 1) implies
m<—1 o<rv<k
(P, Y™) = 0 when m > —k, we obtain that P, = >, <p2”jj,Ym> X7 € Cy_q[X] for
0<j<k
—1>m > —k and that Py, = > (pf;,Y™) X/ € Cy[X] for =k >m. m
0<y<k

6.2 Expansion of indicators

The form of fractions P, given by Lemma [22| suggests to study the functions G on the
domain Z defined by . In this section and after, (0Q)), stands for the real orientated curve
w) w2

of C? which is the image of OQ by the coordinates map w (— —).

wo ? wo

Lemma 23 We note 6 the mteger dlwi/wo) 3 s constant on Z and for all k € N*, G,
0Q

Twi/we
admits on Z a Laurent expansion of th,e form

Gulrg) = 3 Gl gy 3 Grenle) )

n k
neN* Yy Y

with normal convergence on Z and where for all n € N*, éhw = >, G}_,X" is a polyno-
0<v<n

mial of degree at most n — 1. In particular, Gro = 0300, Gr—n = Opn (—1)"6X" + é;kn €
Cn-14s,, [X] and

GY . —§ Gi_,
Gl<x,y>=%+21’—(‘”) (36)

n
n=2 Yy

: 0 _ -1 w2 Jwi
with Gl,—l — 2mi JoQ wldwo
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m+zz

Proof. Fix k in N*. Let (x,y) € Z. Then for all (21, 22) € (0Q),,
definition of p, |z + 2| < aly| + max|(| < iyl min|G| < 3|yzl Hence

1 .
< 3 since by

(€1,¢2)€(9Q), (€1,62)€(9Q),
dzy — (v + 2)d
G (xay) = _/ 1d21 4+ — Ilcfl 21022 (I' Zg) 21
21t JoQ, 21 J(q), T+yn+ 2
=04+ zf—2 z1dzg — (IL' + ZQ) dzy
271 Joq), Y 1+ 2
l’ k—2—v
—1) 2 } G (o
2 / V+11 (x + 22) (ZleQ - (ZL' + 22) dzl) = Z h—n()
T J(6Q), S 2y

with normal convergence on Z and for any n € N*

(—)"!
21

Gi—n (z) = / z’f_”_l (x + 22)"_1 (z1d29 — (v + 22) d21) .
(0Q)

Hence, G}, ., is a polynomial of degree at most n. Let us writeit > G} _,X™. The coefficient

orv<n
k_n Of X™in Gi _, is given by the formula
—1\"
Gy n= ( ) / Ay = G (1) 6.
21 J(0Q),
With ék,_n = > Gy _, X", we get
orv<n ’
Spm (=) 52" + G (x xk G (2
neN* Yy Y neN* Yy
Besides,
1
Gl,fl (CL‘) = —/ Z;l (ZleQ — (Qf + 22) dzl) = G(l),fl + .Z'Gifl
271 (0Q)

with G _; =0+ we(dQ), wodit and Gi_ 1= 5= f(aQ 2tz = 0.

By definition, Gq is the function U > (x,y) = fBQ d[(ﬂﬁigﬂﬁfﬂ”ﬁ%y lgo)]. Hence, it is
continuous and integer valued. So it is constant on Z and equal to its limit value when x = 0

and y — oo, that is . Thus, Gy, =0 foralln € N*. =

Corollary 24 The number p of functions hy, ..., h, involved in Proposition |21 is the same for
all points of Zeg\E™ : p =9 + ¢™ where ¢ = Card Q.

Proof. Denote temporarily p (2) the number of functions hy, ..., hy.) involved in Proposi-
tion [21| when z € U,e,. Since Py = —¢*°, we know that G (2) = p(2) — ¢* and so that p is an
integer valued function continuous on the connected set Z,o\E*°. It is thus constant and since

Go(z,y) =66+ > Gom(x) when (2,y) € Zyeg, we conclude that 6 =p —¢>®. =
meN*

Remarks. In the case where Q*° N Sing@ # &, ¢ = >, v(q). Corollary 45| of Sectionﬂ
qeEQ™
gives a formula linking ¢>° and the genus of ) via the Dirichlet-Neumann operator.
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Corollary 25 Notation and hypothesis remains as stated in Proposition |21. For all k € N*,
N i extends to Z\E> as a holomorphic function N kQ which doesn’t depend of z, and which ex-

Q
Nk n(

pands in Laurent series on 7 in the form N ,? (r,y) = > where the N. ,?n are polynomials

neN*
of degree at most n. Moreover, for all z € Zyg, there exists shock waves hi, ..., hi whose images

are mutually distinct and such for 2" sufficiently close to z, (NkQ (z’)) = (Nhzk (2')) peny and
keN
LanQ={(1: by () -~z — yhs ()); 1< <p}.

Proof. Let k € N. We know that N, = G, — P, on U, and thanks to Lemma 22| that
Py, is an algebraic fraction which doesn’t depend on z, and which is defined on Z\ E*. Hence,
NkQ = Gy, — P extends Ny as a holomorphic function on Z. Applying Proposition and
Corollary [24{ with an arbitrary point z of Zi.s\FE>, we obtain shock waves hf, ..., hZ with the
claimed properties. Furthermore, Lemma [22| also gives that

1 k—1) v v
Pk:_ Z pkl/X - 1)| (11 Xk+ Z pgi‘)I/OX
o<v<k O<Vw<k :

v

with pi1 = >, 1+qu and p,o= >, > (li”;bfz For |y| > p, one get

qeEQ™ J=1 geQo°
(—1)7171 . (_1)7171 Sbm_l
p1,1(y)zz— Z (b9) 122 n
neN* y qeQ> neN* Yy
G- D= Pog
pot) =3, 0 U 5 o o
Jj=1 neN* qeEQ™>® meN*
with pyg” = ()" 2 (=1 > (b7) 7"plo,- It suffices then to combine
(n,j)EN*x{1,...,v}, n+j=m+1 geQo®

these formulas with Lemma 23] in order to get the announced statements. =

Corollary 26 Notation and hypothesis remain as stated in Proposition . Denote by S,
k € N*, the functions obtained from E and (NQ> which is defined in Corollary ;
kEN*

locally the S,f') are the symmetric functions of the functions hy, .., h, of Proposition . Then
for all k € N*, S,? expands in Laurent series on Z.

6.3 A genesis of multiple shock wave
Let A, B € C[Y] with deg A <r =deg B, B(0) = 1. Define P € C[X,Y) and N by

AY) B(Y)

PEY = EN B

X & N=G; -

In this section, we look for a characterization of when N is a multiple shock wave, that is a sum
of shock waves. Theorem 4 of [?] gives a characterization of such sums but in this article, we
use one which is more adapted to the present situation. This two characterizations correspond
more or less to emphasize one of the variables x or y and rely on the following lemma whose
proof is omitted since it follows easily from [?, Lemma 16] and the proof of [?, Proposition 17]

33



Lemma 27 (Henkin-Michel, 2007) Let D be a domain of C2, N € O(D) and d € N*.
There exists mutually distinct local shock waves hy, ..., hq such that N = hy + --- 4+ hq if and
only if there exists si, ...,54 € O (D) such that s; = —N and

ON an ON aSk . (9sk+1
Ty TV TR Ty T Tor

1<k<d—1, (37)

and if the discriminant of the polynomial ¥ = T+, T 1 +- . .4s5 € O (D) [T] is not identically
zero on D. In this case, we say that N s a d-shock waves.

In order to define integro-differential operators adapted to the resolution of the system ,
we introduce notation linked to Laurent series and their primivitization. For m € 7Z, we set

em : C* 3y (D)™ (Im] — D)1 y™ ifm < —1 (38)

1
em :C'oy— —y™ if m>0
m)!

and we denote by k,, = z? the real number such that e, (y) = k,,y™ for any y € C*. We also
make use of the notation ! = % when 0 < » < m. The main reason of this normalization
is that for any m € Z\ {—1}, eps1 is a primitive of e,,. Note that £, = r_; = 1. We denote by
L the principal determination of the logarithm on C\R_.

