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We study the propagation of in-plane elastic waves in a soft thin
strip; a specific geometrical and mechanical hybrid framework which
we expect to exhibit Dirac-like cone. We separate the low frequen-
cies guided modes (typically 100 Hz for a centimetre wide strip) and
obtain experimentally the full dispersion diagram. Dirac cones are
evidenced together with other remarkable wave phenomena such
as negative wave velocity or pseudo-zero group velocity (ZGV). Our
measurements are convincingly supported by a model (and numeri-
cal simulation) for both Neumann and Dirichlet boundary conditions.
Finally, we perform one-way chiral selection by carefully setting the
source position and polarization. Therefore, we show that soft mate-
rials support atypical wave-based phenomena, which is all the more
interesting as they make most of the biological tissues.

Dirac cone | Soft matter | Elastic waves | Chiral waves

Graphene has probably become the most studied material
in the last decades. It displays unique electronic

properties resulting from the existence of the so-called Dirac
cones (1). At these degeneracy points, the motion of electrons
is described in quantum mechanics by the Dirac equation:
the dispersion relation becomes linear and electrons behave
like massless fermions (2). As a result, interesting transport
phenomena such as the Klein tunneling or the Zitterbewegung
effect have been reported (3). But Dirac cones are not specific
to graphene. They correspond to transition points between
different topological phases of matter (4). This discovery
has enabled the understanding of topologically protected
transport phenomena, such as the quantum Hall effect (5).
Dirac cones are the consequence of a specific spatial patterning
rather than a purely quantum phenomenon. Inspired by
these tremendous findings from condensed matter physics, the
wave community thus started to search for classical analogs
in photonic crystals (6, 7). Abnormal transport properties
similar to the Zitterbewegung effect were highlighted (8, 9). In
recent years, the quest for photonic (and phononic) topological
insulators (10) has become a leading topic. This specific state
of matter results from the opening of a band gap at the Dirac
frequency and is praised for its application to robust one-way
wave-guiding (11, 12). Surprisingly, similar degeneracies
have been observed for unexpected photonic lattices as
the consequence of an accidental adequate combination of
parameters (13). Such Dirac-like cones have a fundamentally
different nature as they occur in the k → 0 limit (14) but
still offer interesting features: wave-packets propagate with a
non-zero group velocity while exhibiting no phase variation,
just like in a zero-index material (15, 16).
A similar accidental k → 0 Dirac-like cone can be observed
in the dispersion relation of elastic waves propagating in
a simple plate. In this context, the cone results from the
coincidence of two cut-off frequencies occurring when the

Poisson’s ratio is exactly of ν = 1/3 (17–20). This condition
seriously restricts the amount of potential materials to nearly
the Duraluminum or zircalloy. However, a recent investigation
emphasized that the in-plane modes of a thin strip are
analogous to Lamb waves propagating in a plate of Poisson’s
ratio ν′ = ν/(1+ν) (21). The degeneracy should then occur in
the case of incompressible materials (ν = 1/2). This indicates
that the strip configuration is the perfect candidate for the
observation of Dirac cones in the world of soft matter. Due
to their nearly-incompressible nature, soft materials indeed
present interesting dynamical properties embodied by the
propagation of elastic waves: the velocity of the transversely
polarized waves is several orders of magnitudes smaller than
its longitudinal counterpart. This aspect has been at the
center of interesting developments in various contexts from
evidencing the role of surface tension in soft solids (22, 23) to
model experiments for fracture dynamics (24) or transient
elastography (25, 26).
In this article, we study in-plane elastic waves propagating
in a soft (i.e. incompressible and highly deformable) thin
strip and propose an experimental platform to monitor
the propagation of the in-plane displacement thanks to a
particle tracking algorithm. We provide full experimental and
analytical description of these in-plane waves both for free and
rigid edge conditions. We notably extract the low-frequency
part of the dispersion diagram for the two configurations.
We clearly evidence the existence of Dirac-like cones for
this simple geometry and highlight some other remarkable
wave phenomena such as backward modes or zero group

Significance Statement

Thanks to particle tracking methods, we monitor the propaga-
tion of in-plane elastic waves in an incompressible thin strip
and observe, for the first time, a Dirac cone in a soft mate-
rial. Additional remarkable wave features such as negative
phase velocities, pseudo zero group velocity and one-way chi-
ral selection are highlighted. Our findings are universal: any
thin strip made of any soft elastomer will display the same
behavior. Dirac cones have inspired many developments in
the condensed matter field over the last decade. Our findings
enable the search for analogues in the realm of soft matter,
leading to a wide range of potential applications. Additionally,
they are of practical interest for biologists since soft strips are
ubiquitous among human tissues and organs.
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Fig. 1. Experimental setup: a soft elastic strip (of dimensions L = 600 mm,
w = 39 mm, d = 3 mm) seeded with dark pigments (for motion tracking pur-
poses) is suspended. A shaker connected to a clamp induces in-plane displacement
propagating along the strip.

velocity (ZGV) modes. Eventually, we perform chiral selective
excitation resulting in the propagation of one-way state, and
in the separation of the two contributions of a ZGV wave.

