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SEMEDA: Enhancing Segmentation Precision with
Semantic Edge Aware Loss

Yifu Chen, Arnaud Dapogny, Matthieu Cord

Sorbonne Universit, UMR 7606, LIP6, 4 place Jussieu, Paris, France

Abstract

Per-Pixel Cross entropy (PPCE) is a commonly used loss on semantic segmen-
tation tasks. However, it suffers from a number of drawbacks. Firstly, PPCE
only depends on the probability of the ground truth class since the latter is
usually one-hot encoded. Secondly, PPCE treats all pixels independently and
does not take the local structure into account. While perceptual losses (e.g.
matching prediction and ground truth in the embedding space of a pre-trained
VGG network) would theoretically address these concerns, it does not con-
stitute a practical solution as segmentation masks follow a distribution that
differs largely from natural images. In this paper, we introduce a SEMantic
EDge-Aware strategy (SEMEDA) to solve these issues. Inspired by perceptual
losses, we propose to match the ’probability texture’ of predicted segmentation
mask and ground truth through a proxy network trained for semantic edge de-
tection on the ground truth masks. Through thorough experimental validation
on several datasets, we show that SEMEDA steadily improves the segmentation
accuracy with negligible computational overhead and can be added with any
popular segmentation networks in an end-to-end training framework.

Keywords: Semantic Segmentation, Loss function, Computer vision

1. Introduction

Semantic segmentation is one of the fundamental domains of computer vi-
sion, which aims at assigning a semantic label to each pixel of an image. Current
state-of-the-art methods mainly rely on fully convolutional neural network archi-
tectures [1], that are trained by optimizing a per-pixel loss between predictions5

and ground truth labels. Fully convolutional neural networks cleverly inherit
the idea of classifying each pixel by using a patch centered on it. In this manner,
popular classification networks can be adapted into a fully convolutional fashion
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Figure 1: Segmentation results: contrarily to traditional losses for semantic segmentation, the
proposed SEMEDA approach enforces structure on the output masks. Ground truth edges
are represented by white lines in the last column. The proposed SEMEDA framework allows
a significantly better fit to the object boundaries and structure. This visualization of our
method has been done with a Deeplab-v2 backbone.

and their learned representations can be transferred to segmentation tasks by
training them with per-pixel cross-entropy (PPCE) loss. This loss is a natural10

choice as a spatial extension of cross-entropy loss, which is the gold standard
for classification. However, in this paper, we argue that PPCE loss has some
drawbacks in image semantic segmentation context.

Firstly, PPCE loss is just an average over each pixel’s accuracy and can not
capture structural differences between output and ground-truth segmentation15

masks (problem a). Each pixel is treated equally and independently in PPCE
loss. For example, a good segmentation mask should preserve the semantic
boundary of each object. However, PPCE loss is not capable to measure this
similarity. As a result, models trained with PPCE loss usually struggle to out-
put geometrically correct predictions. A similar issue has been found in image20

transformation problems, where an input image is transformed into an output
image. A per-pixel loss such loss L1 and loss L2 is usually used to in these prob-
lems [2, 3, 4]. As criticized by [5], per-pixel losses can not measure perceptual
differences between predicted and ground-truth images. An interesting solution
provided by [5] is called ”perceptual loss”, where generated and ground truth25

images are matched in the embedding spaces of the layers of a pre-trained clas-
sification network (usually VGG network). Traditionally, more emphasis is put
on the weights corresponding to the first layers: to a certain extent, perceptual
losses lead to match higher-order moments (e.g. gradients) extracted by these
layers, thus taking into account the neighborhood of each pixel. However, the30
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perceptual loss cannot directly be used for semantic segmentation. Firstly, the
perceptual loss is applied to RGB images while segmentation mask has C chan-
nels where C is to the total number of classes. Secondly, the distribution of
segmentation masks is wildly different from natural images.

Figure 2: Illustration of problem a-b of traditional PPCE loss for semantic segmentation.
problem a: the segmentation maps predicted by a network trained with PPCE exhibit a lack
of structure (green box: loose semantic boundaries, red box: holes in the predicted semantic
regions). problem b: Two different predictions (pred1 and pred2) that are equivalent for
cross entropy loss. However, we may prefer pred2 for boundary pixels (green) and pred1 for
center pixels (red).

Secondly, PPCE only depends on the predicted value of the ground truth35

class but not the entire distribution over all classes. (problem b). For instance,
consider a case where there are three classes (cat, dog and horse) and a pixel
that belongs to the region of a cat. Prediction (0.5, 0.25, 0.25) and (0.5, 0.45,
0.05) will have the same loss value since the cross entropy loss only depends
on the value 0.5 (class cat). However, these two predictions are not equivalent.40

If the pixel is located in the center of the cat region, we may prefer the first
prediction since it is more robust. If the pixel is located at the border where a
cat and a dog overlap, the second prediction may be more reasonable.