Definition 28 For (k,r) € Z x N, we denote by Sy, the set of holomorphic functions F
on Z* such that there exists a family (cm.s),, <k, 0<s<r Of entire functions such that for each
s € {0,...,r}, the series (> s ® em) is normally convergent on subsets of Z whose first

m<k
projection is bounded and such that F = > Cm,s @ e L® on Z7.
m<k, 0<s<r
We define an operator P on S,.= U Sy, by setting PF = > Cm,s @ P (e L°)
(k,r)€ZxN m<k, 0<s<r
when F = > Cms @ e L € S, the action of P on e,, L® being defined by

m<k, 0<s<r

P(em) =€ms1 if m#—1, Pe_1 =1L
Peml®) = (=1)° A% eppt LF + - - + (—1)° A%aS eyt L0 if m # —1,

sy — 1 s+1 1 s+1
P (6_1L ) = _s+1L = _s+160L

where a,, = —m if m < =2 and a,, = ifm > 0.

_1

m+1

Lemma 29 For any I = > Cms®enl® €Sy, PF € @ep L+ QL +8S;,
m<k, 0<s<r

and PF' is a partial primitive of F' in the sense that B%PF =F.

Proof. We only need to check that for a given (m,s) € Z x N, [P (e,,L*)] = e,,L*. The
cases m = —1 or (s =0 & m # —1) are quite evident. Assume s # 0 and m # —1. Then

S
/ (enL?) (1) dr = [ey1 L°]Y — / ema1 (T) =L~ (1) dr
[1;9] [159] T
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If m < =2, epp1 (1)L = (=)™ m|irm = —mey, and if m > 0, ey (7)
Thus

-

m+1 mt16m:

[ ent) @yr = el = st [ (enk ) (dr
(L;y] (L]
= A% e LS4+ (—1)° T AT S e g LY+ (—1)° Aiafn/ em (17)dr
(1]
= A% e 1 LF 4 4 (—1)° Aal e LY = P (e L)

and P (e,,L°) is indeed a primitive of e, L°. =
Definition 30 Let H be the function defined on Z+ by

@, N
Hepd_ 5o+ Y e, =—0®L+H

a m<—1 Rm—1

We then define operators D, £ and F on S . in the following way

H
D:e—H%eH=%+%—x, E=PoD & F=IIE (39)

where 11 is the operator which to F' = > Cm.s @ e L® € Sy, associates Y o @ €.

m<k, 0<s<r m<k

The lemma below collects some basic facts about the crucial function H.

Lemma 31 H = [ + J where for any (x,y) € Z,

I( ) 1 / ZleQ — (.T + 2’2) le
xz
Y 27'('2 (0Q) T+ Yz + 29

J(z.y) = —1/ L<x+yzl+22)dz
—_— 1
270 J (), ya

H=—-6®L+ ) Hy,® ey with H, € Cy_1 [X] for any m < -1 and

m<—1

OH  9G,

— = 4
Jy ox (40)

H extends holomorphically to Z and
= (1®e?) e (41)
so that D is in fact defined on O (Z). Furthermore, 0 is given for all x € C by the formula

7H(1‘, )
5= tim 2l (42)

ly—+oo  In|yl

Proof. Forrnula, is the main purpose of setting H = PaaG 2, (41) just takes in account
that 9 € Z and follows from . For any m < -1, H,, = _EG/, 1 €ECh1 2 [X] =
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Cjmj-1 [X]. To prove that H=1+ J, we note that for (z,y) € U,

0G4 -1 yz1dz + z1dzo
8_ (% Yy) = i 3
z T J(6Q), (¥ + yz1 + 22)
-1 dz; 1 (T + 29) dzy — 21d29
2mi Jog, Tyt 22 2miJpg), (v+ym+ )
-1 le ol
- B ey,
i 0Q), T + yz1 + 29 Y

—z2

When (21, 22) € (0Q),, ZE+22 € R* onlyify € }

yz1
m1n|§1| ly| + max|G| <j Llyz1| < |yz1|. Hence J is well defined on Z and
(¢1,¢22)€(8Q)0 (€1:€22)€(0Q),

07 -1 1 A dz
Oy  2mi Jpg) \T+yz+2 Yz YTy om 00), T T Yz + 2

} which can’t happen since

Thus, I—ZJ) = % and since both H (x,.) and (I 4+ J) (x,.) have limit 0 at infinity when x is

fixed, we get [ + J = H.m
The operator F enables to design a machinery adapted to the system (37)).

Proposition 32 Let s1,...,54 € O (Z\E*®). Then (s1,...,54) is a solution of with N =
G1 — P if and only if each (1 ® B) s; extends holomorphically to Z and there exists jiy, ..., pg €
O (C) which satisfy the system below on Z™,

(1@ B) sk = [F (@) + -+ F (ug@eq)] e, d> k> 1 (43)
Proof. Since N = Gy — 4 — Id ® £ we note that if s € O (Z) and B=1® B
~ ON Os ~0G, ~Jds
B(-sZt —s(-BZL L B )+ BE
( 8x+8y) < or )+ dy
B -\ 0G, OBs B Hae*Hés
T (BS> ox * dy - oy

As el extends holomorphically to Z, (sq, ..., sq) € O (Z\E>)" is a solution of if and only
if the equations

ae’HESd ae’Hésk (‘9§sk 1
Ty & TR o HETORL e <d— 1 44
oy oy c or ' (44)

are satisfied on Z\ E*. The first one is equivalent to the existence of a function 4 defined on
C such that for all (z,y) € Z\E*>,

B (y) sa(2,y) = pa (x) eV (45)

Such a function 4 is actually holomorphic on C since for all ¥ € C\pD, it would be given
on D (0,aly|) by the formula pug = s4(.,y) e’“% " Hence, also implies that Bs; holo-
1

B(y)
morphically extends to Z. Suppose that for k € {1,...,d s My - fi € O (C) satisfy on
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Z\E>
BS]' = [fo (,U/] X 60) + - —|—.,Fd7j (,Ud X 60):| 6H
when d > j > k + 1 and that each of these Esj extends holomorphically to Z. The equation

a% <§ske*H ) = H 8% <§sk+1> is then equivalent to the existence of a function p; defined on
C such that for all (x,y) € ZT\E>,

B (y) sg (z,y) e 7@V = 1y (2) + P (GH% (Bskﬂ)) (x,y). (46)

Since §3k+1 and e~ extends holomorphically to Z, the only logarithmic term may have
comes from P applied to some elements of O (C) ® e_y. As Bspe™H expands in usual Laurent
series in Z , theses logarithmic terms have to compensate. Hence, it turns out that the right side
of 1) expands in usual Laurent series in Z, which yields that Bs, holomorphically extends to
Z and pi € O (C). We also get

ox

= pr ® e +11 Z P <6_H€% (FE (@ 60)))

k+1<j<d

Eske’H =1II <(1 ® E) ske*H> = g ® eg + [IP (eHﬁ (éskﬂ))

= Z FIE 1 (@ eq) -

1<y<d

We derive from Proposition [32] a process to construct a priori some functions which may be
multiple shock wave.

Corollary 33 For py, ..., ug € O (C), we define on Z holomorphic functions sy (p, B), 1 < k <
d, by

€H

h 1®elB

d
sk (1, B) Fi(w) & Fi(p) =) FFuoe), 1<k<d

LetCg[Y] = {B € C[Y]; B(0) = 1}. Then the map O (C)'xCg[Y] > (1, B) — (s4 (1t B));<peu

is injective. Moreover, —sy (u, B) is a d-shock waves on Z if and only if
—S1 (/,L,B) = G1 — P

and the discriminant A (u, B) of S (4, B) = T%+ sy (u, B) T*  + -+ +s4(u, B) € O(2) [T] is
not identically zero.

Proof. Suppose that (1, B) and (v,C) are two elements of O (C)? x Cg[Y] such that
(s (11 B))1< e = (85 (1,C))1cpeq- Then on Z\E™, g ® + = v4® 5. As B,C € CglY],
this implies B = C and jiq = v4. Suppose that u; = v; when d > j > k > 1. The relation
Sk—1 (p, B) = sk—1 (v,C) can be then written Fj_1 (1) = Fr—1 () and this gives immediately
[k—1 = Vg—1. Hence, u = V.