Experimental configuration. To start off, a thin strip of di-
mensions L× w × d = 600 mm× 39 mm× 3 mm is prepared
in a soft silicone elastomer (for details see section Materials
and Methods) and seeded with dark pigments for tracking
purposes. The strip is then suspended and connected to a
point-like source consisting of a clamp mounted on a low-
frequency (1 Hz to 200 Hz) shaker. When vibrated, the strip
hosts the propagation of guided elastic waves travelling along
the vertical direction x1 (see Fig. 1). The lower end of the strip
is immersed in glycerol to avoid spurious reflections as well
as out-of plane motions. Here, we specifically study in-plane
motions i.e. displacement components u1 and u2 correspond-
ing to respective directions x1 and x2. The low-frequency
regime enables the optical monitoring of the in plane motion.
A 60 images sequence corresponding to a single wave period is
acquired thanks to stroboscopic means before being processed
with a Digital Image Correlation (DIC) algorithm (27) which
retrieves the displacement of the dark seeds. Typical displace-
ment fields (u1, u2) measured when shaking at 110 Hz are
reported on Fig. 2(a). This method is sensitive to displacement
magnitudes in the micrometer range and thus enables field
extraction to be performed over large areas in spite of the
significant viscous damping.

Free edges configuration. The interpretation of the displace-
ment maps is not straightforward. As for any wave-guiding
process the field gathers contributions from several modes.
Given the system geometry, we project the data on their sym-
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Fig. 3. Fixed edges dispersion. Experimental (symbols) and theoretical (solid
lines) dispersion curves for a strip of width w = 50.6 mm with fixed edges. Sym-
metrical modes (resp. anti-symmetrical) are labelled in gray (resp. blue). Similarly
to Fig. 2.c, the transparency renders the ratio Im(k)/Abs(k) (see Supplementary
Information). Filled gray and blue symbols correspond to extracted symmetrical and
anti-symmetrical modes. Empty ones are obtained by symmetry.

metrical (resp. anti-symmetrical) component with respect
to the vertical central axis. For improved extraction perfor-
mances, a single value decomposition (SVD) is then operated
and only the significant solutions are kept (for details see
the Supporting Information). For example, at 110 Hz, the
raw data (see Fig. 2) gathers three main contributions: two
anti-symmetrical modes (denoted A0 and A1) and one sym-
metrical mode (S0). Each mode goes along with a single
spatial frequency k which we extract by Fourier-transforming
the right-singular vectors (containing the information relative
to the x1 direction). Repeating this procedure for frequen-
cies ranging from 1 to 200 Hz, one obtains the full dispersion
diagram displayed in Fig.2(c) (filled symbols correspond to
values directly extracted from the data, while empty ones
are obtained by symmetry with respect to the k = 0 axis).
The dispersion diagram reveals several branches with different
symmetries and behaviors. Here, the branches are indexed
with increasing cut-off frequencies. Note that, due to viscous
dissipation, the wave-number k is intrinsically complex valued.
As a matter of fact, this is well pictured by the decaying char-
acter of the field maps (Fig 2). The Fourier analysis yields its
real part (peaks location) but also its imaginary part (peaks
width) which is provided in Fig. S4 (Supporting Information).

Those experimental results are in good agreement with
theoretical predictions (solid line) obtained with a simplified
model and by numerical simulation (both are presented in
Supporting Information). Indeed, one can show that the in-
plane modes of a given strip are analogous to the Lamb waves
propagating in a virtual 2-D plate of appropriate effective
mechanical properties (21). When the strip is made of a soft
material, the analogy holds for a plate fo thickness w, with a
shear wave velocity of vT , a longitudinal velocity of exactly
2vT . Strikingly, this amounts to acknowledging that, for a thin
strip of soft material, the low frequency in-plane guided waves
are independent of the bulk modulus (or equivalently of the
longitudinal wave velocity) and of the strip thickness d. One
can then retrieve the full dispersion solely from the knowledge
of the strip’s shear modulus G, width w and density ρ. Of
course, the intrinsic dispersive properties of the soft material
as well as its lossy character must be taken into account. A
simple and commonly accepted model for describing the low
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Fig. 2. Free edges field maps and dispersion. Here w = 39 mm. (a) Real part of the raw displacements at 110 Hz and (b) the three corresponding singular vectors (see
text). (c) Experimental (symbols) and analytical (solid lines) dispersion curves. Transparency renders the ratio Im(k)/Abs(k) (see Supplementary Information). Filled gray and
blue symbols correspond to extracted symmetrical and anti-symmetrical modes. Empty ones are obtained by symmetry.

frequency rheology of silicone polymers is the fractional Kelvin-
Voigt model (28–30), for which the complex shear modulus
writes G = G0

[
1 + (iωτ)n

]
. This formalism being injected in

the 2-D model, our measurements are convincingly adjusted
(solid lines in Fig.2) when the following set of parameters is
input: G0 = 26 kPa, τ = 260 µs and n = 0.33. Note that
this choice of parameters turns out to match relatively well
the measurements obtained with a traditional rheometer (see
details in Supporting Information). The transparency of the
theoretical line represents the weight of the imaginary part of
the wave-number k (detailed on Fig. S5). When k becomes
essentially imaginary, the solution is evanescent which explains
why it cannot be extracted from the experiment.

Let us now comment on a few interesting features of this
dispersion diagram. First, at low frequencies, the single sym-
metrical branch (labelled S0) presents a linear slope, hence
defining a non-dispersive propagation or equivalently a propa-
gation at constant wave velocity. Experimentally, the latter
corresponds to

√
3vT which confirms the prediction from (21).