Problem a-b of the traditional PPCE loss are illustrated on Figure 2. To
address these problems, we propose in this paper a novel SEMantic EDge-Aware45

(SEMEDA) loss for training semantic segmentation networks. Classically, a se-
mantic segmentation network (displayed in red in Figure 3) is trained to output
a segmentation mask from an image. In SEMEDA, we use the embedding space
of another network that we refer to as the SEMEDA network (blue in Figure
3) to match the predicted segmentation mask with the corresponding ground50

truth. The SEMEDA network is pre-trained to detect semantic edges from the
segmentation masks. The contributions of this paper are three-fold:

• We analyze the drawbacks of the standard PPCE loss in semantic seg-
mentation problem and propose a novel SEMEDA loss that fixes these
issues.55

• We design a Semantic Edge Detection Network to capture local spatial
structure in the segmentation mask space.
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• We perform thorough experiments on VOC 2012, Cityscapes, and HELEN
datasets and show that SEMEDA leads to substantial improvements in all
tested configurations.60

The rest of this paper is organized as follows. First, section 2 presents
the state of the art methods in semantic segmentation and the relationship
with our method. Then, section 3 defines the methodology of the proposed
method. Thorough experiments including quantitative and qualitative analysis
are reported in section 4, and discussion and conclusion of these results are65

addressed in section 5.

2. Related Work

A traditional supervised machine learning algorithm contains three parts: a
hypothesis space, an objective function, and an optimization method. In this
point of view, the standard pipeline of nowadays methods for semantic seg-70

mentation is to train a well-designed convolution neural network with per-pixel
cross entropy loss by using an optimization algorithm such as stochastic gra-
dient descent through back-propagation. Fully Convolutional Network (FCN)
[1] is one of the first works who proposed this pipeline and it becomes a bench-
mark for later research. Methods based on FCN have made great progress in75

image semantic segmentation. These methods are generally composed of three
parts: a backbone network, segmentation blocks and a classifier. The backbone
network is transferred from a pre-trained classification network and produces
semantic features from an input image. Segmentation blocks are designed to
leverage geometry information to refine the feature obtained by the backbone80

network. Finally, prediction is produced by a simple linear classifier (1*1 con-
volution). FCN [1] produces coarse segmentation masks and achieves quite
good results on segmentation datasets. Recent works are almost all based on
FCN and are working on refining segmentation masks. Unlike traditional seg-
mentation methods which require specific optimization methods [6, 7], learning85

methods based on stochastic gradient descent work well for most types of neural
networks, including segmentation networks. Thus, the research of segmentation
methods based on deep learning mainly focuses on models and loss function de-
sign. The objective is to build models and loss functions that are more suitable
for segmentation tasks.90

In order to build segmentation-specific networks, there are two key compo-
nents: spatial information and context information. Since segmentation tasks
require pixel-level classification, models must use spatial information (no se-
mantic) to determine the class of each pixel, and then combine with contextual
information (semantics) to enhance pixel classification. One of the most ef-95

ficient way to exploit spatial information is ”Atrous” convolution introduced
by [8], which enlarges the receptive field without increasing the number of
model parameters. It can be used in the backbone to maintain more spatial
information and also in segmentation blocks to capture information of differ-
ent ranges [9]. The encoder-decoder architecture is another popular strategy100
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employed by many modern methods. The idea is that spatial information is
encoded in hidden layers of the encoder, and can be recovered by progressively
reusing these features in the segmentation blocks. [1, 10, 11] use deconvolu-
tion [12] to learn the upsampling while [13] reuses the pooling indices from the
encoder and learns extra convolutional layers. U-Net [14] adds skip connections105

from the encoder features to the corresponding decoder activations and SeENet
[15] concatenates enhanced the low level features with deep layers features. A
particularly useful type of spatial information is edge information, which is be-
lieved to be encoded in low level features. ET-Net [16] further proposes to
use these features for edge detection, and the resulting edge maps are then in-110

corporated into the segmentation prediction. Contextual information has also
proven to be effective for segmentation. The prediction of one pixel could be
corrected or enhanced by the semantic meaning of context pixels. A simple and
effective method is to aggregate contextual information at a fixed scale, such as
ASPP module [9] and pyramid average pooling [17]. Recently, attention mech-115

anisms [18, 19, 20, 21] have been introduced to estimate pixel-aware context
before aggregating. Although state-of-the-art methods incorporate both spatial
and contextual information, the proposed architectures are generally trained
with PPCE.