Since e = (1®e;°) e, Proposition [32 gives that (s, (11, B)),.j, verifies system .
When —s; (u, B) = G1 — P, A (u, B) # 0 ensures that —s; (u, B) is the sum of d shock waves
mutually distinct whose symmetric functions are the (—1)" s, (12, B). m
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The proposition below shows that the system (43) can bee seen as a classical differential
system with unknowns 1, ..., tig.

Proposition 34 We define holomorphic functions Fip,...,Fro on Z for all k € N by the
following relations

oH
Frr=1®er, Fry1o0= f’“HPa—x, Firr; =UPFpj1+FFrj, 1<j<k

where Fy,,, =0 if v < 0. Then for all f € O(C),

.,Fk (f@eo): Z (f(J)®€0) -,Fk,j-

0<j<k

Proof. By definition, for all f € O(C), D(f®ey) = f' ® ey + (f ®ep) %—I: and hence
F(f@eo) =1IPD (f® 60) = (f,®€0)3r171+<f®€0>f1,0 with F171 = 1®€1 and fl,O =II'PH.

Suppose lemma’s result true for a given k& € N*. Then for f € O (C)

FH(f @ eo)

0 ; 0H .
= Z H’P% (f(]) & 60) .’Fk,j + II'P (% Z (f(J) ® 60) fk7j>
0<j<k 0<j<k
; ; 0Fj ; oH
= Z p ((f(JH) ® 60) Frj+ (f(]) ® 60) ax’m) + Z (f(J) ® 60) p (-,Fk,j%)
0<j<k 0<j<k
=Y (Y @e)IPFr+ > (fP®e )HPafk’j + Y (fY®e) TP ( F on
, ’ 7 , 0 Oz - 0 7 Oz
0<j<k 0<j<k 0<y<k

which gives the expected formula with

Friripr1 =1PFp =IIP (1 @ ex) = 1 ® ep1,

0F., . ol
B +-7:k7j%) =0PFrj1 + FFrj LSSk

Firr; =UPF 1 + 1P (

Ox
0 oH oH oH
Fis10 = 1P 7r0 g MY - pr = promp? 2 pp
Ox " Ox ’ Ox Ox

Going further in the analysis of , we are about to prove that the functions p; are
polynomials. We start by two elementary lemmas.

Lemma 35 Let k € N and F = ) ¢, ® ey, € Sgr. Then FF € ¢, @ egr1 + Sk, and
m<k
<fF, €0> =0.

Proof. Let k and F be as above. Since FF = IIPDF and (P (e;L°) ,e9) = 0 for any (7, s),
we get (FF,ep) = 0. Furthermore,

P— = Z c;n ® Pe,, € C;€ & ep41 + Sk,r-

m<k
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As H_, is constant, %—f = Y. H] ®e, and the expected relation follows from
m<—2

Irp ( ) HPZ Z cjH, ® ,{Jﬁyeyﬂ

j<k v<-2

—1P Y (Y W H) o

I<k—2 v+j=L
v<—2 & j<k

— J ! ;0
= E ( g ki, CiH,) @ en € S
0#m<k—1  v+j=m—1
v<—2 & j<k
|

Lemma 36 Denote by By~ the leading coefficient of B. Then, there exists (\,) € C [X])%
such that

el o 1 Z A ® Em (47)
1® B By = " e,/ Ky
with \g = 1 and deg \,,, < |m|—1 for allm € Z* .
Proof. For a suitable family (B_;,,) € C%-, % = B =— % B_imém wWith B_jp = 1.
= m<0
Since H = =L+ > H, ® e,
m<—1
n
fH: d Z (— > Hy®ey> ] rs th®em
neN* . v<—1 m<0
with hg = 1 and for m € N*, h,, = > (;Ll!)n > H, ---H, € Cy— [ X
1<n<|m| VG(Z*_)R; vi+-tup=m
because if v € (Z*)" and vy + -+ + v, = m, degH,, - H,, < > (v —1) = |m| —n <
1<j<sn
Im| — 1. As p = § + ¢, ZZ:—“:: = Z—p and we get with \g = 1 and for all m € Z*,
q 2
Ay, = > h.B_1 s which is a polynomial of degree at most max deg h,., that is |m| — 1.
r+s=m, 0=r,s Zrz2m

Proposition 37 Let f € O(C) and k € N*. Then,

Fr(foe)=fPee+ Y Pim(f)@en=Y Pom(f)®em
m<k—2 m<k
with Py, = 6357Pkk 1=Pio=0 and form € ZN|—oo,k — 1], Pom = > P,gmg;]
‘ (m+1)T<j<k—1
where for any j, PJ € Cj_n1 [X] which means that P], =0 when j <m+1.

Proof. Note that if v € Z*, degH, = (Jv| —1) =1 = |v| — 2. Set F' = f ® ey and for
m € 7, <.7:kF, em> = Cpm. By definition of F, FF=f®e + > H, ,f®e,. Aswhen

m<—1
def

me L, P, = P, e/ H! | has degree |m| — 1, the claims are true for k = 1.
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Let k € N\ {0, 1} be such that ¢, = 0 when m € ZN [k, +00[, ¢x = k) Chjk—1 = Cho =0
whereas for m € ZN]—00,k —1], ¢k = Pom (f) with Py = > P2 and P] €

,m Oxd
0<j<k—1

Cjom—1[X] for all j. Since H'; = 0, with s}, = ===, we get

FHF=TIEFF= Y oy ®@entIP anoe)(Y H®e,)

0#m<k+1 r<k s<—2

= D Gna®etIP Y (Y e, ) ®en

0#£m<k+1 m<k—2 m+2<r<k

/ /
= Cpp @ €1+ Cp g ®ep + E (Chm_1 + E Ko 1ChorH 1) @ e
0#m<k—1 m+1<r<k

Thus ¢ 4401 = ¢y = U+ Cht1k = c§€7k_1 =0 and cx11,m = 0if m > k + 1 where m = 0.
For m € Z* N]—o0, k|, it comes

Ck+1,m = Ckm 1+ Z m 1—rCh,r (48)

m+1<r<k

Let m € Z* N ]—o0, k — 1]. Formula and the induction hypothesis give

it = ( Z Bl SV Z Z R P Hp oy Y

(m+1)T<j<k—1 mA1<r<k (m+1) Y <j<h—1
= > B Y LY R PLHL LY = P (f)
(m4+1)T<j<k—1 (m4+1)T<i<k—1 mH1I<r<k
with Pyi1,, = > Plg+1 max and
(m+D)T 1<k
Plf—&-l,m Plfml 1 (49)

Pli—&—lm Plgm 1_'_ kml Z "im ].PI;Z’!‘H’;TL].TW (m+1)+<j<k (50)
r=m+1
m+1)T -1 m+1)T -1\’ r m+1)T—1
PI§+1+,m) = (Pk(,mtl) ) + Z K’m—lpk('rJr) H;n 1-r (51)

m+1<r<k

Assume 1 < m < k—1. Then lb becomes P}, |, = (P,Zmel)/%— > K PLHL
m+1<r<k

We know that deg Py, 1—m—m—l)—l—OandthatWhenm+1<r k, P =0
since m < r—1< 7“—1—1. Hence P},,, = 0. Whenm+1 < j < k-1, degPIgml1 <
j—l—(m-1))—1=j-m —1,deg(P,gm1)'<(j—(m—1)—1)—1:j—m—1a,ndfor
m+1<r<kdegP H, , <(j-r—1+r+1-m)—2=j—m-2. Thus,gives
thatdegP,ﬁH?mgj m—1. Laustly,degP,erlmfdegP,fml1 k— 1—(m—1)—1:k—m—1.