This is somehow counter-intuitive: the displacement of S0 is
quasi-exclusively polarized along the x1 direction, giving it
the aspect of a pseudo-longitudinal wave, but it propagates
at a speed independent of the longitudinal velocity. At 150
Hz, two branches cross linearly in the k → 0 limit. This is
the signature of a Dirac-like cone (13, 18, 31). It is worth
mentioning that, despite the 3-D character of the system, the
propagation only occurs in one direction (x1) which means
that the cone should be regarded as a linear crossing. Its
slope (group velocity) is found to be ±2vT /π (see calculation
in Supporting Information). The cone, which turns out to be
well defined in spite of the significant damping, directly results
from the incompressible nature of the soft elastomer. Indeed,
the condition vL � vT (i.e. ν ≈ 1/2) automatically yields the
coincidence of the second and third cut-off frequencies (21). In
other words, any thin soft strip would display such a Dirac-like
cone. Because the cone is located at k = 0, the lower frequency
part of the S2 branch features negative wave numbers (solid
symbols). In this region, the phase and group velocities are
anti-parallel (32, 33). More specifically, the group velocity
remains positive (as imposed by causality) when the phase

velocity becomes negative i.e. the wave-fronts travel toward
the source (see video S3). This effect has been the scope of
many developments in the metamaterials field (34, 35) but
occurs spontaneously here.

Fixed edges configuration. From now on, we implement
Dirichlet boundary conditions on a w = 50.6 mm strip by
clamping its edges in a stiff aluminium frame (video S4).
Again, the dispersion curves (Fig. 3) are extracted following
the previous experimental steps. See how the low order
branches (A0 and S0 in Fig. 2(b)) have disappeared as
a consequence of the field cancellation at the boundaries.
Besides, a Dirac-like cone is observed for this configuration
as well but it now occurs at the crossing of anti-symmetrical
branches. Just like in the free edges configuration, the slope
at the Dirac point is vg = ±2vT /π. Extracting the field
patterns for this particular point, one finds that the motion is
elliptical (video S5). The polarization even becomes circular
at a distance ±w/6 from the centre of the strip. All these
observations are supported by the calculation provided in
Supporting Information. Once again, the prediction
obtained with the 2-D equivalence model assuming rigid
boundaries convincingly matches the experiment. Also, an
interesting feature shows up at 102 Hz where the branches A1
and A2∗ nearly meet each-other. In a non-dissipative system,
one expects the two branches to connect thus yielding a
singular point associated with a Zero Group Velocity (ZGV);
a phenomenon which has been previously observed in rigid
plates (36–40). Here, because the propagation is damped by
viscous mechanisms, the connection does not strictly occur,
the reason why we talk about pseudo-ZGV mode, but as
we will see below similar wave phenomena still exist in the
presence of damping (see Fig. S2 for an analytical comparison
between the conservative and dissipative scenarii).

Let us now illustrate the rich physics associated to this
dispersion diagram by specifically selecting a few interesting
modes (videos S6 to S9). To begin with, the source is placed in
the centered and shaken vertically at 136 Hz. This excitation
is intrinsically symmetrical and only S1 should be fed at this
frequency. The chronophotographic sequence displayed on
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Fig. 4. Selective generation. Chronophotographic sequences (12 snapshots) over a full oscillation cycle. (a) The source is placed at the centre of the strip and shaken
vertically at 136 Hz: symmetric diverging waves are observed on both parts. (b) Two sources facing each other are rotated in opposite directions at 136 Hz: the wave only
travels to the x1 > 0 region. (c) Two sources are shaken horizontally at 102 Hz: a stationary wave associated to an anti-symmetric pseudo-ZGV mode is observed. (d) The
two sources are rotated at 102 Hz in an anti-symmetrical manner: The propagation is restored and the phase velocity is negative in the on the top region (x1 < 0). The black
dashed lines are visual guides highlighting the zeroes of displacement and the sketches show the source shape and motion. For sake of clarity, one only represents u1 for (a)
and (b) and u2 for (c) and (d). See videos S6 to S9 in supporting information for more details.

Fig. 4(a) reports twelve successive snapshots of the displace-
ment u1 taken over a full period of vibration at 136 Hz. As
expected, the field pattern respects the S1 symmetry. Also,
the zeroes of the field (red dashed lines) move away from the
source, which corresponds to diverging waves.

On either side of the strip, there are two solutions with
identical profiles but opposite phase velocities; in other words
two time-reversed partners. Thus, the bottom part of the strip
hosts the solution S1 while its top part supports S∗1 . Further-
more, the transverse field u2 is π/2 phase shifted compared to
u1 at this frequency (see Fig. S7 or video S6). This essentially
suggests that the in-plane displacement is elliptically polar-
ized; an interesting feature since such a polarization is known
to flip under a time-reversal operation. One can easily take
advantage of this effect by imposing a chiral excitation. To
this end, we use a source made of two counter-rotating clamps
located at equal distances from the centre of the strip. The
rotating motion is produced by driving two distinct clamps
with 4 different speakers connected to a soundboard (Presonus
AudioBox 44VSL). As depicted in Fig. 4(b), such a chiral
source excites the S1 mode which propagates towards x1 > 0,
however, it cannot produce its time reverse partner S∗1 propa-
gating in the opposite direction. By controlling the source’s
chirality, we performed selective feeding and one-way wave
transport, a feature which has recently been exploited in dif-
ferent contexts (41–43).

