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A few decades ago, quantum optics stood out as a new domain of physics by exhibiting
states of light with no classical equivalent. The first investigations concerned single pho-
tons, squeezed states, twin beams and EPR states, that involve only one or two modes
of the electromagnetic field. The study of the properties of quantum light then evolved
in the direction of more and more complex and rich situations, involving many modes,
either spatial, temporal, frequency, or polarization modes. Actually, each mode of the
electromagnetic field can be considered as an individual quantum degree of freedom. It
is then possible, using the techniques of nonlinear optics, to couple different modes, and
thus to build in a controlled way a quantum network (Kimble, 2008) in which the nodes
are optical modes, and that is endowed with a strong multipartite entanglement. In
addition, such networks can be easily reconfigurable and subject only to weak decoher-
ence. They open indeed many promising perspectives for optical communications and
computation.
Because of the linearity of Maxwell equations a linear superposition of two modes is
another mode. This means that a ”modal superposition principle” exists hand in hand
with the regular quantum state superposition principle. The purpose of the present
review is to show the interest of considering these two aspects of multimode quantum
light in a global way. Indeed using different sets of modes allows to consider the same
quantum state under different perspectives: a given state can be entangled in one basis,
factorized in another. We will show that there exist some properties that are invariant
over a change in the choice of the basis of modes. We will also present the way to find the
minimal set of modes that are needed to describe a given multimode quantum state. We
will then show how to produce, characterize, tailor and use multimode quantum light,
consider the effect of loss and of amplification on such light and the modal aspects of
the two-photon coincidences. Switching to applications to quantum technologies, we will
show in this review that it is possible to find not only quantum states that are likely to
improve parameter estimation, but also the optimal modes in which these states ”live”.
We will finally present how to use such quantum modal networks for measurement-based
quantum computation.
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I. INTRODUCTION

Modes of the electromagnetic field have always been an
important tool, both for theory and applications, helping
physicists to describe and use subtle properties of light.
For example, optical telecommunications, in the search
of increasing further the number of degrees of freedom
used to encode information in a single beam of light,
was led to the multiplexing of more and more optical
modes, successively temporal modes, frequency modes
and transverse modes.

Early research in Quantum Optics concentrated on
simple non-classical states of light, like single photons,

squeezed states, twin beams and EPR states, that in-
volved only one or two modes of the electromagnetic
field. Then, quantum states involving more and more
quantum degrees of freedom were considered. This was
implemented either by increasing the size of Fock state
basis in a given mode (which is not the subject of the
present review), or by increasing the number of modes
on which the quantum state extends, these modes being
spatial modes for the study the quantum properties of
optical images, or time/frequency modes to investigate
the quantum properties of light pulses.

In addition to the intrinsic interest of exploring fur-
ther the quantum aspects of light in all its manifesta-
tions, the study of highly multimode quantum light is
of great interest in the perspective of applications in the
domains of quantum technologies. For example, in order
to be competitive with present classical computers, the
future quantum computer will necessarily make use of
quantum states displaying entanglement between many
degrees of freedom, and multimode quantum states of
light are promising candidates to achieve this goal.

This review paper aims at characterizing from a very
general perspective the numerous specific features and
interests of multimode quantum light. Indeed, Quantum
Optics, as the child of Optics and Quantum Mechanics,
has inherited a double linearity: that of Maxwell equa-
tions, for which optical modes form a basis of solutions,
and that of Quantum Mechanics, which involves bases of
quantum states. One is naturally led to use two ”inter-
twined” Hilbert spaces to describe multimode quantum
light: that of modes, and that of quantum states. The
properties of single photon quantum states, for example,
are intimately related to the characteristics of the mode
in which they are defined.

The specific approach of this paper is to consider these
two intricate aspects of quantum light on an equal foot-
ing. Note that in a given physical system, there are many
possible bases of optical modes: one has the choice of the
basis of modes used to describe it. Using different sets
of modes allows us to consider the same quantum state
under different perspectives: for example a given quan-
tum state can be entangled in one basis, and factorized
in another. One can also derive and use the basis of
so-called ”normal modes”, or look for ’principal modes’,
which contain most of the information of the multimode
system.

We will show that there exist some properties that
are invariant over a change in the choice of the basis
of modes, like non-classicality, negativity of the Wigner
function and total photon number. We will also present
the way to find the minimal set of modes that are needed
to describe a given multimode quantum state, an im-
portant tool to reduce the size of the Hilbert space of
the system. We will describe how to use modal noise
correlation matrices to extract ”principal modes” that
concentrate and simplify the relevant information over
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complicated multimode states, especially (but not only)
in the case of Gaussian noise. We will show that there al-
ways exists a mode basis on which multimode entangled
Gaussian states, pure or mixed, are separable. We will
detail the different detection techniques allowing experi-
mentalists to determine such correlation matrices, as well
as the ways to generate multimode light and tailor the
spatio-temporal shapes of the modes. The effect of loss
and of amplification on multimode non-classical light will
also be presented. Switching to applications to quantum
technologies, we will also show that it is possible to find
not only quantum states that are likely to improve pa-
rameter estimation, but also the optimal modes in which
these states ”live”. We will finally present how to use
such quantum modal networks for measurement-based
quantum computation.

This review will deal with both discrete variables and
continuous variables, with an emphasis on the latter, i.e.
on the properties of quantum field fluctuations. In ad-
dition, we will not treat polarization and angular mo-
mentum modes, which have been the subject of intense
research (Barnett S, 2016; Korolkova et al., 2002). We
will not treat either the multimodal aspects of light mat-
ter interaction (Afzelius et al., 2009; Nunn et al., 2008).
We will be interested more in ”scalable” properties, i.e.
features that can be readily extended to large numbers of
modes, than in two-mode systems. Even with these re-
strictions, the domain is vast and the object of numerous
theoretical and experimental investigations, so that we
will not claim to present in this paper an exhaustive ac-
count of it and describe what we consider the most strik-
ing features of the domain. There are already a number of
review papers and books that cover parts of this domain
(Adesso and Illuminati, 2007a; Adesso et al., 2014; Ansari
et al., 2018; Braunstein and Pati, 2012; Bruss and Leuchs,
2019; Furusawa, 2015; Grynberg et al., 2010; Leuchs and
Korolkova, 2019; Ou, 2017; Simon et al., 1994; Weed-
brook et al., 2012), but, to the best of our knowledge, no
fully comprehensive presentations of it.

II. DESCRIPTION OF CLASSICAL MULTIMODE LIGHT

In this paper, we will use the complex representation,
or analytical signal, E(+)(r, t), of a classical electric field,
such as the real field, E(r, t), is the vector equal to
E(+)(r, t) + (E(+)(r, t))∗.

A. Mode of the electromagnetic field and mode basis:
definitions

We will call mode of the electromagnetic field a vector
field f1(r, t) which is a normalized solution of Maxwell
equations in vacuum. It satisfies the three following equa-

tions:

(∆− 1

c2
∂2

∂t2
)f1(r, t) = 0, ∇ · f1(r, t) = 0 (1)

and at any time t:

1

V

∫
V

d3r |f1(r, t)|2 = 1 (2)

V being the very large volume which contains the whole
physical system under consideration.

Starting from a given mode, which can have any shape
in space and time provided it fulfills equations (2), one
can always build a orthonormal mode basis {fm(r, t)} on
which one can decompose any solution of the Maxwell
equations and which has the function f1(r, t) as its first
element. Another way of generating a mode basis is to
constrain the solutions of Maxwell equations by specific
boundary conditions, for example in a resonator.

As we have restricted ourselves to the case where the
field of interest is enclosed in a spatial box of size V, this
basis is discrete and can be labeled by a set of integers
globally named as m, so that one can write any complex
field E(+)(r, t) as:

E(+)(r, t) =
∑
m

Emfm(r, t) (3)

with, at any time t:

1

V

∫
V

d3r f∗m(r, t) · fm′(r, t) = δmm′ (4)

Em being the complex amplitudes of the different modes
that completely define a given field. It will be often useful
to consider the field quadratures EmX and EmP as the
real and imaginary components of Em:

Em = EmX + iEmP (5)

B. Hilbert space of modes

Equation (3) shows that a given solution of Maxwell
equations E(+)(r, t) can be considered as a vector be-
longing to a Hilbert space, called ”modal space”, that we

will denote by an arrow
−→
E :

−→
E =

∑
m

Em
−→
fm (6)

the sum being in practice limited to a finite number of

modes N .
−→
fm is a unit vector in the modal space, i.e. a

column vector of zeros except for a 1 at the mth position.−→
E is therefore the column vector (E1, E2, ...)T , T denoting
the transposition operation in the modal Hilbert space.

Note that the modal column vector
−→
fm and the electric

field fm(r, t), function of r and t, are two representations



4

of the same physical mode. We will thus often denote the
mode as fm, a notation independent of any representa-
tion.

The inner product is defined as usually:

−→
F T∗ ·

−→
G =

N∑
m=1

F∗mGm (7)

−→
F T∗ = (

−→
F T )∗ being the line matrix dual of

−→
F . The inner

product is also equal to the spatial overlap between the
two associated electric fields:

−→
F T∗ ·

−→
G =

1

V

∫
V

d3rF ∗(r, t) ·G(r, t) (8)

Note that the value of the inner product (8) does not
depend on time.

In the following, we will extend the notation with an
arrow to other column vectors of dimension N , for ex-

ample
−→
Â , of components Âm which are quantum opera-

tors.
−→
ÂT denotes the corresponding line vector of opera-

tors Âm, the transposition operation T acting only in the
modal space leaving operators unchanged. In the same

spirit
−→
Â † is the column vector of components Â†m, the

operation denoted by symbol † being used only for the
Hilbert space of quantum operators.

C. Different mode bases for the electromagnetic field

Let us now consider a modal unitary transformation U
of complex components Umn , and let us define the modal
vectors

−→g n =

N∑
m=1

Umn
−→
f m (9)

It is easy to show that they form another complete set of
orthonormal modal vectors (with −→g T∗n ·−→g n′ = δn,n′), and
hence a new basis on which any field can be expanded:

E(+)(r, t) =
∑
n

Gngn(r, t) ;
−→
E =

∑
n

Gn−→g n (10)

The introduction of modes made in this section has been
so far purely mathematical. It leaves us a total freedom
of choice of the unitary transformation U , and therefore
of the mode basis. The most widely used is the basis of
plane wave modes, that is easy to handle mathematically,
but rather unphysical. There are other mode bases that
fit better the light source and the optical system under
consideration. Let us quote some of them:

• spatial Hermite-Gauss modes are well suited for
beams produced in cavities made of spherical mir-
rors. Laguerre-Gauss modes, carrying orbital an-
gular momentum, are used in quantum information
processing, in particular in Quantum Key Distribu-
tion context (Mirhosseini et al., 2015);

• temporal or frequency Hermite-Gauss modes pro-
vide a convenient orthogonal basis for light pulses
of any temporal and spectral shape (Brecht et al.,
2015);

• tilted plane waves are used to describe ”images”
i.e. any field configuration in the transverse plane,
perpendicular to the main propagation direction
(Kolobov, 2006).

The choice of the mode basis can also be adapted to
the detection process:

• the pixel mode basis is useful when one considers
imaging devices such as a CCD camera or a photo-
diode array. It consists of spatial modes which are
of constant value over the pixel area δx × δx and
zero outside. Such a basis is orthonormal but not
complete;

• the time bin basis is analogous to the previous one
when one replaces space by time and is useful to
analyze temporal sequences;

• in the same spirit, the frequency band basis consists
of frequency bins of width δν, useful to analyze
broadband sources.

• the sideband mode basis, consisting of sums of
monochromatic frequency modes symmetrically
disposed around a carrier frequency, is useful to de-
scribe the different Fourier components of a time-
dependent signal (see section X C).

D. Transverse and longitudinal modes

For the sake of simplicity, we will now restrict our anal-
ysis to the case where the fields of interest are the su-
perposition of plane waves having wavevectors close to
a mean value k0 (paraxial approximation) and frequen-
cies close to a central frequency ω0 = c|k0| (narrowband
approximation) (Grynberg et al., 2010). To simplify no-
tations, we assume that k0 is parallel to the z axis. The
electric field can be written as:

E(+)(r, t) = ei(k0z−ω0t)
∑
m

Fmfm(r, t) (11)

ei(k0z−ω0t) is the carrier plane wave and fm(r, t) the en-
velope functions of the different modes, which are slowly
varying functions of time at the scale of the optical period
and of position at the scale of the wavelength.

Let us now simplify further our approach by restricting
the set of unitary modal transformations U to the ones
that are factorized in transverse and longitudinal factors,
the polarization degree of freedom being unaffected. This
allows us to use factorized modes fm:

fm(r, t) = εif
(T )
p (x, y, z)f (L)

r (t, z) (12)
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εi (i = 1, 2) are two orthogonal polarization unit vectors

in the xy plane, f
(T )
p is the transverse (or spatial) part of

the mode, and f
(L)
r its longitudinal (or temporal) part,

m being a short notation for (i, p, r).
To build a spatial mode basis, one can use any or-

thonormal set of functions of x, y, in the transverse plane,
fp(x, y), provided they vary slowly on the wavelength
scale, so that one can use the paraxial approximation.

The mode functions f
(T )
p (x, y, z) for any value of z are

deduced from their values at z = 0 f
(T )
p (x, y, z = 0) =

fp(x, y) by the Huygens-Fresnel integral accounting for
diffraction.

To build a temporal mode basis, one can use any set
of functions of time t, fr(t), provided they satisfy the
slowly varying envelope approximation and temporal or-
thonormality relations with an integration time T longer
than any other characteristic time of the problem. The

longitudinal mode functions are then f
(L)
r (t, z) = fr(τ =

t − z/c), describing undistorted pulses in the reference
frame propagating at the velocity of light in the z direc-
tion.