Assume now m < —1. Degree computations for Pk and P/ when 1 < j < k-1

+1 m k+1,m
are still valid. Formula (51)) becomes P? i = (Pkm 1) + > Hmflpl?,rH;nflfr and gives

m+1<r<k
deg P 1, < 0 —m — 1 because deg (Pf,,_ 1) <(0—-(m—-1)—1)—1= —m —1 and for
m+1<r <k degP H, , ,<0-r—=1)+(r+1-m)—-2= —m—2. The proof is
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complete. m

Proposition 38 Assume that (51,...,80) € O(Z\E®)" is a solution of (3 (./ with —s1 = G1— P,
and let (piy, ..., pua) € O (C)* satisfies the system (4 45). Then d = p, p, is a polynomial of degree
p and ,uép ) = p!Bgeo where By = 11 b? is the leading coefficient of B. Moreover, for all

qeQ™
J€A{1,....,p— 1}, u; is a polynomial of degree at most p — 1.
Proof. The proof relies on a downward induction starting on p and on the comparison
of the Laurent series of s, series we have to compute, to the expansion of —(G; + P; which

we know because of lemmas and Gy = Z Gﬁl—mm ® e, and P, = Z il;nm ® e, with

m<—1 m<—1
Gl,flzG(l),l_dx; Gl,me(c\m\—l[ ]Whenm 2 Pll_q X—|-<p10,€ 1> andleecl[ ]
for all m. Thanks to Proposition [37] and to , we get

H
51:1;BZ-,F]1(/19®60 1®BZ ZP]IW’L/’[’] X em

1<j<d 1<j<dm<yj—1

:Bl <me®ep/ﬁp> Y0 D Prm(w)®e

m<0 m<d—1 mT+1<j<p

Sy

')
8

S =D IEDY 2 AP ()| 8
P/ P

m<d—1m—d+1<r<0 \ (m—r)t+1<j<d

‘ -

K ~
= E 31m®€mp

@ cdo1 'mp

Sy

with for m < p—1, 51, = > > Ky ArPi_1m—r (). In particular, when
m—d+1<r<0 (m—r)T+1<5<d

0<m<d—1,

Sim = Y > wNdime () = Y Pl ()

m+1<j<d m—7+1<r<0 m+1<j<d

where for m +1 < 7 </ d,

Di r _ 0 r
Blu= S BAPime—RPiamt S AP

m—j+1<r<0 m—j+1<r<—1
ThllS, ﬁ{?ﬂjl (Merl) = ’i(r)an,m (:U’m+1) :ufn421 since ’% =1. So
=+ Y Pl () (52)
m+2<j<d

Moreover,

= > P LS A BTN Py () + > > ok PP

0<t<j—2 m—7+2<r<—10<t<j—2

= I{}m_j—*—l)\m ]+1M§J 2 + Z <‘F?—1,m + Z /ﬂ'/:n)\rpjt_l,m—T> Mgt)

0<t<y -2 m—j+2<r<~1
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Formula implies 5141 = (p—1)

[y 1 B Néd 1)6d—p—1 + Si—p-20. Yet, s =
_Nl = —Gl + Pl, Gl S (G(l),l - (5[61) (24 €_1 + S_Q’O and P1 ( >®Jd + <p17(), 6_1>) (024 €_1 + 8_270.
So, d — p — 1 has to be equal to —1, that is d = p, and

(p—1) quo 0 | | 0
My - Kp_1 (p[d - Gl,l - <p1,07671>) = plByld — (p— 1)'Bq°° [G o <p1’0’€*1>}
-
In particular, 4, € C, [X] and ) = p!Bye.
Assume now that 0 <m < p—2and that p,, ..., ftym12 are polynomials. Then for m + 2 <
j<p, P! m (p15) is of the same kind and as
deg A\, j+1,u§-j_1) <@G-m—-1)—1+degp; —j+1=degpu; —m-—1
degPt 1mu]) <(t—m—1)+degu; —t=degpu; —m—1
deg \, P}, ,,_ T;L] V< (|| - D+ ({t—m+r)+degu; —t=degpu; —m—1

we get

deg P!, (1;) < degps; —m — 1

Thus, s;,, is polynomial and there exists a polynomial R, such that

<, m) o
degsim = iy + B & deg R, < mg§§<<pde pi—m—1
Moreover,
e P 1 Ep -
- m— m—p — Slm—p = S1,m;
17 p 1’ p 17 p quo Hmfp 17

Gim—p € Cpy—1 [X] since m — p < —2 and Py, € C; [X]. From

m F‘:mf
ﬂgnll = By £ (_Gl,m—p + PLm—p) + B,

m

we first recover that the functions p; are all polynomials then, with m = p — 2 that

deg Y <max{p— (p—2) — 1,1,degp, — (p—2) — 1} =1
and hence that deg y,—1 < p—1. Assuming deg 1,

deg 1y, < max {p —m —

<p—1whenm+2<j<p—1, we obtain
Ll,p—-m—-1}=p—m-—1
and thus deg jt,,41 < p — 1, which end this induction proof. m

6.4 A linear system

According to Proposition 21, Lemma 22 and Corollary 28] there exists A>, B> € C[Y]
with deg A < deg B® = ¢*> and B* (0) = 1 such that on Z\ E>,

oo/ o0

B
NP + X 10—
Gi=N+X® 5= +18 o
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where NlQ is locally the sum of the shock wave functions hy, ..., h, involved in Proposition .
According to Lemma[27] Corollary [25] Proposition @ and Proposition [38] these local functions
define on Z\E* global symmetric functions (—1)* s?, 1 < k < p, which can be written in the
form

e

where p®@ = (u?, ...,u?) € C[X]" is such that and deg u? < deguy =pwhenl<j<p In
the above formula, Fy is defined for any 1 € C [X]? and arbitrary (d, k) € N* x N by

Folp)=FF1 (1) & Fr(p)= > Fr(uoe), k=1, (53)

k<j<d

where F is the operator defined by .

In Theorem 39| below, the system Sy defined by the equations (54)) to is a linear system
whose nature is to have infinitely many solutions when the zero function is not the only one.
The first part of Theorem [39 says in other words that, because bM is known to be the boundary
of a Riemann surface, 0 is not the only solution of Sy at least when d = ¢>° 4+ = p. The second
part of Theorem [39]is a kind of reverse. If we manage to find a non zero solution to S; where d is
some positive integer, one gets a decomposition (62)) of the kind we are looking for. Meanwhile,
it is not clear that such a decomposition is really meaningful. The next section clarifies this
point : the right decomposition can be deduced from by tossing some parasite terms.

Theorem 39 Assume that 8;521 #0, fird in N*, set r = d — 0 and consider p = (1, ..., fta) €

C[X]* such that for j € {1,...,d — 1}, deg p; < deg g = d.
1) Assume that d = p and p = p®. Then r = ¢ and

9 gy — OO 1 O {eHifo (M)] _ o9 (; 6 {eﬂﬁfo (“)D _0

o ©92G1 /052 Oy O oz \ 82G, /022 By o
(55)
aQGl ar-i—l = ar+1€H 0 n o B
et g 7 00] = (i) [ ] =0 (56)
82G1 8T o 8’"6HG1 8 _H (9 o
e R+ RG] - T [ R ] <0 )
EF1(n) =HNEF (1) = FF1 (1) = Fo (1) (58)

_ H 1 9 ,-HD :
and B, = e (]-"0 (n) — PG o 5yC a0 (,u)) satisfies B, (0,y) i 1.