One can also try to capture the strip behaviour near
the pseudo ZGV point. As it is associated with an anti-
symmetrical motion, the system is shaken horizontally by two
clamps driven simultaneously at 102 Hz, and the field displace-
ment u2 over a full cycle is represented in Fig. 4(c). It exhibits
a very unique property: the zeroes remain still (see dashed
lines) whatever the phase within the cycle which indicates that
the solution is stationary. To understand this feature, let us
take a look back at Fig. 3. Causality imposes that A1 and A2
(filled symbols, solid lines) propagate in the bottom part of

the strip while their time partners A∗1 and A∗2 (empty symbols,
dashed lines) travel toward the top part. Interestingly, at
102 Hz, A1 and A2 (resp. A∗1 and A∗2) have almost opposite
wave numbers and interfere to produce a standing wave. The
stationarity does not result from some reflection at the strip
ends but is a direct consequence of the coincidence of the two
branches. In our damped case where the exact coincidence
seems lost, the difference in magnitudes between the respective
wavenumbers is sufficiently small to guarantee this effect at
the pseudo-ZGV frequency.

Again, introducing some chirality will result in breaking
the time-reversal symmetry. The sources are now rotated
in an anti-symmetrical manner (see inset) resulting in the
measurements reported on Fig. 4(d). The propagative nature
of the field is retrieved on both sides: the zeroes of the field
are travelling. Note that, on the upper part, the wave-fronts
are anti-causal, i.e. they seem to move towards the source
which is typical of a negative phase velocity. Strictly speaking,
only A1 (resp A∗2) remains in the lower part (resp. upper
part) of the strip. Thanks to the chiral excitation, we have
separated the two contributions of a pseudo-ZGV point, and
highlight their unique nature as a superposition of two modes
propagating in opposite directions.

Perspectives. In this article, we report the observation of
Dirac-like cones in a soft material in spite of a significant
dissipation due to viscous effects. The associated dispersion
is also found to induce atypical wave phenomena such as a
negative phase velocity and a stationnary mode. For both the
Dirichlet and Neumann boundaries, a convincing agreement is
found between experiments, the theoretical simplified model
and numerical analysis. Additionally, we perform selective
feeding by controlling the chirality of the source. Beyond
the original wave physics, the soft strip configuration may
stimulate interest in different domains in a near future. From
a material point of view, we show how a very simple platform
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can provide comprehensive information about the visco-elastic
properties of a soft solid leading to new technologies to probe
its rheology. From a biological point of view, understanding
the complex physics associated with a geometry that is ubiq-
uitous in the human tissues and organs, is a major challenge.
Imaging and therapeutic methods based on elastography would
benefit from an in-depth understanding of the specific dynamic
response of tendons (44), myocardium (45) or vocal cords (46)
among others. Some physiological mechanisms could also be
unveiled by accounting for the atypical vibrations of a soft
strip. In the inner ear, for instance, the sound transduction is
essentially driven by a combination of two soft strips namely
the basilar and tectorial membranes (47–49). Overall, we
might soon discover that evolution had long transposed the
exceptional properties of graphene to the living world.

Materials and Methods

Sample preparation. The strips are prepared by molding a
commercial elastomer (Smooth-On Ecoflex® 00-30). The monomer
and cross-linking agent are mixed in a 1:1 ratio and left for curing
for roughly half a day. Once cured, the measured polymer density is
of ρ = 1010 kg.m−3. Rheological measurements are performed on a
conventional apparatus (Anton-Paar MCR501) set in a plate-plate
configuration. The results are available in Supporting Information.

Vibration. The strips are excited by a shaker (Tira Vib
51120) driven monochromatically with an external signal gener-
ator (Keysight 33220A) and amplifier (Tira Analog Amplifier BAA
500) with frequencies ranging from 1 to 200 Hz. A point-like exci-
tation is ensured by connecting the shaker to a 3D-printed clamp
tightening the strip at a specific location and designed with coni-
cal termination. Spurious out of plane vibrations are reduced by
immerging the strip’s bottom end in glycerol (visible in figure 1).

Motion tracking. During the curing stage, the blend is seeded
with "Ivory black" dark pigments (the particles are smaller than
500 µm) enabling to monitor the motion by Digital Image Correla-
tion (DIC). Video imaging is performed with a wide-sensor camera
(Basler acA4112-20um) positioned roughly 2 meters away from the
strip (raw videos are available in Supporting Information). For
each dataset, a 60-images sequence is acquired with an effective
framerate set to 60 images per waveperiod (to capture exactly one
wave oscillation). These relatively high effective framerates are
reached by stroboscopy (the actual acquisition rate is larger than
the waveperiod). The video data is then processed with the DIC
algorithm (27) which renders 60 × 2 (u1 and u2) displacement maps
for each frequency.

Post-processing. Retrieving the dispersion curves requires
further processing. First, the monochromatic displacement maps
are converted to a single complex map by computing a discrete
time-domain Fourier transform. The data is then projected on
its symmetrical and anti-symmetrical as a preliminary step to the
SVD operation (details of the SVD are available in Supporting
Information). After selecting the relevant singular vectors, the
spatial frequencies are extracted by Fourier transformation.
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Supporting Information Text14

From bulk waves to in-plane guided waves in thin rectangular beam.15

Bars of rectangular cross-section are elastic wave guides. As three wave polarizations are coupled in this geometry, finding the16

full dispersion diagram can reveal complex (1). Fortunately, for the thin strip studied in this paper, the problem drastically17

simplifies thanks to a 2-D analogy. This analogy is detailed in reference (2). Here, we recall its key features.18

19

Bulk elastic waves propagating in isotropic materials can be decomposed on three distinct polarizations: a longitudinal20

polarization travelling with a velocity vL and two transverse polarizations (or shear waves) propagating at the speed vT . In the21

presence of a horizontal interface, reflections occur and the polarisation of the so-called shear horizontal wave (SH) remains22

unaffected while, the longitudinal (L) and shear vertical (SV) polarizations couple with each other (figure S1.a).23