The three factors in Equation (12) correspond to three
different kinds of quantum multimode effects: polariza-
tion effects, spatial effects and temporal effects. They
appear here as decoupled, because of our simplifying as-
sumptions. We will not detail the quantum properties
linked to the polarization of light, and in particular the
modes carrying orbital and polarization angular momen-
tum. They are treated in detail in (Barnett S, 2016;
Korolkova et al., 2002). In this review we will consider
a single polarization component, drop the polarization
index i and work with scalar modes. Such a descrip-
tion in terms of decoupled spatial and temporal modes is
convenient when one treats problems where the tempo-
ral shape of light does not modify its transverse proper-
ties, or when diffraction does not modify the pulse shape.
Self-focussing effects, either in space or time, or objects
like X-waves (Gatti et al., 2009; Jedrkiewicz et al., 2012)
would clearly need a more elaborate approach.

When a single temporal mode f
(L)
1 (t, z) is involved, the

electric field writes:

E(+)(r, t) = ε1e
i(k0z−ω0t)f

(L)
1 (τ)

∑
p

Epf (T )
p (r) (13)

Omitting the factor in front of the sum, one defines the
transverse electric field as:

E
(+)
T (x, y, z) =

∑
p

Epf (T )
p (x, y, z) (14)

Its Fourier transform in transverse wavevector space,

Ẽ
(+)
T (kx, ky), can be also expanded on the basis of kx,

ky dependent modes, f̃
(T )
p (kx, ky):

Ẽ
(+)
T (kx, ky) =

∑
p

Ẽpf̃ (T )
p (kx, ky) (15)

It is independent of z as diffraction does not modify
the distribution of transverse wave-vectors. Transverse
modes are well suited to the description of quantum imag-
ing problems (Kolobov, 2006), i.e. the quantum prop-
erties of the transverse distribution of light, for exam-
ple quantum correlations between different points of the
transverse plane.

In a symmetrical way, when a single spatial mode

f
(T )
1 (r) is involved, the electric field writes:

E(+)(r, t) = ε1e
−iω0τf

(T )
1 (r)

∑
r

Erf (L)
r (τ) (16)

This allows us to define the temporal or longitudinal field
as:

E
(+)
L (t, z) =

∑
r

Erf (L)
r (τ) (17)

Its Fourier transform Ẽ
(+)
L (ω) can be expanded on a basis

of frequency modes f̃
(L)
r (ω):

Ẽ
(+)
L (ω) =

∑
r

Ẽrf̃ (L)
r (ω) (18)

Temporal/frequency modes are well suited to the quan-
tum description of light pulses and of their correlations.
Frequency combs are an important particular case. They
can be expanded on the basis of monochromatic waves
of equally spaced frequencies or, in the time domain, as
trains of identical pulses equally spaced in time.

E. Modes and classical coherence

Note that if the classical field under study is totally de-
fined, i.e. is perfectly coherent, in both time and space,
its normalized spatio-temporal shape can be taken as a
first mode of a mode basis, and the decomposition (3)
comprises a single term: any perfectly coherent classical
field is single mode in essence. This is the case for exam-
ple for a mode-locked laser in which the relative phases
between the different frequency modes are fixed.

But in most practical cases, the field is not perfectly
mastered: it has some degree of randomness or ”incoher-
ence” in the form of amplitude and phase fluctuations
at any point of space and time. In this situation, the
complex coefficients Em in (3) are stochastic quantities.
This is the case for example for a multimode c.w. laser
in which the phases of each individual frequency compo-
nent are randomly fluctuating. The classical fluctuations
of the field have no reason to be described by a single fluc-
tuating amplitude E1, so that a full decomposition of the
form (3) is indeed needed, and the degree of coherence of
the field is characterized by the probability distributions
of the complex amplitudes Em and by the correlations
existing between different amplitudes Em and Em′ .
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Among the different quantities that are used to char-
acterize the degree of coherence of a classical stochastic
field, we will use the following matrices characterizing its
fluctuations:

• 1) The first order coherency matrix Γ(1) (Wiener,
1927), defined by:(

Γ(1)
)
m,n

= E∗mEn ; Γ(1) =
−→
E
−→
E T∗, (19)

the bar indicating an ensemble average. It allows
us to determine the cross-correlation function for
the field amplitudes (Barakat, 1963):

G(1)(r, r′, t, t′) = E(+)∗(r′, t′)E(+)(r, t) (20)

=
∑
m,n

(
Γ(1)

)
m,n

f∗m(r′, t′)fn(r, t)(21)

The coherency matrix has been extensively studied
in the context of polarization modes (Réfrégier and
Goudail, 2005) and imaging (Yamazoe, 2012).

• 2) The quadrature covariance matrix ΓQ, :

Let us define

−→
Q =

(E1X , E2X , . . . , ENX , E1P , E2P , . . . , ENP )T(22)

the column vector containing all field quadratures.
The quadrature covariance matrix ΓQ, that we will
call briefly ”covariance matrix”, is the real 2N×2N

matrix defined on a given mode basis {
−→
f n} as:

ΓQ =
−→
Q
−→
QT (23)

It contains all the second moments of the differ-
ent modes, E2

mX and E2
mP on the diagonal, and

outside the diagonal all the quadrature correlations
EmXEnX , EmPEnP and EmXEnP .

The quadrature covariance matrix is a symmetric
real matrix of size 2N×2N , where N is the number
of modes, whereas the coherency matrix is hermi-
tian of size N × N . If all the modes have fluc-
tuations with Gaussian statistics and zero mean,
then the quadrature coherence matrix contains all
the physical information about the system, which is
not the case of the first order coherency matrix.

The N ×N coherency matrix can be deduced from
the 2N × 2N quadrature covariance matrix, using
the relations:

(Γ(1))m,n = EmXEnX + EmPEnP

+ i(EmXEnP − EmPEnX) (24)

In contrast, one cannot determine the quadrature
covariance matrix from the coherency matrix. This

last matrix gives information about the distribution
of energy among the different modes, but not the
way it is distributed between the two quadratures
inside a given mode.

III. DESCRIPTION OF QUANTUM MULTIMODE LIGHT

Let us now consider quantum fields in vacuum, and
start with the usual approach of Quantum Electrody-
namics (Cohen Tannoudji et al., 1987; Grynberg et al.,
2010; Mandel and Wolf, 1995) which consists in intro-
ducing the electric field operator in the Heisenberg rep-
resentation Ê(+)(r, t) as the quantum extension of the
classical complex field E(+)(r, t) and to expand it on the
basis of monochromatic plane wave modes u`(r, t):

Ê(+)(r, t) =
∑
`

E(1)
` â`u`(r, t),

u`(r, t) = ε`e
i(k`·r−ω`t) E(1)

` =

√
~ω`

2ε0V
(25)

where ε` is a unit polarization vector, â` the annihilation

operator of a photon in the plane wave mode and E(1)
` the

single photon electric field. The set of plane wave modes
{u`(r, t)} satisfies the orthonormality condition (4) and
the equal time completeness relation in space domain,
valid at any time t:∑

`

u∗` (r, t) · u`(r′, t) = 2V δ(3)(r − r′) (26)

where δ(3) is the delta function in 3-dimensional space.
Expansion (25) shows that the modal Hilbert space

of classical electromagnetic fields can be mapped into a
modal Hilbert space of quantum field operators, so that
one can write:

−→
Ê =

∑
`

E(1)
` â`

−→u` (27)

−→
Ê is thus the column vector of operators E(1)

` â`. Note

that the electric field quantum operator Ê(+)(r, t) in the
Heisenberg representation obeys Maxwell equations (1),
which form the basis, not only of classical electrodynam-
ics, but also of quantum electrodynamics.

A. Electric field operator in any mode basis

Let us now perform a modal unitary transformation U
on the set of creation operators {â†`}, yielding a new set

of operators {b̂†m} given by:

b̂†m =
∑
`

U `m â
†
` ;

−→
b̂† = U

−→
â† (28)
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where
−→
b̂† and

−→
â† are column vectors of components b̂†m

and â†`. One has also:

â` =
∑
m

U `m b̂m ;
−→
â = UT

−→
b̂ (29)

Note that the mode −→ul , in its column vector represen-
tation, is associated with the single creation operator â†l
while the mode basis {−→ul} is associated with the column

vector of creation operators
−→
â†.

The unitarity of matrix U ensures that:

[b̂m, b̂
†
m′ ] = δm,m′ or

−→
b̂ (
−→
b̂† )T −

−→
b̂† (
−→
b̂ )T = 1N (30)

1N being the identity matrix of dimension N . The oper-
ators b̂m are indeed bosonic operators, and the positive
electric field operator in vacuum can now be written as
a linear combination of the annihilation operators b̂m in
a way similar to the decomposition (25) or (27):

Ê(+)(r, t) =
∑
m

F (1)
m b̂mfm(r, t) ;

−→
Ê =

∑
m

F (1)
m b̂m

−→
fm

(31)

b̂m is the annihilation operator of one photon in the nor-
malized mode fm(r, t) (that we will write more simply

as fm), and the electric field per photon F (1)
m is given by:

(F (1)
m )2 =

∑
`

(E(1)
` )2 |U `m|2 (32)

The column vector {
−→
fm} contains a new set of modes on

which the field is expanded. It is related to the plane
wave basis by:

−→
f m =

1

F (1)
m

∑
`

E(1)
` U `m

−→u ` (33)

We have therefore shown how to write in the most gen-

eral case the quantum field on any mode set {
−→
fm} and to

define the associated annihilation operators b̂m. Strictly
speaking, because of the presence of the frequency depen-

dent scaling factor E(1)
` in the sum (33), these new modes

are not necessarily orthogonal when their frequency spec-
trum is very broad. They are indeed orthogonal when
the unitary modal transformation U mixes only plane
waves oscillating at nearby frequencies ω ' ω0, (narrow-
band approximation studied in section II.D), in which

case F (1)
m = E(1)

` (ω0), so that one can very simply write:

−→
f m =

∑
`

U `m
−→u ` (34)

We note that in this particular case, the transformation
(34) for the mode shape and the transformation (9) for
the creation operators are identical. Using (34), one eas-
ily shows that the completeness relation (26) holds also
in this case in the new mode basis.

In a way related to equation (5), one can write the
field operator (31) in terms of hermitian dimensionless
quadratures operators X̂m and P̂m in the different modes
fm, such that:

b̂m = (X̂m + iP̂m)/2

−→
Ê =

∑
m

F (1)
m

X̂m + iP̂m
2

−→
f m,

X̂m = b̂†m + b̂m , P̂m = i(b̂†m − b̂m) (35)

with [X̂m, P̂m] = 2i. The normalization has been chosen
in such a way that the variance of vacuum fluctuations on
any quadrature X̂m or P̂m is 1. We will also use quadra-
ture operators in a rotated phase space X̂mφ defined by

X̂mφ = b̂†me
iφ + b̂me

−iφ = X̂m cosφ+ P̂m cosφ (36)

B. The two sides of quantum optics

Let us consider again the quantum form of the modal
decomposition of the electric field operator in vacuum:

−→
Ê =

∑
m

F (1)
m b̂m

−→
fm (37)

It comprises the same modal functions
−→
fm as the clas-

sical decomposition (6), while the classical complex am-
plitudes have been replaced by quantum operators. Ex-
pression (37) thus exemplifies the intricate dual nature

of light : the operatorial part b̂m relates it to the Hilbert
space of quantum states, its Fock states basis and their
interpretation in terms of particles, while the modal part−→
fm relates it to classical optics, to the modal Hilbert
space of solutions of Maxwell equations and to the wave
aspect of light. These two aspects are intimately mixed
(Xiao et al., 2017), as the annihilation operator b̂m is de-
fined in the specific mode fm, which provides the shape
in time and space of the probability to detect the pho-
tons.

A striking example of this intimate relation between
modes and operators is provided by the following for-
mula, deduced from (34), that relates the commutator of

annihilation and creation operators b̂f and b̂†g associated
with any two modes f and g, even non-orthogonal, to
the overlap integral of these modes:

[b̂f , b̂
†
g] =

1

V

∫
d3rf(r, t) · g∗(r, t) =

−→
f T∗ · −→g (38)

These considerations allow us to point out a very im-
portant and unique feature of Quantum Optics, its double
linearity, that of Maxwell equations and that of Quan-
tum Mechanics. It allows us, thanks to the possibility to
change mode bases, to consider the same quantum state
from different perspectives. This is not the case for other
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multimode systems, like sets of material qubits: linear
combinations of modes are other modes, whereas linear
combinations of qubits carried by different systems are
not simple physical objects.

It is well-known that coherence is a fundamental no-
tion for the physical domains involving waves: this is
of course the case for classical optics (Goodman, 2015),
but also for quantum mechanics. Coherence of matter
waves, and more generally coherence in quantum physics
has even been recently considered as a basic resource for
quantum technologies (Streltsov et al., 2017). Both co-
herences must not be confounded and must be indeed
taken into consideration in a global way in the domain of
quantum optics (Glauber, 1963; Mandel and Wolf, 1995).
They both play important and intricate roles in multi-
mode quantum optics, as we will see more extensively
below.

C. Single photon states

The bosonic operators b̂m allow us to define number
operators N̂m = b̂†mb̂m and their eigenstates |nm : fm〉,
where nm is an integer, which are the number states in
modes fm(r, t).