2) Assume that p satisfies the differential linear system Sy, defined by the equations to

58) and that B, (0,y) i 1. Then there ezists (cy, A, B) € O (C) x C,_1 [Y] x C,. [Y] with
*9y—>
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B(0) =1 and such that

1 0 0
l=—————eH = 59
“®l= G ooy an oW (59)
1®@B=(Fo(u) —co®1)e” (60)
I1A=(1®B)Gi+"Fi(p)—XoB (61)
Moreover, taking in account that e extends holomorphically to Z, s = 1®B.7-"1( ) define a
holomorphic function on Z\E> such that
B’ A
G12—81+X®_+1®— (62)

B B

and which is a d-shock waves outside the zero locus of the discriminant A, of T+ Y s, T

1<k<d
where (s},) = <1®de i (,u))

Proof. 1) Set (A, B) = (A, B*®). According to the results quoted in the beginning of
this section, we know that

d>k>1

19 A=(1®B)Gi+e"Fi(n)— X @B (63)
In particular, the right member of (63)) is independent of X. Since 88G L = %—Z, we get
g0 (1®A) OH g 0
D= """ ¢ 1®B)— - (1® B el F,
n00E {<®>8y<®>+ D o, ()
d(1® B)e
=SB D (64)
Y
Hence W = DF; (i) and we get an entire function ¢, such that
0 w
PDF1 () = Pay(1®B) =(1®B)e " +¢®1. (65)

As e ¥ has a usual Laurent series on Z , PDF; (u) can’t have any logarithmic term, which
means that is satisfied. Then, implies that B is given by though we don’t know
yvet ¢g. As B doesn’t depend on x, we obtain

0 8H ,
0= 8_13er0 (1) — (co® 1) — e (y1)e (66)
As %—IZ = %, this entails
0 40 0*G,
= ZeH L 1
0=5,¢ azlow (0@l 55

which implies that ¢y is actually defined by . With this value of ¢, (54]) is the statement
that ¢y doesn’t depend on y and become the compatibility equation (55)). As the right
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member have to be in C, [Y], we also get

87’-}—1 ar—H (9”+16H

0= gyt [(Fol) —co @ 1) e = Fos [Fo ()] — (co 1) 5

which become when (59) is used for ¢q. Moreover, as the right member of have to be
in C,_1 [Y], deg B < r and as has been already proven, we also get

0= gT [(1®B)Gy — X @ B' + " Fy ()]
_ a;r [(1® B) Gy + e F, ()]
- (gr [(Fo (1) — co® 1) e Gy + € Fy ()]
= 2 G )+ F ()] — (08 1) o [G1]

which becomes when is used for ¢y. Note that Sy is a differential linear system because

of Proposition

2) Conversely, assume that a;f;l # 0 and that the system S; is satisfied by p. Then,
thanks to , the right member of depends only of its first variable so it defines a
function cg. As & [(Fo (1) — co @ 1) e’] is equal to the right member of , means that

(Fo(p) —co® 1) e doesn’t depend on z so that defines correctly a function B. Since

8r+1

Dy [(Fo () —co@ 1) €]

o o oref!
= o [Fo () e — (CO®1>8—y’"’

tells that B is a polynomial of degree at most r. As B, = e (Fo(pn) —co®1) = 1® B,
B(0) = lirgl B, (0,y) = 1. Denote by A the right member of 1) Then
y—0*

HOA _ u oH : w9 g
e B = © (1®B)a—y—(1®3)}+e %[e Fi ()]
_DF, () - d(1 ®a§) o
= pr () - AW Z9E ) pr - O

dy Jy

so that %—;‘ = 0 because of . Hence defines correctly a function A, which because of
, is a polynomial of degree at most » — 1. The other claims of (2) are now consequences of
Corollary 33 =

Remark. If c € C*, (¢A, ¢B) € C[Y] also verifies Gy = —s1+ XeB 184 Hence, the condition

B, (0,y) i 1 can be seen as a kind of nomalization of B. However, the theorem doesn’t
*Sy—s

address uniqueness.

For a given d, the system S; can be explicitly written thanks to Proposition |34 which gives
formulas for the coefficients of the operators F* and Fy. The case d = 0 is impossible when
0?G1/0x* # 0. The case d = 1 corresponds to the case where the complex lines L., z € Z, meets
@ only one time. In this case, S; is an over determined system on the coefficients of only one
affine function p;. It can easily be written but is already space-consuming. For example,
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which means that some function of the two variables x and y actually depends only on one of

them, takes some space even for d = p = 1. In this case ¢® = 1—0, § € ZN]—o0, 1] and taking

in account |53, Definition [30, writing e # = Z hy ® e, and m = Zng R e, We
m<qg>®—1 m<2

get after some calculus that

1 0 a q> -3 -1 (,UlGILS_?)/N
82G1/8x2 a_y |: a_ :| Z Z Z gl,mftThtJrl,S) X em

m<gP —1t=m—2 s=t—q>°+2

So the vanishing of the y-derivative of the left member of the above equation yields infinitely
many linear equations on the two coefficients of y;. Certainty 0 is not the only solution comes
only from the fact that we have assumed that p is equal to 1. For a general p, the number
of y1; increases but also their degree. Hence, Theorem [6] which gives an upper bound for p is
of practical importance. In this article, we spare space by avoiding to write out completely
explicitly Sy.

6.5 Uniqueness of shock wave decompositions

Assume that % #0and let R = dLIJ\I R4 where R is the set of p = (u1, ..., pug) € C [X]d
E *
with degp; < d = deg uq for j € {1,...,d} such that u is a solution of Sy, B, (0,y) s 1 and

A, # 0 where B, and A, are defined in Theorem [39]. This theorem tells that R, # @ and that
1f I E Ry, 1t produces by exphClt formulas a decomposition of G in the form —s; + X ® 2 +1®—
where —s; is a d-shock waves function in Z\ (E* U{A, = 0}) and where A, B € (C[ ] Wlth
deg A < deg B =1r—0 and B (0) = 1. Thus, we know thanks to Proposition that for z, € Z
outside a proper analytic subset S of Z and for a sufficiently small neighborhood U, of z,, there
exists shock waves ¢, ..., gg on U, whose images are mutually distinct such that for all z € U,,

—s1(2) = Nyga (2)
Ng1(2)+ P(2) =G1(2) = Np1(2)+ Pi(2) = Nga(2) + Py

where the functions h; are the shock waves hj* defined in Corollary , that is the shock waves
generated by the collision of () with the lines L., z € U,.

A priori, nothing guaranties that {gi,...,ga} = {h1,...,h,} because for example, it may
happen that there exists a finite non empty subset J of {1, ...,d} such that ) g; extends as an
jeT
element of the space C (Y), [X] of rational functions which are affine in X. In this case, Gy =
Ny —Pwith P=P—3 g, € C(Y), [X] and {¢1,....97} whered = d—Card J € {0, ..,d — 1}.
jeJ
Iterating this reduction, arrises the situation where

vJeP ({1 ..d)\{2}, > g ¢ C(V), [X]. (67)
j€J
The case d = 0 happens at the end of these iterations only if at the beginning, >  g¢; and so
1<j<d
G4, extends as an element of C (YY), [X]. The lemma below studies this case.

Lemma 40 We use notation of Corollary . Gy extends as an element of C(Y'), [X] if and
only if Q is a domain in a compact connected curve K such that for all z, in Z. and z in a
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sufficiently small neighborhood U, of z, in Zyeg,
KNnL,= {(1:h§* (2) : =z —yhy (z)); 1<y gp} =QNL,.

Proof. Suppose at first that K is a compact curve with the above properties. Fix z,
and U, as in the statement. Since K is an algebraic curve, we know from Abel’s work that
>, hi € C(Y), [X] (see e.g. [?]). It follows that Gy = Np= 1 + P; is, on U, and so on Z,

I<g<p
rational in y and affine in x.

Conversely, suppose that G; € C(Y), [X]. Then Nj=; = G — Py is on U, algebraic in
y and affine at x. Since {(1:h% (2): —z —yh¥ (2)); 1<j<p} =QnNL, forall z € U,, a
theorem of Wood [?] states the existence of a compact algebraic curve K of degree p containing
(). Since the degree of K'isp, KN L, ={(1:h;(z): —x —yh; (2)); 1 <j< A} =QNL, for
all z € U. m

In case GGy is algebraic in y and affine in x, the algebraic curve K of Lemma [40] is known
in a neighborhood of b(). We can then pick generically homogeneous coordinates w in order
at least one line L., z € U, meets K\Q. We are thus brought back to the general case since
Lemma ensures then that even after reduction, d isn’t zero.

With Proposition 41| which is proved thanks to results of Henkin [?] and of Collion [?], we
know that when this reduction ends, the remaining shock waves functions are those we are
looking for.

Proposition 41 Notation remains as stated in this section and we suppose (@) verified. For
the case where Q) is contained in an algebraic curve, @ denoting then the smallest one with this
property, we suppose that (0:1:0) ¢ @ and at at least one of the lines L,, z € U, meets Q)
and @\Q That being so, {g1, ..., ga} = {h1,...,hp} and P = P.