24

By adding a second parallel interface, the host medium becomes a plate and supports two families of independent guided25

modes: the SH modes resulting from multiple reflections of SH waves and the so-called Lamb modes which result from the26

coupling between multiply reflected SV and L waves (figure S1.a).27

28

At low frequencies, only 3 guided modes propagate in the plate (figure S1.b): the first SH mode (SH0), and the two Lamb29

modes which correspond respectively to a symmetric (S0) and anti-symmetric (A0) displacement pattern. In the low frequency30

limit, their profiles along the plate thickness are relatively homogeneous and they can be considered as nearly linearly polarized.31

In particular, S0 can be seen as a pseudo-longitudinal wave propagating at a constant "plate velocity" vP . Nearly incompress-32

ible materials (ν ≈ 1/2), such as the one we investigate in the main text, are particularly interesting since vP = 2vT (figure S1.b).33

34

All of these observations enable the construction of an analogy between Lamb waves in a plate and the in-plane guided35

waves within a thin strip as sketched in figure S1.c. Similarly to SH modes in plates the A0 mode remains independent at each36

reflection along the edges of the strip. However, SH0 and S0 behave similarly to the longitudinal and shear vertical bulk waves37

i.e. they couple at each reflection. Adding a second parallel interface, we now understand (figure S1.d) that SH0 and S0 give38

rise to the in-plane guided modes studied in the main text.39

40

As a summary, the low frequency dispersion diagram for the in-plane guided waves in a strip do not depend on the strip41

thickness and can be retrieved by solving the Rayleigh-Lamb equation for a virtual plate of thickness equal to the strip width,42

shear velocity of vT and longitudinal velocity of vP . Interestingly, for incompressible materials, we have vP = 2vT meaning that43

the knowledge of vT is sufficient to obtain the dispersion diagram. In other words, from the knowledge of the shear modulus44

G = ρv2
T one can numerically solve the Rayleigh-Lamb problem and obtain the dispersion curves.45

Dispersion of in-plane modes for free and fixed edges46

Using the Rayleigh Lamb approximation, the general expressions of the parallel (u1) and normal (u2) displacement components47

for symmetrical (α = 0) and anti-symmetrical (α = π/2) modes are given by Royer (3):48 {
u1(x2, k) = −ikB cos (px2 + α) + qA cos (qx2 + α)

u2(x2, k) = −pB sin (px2 + α) + iAk sin (qx2 + α)
[1]49

with p2 = (ω/vP )2 − k2 and q2 = (ω/vT )2 − k2. A and B are coefficients to relate. The dispersion equation of these modes is50

obtained from the boundary conditions.51

52

→ Neumann boundary conditions: For a strip with free edges, the coefficients A and B satisfy the following equations:53 { (k2 − q2)B cos(ph+ α) + 2ikqA cos(qh+ α) = 0

2ikpB sin(ph+ α) + (k2 − q2)A sin(qh+ α) = 0
[2]54

where h = w/2 is half the strip width. Non trivial solutions exist if the following dispersion equation is satisfied55

(k2 − q2)2 cos(ph+ α) sin(qh+ α) = 4k2pq cos(qh+ α) sin(ph+ α) [3]56

→ Dirichlet boundary conditions: For a clamped strip, the boundary conditions lead to the equations57 { −ikB cos (ph+ α) + qA cos (qh+ α) = 0

−pB sin (ph+ α) + iAk sin (qh+ α) = 0
[4]58

The dispersion equation is then59

k2 cos (ph+ α) sin (qh+ α) + qp cos (qh+ α) sin (ph+ α) = 0 [5]60
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Displacements and chiral excitation61

In the main text, we propose a mode selection method based on chiral excitation explicitly suggesting that the motion is62

elliptically polarized. On a theoretical point of view, using the first equation of [2] or [4] we express B as a function of A and63

obtain expressions of the displacement fields for each boundary condition:64

65

→ Neumann boundary conditions :66  u1(x2, k) = Aq
(

2ik
k2−q2

cos(qh+α)
cos(ph+α) cos(px2 + α) + cos(qx2 + α)

)
u2(x2, k) = iAk

(
2ip

k2−q2
cos(qh+α)
cos(ph+α) sin(px2 + α) + sin(qx2 + α)

) [6]67

→ Dirichlet boundary conditions :68  u1(x2, k) = Aq
(

cos(qx2 + α) + cos(qh+α)
cos(ph+α) cos(px2 + α)

)
u2(x2, k) = iA

(
pq cos(qh+α)

cos(ph+α) sin(px2 + α) + k sin(qx2 + α)
)

;
[7]69

Note that if cos(ph+ α) vanishes, similar expressions can be obtained by using the second equation in [2] or [4]. In the70

case ω/k > 2vT (i.e. p and q real) these formulas clearly exhibit the ±π/2 phase shift between u1 and u2. Except for specific71

positions where one of the two components vanishes and present a node, the particle therefore always exhibits an elliptical72

motion.73

To illustrate this effect, we provide the trajectories at four different positions of interest over a full phase cycle (see figure S7).74

These measurements confirm the symmetrical character of the motion together with its elliptical polarization. Note how the75

rotation switches polarity on either sides of the source. The modes S1 and S∗1 are orthogonal. This suggests that an appropriate76

source polarity will select a given mode and thus propagate in a single direction. This is precisely the approach proposed in77

figure 4.b (main document), where the chiral excitation is incompatible with the propagation of the mode S∗1 .78