Let us call |0〉 the vacuum state in the plane wave basis
{u`}, defined by â`|0〉 = 0∀`. One has also from (9) and
for all m:

b̂m|0〉 =
∑
`

U `∗m â`|0〉 = 0 (39)

The same state |0〉 is also the vacuum for the new mode
basis {fm}. This allows us to define the quantum state
|1 : fm〉 of a single-photon state in any mode fm, and to
express it in terms of plane wave single photons as

|1 : fm〉 = b̂†m|0〉 =
∑
`

U `m|1 : u`〉 (40)

Note that the same unitary transformation U is used for
the creation operators (9), for the mode shape (34) and
for the single-photon state (40).

It is important to stress that a single-photon state
|1 : fm〉 does not describe a physical object which ex-
actly looks like a classical particle, because its proper-
ties depend on the mode in which it is defined. Photons
are not simply ”very small bodies emitted from shining
substances” (Newton, 1704); they must rather be con-
sidered as the first excitation of mode fm (Lamb, 1995).
If the unitary transform U mixes modes of different fre-
quencies, then the single-photon state is no longer an
eigenstate of the hamiltonian of energy ~ω: it describes
a non-stationary ”single photon wave-packet” (Titulaer
and Glauber, 1966); if the unitary transform U mixes
modes of different wavevectors, the single photon state is
no longer an eigenstate of the momentum with eigenvalue
~k: it describes a more complex single-photon waveform,

for example the dipole mode in which a single photon is
spontaneously emitted by an excited atom (Cohen Tan-
noudji et al., 1987).

It is easy to show that one has also, for any two single-

photon states associated with any two modes
−→
f and −→g :

〈1 : f |1 : g〉 =
1

V

∫
V

d3r f∗(r, t)·g(r, t) =
−→
f T∗ ·−→g (41)

When dealing with single-photon states, the quantum in-
ner product is equal to the modal inner product. There
is therefore an exact mapping between a single-photon
quantum state |1 : f〉 and the corresponding spatio-
temporal mode amplitude f(r, t), so that it is often con-
venient to consider f as the ”wave function” of the sin-
gle photon (Bialynicki-Birula, 1996; Smith and Raymer,
2007).

It is also easy to derive from (38) the following useful
relation:

b̂f |1 : g〉 = (
−→
f T∗ · −→g )|0〉 (42)

where b̂f is the annihilation operator in mode f .

D. Multimode quantum states

We can write the most general pure quantum state of
light |Ψ〉 in a given mode basis as:

|Ψ〉 =
∑
n1

...
∑
nm

...Cn1,...,nm,...|n1 : f1〉⊗...⊗|nm : fm〉⊗...

(43)

Knowing that |nm : fm〉 = (
∑
` U

`
mâ
†
`)
nm |0〉/

√
nm! and

relations (9) and (29) it is straightforward to write |Ψ〉 in
terms of number states in any mode basis of our choice.
This implies that, in order to characterize a given multi-
mode quantum state, we have a new degree of freedom to
play with, namely the choice of mode basis, in addition
to the choice of the quantum state basis.

Let us take as an example a quantum state spanning on
two modes f1 and f2. Another possible mode basis con-
sists of the symmetric and antisymmetric combinations
f± = (f1 ± f2)/

√
2. The quantum state

|ψ〉 = |1 : f1〉 ⊗ |1 : f2〉 (44)

written in the first basis can, can also be written in the
second basis, using relation (9), as

|ψ〉 = (|2 : f+〉 ⊗ |0 : f−〉 − |0 : f+〉 ⊗ |2 : f−〉)
√

2 (45)

|ψ〉 is therefore factorized in the first mode basis and en-
tangled in the second. The same property holds for the
two-mode continuous variable quantum state |ψ′〉 which
consists of a product of two equally squeezed vacuum
states on basis (f1,f2). On basis (f+,f−) it is an ”EPR
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entangled state”, like the one studied by Einstein, Podol-
sky and Rosen in their famous paper (Einstein et al.,
1935). In the present context the fact that a quantum
state is entangled or not depends on the choice of the
mode basis (Thirring, W. et al., 2011). This is due to the
fact that the physical system we are interested in has not
a unique physical bipartition into an ”Alice” part and
a ”Bob” part, all possible combinations of modes being
treated on an equal footing. One can say that |ψ〉, or |ψ′〉,
describes an intrinsic quantum resource, which manifests
itself as a product of non-classical states in one basis,
and as entanglement on another. In addition it has been
shown in (Sperling et al., 2019) that some families of
states remain entangled for any choice of mode basis.

E. Quantum correlation matrices

The information about multimodal correlations
(Giorgi et al., 2011), classical as well as quantum, is con-
tained in different matrices. We introduce here the ones
that are the quantum extensions of the classical matri-
ces defined in the previous section (Opatrny et al., 2002;
Takase et al., 2019):

• 1) The quantum coherency matrix Γ(1) (Wiener,
1927), defined as the extension of the classical one
(Equation (19)), has matrix elements in a given
mode basis equal to:

(Γ(1))m,n = 〈â†mân〉 (46)

It can be written in a condensed way as Γ(1) =

〈
−→
â†
−→
â T 〉.

Γ(1) is an Hermitian, positive matrix of the Gram
type which can be related to the first order coher-
ence properties of the field (Glauber, 1963; Mandel
and Wolf, 1995; Réfrégier and Goudail, 2005). Its
trace gives the mean total number of photons in
the state.

• 2) The quantum covariance matrix ΓQ :

Let us name, in a same way as in (22):

−→
Q̂ = (X̂1, X̂2, . . . , X̂N , P̂1, P̂2, . . . , P̂N )T (47)

the column vector containing all quadrature opera-
tors. The quadrature covariance matrix ΓQ (Simon
et al., 1994) is the real 2N × 2N matrix defined on

a given mode basis (
−→
f n) as:

ΓQ =
1

2
<
−→
Q̂
−→
Q̂T + (

−→
Q̂
−→
Q̂T )T > (48)

It contains all the second moments of the quadra-
ture operators 〈X̂mX̂n〉, 〈P̂mP̂n〉, 〈X̂mP̂n〉 and

(〈P̂mX̂n〉+〈X̂nP̂m〉)/2. It allows to write in a com-
pact way the multimode version of the Heisenberg
inequality (Simon et al., 1994):

ΓQ + iβ = ΓQ +

(
0 i1N
−i1N 0

)
> 0 (49)

where β is the symplectic form. This relation is
invariant under any symplectic transformation, and
in particular under any mode basis change.

Note that the vector
−→
Q is of dimension 2N , whereas

the modal vectors ~E and
−→
â defined in sections II.B

and III.A are of dimension N . We will mention the
difference when necessary in the following.

The coherency matrix is related to the matrix ele-
ments of the quadrature covariance matrix by the
following expression, quantum extension of equa-
tion (24):

(Γ(1))m,n =
1

4
[〈X̂mX̂n〉+ 〈P̂mP̂n〉

+ i(〈X̂mP̂n〉 − 〈P̂mX̂n〉)] (50)

In particular:

(Γ(1))n,n =
1

4
[〈X̂2

n〉+ 〈P̂ 2
n〉 − 2] (51)

F. Mode basis change

The unitary transformation U that connects one mode
basis into another one can be seen in two different ways:

1. it can be considered as a change of point of view on
a given quantum state, in the same way as one can
use rotations to see a physical object from different
perspectives. This is what we have done so far;

2. it can also be considered as a quantum process im-
plemented by a real physical device and modify-
ing the quantum state of the system by a unitary
transformation, in the same way as one can rotate
the physical object under consideration and keep a
fixed point of view. U corresponds then to an evo-
lution induced by a hamiltonian which is a linear
combination of operators of the form âiâ

†
j . It can

be shown that this transformation can be imple-
mented by a generalized interferometer that mixes
all the input modes by appropriate beamsplitters
(Reck et al., 1994).

We will use these two aspects of mode changes in the
following.
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G. Intrinsic properties of multimode light states

Note that, whereas entanglement and factorization of
state |ψ〉 (Eq. 44) depend on the mode basis, the total
mean photon number in this state is equal to 2 in the
two mode bases. There are therefore properties which do
not depend on a special choice of mode basis, and that
we will call intrinsic. We expect them to have a stronger
physical meaning than the properties which depend on
this choice (Réfrégier and Goudail, 2005).

Let us mention here some physical properties that are
intrinsic:

- The vacuum state |0〉 is the same in any mode basis,
as we have seen in section IIIc.

- The operator ”total number of photons” is defined
by:

N̂tot =
∑
m

b̂†mb̂m =
−→
b̂†T ·

−→
b̂ (52)

The unitarity of transformation U (equations (9) and
(29)) implies that

−→
b̂†T ·

−→
b̂ =

−→
â†TUT∗ · U

−→
â =

−→
â†T ·

−→
â (53)

Consequently the total number of photons is an intrinsic
operator.

- Let us define a ”multimode coherent state” as an
eigenstate of all annihilation operators b̂m in a given
mode basis. It is very easy to see that this property is also
true in any other mode basis. Therefore this property is
intrinsic.

- The mode basis change is a unitary transformation U
that conserves the commutation relations: it is therefore
a special case of symplectic transformation (Dutta et al.,
1995). We will exploit this feature several times in the
following. A first consequence is the invariance of the
Wigner function. More precisely if Wu(α1, ..., α`, ...) =
Wu(−→α ) is the multimode Wigner function of a given
quantum state of light in the phase space of complex
coordinates α1, ..., α`, .. spanning over the N modes {u`}
and Wf (

−→
β ) is the Wigner function of the same quantum

state written now in the phase space spanning over the
modes {fm}, one has (Simon et al., 1994):

Wf (
−→
β ) = Wu(−→α ) with

−→
β = U−→α (54)

This means that the values of the Wigner function are
the same in both bases, but they occur at different val-
ues of the coordinates in phase space. In particular the
sign of the Wigner function is intrinsic. Another intrin-
sic and additive quantity, related to the volume N of the
negative part of the Wigner function is the Wigner log-
arithmic negativity (Albarelli et al., 2018; Kenfack and
Życzkowski, 2004):

Lnw = log

(∫
dNα |Wu(−→α )|)

)
(55)

Therefore the quantum properties related to the fact that
the Wigner function of some quantum states have nega-
tive parts, are intrinsic.

A special case of this invariance concerns the value of
the Wigner function at the origin, which is related to the
parity of the photon number distribution (Royer, 1977).
One has obviously Wf (0) = Wu(0), which means that the
mean value of the parity operator is an intrinsic quantity.

- The same invariance property is also true for the
Glauber-Sudarshan P function :

Pf (
−→
β ) = Pu(−→α ) (56)

The sign of the P function is often related to the non-
classicality of the corresponding state (Vogel, 2000).
Therefore, the non-classicality of a state is also intrin-
sic. Similarly, we have Pf (0) = Pu(0): the probability of
being in vacuum state is an intrinsic quantity.

- the purity of a quantum state P = Trρ2 can be cal-
culated from its Wigner function

P = 2π

∫
dN (α)W 2

u(−→α ) = 2π

∫
dN (β)W 2

f (
−→
β ) (57)

(as the Jacobian of the coordinate change is 1). As a
result, the purity of a multimode quantum state of light
is an intrinsic quantity.

IV. SEARCH FOR PRINCIPAL MODES

This section is concerned with the following problem,
which is not restricted to quantum physics (Comon, 1994;
Milione et al., 2015): given a quantum multimode state,
pure or mixed, is it possible to find a mode basis which
simplifies the expression of the quantum state and re-
duces it to forms that are more suitable to character-
ize it physically? The modes of this basis will be called
”principal modes”. To this purpose, we will use different
correlation matrices, in close analogy with the classical
case.

More precisely we would like to find a mode basis which
allows us to describe a given pure state |ψ〉 as:

|ψ〉 = |φp〉 ⊗ |0, 0...〉, (58)

or a mixed state ρ as:

ρ = ρp ⊗ |0, 0...〉〈0, 0...| (59)

where |φp〉 or ρp span on a minimal number p of modes
f1, ...,fp. p will then be called the intrinsic number of
modes of the corresponding state.

In this basis, characterized by annihilation operators
ân, one has for any n > p:

ân|ψ〉 = 0 or ânρ = 0

â†mân|ψ〉 = 0 or â†mânρ = 0 (60)
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Relations (60) imply that the matrix elements
(Γ(1))m,n of the coherency matrix such that m > p and
n > p are zero. This property is valid for both pure
and mixed states. The coherency matrix Γ(1) consists
therefore of a square p× p non-zero diagonal sub-matrix
surrounded by zeros. Reciprocally, if Γ(1) has the form
we just described, then ∀n > p 〈â†nân〉 = 0: the mean
number of photons in nth mode is zero, which implies
that the considered state is the vacuum for all modes
with n > p. The state is therefore a p-mode state, where
p is nothing else than the rank of the coherency matrix.

Let us now take a mode basis that we can choose at
will, called {g`}, with the associated annihilation oper-
ators ĉ`. The corresponding coherency matrix Γ(1) =

〈
−→
ĉ†
−→
ĉ T 〉 contains a priori many non-zero matrix elements,

so that the quantum state ”looks” highly multimode.
However, Γ(1) is Hermitian and therefore diagonalizable.
More precisely there is a unitary transformation V that
diagonalizes the N ×N matrix, such that:

V Γ(1)V † = Diag(n1, ..., np, 0....) (61)

Let us now introduce the column vector of creation oper-
ators in the new basis generated by mode transformation

V ,
−→
d̂† = V

−→
ĉ† . One has:

Diag(n1, ..., np, 0....) = 〈V
−→
ĉ†
−→
ĉ TV T∗〉 = 〈

−→
d̂†
−→
d̂ T 〉 (62)

We have therefore proved that in the mode basis {
−→
h }

of the modal space defined by
−→
h = V−→g , the first order

covariance matrix is reduced to the subset of the first p
modes, and found the right mode basis and the corre-
sponding minimum mode number.