Another important direction of research is to define more relevant loss func-120

tions for semantic segmentation. There are three main criticisms of the com-
monly used PPCE loss. First, PPCE treats each pixel equally and, as such,
may suffer from data imbalanced problem. To address this problem, Long et
al. [1] proposes an individual weighting of the classes. Focal loss [22] tackles
this problem by putting more emphasis on pixels with difficult configurations.125

The second issue is that the evaluation metric used in tests is not cross entropy
loss but the Jaccard index (usually called mean intersection-over-union (mIoU)
score). Training models with a loss function that differ from the evaluation
metric could lead to undesired results. However, the limitation for using IoU
directly as a loss function in semantic segmentation lies from the fact that it130

is non-differentiable. Therefore, some approaches employed surrogate Jaccard
index losses [23, 24] or generalized dice loss [25] to slightly improve the mean
IoU test score. Nevertheless, neither PPCE nor Jaccard index can accurately
describe the structure quality of the segmentation mask as argued in [26, 27].
To better measure structural similarities between predicted and ground truth135

segmentation masks, some metrics such as E-measure [28], S-measure [29] and
weighted F-measure [30] have been proposed to replace mIoU for evaluations.
However, none of them are used as loss functions. [31] proposes to add an ad-
versarial loss to capture implicit structure similarities. However, the shape of
the semantic segments is too vague. A semantic segment does not separate two140

objects of the same class if they are overlapping. Moreover, considering the
limited dataset size for semantic segmentation with respect to the intrinsic data
variability (due to e.g. partial occlusion, object scaling or camera viewpoint
change), the possible shape of a semantic segment could be extremely compli-
cated and difficult to learn with a discriminator network. Another idea is to145

leverage edge information in loss functions. The most direct way is to use a
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weighted per-pixel loss where edge pixels are emphasized more than other pix-
els. [32] proposed to group pixels according to the distance from the pixel to
the closest semantic boundary and each group of pixels has a different weight.
Essentially, these methods assume that the closer to the boundary, the more150

important. However, this assumption is not always true and may provide dis-
continuities in the center of large objects since these pixels will have little impact
on total loss under this assumption.

3. Method overview
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Figure 3: Overview of our SEMEDA framework for semantic segmentation. A segmentation
network fθ outputs a predicted mask Ŝ. fθ can be any backbone network, e.g. in our
case, a Deeplab v2 or Deeplab v3+ architecture. Both this predicted mask, as well as the
corresponding ground truth mask are provided independently to a SEMEDA network gφ that
is trained for semantic edge detection (green arrow, Eq. 7). We complete the traditional
PPCE loss (purple arrow) by adding a novel SEMEDA loss term (Eq. 4), which consists in
matching the predicted segmentation mask with its corresponding ground truth within the
embeddings of the SEMEDA network, each layer l downwards red and black arrows giving

rise to a contribution L
gφ∗
l (Eq. 5).

Figure 3 illustrates the proposed SEMEDA method to train a deep network155

for semantic segmentation problems. First, we introduce how traditional ap-
proaches for semantic segmentation can be formulated, and what are common
pitfalls of such approaches. A contrario, our approach consists of matching a
predicted segmentation mask with its corresponding ground truth in the em-
bedding spaces of a pre-trained SEMEDA network. This network is trained to160

predict semantic edges from the ground truth segmentation masks. It is worth
noting that our network is not detecting semantic edges from RGB images as
it was done in [33]. SEMEDA network is trained to predict semantic edges
from the ground truth segmentation masks. The features of SEMEDA network
thus encode information of segmentation masks, and then are used to define165

SEMEDA loss function.

3.1. The pitfalls of naive segmentation approaches

A standard approach for training semantic segmentation networks is illus-
trated in Figure 3 (gray box). Let’s consider a semantic segmentation network
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fθ parameterized by weights θ, mapping a RGB image I ∈ RH×W×3 from a170

training dataset {I, S∗} into a segmentation mask Ŝ:

Ŝ = fθ(I) ∈ [0, 1]H×W×C (1)

where H (resp. W ) is the height (resp. width) of the input image and C is
the total number of semantic classes (including background). Such network is
usually trained upon optimization of a Per-Pixel Cross Entropy (PPCE) loss
LPPCE (purple arrow in Figure 3). PPCE measures the difference between the175

predicted label mask Ŝ and the ground truth mask S∗:

LPPCE(Ŝ, S∗) = −
H∑
i=1

W∑
j=1

C∑
c=1

Sc∗i,j log(Ŝci,j) (2)

We argue that this loss function exhibits several drawbacks for semantic
segmentation tasks. Firstly, PPCE treats all pixels independently and does not
take the local structure into account. As a result, the predicted segmentation
masks usually contain holes in the structure of the segmented objects or in-180

consistencies at their boundaries (problem a). Secondly, for each pixel, since
{Sc∗i,j}c∈C are usually one-hot encoded, PPCE only depends on the probability
of the ground truth class. Therefore, several predictions are given the same
penalty while the entropy of the predicted mask {Ŝci,j}c∈C may vary a lot for
that pixel (problem b).185

3.2. Structure learning through edge embeddings

In the frame of style transfer and image synthesis, the authors of [5] obtained
impressive results by defining high-level perceptual losses that involve a fixed
pre-trained network, such as ImageNet pre-trained VGG-19 [34] network. The
idea of this method is to measure the semantic difference between two images as190

the difference of their feature representations as computed by the fixed network.
However, this method cannot be straightforwardly translated to semantic seg-
mentation, as natural images and segmentation masks have different numbers
of channels and belong to wildly different distributions. However, let’s suppose
that we have access to another pre-trained network gφ∗ (that we refer to as the195

SEMEDA network) that maps any segmentation mask S ∈ [0, 1]H×W×C into a
binary semantic edge map Ê:

Ê = gφ∗(S) ∈ [0, 1]H×W×2 (3)

In what follows, we respectively note ψ̂1,ψ̂2,...,ψ̂L the embeddings of the L
layers of gφ∗(Ŝ), and ψ∗1 ,ψ∗2 ,...,ψ∗L the embeddings of the L layers of gφ∗(S∗).