Proof. After a possible renumbering, we assume that g, = h,, 1 < v < t € N and
{gt+17 ~--79d} N {ht+17 e hp} = d.

1) Suppose that ) isn’t contained in an algebraic curve. Then d € N* because otherwise,
Npi € C(Y), [X] and Gy, which is the sum of N, ; and P;, appears to be the restriction to U
of an element of C (Y), [X]. According to lemma [40] this would contradict our hypothesis.

Suppose t < min (p,d). Up to a change of the reference point z, and a decrease of U,,
we suppose that the curves H, = {(1:h, (2): —x —yh, (2)); 2€ U}, t+1 < v < p and
C,={(1:9,(2): =2 —yg, (2)); z € Uy}, t+1 < v < d are smooths and mutually disjoint. We
then denote ¢ the differential form defined on the union C of this curves curves by ¢ g, = dit
when t+1 < v < pand ¢|o, = —dz—é when t +1 < v < d. We note AR the Abel-Radon
transform of the current ¢ A [C]. By definition (see [?], [?] or [?]),

AR=d( Y h— > g)

t+1<v<p t+1<v<q

But hypothesis imply,

Z hu — Z 9y = Np1— Ng1 = R— Pi.

t+1<v<p t+1<v<q

AR is hence algebraic in the sense of [?] so that Theorem 1.2 of [?] applies and gives in
particular the existence of an algebraic curve A containing C'. Since () isn’t contained in
A, the connectedness of () entails that none of the curves H, is contained in A and thus that
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{h1,...;hy} C{g1,-..,94}- Hence, > g, isan algebraic function affine in z, which is impossible
p<v<d

due to the reduction made on (g;), ;. - So, t = min (p, d).

If t = d < p, therelation N, 1+P = N1+ P, reads also hyy1+---+h, = PL—P € C(Y), [X]
and the theorem of Wood implies, since () is connected, that () is contained in an algebraic curve
which is excluded by hypothesis. If t = p < d, gis1+-+-+94 = Ng1 —Np1+P—P, € C(Y), [X]
which is excluded by to the reduction made on the family (g;).

Finally t =p=d, {h1,....h} = {91, ..., 94} and P, = R.

2) Suppose now that () is contained in an algebraic curve @, minimal with respect to
inclusion. By hypothesis (0:1:0) ¢ @, and @\Q is bounded by —0@Q. Up to a change
of reference point 2. and a decrease of U, we can suppose that for all z € U, L. meets
transversely ). We note then h,41, ..., hy the shock waves on U, such that for all z € U,

OQ\Q)NL,={(1:h,(2): =z —yh, (2)); p+1<v<D}.

. ~ . . d d ~ . .
Since () is an algebraic curve, N@ L < e/ Np1+ Ny e Ny + N is algebraic and affine

in 2. Hence

p+1s-ey hﬁ

Nyi+ Ny =Nyy— Nya+ Ny, =P — R+ Ny, € C(Y), [X]

The sum Ny + Nj can be written > exfa where fi,...fs are the mutually distinct functions
1<A<Ss

of the union of {g,; 1 <v <q} and {h,; p+ 1< v <p} and where ¢, = 2 if f) is in the
intersection of this two sets and 1 otherwise. As previously we can choose z, and U, in order
that the functions f) has images mutually disjoint. We can then introduce the form v which
on )y = {(1: fa(2): —z —yfa(2)); 2 €U} is diit if ¢y = 1 and 243t if ¢y = 2. The form

> cxdfy is the Abel-Radon transform ¢ A [F] where I = UF)\. This one being algebraic, the

1<A<s
prmmpal theorem of Henkin in [?] applies and gives in particular the existence of an algebraic

curve F and an algebraic form ¥ such that for all A, ¥ | Iro = = and for all z € U,, Fn L, =
UL.NF). Given that QﬂF contains (Q\Q) ng L., Q CF.IfF #* Q, Q\F is an algebraic curve
z€Ux

whose intersections with the L., z € U,, are parametrized with a sub-family of the g;. This
is impossible since because of hypothes1s d # 0 and no sub-family of (g;) has a sum algebraic
in y and affine in z. Thus, Q F and when z € U,, Q N L, is the union of (Q\Q) N L, and
of {(1:g;(2): —z—ygx(z )) 1 < j < d}. This entails {hy,...,h,} = {g1,...,94} and P, = R..
[ ]

7 Genus of a Riemann surface with boundary

Formula of Theorem [44{links the genus g (M) of M to data associated to the complex
structure C, of (M, o). It is probably well known to specialists but we didn’t find a reference
for it. The link with the complex Dirichlet-Neumann operator 67 comes from Corollary [45]
The formula so obtained is not yet effective because we don’t know the Euler characteristic of
M. But as explained in Theorem |§I whose proof is given at the end of this section, Theorem
and Lemma [47) enable to deduce from Corollary [45] an effective bound for the key number p of
unknown shock waves sought in the reconstruction process described in Section [2] .

Let us recall that g (M) is by definition the genus of the compact manifold obtained by
gluing k (pairwise disjoint) conformal discs along the x connected components of bM. In [?],
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Belishev gives for a connected boundary the formula
29 (M) =rg (T + (NV.J)? T)

where T is the tangential derivation, N” is the Dirichlet-Neumann operator of (M,C,) in its
metric issue, that is the one which to u € C* (bM) associates the normal derivative along bM
of the harmonic extension of u to M and J is the natural primivitization operator defined on
the space of function u whose integral over OM is 0. However, a priori calculus of the rank of
T + (N"J)*T isn’t easy and this formula is limited to connected boundaries. To bypass this
difficulty, [?] and [?] propose to use Dirichlet-Neumann operators acting on forms. This gives
simple formulas for g (M) when the conductivity reduces to a complex structure but it is not
clear that these operators have physics meaning.

To produce formulas whose ingredients are computable from NJ, we use special volume
forms for M and special metrics for the bundle AM°T*M of the (1,0)-forms on M.

Definition 42 Let M be a Riemann surface with boundary and p a defining function of bM,
which means that p € C* (M,R) is such that p|y < 0, plose = 0 and (dp), # 0 for any
s € bM. Under these conditions, any section w of AP4T*M of class C*, k > 1, on an open
subset U of M can be written in the form wo + pw; where wj, 3 =0,1, is a section of APAT*M
on U of class C*=7, the couple (wp ,wél)) (wo luroar swi lurear ) being the same for all (wq,w,)
such that w = wy —i— pwy. The fact that w,() ) vanishes doesn’t depend of the choice of the chosen

defining function p. w is said tangent to bM when w,(,l) =0.

The existence of a decomposition w = wy + pw; follows from the fact that p can be chosen
as part of a system of real coordinates for M near bM. Uniqueness of (wpo ,w,()l)) proceed from
the same reason and if p’ is another defining functlon of bM, one can wrlte P = Ap where ) is
a never vanishing function, so that vanishing of w'! , =\u wp ) and w ) are simultaneous.

Note that when M is equipped with a Hermltlan metric and p is the distance to bM,

w,(;l) = 2—“; lpas is nothing else that the derivative of w with respect to the unitary vector directing

the exterior normal to M at points of bA/. The lemma below ensures the existence of volume
forms satisfying the hypothesis of this section’s main theorem.

Lemma 43 Let (M,0) be a conductivity structure. Then M admits a volume form of class
C? tangential to its boundary and whose restriction to bM is computable from boundary data
associated to (M, o).