The diagonalization of the Γ(1) matrix yields directly
the list of the p eigenmodes allowing us to write the quan-
tum state, pure or mixed, in its simplest form. We will
see in the following about quantum frequency combs,
that the reduction in size of the problem can be dras-
tic, namely from 105 frequency modes to a few principal
modes. In particular, it is wise to use the set of princi-
pal modes if one wants to make the full tomography of a
multimode quantum state, instead of a mode basis with a
much larger number of non empty modes. Note that this
procedure is valid for Gaussian and non-Gaussian states
(see section VII).

The energy content of the principal modes is given by
the corresponding eigenvalue, whereas the absence of off-
diagonal terms in this basis implies that the principal
modes are mutually incoherent: it is not possible to ob-
serve interferences on a linear combination of two princi-
pal modes. Very often the eigenvalues of the coherency
matrix are all non zero, but form a series with decreasing
terms. In this case, it is possible to define an effective
intrinsic mode number p̄, which gives the approximate
number of the most excited modes. It can be obtained

by the same procedure as for the effective Schmidt num-
ber. It is defined by:

p̄ =
〈
∑
m N̂m〉2

〈
∑
m N̂

2
m〉

=
(TrΓ(1))2

Tr((Γ(1))2)
(63)

with N̂m = d̂†md̂m.
Note that extracting physically reliable and useful in-

formation from the measurement of the noise amplitudes
and correlations in a complex physical system by extract-
ing a finite number of ”principal modes” from noise ma-
trices is a well-known procedure in other parts of sci-
ence and technology (Shah et al., 2005). It would be too
long to quote all of them. If one restricts oneself to re-
cent developments in optics and electromagnetism (Fan
and Kahn, 2005), one can mention the MIMO technique
(Multiple In Multiple Out) in telecommunication tech-
nologies (Winzer and Foschini, 2011) and the control of
light propagation in complex media for optical computa-
tion purposes (Rotter and Gigan, 2017).

From a given noise matrix experimentally determined
by measurements performed on a mode basis appropriate
for detection and the computation of principal modes, it
is also possible to determine the noise of any physical
parameter of the considered system and to get a fruitful
physical insight into the underlying physical mechanisms.
This method has been in particular recently applied to
the analysis of mode-locked lasers (Schmeissner et al.,
2014).

V. INTRINSIC SINGLE-MODE STATES

We now focus our attention on the important partic-
ular case where the state ρ can be reduced to a single
mode state by an appropriate choice of the mode basis,
fm, with associated annihilation operators ĉm.

Let us first assume that the state we are interested in
is the pure state |ψ〉. Then |ψ〉 = |φ1〉 ⊗ |0, 0...〉 on mode
basis fm. We know that it has a coherency matrix with a
single nonzero eigenvalue, but it can be also characterized
by a simpler mathematical property: if one takes a test
mode basis g` =

∑
p U

p
` fp with associated annihilation

operators b̂`, one has obviously, for any `:

b̂`|ψ〉 = U1
` ĉ1|φ1〉 ⊗ |0〉 (64)

In a single mode pure state, all vectors b̂`|ψ〉 in any test
mode basis are proportional to each other. In addition,
one can show (Treps et al., 2005) that this property is
also a sufficient condition for being single mode.

Let us now assume that the state is in the mixed state
ρ = ρ1 ⊗ |0〉〈0| on the appropriate mode basis {fm}. If
one takes a test mode basis {g`}, one has, for any `:

b̂`ρ = U1
` ĉ1ρ1 ⊗ |0〉〈0| (65)
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In a single mode mixed state, all operators b̂`ρ are pro-
portional to each other. Here also this property can be
shown to be sufficient for being in a single mode mixed
state (Leroyer, 2007).

A. Examples

-a) Let us consider the following state, which is a co-
herent superposition of single photon states in different
modes:

|Ψ1〉 =
∑
m

cm|1 : fm〉 (66)

with
∑
m |cm|2 = 1, where |1 : fm〉 is a short notation

for a state with one photon in mode fm and zero in all
the other modes. This state, often called single photon
”wavepacket”, is an eigenstate of N̂tot with eigenvalue 1.
It is actually an intrinsic single mode state as all b̂`|Ψ1〉
are proportional to the vacuum state: we have therefore
showed that all single photon states are actually single
mode states.

To find the mode in which the single photon can be
found, let us introduce the v1 mode, given by the same
linear combination as (66), but for modes instead of
states:

v1 =
∑
m

cmfm (67)

It is a first element of a mode basis {vn}, that one com-
pletes with orthogonal functions. It is easy to show that
in this new mode basis, the state |Ψ1〉 writes:

|Ψ1〉 = |1 : v1〉 ⊗ |0, 0...〉 (68)

v1 is indeed the mode in which the single photon ”lives”.
We have already noticed in a previous section the

equality between the scalar product of single photon
states and that of the corresponding modes (relation
(41)). Such an homomorphism between the mode and
state properties for single photons is perhaps the reason
why the detailed consideration of the multimodal struc-
ture of quantum states and its physical consequences has
not been the object of many studies by physicists inter-
ested in single photon states.

-b) Consider now the statistical mixture of single pho-
ton states:

ρ1 =
∑
m

pm|1 : fm〉〈1 : fm| (69)

with pm > 0 and
∑
m pm = 1. It is not single mode,

because b̂m1ρ1 = pm1 |0〉〈1 : fm| are not proportional to
each other. One easily shows that the coherency ma-
trix is diagonal, with eigenvalues which are precisely the
statistical coefficients pm.

-c) Let us now consider the multimode coherent state,
introduced in section III.E, which is an eigenstate of all
annihilation operators b̂m in a given mode basis. It can
therefore be written as a tensor product of coherent states
|αm : fm〉 of eigenvalue αm in mode fm:

|Ψ′1〉 = |α1 : f1〉 ⊗ ..⊗ |αm : fm〉 ⊗ .. (70)

This state is single mode as all â`|Ψ′1〉 are proportional
to |Ψ′1〉 itself.

To find the mode, let us introduce the w1 mode given
by:

w1 =
1

β

∑
m

αmfm (71)

with |β|2 =
∑
m |αm|2. It is the first element of a new

mode basis wn, that one completes again. It is here also
easy to show that in this new mode basis, the previous
multimode coherent state is:

|Ψ′1〉 = |β : w1〉 ⊗ |0, 0...〉 (72)

Here also, the state |Ψ′1〉, which looks highly multimode
in the original basis, is a simple single-mode coherent
state in a more adapted basis.

It is easy to show from relation (38) that, for any co-
herent state, written in the basis where it is single mode
in mode g:

b̂f |β : g〉 = (
−→
f T∗ · −→g )β |β : g〉 (73)

where b̂f is the annihilation operator in mode f . Note
that this relation presents close analogies with the cor-
responding expression (42) for single-photon states: the
spatio, temporal and polarization properties of coherent
states and single photon states are often similar.

-d) Consider now the statistical mixture of coherent
states:

ρ′1 =
∑
m

pm|αm : fm〉〈αm : fm| (74)

It is not intrinsically single mode, because the operators
b̂m1

ρ′1 are not proportional to each other. The coherency
matrix is diagonal with eigenvalues pm|αm|2.

Examples b) and d) show that mixed states are ”more
multimode” than the corresponding pure states: the in-
clusion of classical noise in addition to quantum noise in-
creases the number of principal modes involved in the de-
scription of the state. Furthermore, one can describe the
statistical properties of such mixed states using the clas-
sical coherency matrix, i.e. within the framework of clas-
sical coherence theory. While this is not unexpected for
coherent states, that are often named ”quasi-classical”,
it is more noteworthy for single photon states.
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-e) Let us consider finally the Hong-Ou-Mandel two-
photon pure state |Ψ”〉 = |1 : g1〉|1 : g2〉. It is a not a
single mode state, because â1|Ψ”〉 = |0 : g1〉|1 : g2〉 and
â2|Ψ”〉 = |1 : g1〉|0 : g2〉 are orthogonal. This means
in particular that there are no mode basis change, or
unitary transformation, which will enable us to write it
as the single mode state |2 : g1〉|0 : g2〉: two photons in
different modes cannot ”merge” into a two-photon state
in a single output mode by a unitary transformation.

B. Relation with classical optical coherence

The notion of optical coherence (Glauber, 1963; Good-
man, 2015; Mandel and Wolf, 1995) is linked to the abil-
ity to observe interference fringes with a high visibility.
It is characterized by the normalized first order complex
correlation function:

g(1)(r, r′, t, t′) =
G(1)(r, r′, t, t′)√

G(1)(r, r, t, t)G(1)(r′, r′, t′, t′)
(75)

where G(1)(r′, r′, t′, t′) has been defined in (20). If
|g(1)| = 1 then interferences are of contrast 1, and the
field is said to be perfectly coherent.

The quantum counterpart of G(1), where the statisti-
cal average represented by the overbar is replaced by a
quantum average, is related to the first order coherency
matrix that we have introduced in (23):

For a single mode state in mode v1, one has:

〈Ê(+)†
i (r, t)Ê

(+)
j (r′, t′)〉 = E2

0 (Γ(1))1,1v
∗
1i(r, t)v1j(r

′, t′)
(76)

valid for all r, t, r′, t′, i, j. This implies that |g(1)| = 1
for all r, t, r′, t′. This property does not depend on the
quantum state ”living” in the mode (except for the en-
ergy scaling factor (Γ(1))1,1 = Ntot). A contrario, if there
are two points in space time, (r0, t0) and (r′0, t

′
0) , such

that |g(1)(r0, r
′
0, t0, t

′
0)| < 1, then one can conclude that

the state is not intrinsically single mode.

Consequently, perfect optical coherence is not limited
to the use of coherent states: the condition of perfect
coherence is related to the modal property of the quan-
tum state, more precisely to the fact that only one elec-
tromagnetic mode is not in the vacuum state. It does
not depend on the properties of the quantum state de-
fined in this mode. For example, one will be able to see
perfect interference fringes with coherent states, which
is not unexpected, but also with strongly ”incoherent-
looking” states such as single photon states, as noticed
by Glauber (Glauber, 1963), or with strongly ”quantum-
looking” states such as Schrodinger cats. In contrast,
this will not be possible with the Hong-Ou-Mandel two-
photon state |1, 1〉 which is not single mode.

C. Simple sufficient conditions for an intrinsic single mode
state

The single-mode criteria that we have just exposed are
not easy to implement experimentally. One possibility is
of course to experimentally measure all the matrix ele-
ments of the quadrature covariance matrix, which will be
explained in section X B2. As this is not a simple task, it
would be obviously interesting to have at one’s disposal
a sufficient physical criterion that can be experimentally
checked in a simpler way.

The physical meaning of an intrinsic single mode state
is simple: in such a state, all the physical properties have
a spatio-temporal dependence given by v1. As a result
the mean value < Ê(+)(x, y, z, t) > and the standard
deviation ∆E(+)(x, y, z, t) have the same spatial depen-
dence. In contrast, in non-intrinsic single-mode states,
these different quantities may have different spatial vari-
ations. So a rather easy experimental check of whether a
given quantum state is intrinsically single mode or not,
consists of measuring the mean value and the quadra-
ture noise in different areas, in different time windows
or in different spectral regions. If the ratio of these two
quantities is not constant when one varies the detection
area, the time bin or the frequency band, then one is
sure that the state is not intrinsically single mode. Note
that this test gives only a sufficient condition: a con-
stant value of the ratio does not imply that the state is
single mode. This criterion has been successfully used by
different groups in experiments involving spectral (Marin
et al., 1995; Spälter et al., 1998) and spatial modes (Corzo
et al., 2011; Hermier et al., 1999; Martinelli et al., 2003).
For example in (Marin et al., 1995), the intensity noise of
a sub-Poissonian laser diode is spectrally resolved using
a spectrometer of variable width. The nonlinear varia-
tion of the intensity noise as a function of the number of
spectral modes of the diode laser is an indication of the
existence of strong anti-correlations between the main
longitudinal mode and the weak side modes.

VI. COUNTING AND DETERMINING THE PRINCIPAL
MODES

Let us now consider more complex quantum states
than the intrinsic single mode ones. The minimum
number p of modes that are needed to completely de-
scribe them, and the shape of the corresponding prin-
cipal modes are important parameters that characterize
the system under study. From a mathematical point of
view, it can be shown in the case of a pure state that
p is also the dimension of the vector space generated by
all the vectors b̂m|Ψ〉, {b̂m} being the set of annihila-
tion operators associated with a given test mode basis.
From a more practical point of view, the best way is
to experimentally determine all the the matrix elements
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of the coherency matrix, to diagonalize it and to count
the number of non-zero eigenvalues (Morin et al., 2013).
This method works for pure and mixed states, and for
Gaussian and non-Gaussian states as well.

Counting modes is of course not restricted to quantum
optics, and researchers have developed several criteria
that allow them to find the number of such modes in
various situations. It is therefore interesting to compare
the different ways of determining the mode number in a
multimode system.

A. Case of spatial modes

We will first treat in this section the case of 1D spa-
tial modes. They can be readily extended to 2D spatial
modes. In classical optics, the number p of spatial modes
in a light beam of transverse size D is usually taken as
equal to D/dc, where dc is the coherence length (Karny
et al., 1983). To compare this value with the one deter-
mined in section IV we need to find a quantum state ρ
describing the same physical situation. A possible state
is the following statistical mixture:

ρ =

p∑
n=1

pn|αn : wn〉〈αn : wn| (77)

with
∑
pn = 1. The modes wn(x) are pixel modes for

which wn(x) is equal to 1/
√
dc for (n − 1)dc < x < ndc

and zero outside. Their number is precisely p. |αn : wn〉
are coherent states defined in each coherence area. Let
us now apply our quantum counting technique to this
state: in such a quantum state the first order coherency
matrix is diagonal in the pixel mode basis because the
fluctuations in the different pixel modes are uncorrelated.
Its diagonal elements are pn|〈αn|â†nân|αn〉|2: the number
of non zero diagonal elements is indeed D/dc, so that the
classical and quantum approaches lead to the same value
of the mode number.