Similarly to [5], we can thus match Ŝ and S∗ within the embeddings of gφ∗200

(black and red arrows in Figure 3). We thus define our SEMantic EDge-Aware
(SEMEDA) loss as follows:

Lgφ∗

SEMEDA(Ŝ, S∗) =

L∑
l=1

λlL
gφ∗

l (Ŝ, S∗) (4)
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where for all layers l, the contribution of this layer of the SEMEDA network to
the total loss is:

Lgφ∗

l (Ŝ, S∗) = ||ψ̂l − ψ∗l ||1 (5)

Where λl is a hyperparameter representing the importance of this layer in the205

total loss. The final loss function for the segmentation network is a combination
of the PPCE loss on the segmentation masks and the proposed SEMEDA loss:

Lgφ∗
tot (Ŝ, S∗) = LPPCE(Ŝ, S∗) + Lgφ∗

SEMEDA(Ŝ, S∗) (6)

Since gφ∗ is trained to detect inter-class boundaries, minimizing LSEMEDA

naturally penalizes high-entropy configurations where the contributions of sev-
eral classes are important (problem b). Furthermore, it also heavily penalizes210

discontinuities in the structure of objects (problem a). Thus, semantic edge
detection from segmentation masks is a particularly interesting candidate ob-
jective for gφ∗ . In what follows, we describe how it can be formalized.

3.3. Learning to detect semantic edges

Given an image I and its corresponding ground truth segmentation mask S∗,215

we generate a binary ground truth semantic edge map E∗ by setting all pixels
that do not have 8 identically-labeled neighbor pixels as 1, and other pixels as
0. These ground truth semantic edge maps are calculated beforehand and no
further computation is needed afterward.

We train the SEMEDA network gφ to minimize PPCE loss between semantic220

edge maps Ê∗ = gφ(S∗) predicted upon the ground truth segmentation masks
S∗, and ground truth generated edge maps E∗, as indicated by the green arrow
in Figure 3:

LPPCE(Ê∗, E∗) = −
H∑
i=1

W∑
j=1

C∑
c=1

Êc∗i,j log(Êci,j) (7)

This network is depicted in Figure 3 (in blue). Once the SEMEDA network is
trained with parameters φ∗, we train the segmentation network fθ by minimizing225

loss Lgφ∗

SEMEDA. The steps for training a segmentation network with SEMEDA
are summarized in Algorithm 1.

3.4. Implementation details

Segmentation network:. SEMEDA is agnostic to the architecture of the seg-
mentation network fθ, which can be any popular architecture: in what follows,230

we experiment with Deeplab-v2 [9] as well as the recent Deeplab V3+ [35].
Both architectures are composed of a backbone feature extraction network and
differ by the refinement portion of the network. For that matter, we also exper-
iment with either ImageNet pre-trained ResNet-101 and Xception-71 backbone
networks.235
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Algorithm 1 Train a segmentation network with SEMEDA

Input:
I RGB Images
S∗ Ground truth segmentation masks

Output:
θ∗ Parameters of the segmentation net

// pre-training the SEMEDA network gφ
for all batches B do

for all masks S∗k ,k = 1, ...,K in B do
Generate ground truth edge map E∗k from S∗k by
examining neighbouring pixels labels
Ê∗k = gφ(S∗k)

φ← φ− 1
K

∂
∂φL

PPCE(Ê∗k , E
∗
k)

end for
end for
φ∗ ← φ
// training the segmentation network fθ
for all batches B do
for all labelled images Ik in B do
Ŝk = fθ(Ik)
θ ← θ − 1

K
∂
∂θL

gφ∗
tot (Ŝk, S

∗
k)

end for
end for
θ∗ ← θ
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SEMEDA network:. Because the task of detecting semantic edges from the seg-
mentation mask is rather straightforward, we use a simple CNN composed of
L = 3 layers with 16 → 32 → 2 channels and ReLU activation (except for the
last layer, which has a softmax activation) as gφ.

In order to keep the runtime and memory footprint reasonable, we train our240

models by feeding the SEMEDA networks with 321 × 321 random crops for
both datasets without multi-scale inputs. We augment the data with random
scaling and random mirroring. Since we use mini-batches of 6 images, we fix
parameters in batch norm layers and we set the initial learning rate to 5 · 10−4.
As is classically done in the literature, we report the mean intersection over245

union (mIoU) metric over all the classes as our evaluation metric.