Proof. As it is pointed out at the end of Section [3| we can design from boundary data a
smooth section 19 over bM of the bundle of volume forms of M. Let M be the double of M (see
the proof of Theorem |44 . for a detailed construction), V' an arbitrary volume form of class C* on

M and p € C’OO(M R) such that M = {p < 0}, bM = {p =0} and (dp), # 0 for any s € bM.
Using the Whitney extension theorem (see [?, prop 2.2]), one can constructs a section V' of
AYTM of class C? such that V loar = o and V.V ‘W > [sas = 0. By continuity, there exists a

neighborhood ¥ of bM in M such that V |y is a volume form. Choose y € C* (M, [0, 1]) equal
to 1 in a neighborhood of bM in ¥ and whose support is contained in . W = XV +(1-x)V

is a volume form W of class C2 on M such that Wp(l) = 86—‘2/ v =0.m

Let (M, o) be a conductivity structure and p a volume form for M as in Lemma Denote
* and AYOT*M the conjugation operator and the bundle of (1,0)-forms associated to (M, C,).
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For simplicity of notation, we set in this section 9 = 97 = d — 0 where @ = 0” is the Cauchy-
Riemann operator of (M,C,). We equip AY°T*M with the metric h* defined for s € M and
a, 3 € AT M by
b (0,8) = 220 (68)
Hes
Denote by D the Chern connection of h. A definition can be found in [?], [?, p. 73] or [7]
but we recall here some basics. Consider a fixed non vanishing smooth section e of AY0T* A
over an open set W of M, holomorphic in W N M, and let |e|,. = y/h* (e, €) be the point wise
norm of e with respect to h*. Then,

a|6 i* *
= ——5—=0Inh"(e,e) (69)

h*

e

is the connection form of D associated to the holomorphic frame e, the curvature © = dn. = one
of D doesn’t depend of e and if w = Ae, A € C*° (W), is any smooth section of AYOT* M over
W, Dw is the 1-form valued in AM°T};, M given by Dw = (d\) e + new. If w is also holomorphic

in WN M, we get % = 8—/\)‘ + 1. Note that in particular, n, = %.

When o |- 77 is assumed to be known, so it is for =2 when w is a (1,0)-form near
TyuM ) bS )
M

bM. Indeed, thanks to Theorem [5, we know that with the nodal Riemann surface M de-
signed by Theorem , we can find smooth non vanishing sections of AXT},, M which extends
holomorphically to M by computing 67u for adequate u € C*° (bM). For such an u and its
C,-harmonic extension to M, du is a holomorphic frame for AY0T};, M where W = {0u # 0}

and becomes

Dou

—— =19z = dInh* (0w, 0u) = dn ( (70)

Ot N *Ou
oun

L

Since the complex structure of M is known along bM and since 0 is holomorphic, the Cauchy-
Riemann equations enable to compute the normal derivative of du from its tangential derivative.
This means that in , derivatives coming from Ou are computable on bM from available
boundary data. As the volume form g is tangential to b, its normal derivative is zero on bM
and its tangential derivative is known on bM. Hence %—%ﬁ lpar, that is 9sz |par, is computable
from available boundary data, what we had to check.

Note that for the computation of a connection form along bM, it is not mandatory to
use a holomorphic frame of the form Ju. Indeed, let F' : M — M be the normalization of
the nodal complex curve M of C? designed by Theorem [2| and let v be an open subset of
bM. We can choose any non vanishing smooth section ¢ of ALOT;M which extends into a
(1,0)-form % smooth on W and holomorphic on W\bM where W is an open subset of M
containing v and such that W\bM C Reg M. Let W = F~* (W) U f~! (7) where f = F |})f.

Then (F wsfﬁl ) ¢, which we abbreviate into F*@, is a holomorphic (1,0)-form of (M,C,)

which extends smoothly to W and whose restriction to f~! () is F*¢. The connection form
np+g = 0ln h* (F*@, F*¢) associated to F*¢ is computable on b from available boundary data
as before. Moreover, since F' is holomorphic from (M, C,) to M, we can also make computation
on M C C? and then pull back the result to bM by F :

93 A %0

Nr+g = F701n Fn
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where here 0 = d — 0 and 0 is the Cauchy-Riemann operator of M and * its Hodge star
operator.

We can now state Theorem [44] It is more about the Riemann surface (M, C,) than (M, o).

Theorem 44 Let (M, o) be a conductivity structure and r the number of connected components
of bM . Choose a volume form p as in Lemma equip the bundle AM°T*M of (1,0)-forms of
(M,C,) with the metric h* defined by and denote by D its Chern connection. Then, when
w is a C,-meromorphic (1,0)-form on M, without pole or zero on bM,

1 Dw

2w ), T V@) Ny @) +2=20 (M) — (71)

where N, (w) and N, (w) are respectively the number of zeros and of poles of w counted with
their multiplicity or order.

Remark. Suppose that 1 is a volume form for M with the same properties as p. The
function A : M — R such that p = e*}/ satisfies D, = D,y — O\, which gives [, Due

faMM — [ons Joas O 1} indicates then [, j,0\ = 0. To check this a priori, let us

w

consider a defining function p of bM. From the relation g—“ = e’\%&/ + 4 % which holds on bM,
P P P

we get ‘3—2 lbpy = 0. Equip M with a Hermitian metric and consider a smooth section (v, )
of (TbMﬂ)2 such that for any s € bM, (vs, 7s) is an orthonormal direct basis of T, M. Then,
for all s € bM, (ON), = 1 ((vA), — i (TA),) (77 + iv}) where (77, v}) is the dual basis of (v, 7).
When s € bM, the fact that g—z (s) = 0 indicates that (d\), € R7} and hence (vA), = 0, which
gives (OA), = 5 (TA), (77 —iv}). Thus, ji 0N = 5 (TA) 7 s = 5:j5sdN. So, ji O\ is exact
and its integral over OM is zero.

With Formula below, we obtain Corollary 45| as a particular case of Theorem

Corollary 45 Hypothesis and notation remains as in Theorem . Letu € C*® (bM), u its C,-
harmonic extension to M and q the number N, (0°u) of zeros of 07w counted with multiplicity
where 0° = d — 07 and 0 is the Cauchy-Riemann operator of (M,C,). We assume that 0°u

has no zero on bM. Then B
1 Do%u
1= 551 oy 07T

—x (M). (72)

Proof of Theorem Let us begin by detailing a construction of the double M of M
which for example can be found in [?]. Let U be an atlas of M. We use the following notation :
for v € {—1,+1} and X C M, X, = X x {v} and if (s,v) € My UM _;, 7 (s,v) = s ; when
s € bM, the points of M = M; U M_; of the form (s,—1) and (s,1) are identified and form
the real curve . M; is equipped with the complex structure associated to the atlas U; formed
by the maps ¢; : Uy 3 p — ¢ (7 (p)) where ¢ : U — C is arbitrary Y. For M_;, we use the
atlas U_q of the maps ¢ 1 : U_; 3 p+— —¢ (7 (p)), ¢ : U — C arbitrary in . One gets an
atlas U = U, U, UU_4 giving to M a complex structure by letting U, be the set of maps
¢y defined as follows : consider a boundary chart for M that is ¢ € C (U,C) where U is an
open subset of M such byM = U N bM is open in bM, ¢ (U\M) = D* = DN {Im > 0} and
@ (byM) =]1-1,1[ ; pp is the map from U, = U; UU_; to C obtained by setting ¢ (s,1) = ¢ (s)
and @y (s,—1) = ¢ (s) for any s € U.

We define volume forms g, and p_; on M; and M_; by letting when ¢ : U — C is a chart
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of M,

(P1amm), = (pupt). = Ay (2)idz ANdZ, 2z €U
(P1ei1)yy = (Putt) 5 = Ap (—W) idw A dw, —w € U

This definition is obviously coherent for ;. Suppose ¥ : V' — C is another chart of M and
Yupt = Apidz A dz. Denote @ : ¢ (UNV) 2 2z — ¢ (17! (2)) the change of chart from v to ¢.
Hence, \y = |<I>’]2)\ o ®. The transition map from ¢_; : V.7 — C to ¢_1 : U_; — C is then
the map ®_; defined on ¢, (V_;NU_1) = = (UNV) by

O (w) =1 (V1) w) =1 (VT (), -1) = =5 (¢ (-w)) = —@ (—).

Thus,
P* | (A (—Z)idz NdZ) = A\, (P (—W)) i <—%7dw) A ((—%dw))

=\, (B (—w)) |®' (=) | idw A dw = Ny (=) idw A dw,

which proves the coherency of the definition of ;4.