We will consider in Appendix A other multimode light
sources, such as lasers and parametric down conversion
devices. We will show on a simple example than the
number p of transverse modes in a laser is equal to the
M factor introduced by Siegman (Siegman, 1998), and
that it is equal to twice the Schmidt number in the case
of parametric down conversion.

On the experimental side, the spatial structure of the
mode of an heralded single photon has been recently
experimentally determined by a holographic technique
(Chrapkiewicz et al., 2016).

B. Case of temporal modes

The generation of pure single photons is the object of
an intense experimental research (Eisaman et al., 2011;
Lvovsky et al., 2001). We have seen that, theoretically

speaking, pure single photons are always single mode.
Experimentally speaking, more than one mode can be
populated because of experimental imperfections. It is
therefore very important to evaluate the number and the
exact shape of the temporal modes that are excited. This
problem has been for example theoretically considered in
(Aichele et al., 2002). A convenient way to do it is to
derive it from the information contained in the temporal
coherency matrix, also named in this context the tempo-
ral autocorrelation function (Nielsen and Mølmer, 2007),
the matrix elements of which are:

(Γ(1))n,n′ = 〈â†(tn)â(tn′)〉 (78)

where tn and tn′ are sampling times of the homodyne
signal, taken in large enough quantities to reach a good
statistical estimation. The diagonalization of this matrix
allows us to know the temporal shapes, and the degree
of excitation, of the different principal modes.

Let us present briefly the method used in (Morin et al.,
2013), one of the first fully experimental determinations
of the temporal modes of several heralded states, namely
single-photon, two-photon, and coherent state superpo-
sitions: one produces by type II parametric down con-
version weak signal and idler beams. The temporal fluc-
tuations of the signal beam quadrature component are
continuously recorded by homodyne detection. When a
photon is detected at time tc on the idler beam, one post-
selects the homodyne signal values in N/2 time bins be-
fore tc and N/2 time bins after tc. These data are then
averaged over many detected idler photons and used to
determine the N×N temporal auto-correlation function.
If the phase of the Local Oscillator is random during the
accumulation time, it is easy to show that the experi-
mental autocorrelation matrix is directly related to the
coherency matrix in the time bin temporal mode basis.
Its diagonalization gives the number and the temporal
shape of the modes which are not in the vacuum state. If
this state is indeed single photon, the matrix has a sin-
gle eigenstate with a non-zero eigenvalue. Its temporal
shape on the N time bins gives the shape of the mode in
which ”lives” the conditionally generated single photon.
A similar approach has been used in (Qin et al., 2015).

Other recently developed technique use spectral shear-
ing interferometry (Davis et al., 2018) or dual homodyne
measurement (Takase et al., 2019). Sum frequency gen-
eration can also be used as a kind of fast correlator which
allows also to determine the number of modes in para-
metric down conversion (Kopylov et al., 2019).

VII. MULTIMODE GAUSSIAN STATES

Gaussian states play a very important role in Contin-
uous Variable quantum optics, as they are non-classical
states that are deterministically generated by nonlinear
optical processes in which the quantum fluctuations are
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small compared to the mean values. They have also the
practical interest of being completely characterized by
the first and second moments of the quadratures (but also
of the photon numbers (Vallone et al., 2019)). In addi-
tion, they are promising candidates as building bricks for
Quantum Information and Quantum Metrology purposes
(Adesso et al., 2014; Weedbrook et al., 2012) .

A. Symplectic transformations

Let us use again the compact vectorial notation
−̂→
Q de-

fined in (47) containing the quadrature operators of all
N modes. The usual commutation relations can then be
written as

[Q̂µ, Q̂ν ] = 2iβµ,ν where β =

(
0 1
−1 0

)
. (79)

A symplectic transformation is defined by a 2N × 2N
real matrix S acting on the quadrature operator column

vector
−̂→
Q that preserves the commutation relations (Si-

mon et al., 1988). The set of such transformations is
named the Symplectic Group (Dutta et al., 1995). The
condition that commutators are preserved leads to the
following condition for a symplectic transformation S:

SβS = β (80)

This group includes obviously all the mode basis
change transformations that we have already considered,
but it is not limited to these transformations.

B. Wigner function of a Gaussian state

By definition, a Gaussian state is a state, pure or
mixed, which is described by a Gaussian Wigner function.
It is, modulo a displacement in phase space, completely
described by its covariance matrix ΓQ. Note that not all
positive matrices can be used as the covariance matrix
of a Gaussian state, as they need to satisfy the general-
ized Heisenberg inequality (49). In addition the covari-
ance matrix ΓQ associated with a non-classical (squeezed
and/or entangled) quantum state has at least its smallest
eigenvalue which is smaller than 1.

The Wigner function is a real quasi-probability distri-
bution over multimode phase space depending on the 2N
real quadrature coordinates −→q . In the case of a Gaussian
state of covariance matrix ΓQ its expression is

W (−→q ) =
1

(2π)N
√

det ΓQ
e−(−→q −〈

−→
Q〉)T Γ−1

Q (−→q −〈
−→
Q〉). (81)

〈
−→
Q〉 being the phase space displacement mentioned

earlier.The purity P of a Gaussian state is simply related

to the covariance matrix by the relation:

P =
1

det ΓQ
(82)

The transformation of the Wigner function under a
symplectic transformation S can be directly calculated
using the same approach as in (54):

W ′(−→q ′) = W (−→q ) with −→q ′ = S−→q (83)

Hence a Gaussian state remains Gaussian under symplec-
tic transformation. Moreover the values of the Wigner
function are conserved in the transformation (and in par-
ticular the negative ones) but found at different points
of the phase space. The covariance matrix change under
the effect of a symplectic transformation S is expressed
as:

Γ′Q = SΓQS
T (84)

C. Gaussian state decomposition

1. Bloch Messiah reduction

Many decompositions of symplectic transformations on
subgroups of the symplectic group do exist, and we refer
the reader to (Dutta et al., 1995) on this subject. Within
the context of quantum optics, the most relevant one,
introduced by (Braunstein, 2005) is the so-called Bloch-
Messiah reduction (Bloch and Messiah, 1962). It is a
direct consequence of the singular value decomposition.

Any symplectic S matrix can be decomposed into three
matrices such as:

S = O1KO2 (85)

where O1 and O2 correspond to mode basis changes. In
equation (9), a mode basis change was characterized by
a unitary modal transformation U acting on the complex
creation operators. The same mode basis change is also
characterized by the following real orthogonal matrix O
acting in the real space of quadrature operators:

O =

(
Re(U) Im(U)
−Im(U) Re(U)

)
. (86)

where U = Re(U) + iIm(U). K is a diagonal matrix
of the form K = diag(σ1, σ2, . . . , σN , σ

−1
1 , σ−1

2 , . . . , σ−1
N ),

where σi are real and positive numbers. It corresponds to
a multimode squeezing operation in a well-defined mode
basis.

2. Williamson reduction

The evolution of the covariance matrix under symplec-
tic transformations as expressed in (84) is not a usual
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diagonalisation procedure, and thus the standard spec-
tral theorem does not apply. One can show (Dutta et al.,
1995) that a diagonal form of the covariance matrix can
always be found under these transformations, process
known as the Williamson reduction, that we expose here.
For any covariance matrix ΓQ associated with a physical
quantum state it exists a symplectic transformation S′

such that:

S′ΓQS
′T = ΓW = Diag(κ1, . . . , κn, κ1, . . . , κn) (87)

where 1 ≤ κ1 . . . ≤ κn are named the Williamson eigen-
values. This means that under symplectic transforma-
tion, any Gaussian state can be reduced into a col-
lection of independent symmetric thermal states with
〈X̂2

i 〉 = 〈P̂ 2
i 〉 = κi. Furthermore, because state purity is

invariant under symplectic transformation one has that
P = 1/Πiκi.

Combining Williamson and Bloch Messiah reductions
(85) and (87), one finds that for any Gaussian state

ΓQ = O1KO2ΓWO
T
2 KO

T
1 (88)

where ΓW is of the form introduced in (87).

3. Pure Gaussian state

For a pure Gaussian state, ΓW is the identity matrix.
Hence one can write:

ΓpureQ = O1K
2OT1 . (89)

Any pure Gaussian state can then be seen as the result
of a mode basis change on a collection of independent
pure squeezed states, thus inducing quantum entangle-
ment between the modes (Braunstein, 2005). This re-
markable property is used for instance to construct com-
plex multimode entangled Gaussian states from a set of
independent squeezers and a generalized interferometer
(see section XII A)

4. Mixed Gaussian state

For general Gaussian mixed states (88) cannot be sim-
plified, hence the second basis change O2 is now physi-
cally relevant. Relation (88) has a clear physical mean-
ing: any Gaussian state can be constructed from a gen-
eralised factorised thermal state ΓW with a first basis
change O2 which induces classical correlations between
the input modes, which are then fed into a multimode
squeezing operation K and finally mixed again by an-
other basis change O1.

The basis changes and the multimode squeezing char-
acteristics can be straightforwardly deduced from the
measured covariance matrix. Such a procedure enables

us to uncover the modes carrying the quantum proper-
ties and those carrying the classical noise. However, one
should be careful in associating too much ”quantumness”
to the K matrix when it acts on a thermal state. In this
case, the multimode squeezing matrix modifies in a phase
dependent way the input classical noise, and the resulting
output multimode mixed state can still be classical.

5. Intrinsic separability

The notion of separability, which corresponds to the
ability to write a quantum state as a statistical superpo-
sition of factorised states (Li et al., 2008; Peres, 1996), is
inherently mode basis dependent and we will review its
counterpart, entanglement, in the next section. Separa-
bility conditions can be derived from the covariance ma-
trix (Gittsovich et al., 2008). The underlying symplectic
geometry of Gaussian states renders possible the study of
intrinsic separability, i.e. the question of the possible ex-
istence of a mode basis in which a given multimode state
is separable (Mancini, 2006). For pure Gaussian states,
this is a direct consequence of Bloch Messiah decom-
position, and the basis in which a multimode gaussian
states is separable is given by eq.(89). For mixed Gaus-
sian states eq.(88) does not provides directly the solution,
as the symplectic transformation involved is not a basis
change. We thus follow here the approach of (Walschaers
et al., 2017a) to demonstrate the intrinsic separability of
any Gaussian state.

One can simply rewrite eq.(88) introducing Γth =
O2ΓWO

T
2 , which is the covariance matrix of a thermal

state. A Gaussian state can thus be decomposed as
ΓG = Γs + Γc, where Γs = O1K

2OT1 is a pure multi-
mode squeezed vacuum and Γc = O1(Γth − 1)OT1 cor-
responds to the added noise. Note that Γc is a positive
symmetric matrix that does not in general satisfy Heisen-
berg inequality (49) and therefore cannot be associated
with a quantum state: it can be seen as a noisy channel
randomly displacing the pure state. One can show that
the Wigner function of the Gaussian mixed state can be
written as the convolution product (Walschaers et al.,
2017a):

WG(−→q ) =

∫
d2Nξ Ws(

−→q −
−→
ξ )pc(

−→
ξ ), (90)

where

pc(
−→
ξ ) =

e−
−→
ξ T Γ−1

c

−→
ξ

(2π)N
√

det Γc
, (91)

is a Gaussian positive and normalized probability distri-
bution and

Ws(
−→q ) =

e−
−→q T Γ−1

s
−→q

(2π)N
√

det Γs
. (92)
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is the Wigner function of a factorized multimode
squeezed state. Expression (90) is nothing but the statis-
tical mixture of displaced pure squeezed vacuum states,
all separable in the same basis defined by transformation
O1. Hence, for any Gaussian state (the demonstration
here can be easily extended to displaced states) one can
find a mode basis, given by Bloch-Messiah-Williamson
reduction, in which it is separable.

Let us stress here this important property of multi-
mode Gaussian states: they are all intrinsically separa-
ble, meaning that they can always be ”disentangled” in
some appropriate mode basis. Note that this basis is not
unique.

VIII. MULTIPARTITE ENTANGLEMENT

Entanglement (Schrödinger, 1935) and non-
separability (Werner, 1989) are basic quantum resources.
Their characterization is subtle and still the object of
numerous investigations. These have mostly concerned
bipartite systems and entanglement criteria have been
introduced (Gühne and Tóth, 2009; Horodecki et al.,
2009) in terms of Schmidt number, Partial Transpose,
variances of combinations of quadratures, quadrature
matrix eigenvalues ... The complexity of the separability
problem increases substantially when one studies multi-
partite systems. In these situations, one has a rapidly
increasing number of choices in the bunching of parties
on which one searches for a possible factorization (Van
Loock and Braunstein, 2000). Without going into much
detail, we present now a brief overview of the domain,
restricting ourselves mostly to results which are scalable
to an arbitrary number of partitions.

In addition of being more complex than bipartite, mul-
tipartite entanglement has some specific features:

• Whereas the Schmidt decomposition is a very use-
ful tool for pure bipartite states, there is no such
simple decomposition in the case of more than two
parties in the general case (Aćın et al., 2000; Pati,
2000).

• The N multimode system can be divided in many
different bi-partitions, but there are also numerous
possibilities of multipartitions in K = 3, 4, ..., N
parties. For example for N = 10, the total number
of multipartitions, whatever K, is 115974. A given
state can be entangled for some partitions, not
for others, which gives rise to a complex topology
of quantum correlations (Menicucci et al., 2006).
An important notion is that of ”genuine entangle-
ment”: one defines a genuinely K-entangled state as
a state that is not a statistical mixture of K-partite
factorized density matrices. Genuine entanglement
implies multipartite entanglement for every other
partition of the modes. However, if a state does

not exhibit this specific kind of entanglement (i.e.,
is two-separable), no conclusions on other forms of
multipartite quantum correlations can be drawn.