4. Experiments

In this section, we present our experiments to validate SEMEDA. First,
we perform an ablation study and discuss hyperparameter settings. Then, we
validate our approach on two semantic segmentation datasets and a face parsing250

dataset, both quantitatively and qualitatively.

4.1. Experimental setup

We conduct our experiments on the Pascal VOC 2012 dataset [36], which
contains 20 foreground object classes as well as one background class. We
train our models on the augmented version of the dataset [37] containing 10,582255

training images and report the mean Intersection over Union (mIoU) score on
the validation set which contains 1449 images.

The Cityscapes dataset contains 2975 images annotated with pixel-wise
annotations of 18 object classes and one background class for training. We re-
port mIoU scores on the validation set, which contains 500 images. For memory260

reasons, we downsample images to half resolution, i.e. 1024×512 for Deeplab v2
based experiments. We keep them in original size for experiments with Deeplab
v3+ in order to achieve better results.

HELEN is a face parsing dataset containing 2000 images for train and 330
images for test set. Each image is annotated with 11 labels, such as background,265

hair, skin, brows, eyes, nose, upper/lower lip, and mouth sub-regions. We report
the F1-score for each face part which is commonly used in existing face parsing
literature.

We validate SEMEDA by showing (a) that introducing a structural term via
semantic edge detection allows to better capture the underlying structure of the270

objects, and (b) that the SEMEDA network encodes richer embeddings com-
pared to a naive approach (e.g. using Sobel kernels).Most edge-based segmenta-
tion methods consist in performing edge detection as an auxiliary task and then
incorporating the edge features into the segmentation prediction. Our method
involves using an additional loss function which can better capture structural275

information, including edge information, from the segmentation masks. Thus,
our method is orthogonal to the edge-based methods mentioned above, and can
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Method λ1 λ2 λ3 Cityscapes VOC 2012

PPCE - - - 75.5 77.1

Sobel

0.5 - - 75.4 77.3
1 - - 76.1 77.5
2 - - 76.2 77.4
4 - - 76.3 77.6

SEMEDA

0.5 0.5 0.5 76.9 77.6
1 0.5 0 76.2 77.9
0.5 1 0 76.3 77.8
1 0.5 0.25 76.3 78.1
1 1 0 76.1 78.5
2 4 0 76.9 78.8
4 2 0 77.3 78.6
4 4 0 77.1 78.4

Table 1: Comparison of results (% mIoU) on Cityscapes and VOC 2012 validation sets with
different hyperparameter (λl) values and an ImageNet pre-trained Deeplab v3+/Xception 71
model. SEMEDA provides better results in all tested configurations.

be used in conjunction with them. The most naive approach to come close to
our idea is to use Sobel kernels to define a loss function. To this end, we compare
our model with two baselines:280

• PPCE: a segmentation network trained with a traditional per-pixel cross-
entropy loss.

• Sobel: a setup similar to SEMEDA, except the SEMEDA network is
replaced by Sobel kernels that independently process each class in the
segmentation mask.285

In order to better analyze the improvements obtained by SEMEDA, we do
not use tricks such as adding multi-scale and flipped images during inference.
In what follows, we show that SEMEDA significantly enhances the segmenta-
tion accuracy regardless of the architecture of the segmentation network, the
underlying backbone, the pre-training strategy and on multiple datasets.290

4.2. Ablation study

In this section, we provide insight into the behavior of SEMEDA depending
on the only additional hyperparameters {λl}l=1...L. For Sobel, there is only
one hyperparameter, the coefficient of the edge term λ1. We perform abla-
tion study on Cityscapes and VOC 2012 datasets with an ImageNet pre-trained295

Deeplab v3+/Xception 71 model. Results under the standard evaluation metric
mIoU are shown in Table 1. While the Sobel baseline model does improve the
accuracy slightly, particularly with λ1 > 1, SEMEDA allows a far more signif-
icant accuracy boost in all tested configurations. Likely, this is due to the fact
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that through its convolutional layers, SEMEDA mixes the class-wise segmen-300

tation channels in a one-vs-one manner, while the Sobel baseline model does
not, separating classes in a one-vs-all manner. Thus, SEMEDA encodes richer
embeddings that more efficiently capture structure in the segmentation masks.
It is worth noting that matching the output of the last layer corresponding to
semantic edges (λ3) contributes less to the performance. The reason is that the305

output of SEMEDA is a binary mask, where no distinction is made between the
semantic edges belonging to different classes. In other words, in such a case, the
presence of an edge at a specific location simply implies that this pixel marks a
boundary between different objects whose categories are unknown. Therefore,
this last layer of the SEMEDA network contains much less information than310

the first ones. To draw a parallel, this echoes results obtained in [5], where it
is better to put more emphasis on the first layers of the SEMEDA network (in
our case, λ1 and λ2 > 1).