Behaviour at the Dirac cones79

The dispersion ω(k) at small wave-number was thoroughly studied by Mindlin for a plate with free edges and presentend in80

chapter 2 of his book (4). In the vicinity of a cut-off frequency fc = ωc/2π, the slope of the dispersion curve generally vanishes81

and the dispersion law ω(k) can be developed to the second order as:82

ω(k) = ωc +Dk2 + o(k2). [8]83

This result does not hold in the strip if there is a coincidence between a shear SH and a S0 compression resonance of the same84

symmetry. In these particular cases, the dispersion is linear near the cut off and the dispersion law can be developed to the85

first order as:86

ω(k) = ωc + vgk + o(k). [9]87

where vg is the group velocity of the mode.88

89

For soft materials, we have vP = 2vT so that a Dirac cone occurs at the coincidence frequency f = vT /2h for the symmetrical90

modes of the free edges configuration and for anti-symmetrical modes of the fixed edges configuration (figure S2). In both91

cases, a linear slope is found:92

ω(k) = 2πvT
2h + vgk + o(k). [10]93

For the free edges, vg = ±2vT
π

, as given by Mindlin for a free plate (4). For the fixed edges, vg can be simply derived using a94

Taylor expansion of the dispersion equation [5] for anti-symmetrical modes (α = π
2 ) at fc = vT /2h. And the group velocity is95

also found to be vg = ±2vT
π

, just like in the free edges case.96

Displacements at Dirac cones. To determine the displacement close to cut-off frequencies, we seek for a relation between A97

and B for k → 0.98

99

→ Neumann boundary conditions : The Taylor expansion of equation [2] provides the simple relation B = −2isA where100

s is the sign of the group velocity. As a consequence, the displacements components near the Dirac cone at point x2 while101

keeping only the leading order of the Taylor expansion are:102 {
u1(x2, k) = Aπ

h
cos (π

h
x2) +O(k)

u2(x2, k) = −isAπ
h

sin ( π2hx2) +O(k)
[11]103
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Taking for example x2 = h these developments simplify into{
u1(h, k) = −Aπ

h
+O(k)

u2(h, k) = −isAπ
h

+O(k)

Again, the factor i between components indicate a circular polarization, and s indicates opposite rotations for forward and104

backward modes.105

106

→ Dirichlet boundary conditions :107

Similarly, developing eq. [4] leads to −ikB + π
h

Vg

VT
hkA = 0 or simply B = −2isA and the displacements near the Dirac cone108

are written:109 {
u1(x2, k) = −Aπ

h
sin (π

h
x2) +O(k)

u2(x2, k) = isAπ
h

cos ( π2hx2) +O(k)
[12]110

Just like for the free edges, the displacement components have a π/2 phase difference. However, in this case, as cos(π/6) =111

sin(π/3), the circular polarisation occurs for x2 = ±h/3 = ±w/6. This is coherent with our experimental observations (see112

video S5).113

Influence of losses on the dispersion curves114

In all previous sections, losses are not considered. However, it has to be kept in mind that, because of viscous mechanisms,115

soft solids are highly dissipative systems. The shear rheology of silicone polymers is commonly described by the fractional116

Kelvin-Voigt model (5–7), which writes G(ω) = G0
[
1 + (iωτ)n

]
. For comparison with the lossless case, we only consider the117

the real part of the shear modulus (G(ω) = G0
[
1 + cos(nπ/2)(ωτ)n

]
). For both dispersion equations [3] and [5], a complex118

shear velocity is deduced from the shear modulus G = ρv2
T . The roots are found with a numerical Muller’s method for the119

same set of parameters as in the main text (G0 = 26 kPa, τ = 260 µs and n = 0.33). The real and imaginary parts of the120

wavenumbers are obtained for each configuration (with/without losses) and represented in figure S2.121

122

In the lossless case, we recognize the pseudo-Lamb modes described in the previous section. Notably, a clear existence123

of a so-called ZGV point (nearf = 150 Hz for symmetric modes in the free edges configuration, and near 110 Hz for the124

anti-symmetric modes in the fixed edges configuration) is evidenced. The dispersion diagram also presents the aforementioned125

Dirac cone at k = 0 in the two configurations slightly above the ZGV frequency.126

127

Below their cutoff frequency (the ZGV point being a simultaneous cutoff frequency for two different modes) each mode128

presents a solution with a non-zero imaginary part even for this lossless case. Basically it traduces the fact that evanescent129

waves can exist and gives access to the associated attenuation distance. Usually the branches with non-zero imaginary130

parts are not represented in a dispersion diagram which in turns allows to better visualize the ZGV point. This is why in131

the main text we decided to color-coded the theoretical lines with an increase of transparency while the imaginary part increases.132

133

The addition of losses modifies the strip behavior near the first cut-off frequency and near the ZGV point for which the two134

branches do not connect anymore in the real plane (see figure S2 continuous lines). On the contrary, the dispersion appears135

unaffected at the Dirac cone which seems robust to dissipation. Note also that the imaginary part of the wavenumber =(k)136

never exceeds 25 rad.m−1, except for the subradiant branches (already present in the lossless case).137

Signal Processing138

At a given frequency, a complex displacement field is obtained from the 60 snapshots of the strip at different time within a139

wave cycle thanks to the DIC procedure. The complex displacement components u1(~r, ω) along the x1-direction and u2(~r, ω)140

along x2-direction are a superposition of all possible modes existing at this frequency that need to be identified. The two field141

maps are sampled on a (N2,N1) grid of pitch dx and are then concatenated on a single complex matrix U0 of dimensions142