• There are in some cases relations between the en-
tanglement measures of the different partitions,
which are termed under the name of monogamy :
in the case of three parties A, B and C, for exam-
ple, it has been shown, in the particular cases of
qubits (Coffman et al., 2000) and symmetric gaus-
sian states (Adesso and Illuminati, 2006) that the
A-BC entanglement between A and the two other
modes is stronger than the sum of the ”partial” en-
tanglements A-B and A-C. This property is specific
to quantum entanglement, in opposition to the clas-
sical correlations, which are not constrained and
can be freely shared. This property can be gener-
alized to an arbitrary number of bipartitions.

Multimode entanglement is also present in the case of
a bipartition into two parties which are themselves mul-
timode. This is the case for example of parametric down-
conversion (see section IX A). If the two-party quantum
state is pure its Schmidt decomposition gives the prin-
cipal Schmidt modes of the system, and the number of
terms (Schmidt number) gives the dimensionality of the
system (Gatti et al., 2012; Law and Eberly, 2004). In the
general case, as the Schmidt decomposition cannot be
extended to more than 2 parties, a ”vector” of Schmidt
numbers for all bipartitions is useful to characterize mul-
tipartite pure states (Huber and de Vicente, 2013). One
can also use in this case a necessary and sufficient entan-
glement criterion (Gessner et al., 2016).

The case of a mixed state ρ is more difficult to deal
with. Theoreticians have introduced various entangle-
ment witnesses for multipartite entanglement, i.e. oper-
ators Ŵ such that Tr(ρŴ ) < 0 implies non separability.
There are simple ones, easy to calculate (Hillery et al.,
2010), but ”missing” many entangled states, and opti-
mized ones (Hyllus and Eisert, 2006). The method of sep-
arability eigenvalues (Sperling and Vogel, 2013) has been
used to characterize all the partitions of a multipartite-
entangled quantum frequency comb (Gerke et al., 2015).
In addition to witnesses, one can use in the multipar-
tite case the Partial Transpose method (Simon, 2000),
and define a measure of entanglement in the Continu-
ous Variable regime in terms of logarithmic negativity
(Adesso et al., 2004). One can also derive simple criteria
to detect genuine entanglement (Toscano et al., 2015).
Some states appear to be not genuinely entangled, and
therefore two-separable, and yet exhibit a rich multipar-
tite entanglement structure for multipartitions in more
than two-parties (Gerke et al., 2016).

The particular case of Gaussian multimode states has
been thoroughly investigated with the help of symplec-
tic group methods (Adesso and Illuminati, 2007a, 2012;
Franke-Arnold et al., 2013) and criteria based on sym-
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plectic invariants (Serafini, 2006). Whereas for bipar-
tite Gaussian states, the Partial Transpose criterion is
a necessary and sufficient entanglement identifier (Peres,
1996) this is no longer the case for more than two par-
ties: there are multipartite Gaussian states whose en-
tanglement cannot be uncovered by the partial trans-
position (DiGuglielmo et al., 2011; Werner and Wolf,
2001). The logarithmic negativity, a measure of entan-
glement, can be directly calculated from the covariance
matrix, as well as the appropriate measure E that al-
lows us to test the monogamy inequality for Continuous
variables (Coffman et al., 2000). In addition the differ-
ence E(A−BC)−E(A−B)−E(A−C) gives some in-
formation about higher order entanglement (Adesso and
Illuminati, 2007b). Multipartite steering can be also de-
fined, calculated and used in a monogamy inequality (Xi-
ang et al., 2017). The best way to study the detailed
structure of entanglement in a given multimode state is
to use criteria which are an extension of the well-known
Duan criterion (Duan et al., 2000), detailed in (Teh and
Reid, 2014; Toscano et al., 2015; Van Loock and Braun-
stein, 2000; Van Loock and Furusawa, 2003) in terms of
combinations of different quadrature operators, for ex-
ample X̂1 −

∑
i giP̂i and P̂1 +

∑
i giX̂i . Reconfigurable

Gaussian entangled states have been experimentally pro-
duced, characterized and used for quantum information
purposes (Cai et al., 2017; Chen et al., 2014; Menicucci
et al., 2008; Titchener et al., 2016; Van Loock and Furu-
sawa, 2003; Yokoyama et al., 2013).

Multipartite entanglement of non Gaussian states has
been also studied, for example in terms of Mandel matri-
ces that involve normally ordered 4th order correlations
(Ivan et al., 2011). Sufficient conditions for genuine mul-
tipartite Gaussian and non Gaussian states have been de-
rived (Shchukin and van Loock, 2015). For photon-added
or subtracted Gaussian states, which are the most stud-
ied CV non Gaussian states, a hierarchy of inseparability
criteria can also been used to characterize precisely the
entangled state (Levi and Mintert, 2013; Valido et al.,
2014), and the relations between the negativity of the
Wigner function, purity and entanglement (Walschaers
et al., 2017a), involving also higher statistical moments
of the quadrature operators. The effect of mode-selective
photon addition and subtraction on the propagation of
entanglement over the quantum network has been the-
oretically studied in (Walschaers et al., 2018) and ex-
perimentally investigated (Ra et al., 2019). It turns out
that the non-Gaussian character induced by photon sub-
traction spreads not further than to the next-to-nearest
neighbor node in the cluster graph.

IX. SOURCES OF MULTIMODE NONCLASSICAL
STATES

In this section, in order to avoid cumbersome presen-
tation, we will essentially restrict ourselves to the con-
tinuous variable aspects of multimode nonclassical state
generation.

A. Mixture of single mode non-classical states

In order to generate any N-mode Gaussian state, a
possibility is to start from a bunch of independent sin-
gle mode squeezed states followed by a linear N-port in-
terferometer comprising beamsplitters and phase shifters
(Braunstein, 2005). This is true in particular for gener-
ating cluster states (Zhang and Braunstein, 2006). It has
been shown (Reck et al., 1994) that actually any modal
unitary operator can be constructed using a sequence of
beam splitters transformations.

Multipartite entanglement and quantum networks can
be created by this technique using a single squeezed state
(Van Loock and Braunstein, 2000) or several (Armstrong
et al., 2012; van Loock et al., 2007; Su et al., 2014).
Integrated optics and multimode fibers have been also
used (Mohanty et al., 2017), as well as spatially multi-
plexed detection of up to 8 different spatial modes (Arm-
strong et al., 2012; Su et al., 2012). In the pulsed regime
time delays can also be used to mix different pulses in
the same beam (Yokoyama et al., 2013). Because sin-
gle mode squeezers are now capable of reaching impres-
sive amounts of squeezing, up to 15dB (Vahlbruch et al.,
2016), this technique is attractive from an experimental
point of view. Experimental implementations become
more and more complex as N increases and lack flexibil-
ity because they are not simply reconfigurable.

B. Parametric down-conversion

1. Interaction hamiltonian

The most widely employed technique to directly gener-
ate, with a single device, multimode non-classical states
is to use twin photon generation by parametric down
conversion in a nonlinear χ(2) crystal (Grynberg et al.,
2010)-chapter 7. Using a discrete mode basis and assum-
ing undepleted pump, it is described by the following ef-
fective interaction Hamiltonian, obtained by tracing out
the degrees of freedom of the nonlinear matter:

Ĥ =
∑
`,`′

(G`,`′ â
†
` â
†
`′ +G∗`,`′ â`â`′) (93)

where â†` and â†`′ are creation operators of photons in
modes f` and f`′ (that can be either degenerate or non
degenerate), of respective frequencies ω` and ω`′ . G`,`′ =
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G`′,` = a`,`′αp(ω` + ω`′), where αp(ω) is the pump field
amplitude at frequency ω, and a`,`′ is a coefficient which
depends on the nonlinear medium and the geometry of
the interaction.

The Hamiltonian is a double sum of EPR entangling
â†` â
†
`′ terms, so one expects entanglement to be generated

between all pairs of twin modes for which the joint two-
photon matrix G has significant matrix elements G`,`′ .
Indeed in the weak pump approximation (G`,`′ � 1) and
vacuum state input, the state at the output of the crys-
tal will be the entangled highly multimode twin-photon
state:

|Ψout〉 = |0〉 − i L
~c
∑
`,`′

G`,`′ |1 : f`〉 ⊗ |1 : f`′〉 (94)

where L is the crystal length.
a) If the symmetrical matrix G is real, one can di-

agonalize it by an orthogonal transformation O, which is
a special case of mode basis change:

OGO−1 = Λ (95)

where Λ is a real diagonal matrix of eigenvalues λi. So

in the eigenmode basis with annihilation operators
−→
b̂ =

OT
−→
â , the hamiltonian writes:

Ĥ =
∑
i

(λib̂
2
i + H.C.) (96)

where the eigenvalues λi are real. The eigenmodes are
often called ”supermodes”.

b) If G is complex, using the Autonne-Takagi factor-
ization method (Arzani et al., 2018; Cariolaro and Pier-
obon, 2016; Siegel, 1943), one can find a unitary matrix
U (hence a mode basis transformation) such that

UGUT = Λ (97)

Λ being again a diagonal real non-negative matrix. Using

the mode transformation
−→
b̂ = U†

−→
â , the Hamiltonian

can be written in the new basis as in (96).
In both cases Ĥ is in the new basis a sum of squeezing

hamiltonians, which means that the propagation of an
initial vacuum state in the nonlinear crystal will lead to
a final quantum state which is a tensor product of vac-
uum squeezed states, the variance in dB of the squeezed
quadrature X̂i in mode i being proportional to the eigen-
value λi (Lvovsky and Banaszek, 2005; de Valcarcel et al.,
2006; Wasilewski et al., 2006). The number of non-zero
eigenvalues (i.e. the rank of the G matrix) gives the in-
trinsic number of non-vacuum modes. It turns out that
this number roughly equal to to the aspect ratio of the
G`,`′ matrix (ratio of its widths in the ω`+ω`′ and ω`−ω`′
directions).

c) In some instances, like in type II phase matching
for example, the 2N×2N joint two-photon matrix G can

be written in terms of N ×N block matrices of the form:

G =

(
0 Gsi
G∗si 0

)
(98)

The interaction Hamiltonian is a sum of terms creating
one photon in one of the signal modes fsi and one photon
in one of the idler modes f ij . The singular value decom-
position of matrix Gsi writes

UsGsiU
T
i = Λsi (99)

where Us and Ui are unitary mode basis changes in the
signal and idler parts of the modal space and Λsi the real
diagonal matrix diag(λ1, ..., λN ). The singular value de-
composition thus generates two sets of N eigenmodes,
{fsk} and {f ik}, which are EPR entangled with each
other. They are the Schmidt modes (Sharapova et al.,
2018) already introduced in section (VI D). They form
a mode basis respectively in the signal and idler parts.
One can show (Horoshko et al., 2019) that the eigenval-
ues of the joint two-photon matrix G are doubly degener-
ate, with eigenvectors (fsj ± f ij)/

√
2, which are therefore

both equally squeezed and mutually uncorrelated, with a
squeezing factor in dB proportional to λj . The number
of non-zero terms in the Schmidt decomposition gives the
intrinsic dimension of the generated multimode state (see
appendix B).

2. Different possible modes for entangled states

The entanglement generated by parametric down-
conversion concerns different kinds of modes:

• polarization modes, that we do not consider in this
review;

• spatial modes (Jedrkiewicz et al., 2004; Law and
Eberly, 2004; Walborn et al., 2010), which can be
the transverse modes of cavities (Kolobov, 2006) or
of multimode optical fibers (Jachura et al., 2014).
This leads to non-classical correlations between dif-
ferent parts of an optical image, or between two
images;

• time/frequency modes (Jiang et al., 2012), which
leads to correlations between different spectral
components of the light source;

• polarization, spatial and/or temporal degrees
of freedom at the same time, for exam-
ple polarization/transverse modes (Gabriel
et al., 2011; Jedrkiewicz et al., 2012), or spec-
tral/temporal/transverse modes (Perina, 2016).

Nonlinear effects in nonlinear crystals are usually weak
and generate twin-photon states of the form (94). If one
uses a strong pulsed pump (Sharapova et al., 2018) mul-
timode pulsed twin beams containing more than 6× 105
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photons have been generated and used to conditionally
generate sub-Poissonian light (Iskhakov et al., 2016). In
order to enhance the effect, it is possible to use resonant
cavities. We will detail this configuration in the following
section.

3. Use of resonant optical cavities

Another possibility is to insert the crystal in a resonant
cavity. The device is then an Optical Parametric Oscilla-
tor (OPO), which produces above some pump threshold
bright output beams in the twin modes ` and `′ that are
resonant with the cavity. As cavities are actually mode
filters, there is often only one couple of twin modes that
has such a resonant property, and the OPO generates
below threshold a two-mode EPR state, or a squeezed
vacuum single mode state if the twin photons are gener-
ated in the same mode `. The squeezing, or the entan-
glement, increases more and more when one approaches
the oscillation threshold from below.

To produce multimode non-classical states of larger di-
mensionality (Lugiato and Gatti, 1993), one can use a
cavity which simultaneously resonates on several couples
of parametrically generated modes. Below threshold, the
generated quantum state is a tensor product of squeezed
vacuum states in each ”supermode” i, with a squeezed
quadrature noise equal to (Patera et al., 2009)

∆X2
i =

(
λ1 − r|λi|
λ1 + r|λi|

)2

(100)

where r is the pump field amplitude normalized to the
pump amplitude at threshold. Hence the squeezing in
the first supermode becomes very large when one ap-
proaches the threshold from below. All the other modes
of smaller but nonzero eigenvalue λi are also squeezed,
but by smaller amounts and never get perfectly squeezed.