As many works suggest, the mIoU metric has many drawbacks and does
not necessarily fully reflect the quality of the segmentation results. To this end,315

we also evaluate our methods against another commonly used metric, F1-score,
as well as the recently proposed E-measure (enhanced-alignment measure [28])
which simultaneously captures image level statistics and local pixel matching
information. The comparison between the baseline model and the same model
trained with SEMEDA on VOC 2012 val set (resp. Cityscapes val set) are shown320

in Table 2 (resp. Table 3). Our method is better than the baseline method for all
these evaluation metrics on both datasets. Tables 2 and 3 also feature per-class
comparison for each metric, showing that SEMEDA consistently improves the
baseline accuracy for nearly every class and metric. This shows that SEMEDA
allows to better capture the object structure by empathising object boundaries325

as well as enforcing continuity inside the objects.

Metric Method aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mean

IoU
Baseline 86.3 40.1 89.5 71.6 81.6 94.6 86.4 93.0 39.3 87.9 54.8 89.1 85.4 82.2 85.2 58.8 88.7 50.1 85.1 76.1 77.1
Semeda 88.3 41.0 88.8 73.1 82.8 95.1 87.1 93.1 42.9 90.3 56.7 89.2 88.7 85.4 86.2 59.6 90.1 51.5 89.6 80.9 78.8

F1-score
Baseline 92.6 57.2 94.5 83.5 89.8 97.2 92.7 96.4 56.4 93.5 70.8 94.2 92.1 90.3 92.0 74.0 94.0 66.8 92.0 86.4 85.9
Semeda 93.8 58.1 94.1 84.5 90.6 97.5 93.1 96.4 60.0 94.9 72.4 94.3 94.0 92.1 92.6 74.7 94.8 68.0 94.5 89.4 87.0

E-measure
Baseline 92.9 74.3 94.3 87.9 69.6 90.4 81.5 94.4 68.7 92.4 67.9 95.7 93.2 92.9 88.0 65.9 91.9 73.4 93.3 83.6 85.1
Semeda 94.8 75.9 93.8 87.9 73.6 91.4 81.2 94.9 76.1 92.2 69.5 95.1 94.6 94.0 88.0 70.6 95.5 73.0 95.1 86.1 86.6

Table 2: Different evaluation metrics (mIoU, F1-score and E-measure) on VOC 2012 val set.
Our method is better than the baseline for all of these evaluation measures.

Metric Method road sidewalk building wall fence pole light sight veg terrain sky person rider car truch bus train mbike bike mean

IoU
Baseline 98.1 84.2 92.0 57.7 60.4 59.6 60.0 72.3 91.9 63.7 94.4 77.8 55.6 94.1 83.1 83.8 73.5 59.5 72.4 75.5
Semeda 98.2 85.3 92.6 58.3 59.9 62.4 63.6 75.1 92.4 63.9 94.9 79.9 59.2 95.0 85.2 89.2 76.9 62.0 74.2 77.3

F1-score
Baseline 99.0 91.4 95.8 73.2 75.3 74.7 75.0 83.9 95.8 77.8 97.1 87.5 71.4 96.9 90.8 91.2 84.7 74.6 84.0 85.3
Semeda 99.1 92.01 96.2 73.7 74.9 76.9 77.8 85.8 96.1 77.9 97.4 88.8 74.4 97.5 92.0 94.3 86.9 76.5 85.2 86.5

E-measure
Baseline 99.2 96.6 97.8 77.4 87.8 94.6 85.7 94.2 98.5 80.4 97.3 92.2 79.0 98.2 75.9 87.7 86.7 73.7 88.3 89.0
Semeda 99.2 96.7 97.9 79.0 87.4 94.5 87.8 94.4 98.4 81.1 97.4 92.7 80.0 98.5 83.6 87.5 87.7 77.3 88.7 90.0

Table 3: Different evaluation metrics (mIoU, F1-score and E-measure) on Cityscapes val set.
Our method is better than the baseline for all of these evaluation measures.

4.3. Quantitative validation

Table 5 shows results obtained on VOC 2012 and Cityscapes datasets, with
Deeplab v2 architecture and either Imagenet/MSCoco pre-training. Table 4.3
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Pre-train Method VOC 2012 Cityscapes

ImageNet
PPCE 72.9 64.1
SEMEDA 74.2 66.6

ImageNet + COCO
PPCE 75.3 65.8
SEMEDA 76.5 67.8

Table 4: Results (%mIoU) on Cityscapes and VOC 2012 validation sets with Deeplab v2
and different pre-training strategies. For both pre-trained strategies, SEMEDA substantially
enhances the performance.

Backbone Method VOC 2012 Cityscapes

ResNet-101
PPCE 74.4 72.4
SEMEDA 75.3 73.6

Xception-71
PPCE 77.1 75.5
SEMEDA 78.8 77.3

Table 5: Results (%mIoU) on Cityscapes and VOC 2012 validation sets with Deeplab v3+ pre-
trained on ImageNet (with no additional pre-training on COCO or JFT). For both backbone
networks, SEMEDA substantially enhances the performance.

shows results obtained with and without SEMEDA with a stronger Deeplab330

v3+ baseline and two different backbone networks. In all tested configurations,
regardless of the dataset, pre-training method, or backbone, SEMEDA substan-
tially enhances the overall accuracy. Finally, Table 6 shows results obtained
with Deeplab v3+ trained upon either PPCE or SEMEDA loss for face parsing
on HELEN dataset. Similarly to benchmarks on VOC 2012 and Cityscapes,335

SEMEDA significantly enhances the segmentation accuracy for all classes by
enforcing structure in the segmentation masks.