The forms p; and p_; continuously glue along ~ in a volume form g for M. Indeed,
consider a boundary chart ¢ : U — C and M and the chart ¢, : U, — C defined as above.
Set up = Ayidz ANdz . When s € U, ¢ (s,—1) = @ (s) and p_; (s,—1) = —p (s). Hence, the
transition map from ¢ to ¢_; is U — —U, z — —z. Thus,

((po), pi-1), = Ay (2) idz N dZ = (Prapn);

for all z € D~ U]—1,1] where D~ = D N {Im > 0}. Given that ¢ (by M) = ]—1,1|, this shows
that 1 = p; at each point of yNU. Develop in a neighborhood in D*U]—1, 1| the function A,
under the form A, o () +Ap1 () y+ Aoz () y? + 0 (y?). As p is tangential to bM by hypothesis,
0 = A,1 on bM and it appears that 7 is of class C?.

One can now equip AY°T » M , D E M , with the metric f?;; defined by

~ 04/\*3
Hp

for all o, 5 € AMT M. The Chern connection D of h* is thus of class C2. Consider a
meromorphic (1,0)-form w on M without pole nor zero on bM. As recalled previously, when e

is a local holomorphic frame for AYT*M and w = e, D — 42 4 7 where 7 is the connection
form of D associated to e. Since A has to be meromorphic with same zeros and poles as w
where the formula w = Ae is valid and since dn is the curvature © of D, the Stokes formula,
applied to the domains obtained by removing from M; arbitrary small conformal disks around
the zeros and poles of w, gives

L e L DY NN - [ 6 (73)

21 Joy w 270 Jopy, W 2m

1 Dw 1 Dw 1/ ~

If one agrees that i f My i = L f i z@ 1) results from (| . ) and because, since M is
compact and D of class C?, we get then s o i©=1Ll1-i0= cl(M) = g(M) — 1 where
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cl(]\//T ) is the first Chern class of M. A proof of the last equality can be found for example in [?,
Th. 9.1 p. 284 of 1st ed.] or in [?, p. 319] where it is called Hurwitz’s formula.

Denote j the natural symmetry of M with respect to v and ¢ the conjugation of C. When
¢ : U — Cis a chart of M, the expression of j in the charts ¢; and ¢_;isp_j10j0 (901)_1 that

is —c Z Thus, j exchange the orientations of M; and M_; which gives

@:_/ "B,
My M_1

When ¢ : V' — C is a chart of ]\//T, the map ) : j (V) — C defined by ¥ = o] is also a chart
of M. This enables (see [?] for example) starting with a section w of AT*M on a subset X of
M , to define a section w of AT*M on j (X) by setting for any chart ¢ : V' — C of M such that
VNX 4o, (Jw) — 3 (@) dw + a () dT when .0 = adz + fdz and @ € ¥ (VN X). In
particular, w being E;U fixed section of AMT*M without zero on M, holomorphic on bM and of
class C*® on M, w; = m*w (resp. w_; = w;) is a section of AX0T* M without zero on X; (resp.
X_1), holomorphic on X; (resp. X_1) and of class C™ on (resp. X_;). Setting f, = Inh (w,)?,

we then knows that R
O |y, =dof,, v==+1.

Fix a chart ¢ : U — C and set p,w = adz. Then (¢;), w; = adz and (¢1), w-_1 = a (W)dw.
Since * acts on (0, 1)-forms as multiplication by %, one gets

(@), (w1 A @) = a (@)dw A sa (@) di = |a (@) 5dw A do

Set = )\w%dz A dz. In the chart ¢_y, p_y writes as @_1.pi—1 = Ay (—2) %dz N dz. 7 is also a
chart defined on j (U;) = U-; and the transition map from ¢y to ¢_; is the map ® which to
w € 1 (U_1) = U associates the number ® (w) defined by

& (w) = @1 ((p-1) " (W) = (Brod) (¢ (—w),—1)
= ©1 (9071 (_@) ) 1) w

¢ (e~ (-w)) = —w.
Thus, for w € D~ U [—1, 1],
(21, 1)y, = ((B1) )" ¢apmrapior = (910 (1) ) ¢oreis
= (@) poup = (@71 (/\w (—2) %dz A dz)
= A, (1) g A dTD = (i)

and hence

<@mﬁW*UW*J@%nyfﬁNw=kﬁgﬁ
= (¢1), (ﬁ (w1)> ()

We infer b (w_1) 0 @1 " = h(wi) o (p1) ' oc and so (p1), f-1 = (1), f1 o ¢ (which gives also
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fo1 = fio}y). Derlvatmg twice this relation and using d0 = —d0, one gets finally j*© = -0
and hence || My 0= f v @ which ends the proof provided Lemma, 46| below is proved. m

Lemma 46 Let M be a_Riemann surface with boundary. Denote r the number of connected
components of bM and M the double of M. The genus g(M ) ofM and the Fuler characteristic
X (M) of M are linked to the genus g (M) of M by the formulas

—

gM)=2g(M)+r—-1 & x(M)=2-29(M)— k. (74)

Proof. Consider a triangulation 7" of M. When « is in the set C of connected components
of v = bM, we denote X, the set of vertices of elements of 7" which lie on v and A, the one of

edges of elements of T' which are contained in v. We set ¥.* = UCM and A® = UCT For each
= =

v € C, |¥,] = |A,| and assuming, up to a change of triangulation, that the sets . T%JM#@

are pairwise disjoint when v describes C, one gets |S*| = |A*|. Lastly, denotes by o (T) the
number of vertices of T, a (T") the number of edges of T', f (T') the number of faces of T" and set

M=M \M Denotes T the triangulation of M obtained by symmetrlzatlon of T, that is the

one obtained by letting act on 7' the natural involution of M. T =TuUT is then a triangulation
of M. Par definition of the Euler characteristic, one gets then

X(]/\J\) :J<f> —a(f) —i—f(f)
=[2(c(T)=%") + 3" = [2(a(T) — 4°) + A°] + 2 (T)
= [20(T) — 2] — [2a(T) — A*] + 2f (T)
=20 (T) —2a(T)+2f (T) =2x (M).

Thanks to the usual theory of compact Riemann surfaces, X(]\//.? )=2— 29(]\/4\ ). Thus, g(]\//.? )=
1—x (M ) Denotes M’ the surface obtained by gluing x conformal disks along connected
components of 7. Then x (M’) = x (M) + « and by definition, g (M) = g (M’). Thus,

X (M) =x(M)—r=2-29(M)—x
and
gM)=1-(2-29g(M)—kr)=2g(M)+r—1.
]

We need one last lemma before proving Theorem [6]

Lemma 47 Let Q) be a nodal Riemann surface with boundary which is a quotient of a Riemann
surface with boundary S. For q € SingQ, denote by v (q) the number of branches of Q) at q.
Then the Euler characteristics of S and Q) are linked by the relation

X@=x@+ > w@-1).
q€Sing Q

Proof. Let 7 be the natural projection of S onto @) and consider a triangulation T of S such
that any point of X = 7~} (Sing @) is a vertex of T'. We can also assume that T is sufficiently
refined so that a same triangle of T' contains at most one point of X. Denote by V' the set
of vertices of T, F its sets of edges and F' its set of faces. Then 7 and 7' induce a natural
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triangulation 7" of @ whose set 7,V of its vertices is 7 (V\X) U (Sing Q). As any triangle of
T contains at most one point of X, 7,7 and T have the same number of edges and faces while

[m V] = | (VAX)| + [Sing Q| = V| = |X| + [Sing Q| = V| = > (v(a) — 1)

g€Sing Q
Lemma gives that x (S) =1 — g(S) — k. Thus,

X (S) = V| = |E| + |F|
= |mVI=[El+[Fl+ > w@-1)=x@+ >, -1
q€Sing Q q€Sing Q
[
Proof of Theorem@. Let j € {1,2} and ¢;° = Card Q; N {wo = 0}. Then, p; = §; +¢> <
d; + N, (0°up). Thus, Formula gives
1 Do uy

<O+ — —
P 211 Jorr 07y

- x (M)

As M is a nodal quotient of M by the nodal relation induced by F', we can apply Lemma [7]
So, x (H) % (ﬂ) and we get the sought inequality. As mentioned after Theorem , M
is computable from boundary data and as explained above in this section with Formula ,
% lpar is computable from available boundary data. The proof is complete. ®
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