If one uses cavities with spherical mirrors, the spa-
tial eigenmodes of which are the Hermite-Gauss modes
TEMpq, cylindrical symmetry leads to p+q mode degen-
eracy, that has been for example exploited in (Lugiato
and Marzoli, 2005; Marte et al., 1998). These modes are
entangled by the parametric interaction (Chalopin et al.,
2011; Lassen et al., 2007; Schwob et al., 1998). Confo-
cal cavities have a stronger degeneracy and resonate for
any spatial mode of symmetrical shape (Martinelli et al.,
2003). Self-imaging cavities are resonant for any trans-
verse shape of the electric field (Lopez et al., 2009).

Cavities are also filters in the spectral domain: they
have equally spaced resonant frequencies and enhance
not only resonant single frequency modes, but also fre-
quency combs: this leaves room for a possible great num-
ber (more than 105 in realistic experimental conditions)
of entangled frequency modes.

4. Use of pump modes of different shapes

In most experiments, the parametric medium is
pumped by a monochromatic field, so that the entan-
gled signal and idler modes have to fulfil the relation
ω` +ω`′ = ωpump: one gets a set of independently entan-
gled couples of signal and idler modes, but without any
multipartite entanglement. The use of a bi-chromatic
pump (Chen et al., 2014) allows physicists to greatly
enhance, and in a well controlled way, the number (up
to 60) and the topology of entangled couples of modes:
a whole zoology of cluster states (Pysher et al., 2011;
Shahrokhshahi and Pfister, 2011) can thus be generated,
with applications to measurement based quantum com-
putation (Menicucci et al., 2008).

One may also use as a pump field an optical frequency
comb with the same frequency spacing as the OPO cav-
ity (synchronously pumped OPO or SPOPO). If for ex-
ample the pump spectrum has a Gaussian envelope, the
spectral shapes of the supermodes are the successive
Hermite-Gauss functions (Patera et al., 2010; de Valcar-
cel et al., 2006). This scheme has been experimentally
explored: principal modes have been determined, dis-
playing strong squeezing on several of them (de Araújo
et al., 2014; Pinel et al., 2012b; Roslund et al., 2015) and
multimode entanglement in frequency (Cai et al., 2017)
and time (Averchenko et al., 2011). The effective number
of modes, as defined in (63), is of the order of 10. So,
starting from a mode basis of single frequency modes,
the number of which is roughly 105, one ends up with a
modal Hilbert space of a few units, a strong reduction in
complexity which is useful for example when one wants
to make the tomography of the generated state. Shap-
ing the interaction by various ways like using a Spatial
Light Modulator (Arzani et al., 2018; Patera, G. et al.,
2012; Pe’Er et al., 2005), a nonlinear fiber (Finger et al.,
2017), a Fabry-Perot cavity (Avella et al., 2014) or opti-
mized poling (Dosseva et al., 2016) permits to modify at
will the spectrum of the supermodes, and the resulting
multipartite entanglement characteristics.

5. Above threshold operation

Above threshold the OPO generates ”bright” light (i.e.
with a non-zero mean value) in the first resonant super-
mode (the one of largest gain, hence of largest eigen-
value λ1). When one increases further the pump power
above threshold, gain clamping prevents the other modes
to oscillate (Fabre et al., 2000b), which remain with a
zero mean value. It has been shown that just above
threshold the supermodes different from the first one re-
main in squeezed vacuum states, like just below threshold
(Chalopin et al., 2010). Well above threshold, the signal
and idler modes carry significant energy. Pump depletion
cannot be neglected and leads to the onset of a supple-
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mentary quantum coupling between the pump mode and
the signal and idler modes. One has then a full three-
wave mixing effect (Drummond, 2002), leading to three-
mode entanglement between frequency modes, and six-
mode entanglement between sideband modes, which have
been predicted (Villar et al., 2006) and observed (Bar-
bosa et al., 2018). Note that in this regime the hamil-
tonian involves products of three annihilation and/or
creation operators, and induces an evolution which is
not symplectic, which implies a direct generation of a
non-Gaussian state, and requires a very weak oscillation
threshold of the OPO(Drummond, 2002).

Above threshold and in the case of degenerate TEM01

and TEM10 spatial modes, the SPOPO is predicted to
generate bright light in a non-classical state (Navarrete-
Benlloch et al., 2017), because of a symmetry-breaking
effect between the transverse modes.

C. Four-wave mixing

A drawback of second-order nonlinear effects is that
they are weak and exist only in centrosymmetric crystals,
that can only be grown in lengths of a few centimeters.
This is not the case of media with third order nonlin-
earities: non linear fibers can accumulate the nonlinear
effect over very long lengths, and atomic media can dis-
play large effects by taking advantage of the proximity
of resonances between the pump light and atomic tran-
sitions. For such media there is usually no need to insert
them in a resonant cavity, and therefore the multimode
quantum effects are not hampered by the mode-filtering
properties of the cavity.

To produce four-wave mixing effects, one needs the si-
multaneous presence of two pump beams. In the simple
case where one can neglect the change of the quantum
state of the medium in presence of pumping light, as-
suming single frequency pump beams of amplitudes αp1,
αp2, and in the undepleted pump regime, the system is
described by an interaction hamiltonian involving only
light modes:

Ĥ =
∑
`,`′

(A`,`′αp1αp2â
†
` â
†
`′ + H.C.) (101)

Twin photons are therefore created in modes labeled by `
and `′. Phase matching and energy conservation require-
ments do not usually completely constrain the couples
of twin modes, so that the light generated by four wave
mixing is often multimode. The hamiltonian (101) has
the same structure as the parametric hamiltonian (93),
with the same consequences on the generation of twin
photons and entangled or squeezed multimode states.

The Kerr effect is a particular case of four-wave mixing
effect. It has been one of the first techniques to gener-
ate bright squeezed beams using single transverse mode

silica fibers (Levenson et al., 1985). Its multimode char-
acter in the frequency domain has been investigated in
the case of a pulsed pump (Opatrny et al., 2002) and
frequency combs (Chembo, 2016). The authors showed a
nonlinear variation of squeezing with respect to spectral
filtering width, which is an evidence for the generation of
a multimode state, as explained in section V.C. A com-
plete time/frequency mode analysis has been performed
in (Guo et al., 2015). Here also the four-wave mixing
characteristics can be appropriately tailored to meet spe-
cific purposes, for example, adjusting the spectral profile
of the twin photons by using a specific pump shape and
design of the photonic crystal fiber (Cui et al., 2012).

In the temporal soliton regime, reached by using short
and intense pulses in optical fibers, squeezing (Drum-
mond et al., 1993) and spectral quantum correlations
between different parts of the spectrum have been ob-
served (Spälter et al., 1998), whereas in the spatial soliton
regime, spatial quantum correlations between different
transverse parts of the beam have been predicted (Treps
and Fabre, 2000). Such spatial correlations may actually
improve the quantum noise reduction by filtering an ap-
propriate transverse part of the spatial soliton (Mecozzi
and Kumar, 1998).

The technique of four-wave mixing in a hot Rubid-
ium vapor using two intense pump beams with optimized
frequencies, initiated by the NIST group (Boyer et al.,
2008a), provides single pass parametric gains of the or-
der of 4 (McCormick et al., 2006). It generates strong
multiple correlations (Qin et al., 2014a), multimode en-
tanglement, with a record value of 9.2dB (Glorieux et al.,
2011) of intensity difference fluctuations below the vac-
uum level and localized squeezing (Embrey et al., 2015;
Jing et al., 2011). It has been used for example to gen-
erated entangled images (Boyer et al., 2008a,b). Here
also, pump shaping, implemented simply by using sev-
eral pump beams of different directions intersecting in
the Rb cell, allow experimentalists to generate multipar-
tite entangled beams of various topologies (Qin et al.,
2014b; Wang et al., 2017). The effect can be enhanced
up to 9dB by modulating the Rb energy levels using ad-
ditional lasers (Zhang et al., 2017).

Other kinds of nonlinear devices give rise to different
shapes of the Schmidt modes. One can use for example
4 wave mixing in Argon-filled hollow core fibers (Finger
et al., 2017).

D. Multimode lasers

Lasers generate light which can be either single mode
or multimode, depending on the gain spectral profile, the
properties of intermode coupling and the insertion of in-
tracavity mode filters, but most often, their nonclassical
properties are hidden by the large excess of classical fluc-
tuations in the pumping process responsible for the pop-
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ulation inversion. In some specific conditions, when the
pump noise is greatly reduced, lasers can generate ”sub-
Poissonian light”, i.e. beams of light having intensity
fluctuations below the shot noise level. This is achieved
for example by reducing the Johnson noise of the electri-
cal current pumping high efficiency diode lasers. These
diode lasers usually emit on several highly anti-correlated
frequency modes (Marin et al., 1995). The same charac-
teristics have also been observed in Vertical Cavity Sur-
face Emitting Lasers, with are characterized by strong
correlations between transverse modes (Hermier et al.,
1999).

X. DETECTION OF MULTIMODE QUANTUM STATES

A. Direct photodetection

The observable N̂(r, t) associated with photodetection
made on a small area around point r (of dimensions close
to the wavelength) and at time t on a given beam by
a photodetector of unity quantum efficiency is propor-
tional to Ê(+)(r, t)†Ê(+)(r, t) (Glauber, 1963; Mollow,
1968). More precisely and expressed in numbers of pho-
ton counts, using relation (31), one has

N̂(r, t) =
∑
n,n′

b̂†nb̂n′f
∗
n(r, t)fn′(r, t) (102)

Note that this observable contains crossed terms like
b̂†nb̂n′ . Its mean value is a linear combination of matrix el-
ements of the coherency matrix Γ̂(1). The local photode-
tection signal is therefore sensitive to the correlations
between the different modes. These correlations could be
extracted by measuring the intensity correlations at the
different couples of points in the transverse plane. It is
only in the eigenmode basis of the coherency matrix that
it appears as a sum of contributions of different modes.

The total photodetection observable N̂ is associated
with the signal given by a photodetector of unit quantum
efficiency averaged over its transverse surface S which is
supposed to be much larger than the beam area, and over
an aperture time T which is supposed to be much longer
than its duration. We will call such a device a ”bucket
detector”. It is given by:

N̂ =
∑
n

b̂†nb̂n (103)

thanks to the mode orthogonality when one integrates
over transverse coordinates and longitudinal coordinate
z = ct. The detector counts the total amount of photons
present in the beam, which is a quantity independent of
the choice of the mode basis, as we have seen above. It
does not give us any information about the modal prop-
erties of the quantum state.

B. Balanced homodyne detection

One of the interests of multimode systems resides in
the fact that they are likely to carry in a parallel way
much more information than a single mode system. It
is therefore very important to find the best way to ex-
tract from the multimode system pieces of information
about any single mode of interest. Balanced homodyne
detection gives precisely this possibility.

Let us consider the well-known balanced homodyne de-
tection scheme in the context of multimode quantum op-
tics: the beam to measure is combined with a local oscil-
lator (LO) on a 50% beamsplitter. The observable N̂−,
associated with the difference between the photodetec-
tion signals N̂A and N̂B recorded by two bucket detec-
tors placed on output beams A and B and integrated over
transverse space and time can be expressed as, using the
well-known input-output relations of a beamsplitter:

N̂− = N̂A − N̂B
=
∑
n

(b̂in†n,Ab̂
in
n,B + b̂in†n,B b̂

in
n,A) (104)

The latter expression is valid in any mode basis, provided
the modes fn,A(r, t) and fn,B(r, t) forming the mode ba-
sis for beams A and B impinging on the beamsplitter
are matched, meaning that the mode fn,A(r, t) associated

with b̂inn,A is the ”mirror mode” of the mode fn,B(r, t) as-

sociated with b̂inn,B using as a mirror the surface of the
beamsplitter (symmetrical spatial shapes, identical tem-
poral shapes). One sends on the input beam A the multi-
mode light state, pure or mixed, that one wants to char-
acterize, and on the input beam B a single mode state
of light, named Local Oscillator or LO, which is made of
vacuum in all modes except for a coherent state

∣∣|αeiφ〉 in
the jth mode. Let us introduce the fluctuation operators
of the form δÔ = Ô − 〈Ô〉. If the local oscillator inten-
sity |α|2 is much larger than the vacuum fluctuations and
than the mean amplitude of the multimode light beam,
one can neglect all the terms except the ones proportional
to |α|. The fluctuations of the measured homodyne signal
are then:

δN̂− ' |α|(δb̂in†j,Ae
iφ + δb̂inj,Ae

−iφ)

= |α|(δX̂j cosφ+ δP̂j sinφ) = |α| δX̂jφ (105)

This equation shows that the balanced homodyne detec-
tion set-up allows us to have access to the fluctuations
of the quadrature operator δX̂jφ even if the multimode
state under study has comparable or larger components
on many other modes: the homodyne detection using
bucket detectors is actually a projective measurement on
the LO mode.

On the other hand, if the Local Oscillator is in a mode
gLO(r, t) which differs from all the modes of the basis
{fn}, one has, in the case of a real value of the overlap

integral
−→
fn
T∗ · −→gLO (Bennink and Boyd, 2002):
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〈δN̂2
−〉 = |α|2

∑
n

(
−→
fn
T∗ · −→gLO)2〈(δX̂in

nφ)2〉 (106)

(Shapiro and Shakeel, 1997) have investigated the ways
to optimize the LO shape in order to get the maximum
squeezing effect. In (Polycarpou et al., 2012) the single
temporal mode of a heralded single photon is analyzed by
homodyne detection using a pulse-shaped LO, the spec-
tral/temporal shape of which is then algorithmically op-
timized in order to get the maximum overlap.