In order to more precisely assess this phenomenon, we evaluate SEMEDA on
boundary/non-boundary trimaps (a narrow band around boundary illustrated
in Figure 4), as it was done in [38, 26]: at test time, we divide the pixels340

into two subsets, whether they belong to a boundary (trimap) or non-boundary
region, as indicated by the semantic edge maps generated from the ground
truth segmentation masks. To do so, we vary the width of a band centered
on the boundary and count as positive all the pixels in the region defined by
this band, negative otherwise: thus, the more the width increases, the less345

Brows Eyes Mouth Overall

PPCE 74.76 82.66 87.8 85.84
SEMEDA 75.42 83.5 90.37 87.36

Table 6: Results (F1-Score) for different face subparts on HELEN dataset with Deeplab
v3+/Xception-71 models. SEMEDA provides better results on all classes.
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Figure 4: Left to right: original image, ground truth segmentation and two boundary/non-
boundary trimaps: one with 1 pixel width and the other with 10 pixels width. The red areas
represent the boundary regions while black areas represent non-boundary regions. White areas
depict ’void’ pixels.

precise the boundary definition is. Results are illustrated in Figure 5 with
Deeplab v3+ architecture. SEMEDA significantly enhances the mIoU on the
boundary regions on both datasets, meanwhile, the Sobel baseline lies closer
to the baseline performance. Particularly for strict boundaries (trimap width
2, 3), the mIoU improvement is 4 pts on VOC 2012 and 2.4 pts on Cityscapes,350

which is considerable. On non-boundary regions, the improvement is also very
significant on both datasets. This is due to the fact that SEMEDA strongly
penalizes the presence of holes or discontinuities in the internal structure of
the predicted objects (which are tagged as non-boundary on the ground truth
markups). Thus, SEMEDA allows to better capture the structure of objects, as355

well as to refine the inter-class boundaries in the segmentation masks.

4.4. Comparison to leading methods

We compare our model with leading semantic segmentation methods on two
datasets: Pascal VOC 2012 test set and Cityscapes test set. After finding
the best model variant on val set, we then further fine-tune the model on the360

train + val set. Our proposed SEMEDA attains the test set performance of
86.0% on VOC 2012 and 77.1% on Cityscapes, as shown in Table 7 and Table 8,
which are comparable with other leading methods. On both datasets, SEMEDA
is better than the reproduced Deeplab v3+ model trained with PPCE loss. It
is worth noting that, due to hardware limitations, we were unable to reproduce365

the results published in the Deeplab v3+ paper [35]. The biggest difference is
that we have to use small batch size with fixed batch norm parameters dur-
ing training. The importance of large batch size for training Deeplab models
has been experimentally validated in [39]. The original Deeplab v3+ experi-
ments [35] have set batch size at 16 to train the batch norm parameters, while370

in our experiments, we could only set batch size at 4 on VOC 2012 and at 2
on Cityscapes with fixed batch norm parameters. Other training strategies de-
scribed in [39, 35] such as decreasing output stride to 4 for training, duplicating
the images that contain hard classes (on VOC 2012) and fine-tuning with coarse
annotated dataset (Cityscapes) were also omitted for the same reason.375
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Figure 5: mIoU for different models on boundary and non-boundary regions on VOC 2012
and Cityscapes datasets. SEMEDA consistently enhances the performance on both regions
for all bandwidth.

Method mIoU
LRR 4x ResNet-CRF [40] 79.3

Deeplabv2 [9] 79.7
SegModel [41] 81.8

Deep Layer Cascade [42] 82.7
TuSimple [43] 83.1

Large Kernel Matters [44] 83.6
RefineNet [45] 84.2
PSPNet [46] 85.4

Deeplabv3 [39] 85.7
EncNet [47] 85.9

Deeplabv3+(reproduced) 85.0
Semeda (ours) 86.0

Table 7: Test set results on Pascal VOC 2012 (mIoU)

4.5. Qualitative assessment

To understand what SEMEDA network has learned, Figure 6 illustrates
the semantic edge embeddings learned by the first two CNN layers of the
SEMEDA network. These embeddings are visually similar to traditional edge
maps (c1,c2,c3), except that the filters of the SEMEDA network encompasses380
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Figure 6: Example of embeddings of the SEMEDA network: (a1,a2,a3) original images,
(b1,b2,b3) predicted segmentation masks, (c1,c2,c3) and (d1,d2,d3) two feature maps of the
SEMEDA network.
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Method Coarse mIoU
Deeplabv2-CRF [9] 5 70.4

Deep Layer Cascade [42] 5 71.1
ML-CRNN [48] 5 71.2

LRR-4x [40] 3 71.8
RefineNet [45] 5 73.6
FoveaNet [49] 5 74.1
PSPNet [46] 5 76.3

Deeplabv3+(reproduced) 5 75.4
Semeda (ours) 5 77.1

Table 8: Test set results on Cityscapes (mIoU)

inter-class relationships in a one-vs-one fashion (d1,d2,d3), instead of simply
separating object and other classes in a one-vs-all setting, as it is the case with
simpler edge detector such as Sobel kernels. These richer embeddings can more
efficiently encompass the structure in the segmentation masks.