(2N2,N1). We are then looking for the propagating modes along x1-direction, thus meaning a eikx1 dependence while the x2143

dependence remains more complex. From the matrix point of view, the single mode of wave number k can be written as the144

product of two vectors as DTK where D = (D1, ...., D2N2 ) is the concatenation of the complex displacements profiles along the145

x2-direction and K = (1, ..., eik(N1−1)dx) is the spatial Fourier vector. The total displacement field can, in theory, be written as146

the sum of M modes of wave numbers km and complex amplitude am and simplified in a matrix product as :147

Usym/antisym =
M∑
m=1

amDmKm = DAK [13]148

where D is the displacement matrix of dimensions (2N1,M), A the amplitude diagonal matrix of dimensions (M,M) and K149

the Fourier vector matrix of dimensions (M,N1).From this formulation, it appears that the rank of U is the number of modes.150
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Furthermore, if the spatial sampling is sufficient and the wave number different, the Fourier vectors Km are orthogonal, so151

that equation (13) is close to a singular value decomposition (SVD). Indeed, the SVD of the measured displacement field U is152

written as the product of three matrices as153

U = VΣW∗ [14]154

where V and W are unitary matrices. If U is an (2N2, N1) matrix, then V is an (2N2,M) matrix (the left singular vectors), Σ155

is an (M,M) diagonal real matrix containing the singular values λm and W is an (M,N1) matrix (the right singular vectors).156

Because the rank of U is in theory equal to the number of modes M , Σ contains only M non-zero values. In practice, if the157

data is good enough, there are M significant singular values above noise singular values. By identification between the matrices158

of equation (13) and of equation (14), it appears that the wave number can be obtained by Fourier transform of each right159

singular vector. Furthermore, although it is known that the modes profiles are not fully orthogonal, in most cases they are160

correctly provided by the left singular vectors. The shape of the mode number m is then given by the matrix VmW ∗m.161

This method is efficient provided that different modes have different wave numbers. To avoid mode crossings, we treat162

separately the symmetrical and anti-symmetrical parts of the data.163

The whole procedure is illustrated in Figure S3. Each displacement couple u1, u2 is first decomposed onto its symmetric164

and anti-symmetric parts. Using the SVD, these are then decomposed into distinct modes. In this example, two singular val-165

ues are above our threshold (10% of the maximum singular value) for the anti-symmetric part and only one for the symmetric part.166

167

Experimental dispersion curves168

The signal processing steps described above are repeated for each frequency giving the dispersion curves of figure 2 and figure169

3 (main text). On top of the real part of the wave-number presented in the main text, we also extracted its imaginary part170

and display the results in figure S4. This was performed by evaluating the width of the peak of the Fourier transform of each171

significant right pseudo-eigenvector obtained after SVD. When the width corresponded to the limit case of the width of our172

observation window, the imaginary part of the wave-number was not measured in the reciprocal space but directly estimated173

from an exponential fit in the real space.174

Extracting the imaginary parts is always a challenging process. Here the measurements are not as accurate as for the real175

parts. But they still seem in relatively good agreement with the theoretical predictions. The main trends, such as the increase176

in the attenuation of S0 at 100 Hz (fig. S4) are well captured.177

Fast shear rheology178

As discussed in the theoretical part the 2-D approximation efficiently renders our experimental data. To confirm the values179

obtained for G, we performed shear modulus measurements using a conventional rheometer (Anton-Paar MCR501) in plate-180

plate configuration. We measure the shear modulus G(ω) = G′(ω) + iG′′(ω) for frequencies ranging from 0.1 to 100 Hz and181

report the results in figure S5 (open symbols). In the probed range, both G′ and G′′ convincingly agree with the fractional182

Kelvin-Voigt model extracted from strip experiment. However, the strip method seems to overestimate the storage modulus G′183

by roughly 10%. We believe that this is related to slightly different curing conditions in the two experiments. Note, that the184

frequency range one can access with the strip experiment is twice larger than that of the shear rheometer. The main limitation185

being that high frequency modes are more attenuated and thus harder to probe with optical means. Sensibly higher frequencies186

would be made available by simply using a better shaker or a magnifying lens.187

Numerical simulation188

We further validate our results with a numerical simulation performed with a finite elements software (Comsol Multiphysics).189

We mesh (the maximum element size is set to 3 mm) a 3-D virtual strip of dimensions L× w × d = 600 mm× 39 mm× 3 mm190

(similar to the experiment) and input the shear properties determined in the experiment. The point at a distance w/6 from the191

central axis is vibrated monochromatically in the direction x1 + x2 in order to efficiently feed all the modes. Both the Dirichlet192

and Neumann boundary configurations are investigated (see Figure. S6). The post-processing operations are the one used193

for the experiments (i.e. decomposition over the symmetrical and anti-symmetrical parts, singular value decomposition and194

Fourier analysis). We find a very convincing matching over the whole 0-200 Hz frequency range. Note how, just like for the195

experimental data, the Fourier analysis fails to extract the solutions corresponding to essentially imaginary wave numbers (see196

right part). This is particularly obvious in the area where the branches S1 and S2 (resp. A1 and A2) repel each other.197
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a) b)

d)c)

Fig. S1. Theoretical considerations. (a) Illustration of the coupling between bulk waves at each reflection: SV and longitudinal waves are coupled while the SH ones
remain uncoupled. It gives rise to 2 families of guided modes in a plate. (b) Low frequency dispersion relation for a 3-mm-thick-plate made of nearly incompressible material
with vT = 6m.s−1. In this low frequency limit each branch can be associated to its own pseudo-polarization: S0 looks like a longitudinal wave, SH0 is transversely polarized
shear wave, and A0 looks like a vertically polarized transverse wave. Interestingly the S0 travels twice faster than SH0. (c) Adding a boundary to the plate, the analogy with
the coupling of (a) can be made: S0 and SH0 are now coupled at each reflection while A0 remains alone. (d) Illustration between the analogy of the low frequency in-plane
waves in a thin strip and the Lamb waves in the plate of (a).
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Fig. S2. Theoretical dispersion relations. The lossless (dashed line) and lossy (continuous line) wavenumbers (real part on left and imaginary parts on right) obtained for
the two configurations with the fractional Maxwell-Voigt model presented in the main text. While the ZGV point disappears when adding losses the Dirac cone remains. The
imaginary parts presented here have been used for the transparency of the lines of figure 2 and 3 in the main text.
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Fig. S3. Description of the Singular Value Decomposition (SVD) algorithm (here with data obtained at 110 Hz, i.e. corresponding to figure 2 in the main text). After acquiring the
raw in-plane motion is acquired thanks to Digital Image Correlation (DIC) techniques, the displacement components u1 and u2 are projected onto their symmetrical and
anti-symmetrical parts and converted to complex fields by performing a time-domain Fourier transform. The symmetrical (resp. anti-symmetrical) data are then concatenated
into a single complex 2N2 × N1 matrix Usym (resp. Uantisym) on which the SVD operation is directly applied. After extracting the most significant modes (we set the threshold
at 10% of contribution in magnitude), we obtain (at 110 Hz) one symmetrical (S0) and two anti-symmetrical (A0 and A1) modes.
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Fig. S4. Experimental dispersion relations. The real parts are the same as figure 2 and 3 of the main text, except that the theoretical line does not present transparency
when the imaginary part increases. The extracted imaginary parts on the same experimental data are represented on the right.
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Fig. S5. Shear rheology. Shear modulus (G = G′ + iG′′) as a function of frequency. Law extracted from the strip experimental data (lines) and measurements with a
Plate-Plate rheometer (symbols).
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Fig. S6. Finite element simulation. Same as figure S4 but on data obtained by numerical simulation on a full 3-D strip with the same mechanical properties.
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Fig. S7. Fixed edges field patterns (left) Snapshot of the field u1 (same data as figure 4 a) and u2 for a vertical excitation on the fixed edges strip. Represented over a full
cycle the displacement measured on four different points exhibit elliptical displacements responsible for the selective excitations presented in figure 4. Note that those results
have not been symmetrized as we do in the SVD in order to show the robustness of the process.
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Movie S1. Strip (w = 39 mm) with free edges shaken at 110 Hz (same strip as in Fig. 2 of the main file). Left:198

raw acquisition. Center: Displament fields u1 and u2 after extraction by Digital Image Correlation (DIC).199

Right: Image with magnified motion (×35) via the displacement data.200

Movie S2. Strip (w = 39 mm) with free edges shaken at 110 Hz (same strip as in Fig. 2 of the main file).201

Displacement field maps and projection on the eigen modes.202

Movie S3. Strip (w = 39 mm) with free edges shaken at 130 Hz (same strip as in Fig. 2 of the main file). The203

data were spatially filtered to isolate the backward (S2) mode.204

Movie S4. Strip (w = 50.6 mm) with fixed edges shaken at 110 Hz (same strip as in Fig. 3 and 4 of the main205

file). Left: raw acquisition. Center: Displament fields u1 and u2 after extraction by Digital Image Correlation206

(DIC). Right: Image with magnified motion (×35) via the displacement data. The grey frame is symbolic.207

Movie S5. Strip (w = 50.6 mm) with fixed edges shaken at 129 Hz (same strip as in Fig. 3 and 4 of the main208

file). Left: Field patterns at the Dirac point separated following the SVD procedure. Right: We select specific209

particles of the strips and follow their motion over a full wave cycle. The motion was magnified (×100).210

Movie S6. Strip (w = 50.6 mm) with fixed edges. The source is placed in the centre of the strip and shaken211

vertically at 136 Hz (corresponding to Fig. 4(a) in the main file). Here we report the field patterns of the212

symmetrical displacement (see fig. S7 for total displacement) as well as trajectories of specific particles over213

a full wave cycle. The motion was magnified (×150).214

Movie S7. Strip (w = 50.6 mm) with fixed edges. Two sources are facing each-other and rotated symmetrically215

at 136 Hz (corresponding to Fig. 4(b) in the main file) for selective excitation of S1. Here we report the field216

patterns of the symmetrical displacement as well as trajectories of specific particles over a full wave cycle.217

The motion was magnified (×150).218

Movie S8. Strip (w = 50.6 mm) with fixed edges. Two sources are facing each-other and shaken horizontally219

in an anti-symmetrical manner at 102 Hz (corresponding to Fig. 4(c) in the main file) for excitation of modes220

A1 and A2 in the lower region and A∗1 and A∗2 in the upper region of the strip. We report the field patterns221

of the anti-symmetrical displacement as well as trajectories of specific particles over a full wave cycle. The222

motion was magnified (×100).223

Movie S9. Strip (w = 50.6 mm) with fixed edges. Two sources are facing each-other and rotated in an224

anti-symmetrical manner at 102 Hz (corresponding to Fig. 4(d) in the main file) for selective excitation of225

modes A1 in the lower region and A∗2 in the upper region of the strip. We report the field patterns of the226

anti-symmetrical displacement as well as trajectories of specific particles over a full wave cycle. The motion227

was magnified (×30).228
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