To better illustrate the effectiveness of our proposed method, we showcase385

the entropy maps of the predictions in Figure 7, illustrating the confidence of
the predictions (the higher the entropy score, the less robust the classification
is). Thus, with our method, high entropy activations (red points) only occur
along the very boundaries of objects, whereas the baseline method produces high
entropy scores both inside and at the boundary of objects. These results quali-390

tatively prove that our approach not only refines the accuracy on the boundary
pixels, but also makes the predictions within the object more certain and more
uniform.

Figure 8,9,10 shows segmentation masks outputted with Deeplab v3+/Xception
71 trained with SEMEDA and with PPCE only (baseline). For each image, the395

segmentation mask provided by the network is overlayed with the input im-
age. As observed, predictions generally conform better geometric edges when
SEMEDA is added. For example, in the first image of VOC 2012, SEMEDA
corrects wrong predictions (class dog (purple) confused with class horse (pink))
and produces better shaped predictions. This improvement is consistent on400

other datasets where predictions of different classes such as person, sidewalk and
brows, are better conformed with geometric edges. As stated above, SEMEDA
allows to better capture the structure of the segmented objects, by putting more
emphasis on the inter-class boundaries, as well as to avoid discontinuities (e.g.
holes) inside the objects. Notice, for instance, how fine-grained elements such405

as traffic signs, tree leaves or people shapes are better captured with edge-aware
loss on Cityscapes, and how well the segmentation fits the objects on VOC 2012
and the faces on HELEN.
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Figure 7: Column (a) shows an input image and the corresponding semantic segmentation
ground-truth. Column (b) and (c) show segmentation results (bottom) along with prediction
entropy maps produced by different approaches (top). Baseline model produces noisy segmen-
tation predictions as well as high entropy activations. Our models, on the other hand, manage
to produce correct predictions at high level of confidence. (Red signifies a high entropy value.)
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Figure 8: Examples of predicted segmentation masks on VOC 2012 dataset, and comparison
between a baseline Deeplab v3+ model trained with PPCE and SEMEDA. SEMEDA produces
better shaped predictions compared with the baseline.
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Figure 9: Examples of predicted segmentation masks on Cityscapes dataset, and comparison
between a baseline Deeplab v3+ model trained with PPCE and SEMEDA. SEMEDA produces
better shaped predictions compared with the baseline.
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Figure 10: Examples of predicted segmentation masks on HELEN dataset, and comparison
between a baseline Deeplab v3+ model trained with PPCE and SEMEDA. SEMEDA produces
better shaped predictions compared with the baseline.
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5. Conclusion

In this paper, we proposed a new learning strategy for semantic segmenta-410

tion. Our approach leverages a semantic edge-aware loss for implicitly integrat-
ing structural information into segmentation predictions. It consists of training
a semantic edge detection (SEMEDA) network to map segmentation masks to
the corresponding edge maps. The predictions outputted by the segmentation
network can then be optimized (via the proposed SEMEDA loss) in the em-415

bedding space of the semantic edge detection network, similarly to perceptual
losses.

Through extensive evaluation on several datasets with very different appli-
cation contexts, we showed that SEMEDA significantly improves the overall
performance of semantic segmentation networks in all tested hyperparameter420

configurations, segmentation network architectures, backbone networks, and
pre-training strategies. More precisely, we showed that SEMEDA works by en-
forcing inter-class boundary structure as well as avoiding holes in the segmented
objects. In addition, SEMEDA does not require any additional annotation and
negligible computational overhead, thus can be straightforwardly combined with425

traditional losses for improving the performance of any semantic segmentation
network.

The proposed work leads us to rethink how structural information, such as
semantic edge detection can be integrated into existing segmentation architec-
tures for enhanced precision, beyond merely treating semantic edge detection430

and segmentation in a naive multi-task fashion. As such, it opens up a new space
for designing edge-enhanced semantic segmentation architectures. SEMEDA
naturally fits into the various applications of semantic segmentation, such as
autonomous driving or medical imaging systems. In addition, SEMEDA could
be adapted without bells and whistles to closely related domains, such as in-435

stance segmentation or body part detection. Last but not least, we showed in
this work that the embeddings of the SEMEDA network contains rich informa-
tion related to the structure of the objects. Hence, these embeddings could be
used in the context of semantic segmentation on videos, for instance to generate
better quality super-trajectories (extending [50]) by matching similar objects440

with enforced semantic edge-related structure constraints.
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