C. Determination of quadrature covariance and coherency
matrix elements

We show now that it is possible, using a series of homo-
dyne measurements with different shapes of local oscilla-
tor modes, to determine all the second order correlations
functions characterizing the multimode state of light un-
der study.

First, from the measurement of the homodyne sig-
nal variance 〈δN̂2

−〉 as a function of the LO phase φ,

one easily extracts the quadrature variances 〈δX̂2
n〉 and

〈δP̂ 2
n〉, as well as the XP correlation 〈δX̂nδP̂n〉 in mode

n. Then, in order to determine the correlations between
modes m and n, one makes another homodyne measure-
ment, using now as the LO mode a combination of the
two modes fLO = (fn + fm)/

√
2, which gives informa-

tion about the multimode state projected on this new
mode, i.e. on the variances VXmn = 〈(δX̂n + δX̂m)2〉
and VPmn = 〈(δP̂n + δP̂m)2)〉 and on the correlation
CXPmn = 〈(δX̂n+δX̂m)(δP̂n+δP̂m)+(δP̂n+δP̂m)(δX̂n+
δX̂n)〉/2.

The matrix elements elements of the quadrature co-
variance matrix are then given by:

〈δX̂nδX̂m〉 = (VXmn − 〈δX̂2
n〉 − 〈δX̂2

m〉)/2
〈δP̂nδP̂m〉 = (VPmn − 〈δP̂ 2

n〉 − 〈δP̂ 2
m〉)/2 (107)

Finally, in order to evaluate the Xn Pm correlations, one
uses the same procedure as the one used for the Xn Xm

and Pn Pm correlations, but now with another series of
homodyne measurements with LO modes f ′LO = (fn +
ifm)/

√
2 including a phase shifted fm mode.

The matrix elements of the coherency matrix Γ(1) can
also be determined from the series of homodyne measure-
ments using relations (107) and (50).

It is thereby possible to get the full correlation matri-
ces by a series of homodyne measurements (for example
one must use 100 choices of different LO modes for 10
modes). These measurements must be made sequentially,
and require therefore that the quantum state generator
is stable over the duration of these measurements. The
quantum state which is characterized by this matrix is
unfortunately destroyed by the measurement, which pre-
vents this technique to be used in experiments involving

conditional measurements, and in particular in Measure-
ment Based Quantum Computing.

Note that, with the help of a beamsplitter and two
homodyne detectors at its two outputs, it is possible to
measure at the same time 〈δX2

j 〉 and 〈δP 2
j 〉, but this can-

not be done without adding excess noise coming from
vacuum fluctuations at the input of the beamsplitter,
as Xj and Pj are non-commuting quantities that can-
not be measured exactly simultaneously. This method
is useful to measure classical noises that are significantly
larger than the vacuum fluctuations. One can then ex-
tract from these measurements the principal noise modes
that govern the dynamics of a classical light source. This
has been in particular achieved for mode-locked lasers
(Schmeissner et al., 2014). Note that the excess noise
can be avoided by using correlated homodyne measure-
ments (Shchukin and Vogel, 2006).

D. Spectral homodyne and resonator detection

In the case of stationary light sources (continuous wave
or periodic), homodyne detection is very often followed
by a spectral analysis of the fluctuating signal, which
allows us to measure the noise spectral density S(Ω) of
the homodyne signal fluctuations. For example when the
LO phase φ is zero, S(Ω) is equal to S(Ω) = 〈δX̂2

Ω〉 where

δX̂Ω =
1√
2π

∫
dt eiΩtδX̂(t) (108)

It is easy to show that this measured signal depends
on the properties of sideband modes, which are quasi-
monochromatic frequency modes at frequency ω0 ± Ω
(within the frequency bandwidth ∆Ω of the spectrum an-
alyzer), where ω0 is the optical carrier frequency and Ω
the Fourier analysis frequency, usually in the MHz range.
More precisely, if one calls âω the annihilation operator
in the frequency mode of frequency ω, one has obviously:

δX̂Ω = âω0+Ω + âω0−Ω (109)

A noise spectrum of the homodyne signal, apparently
a technique to characterize single mode fields, actually
gives a highly multimode information about couples of
sideband modes. For example squeezing of noise fre-
quency components in a given Fourier frequency range
(〈δX̂2

Ω〉 < 1 for Ω ∈ [Ω1,Ω2]) can actually be seen as
(Ω2 − Ω1)/∆Ω independent couples of EPR correlated
sideband modes.

However, it can be shown that spectral homodyne de-
tection does not give the full information about the side-
band modes (Barbosa et al., 2013), more precisely it mea-
sures the properties of the input quantum state partially
traced over the mode associated with âω0+Ω− âω0−Ω, or-
thogonal to δX̂Ω. There is another detection technique,
named ”resonator detection ” which gives indeed access
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to the full information about the frequency modes. It
consists in measuring the intensity fluctuations of the
beam to analyze after it has been reflected on a slightly
off-resonant Fabry-Perot cavity the length of which is
scanned. The off-resonance unbalances the two sideband
and reveals a possible asymmetry between them, which is
not possible with the homodyne detection. Let us men-
tion that sideband modes, although very close to each
other in frequency, can be separated and studied individ-
ually using interferometric techniques (Huntington et al.,
2005)

E. Multiplexed detection

1. Implementation

Homodyne detection is a destructive measurement,
which prevents any further processing of the same quan-
tum state, so a ”single shot” detection of several ob-
servables on the same quantum system, that we will call
”multiplexed detection”, is highly desirable, especially if
one wants to take advantage of the multimode aspect of
the generated light. A multiplexed detection can be sim-
ply implemented when the different modes of the light
can be spatially separated: one inserts homodyne detec-
tion devices on all, or some, of these different modes (Su
et al., 2014, 2012; Yukawa et al., 2008). In this con-
figuration the different measurements do not completely
destroy the quantum state. One can also post select
a subset of recorded data in order to herald a specific
quantum state (Aichele et al., 2002; Laurat et al., 2003).
One can also use the information contained in the mea-
surements to correct by a feedforward technique a mode
which has been left un-measured, for example in sub-
Poissonian bright beam generation (Mertz et al., 1990)
or in teleportation (Furusawa et al., 1998) .

When the multimode state is propagating in a single
spatial beam, different kinds of multiplexed photodetec-
tors can be used: CCD cameras (Peřina Jr et al., 2012) or
photodiode arrays (Armstrong et al., 2012; Beck, 2000;
Dawes and Beck, 2001) for spatial modes, and time re-
solved detectors for temporal modes. They allow to
record the intensity fluctuations on pixels of area δx2,
time bins of duration δt and the correlations between the
fluctuations of different pixels. In addition, if one inserts
a dispersive device like a prism in front of the array de-
tector, one can measure the fluctuations of different fre-
quency bands of spectral width δω (Ferrini et al., 2013).

2. Multiplexed homodyne signal

The modes corresponding to the detection scheme
we just described are respectively the pixels, time bins
and/ frequency band modes: they are normalized modes
vj(r, t) which are zero outside the detection domain (in

space, time or frequency) and are constant inside, that
we will call in a general way ”bin-modes”. Let us con-
sider the set (vj(r, t)) of such bin modes which are not
overlapping and which cover the whole detection domain,
and the corresponding annihilation operators d̂j . Such a
detection acts actually as a low pass filter: the bin-modes
constitute a complete and orthonormal set of modes in
the subspace of electric fields which have an upper limit
1/2δx in the case of pixels, or 1/2δt in the case of time
bins, or 1/2δω in the case of frequency bands. The in-
tensity N̂j , in terms of photon number, recorded on the
bin-mode labeled by j, deduced from (102), is:

N̂j = d̂†j d̂j (110)

because the other modes vanish on the jth detector. This
relation, without summation over modes, is only valid for
operators d̂†j d̂j defined in the bin-mode basis.

Let us now consider the balanced homodyne detec-
tion set-up that uses a single mode LO in quantum state
|ΨLO〉 and multiplexed detectors instead of bucket de-
tectors. The measurement of the intensity difference be-
tween analog pixel/time/frequency bins j on the two out-
put beams of the beam splitter is now given by, omitting
for simplicity the superscript in:

δN̂−,j ' 〈ΨLO|d̂j,b|ΨLO〉δb̂†j,a + h.c. (111)

We take as before the LO to be a coherent state ||α|eiφ〉
in mode −→gLO, assumed to vary slowly over the extension
of a bin. We have seen that it may be also written as
a tensor product of coherent states in any other mode
basis, including the bin basis. One can show:

〈ΨLO|d̂j,b|ΨLO〉 = (−→vj T∗ · −→gLO)|α|eiφ (112)

Assuming the modal inner product to be real, one has
finally:

δN̂−,j ' |α|(−→vj T∗ · −→gLO)δX̂jφ (113)

The condition of validity of this expression is that
|α|(−→vj T∗ ·−→gLO) is large enough compared to vacuum fluc-
tuations. Its exact value is taken care of by a proper
normalization of the homodyne signal.

A computer memory then stores in parallel the instan-
taneous different detection signals δN̂−,j for all the bin
modes and for a given LO phase φ, for example φ = 0,
which give access to the X̂j quadrature. By a time in-
tegration of the square of the fluctuations over a time
window T , one then gets in a single shot all the vari-
ances 〈δX2

j 〉; by a time integration of the product of the
recorded fluctuations δXj and δXj′ one gets the cross
correlations 〈δXjδXj′〉 i.e. a quarter of the quadra-
ture covariance matrix. The second moments of the P -
quadrature are obtained by a second single shot mea-
surement with a LO phase φ = π/2. In order to measure
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the cross-correlations 〈δXjδPj′〉 for all j′, one needs to
dephase by π/2 the part of the Local Oscillator which
will impinge on bin j after the beamsplitter. This can be
done using a Spatial Light Modulator (SLM) or a phase
plate on the LO beam. .

If the LO phase φ is varied on a time scale shorter
than T , one gets phase averaged correlations, which give
directly the value of 〈δXjδXj′ + 〈δPjδPj′〉, i.e. the real
part of the coherency matrix.

3. Multiplexed mode discrimination via post processing

Let us consider now more generally a multimode quan-
tum state |Ψ〉, described in a given mode basis {ul}, that
one wants to characterize through multiplexed homodyne
detection. The question is which set of quadrature oper-
ators, and for which mode basis, can be accessed simulta-
neously for a given measurement scenario. A multipixel
homodyne detection performs a measurement in the bin
mode basis {vj} which is related to the initial mode ba-
sis through a modal unitary operator Ub. This matrix
depends on the optical arrangement between the quan-
tum state to be characterized and the detector. It can
be adjusted by changing the experimental setup. But
for a given setup, shaping the local oscillator and post-
processing on a computer allows for a large variety of
quadrature outcomes. In particular, one can:

• shape the local oscillator impinging on each pixel
of the multipixel detector, and thus the modal pro-
jection. This induces a change in the bin mode
basis {vj} which is measured. This effect can be
mathematically included in the matrix Ub.

• add a phase shift eiψj on each bin mode vj . This
is done phase-shifting by eiψj the local oscillator
beam impinging on the corresponding pixel of the
multipixel detector. We call ∆LO the associated
diagonal unitary operation on the modes;

• digitally recombine the electronic signals coming
from each bin by multiplying them with real gains,
amounting to applying an orthogonal matrix O to
the vector of measured quadratures of modes {vj}.

Let us define the mode basis:

−→c n =

Np∑
l=1

(O∆LOUb)
l
n
−→u l =

Np∑
l=1

(UMPHD)ln
−→u l (114)

where Np is the number of pixel detectors. The data
processing technique that we just described allows us to
access simultaneously the amplitude quadrature fluctua-
tions in the set of modes {cn}, even though such modes
have not been physically extracted from the multimode
beam (Ferrini et al., 2013). This technique is very use-
ful in order to have access to the nodes of cluster states

which are embedded in the multimode quantum state (see
section XIV). It can be shown (Armstrong et al., 2012)
that many, but not all, possible modal unitary transfor-
mations U can be emulated by this procedure, namely
those such that UbU

TUU†b = D, where D is a diago-
nal matrix with unit modulus complex elements (Ferrini
et al., 2013).

Finally, let us stress that data processing is not limited
to linear combinations of data. Non-linear ones can be
also performed, in order to implement non-Gaussian op-
erations by feedforward techniques (Miyata et al., 2016).

F. Two-photon detection

In addition to quantum fluctuations measurements,
joint two-photon detection is a privileged tool to reveal
the non-classical properties of a quantum state of light.
The observable Ŵ (r, t, r′, t′) associated with the double
detection at times t and t′ made by two detectors A and
B at positions (r, t) and (r′, t′) is (Glauber, 1963):

Ŵ (r, t, r′, t′) = Ê(+)†(r, t)Ê(+)†(r′, t′)Ê(+)(r′, t′)Ê(+)(r, t)
(115)

When integrated over time and transverse space, it
gives a ”total double click” observable equal to:

Ŵ =
∑

mA,mB

b̂A†mA
b̂B†mB

b̂AmA
b̂BmB

(116)

which does not depend on the choice of the mode basis
and has a mean value which is zero for a single photon
state, and equal to the square of the mean photon number
for any multimode coherent state (as defined in section
V.A c).

Let us now consider the Hong-Ou-Mandel (HOM) con-
figuration (Hong et al., 1987): the two detectors are mea-
suring photon coincidences between the two outputs of
a 50% beamsplitter. More details concerning the deriva-
tions can be found in appendix C. We assume in addition
that the detectors are ”slow”, so that they lose the in-
formation about the exact arrival time of each photon.
We can then use formula (115) for a ”bucket detector”
obtained by integration over times t and t′.

a) Let us first consider the case where two uncorre-
lated single photons in modes gA and gB are impinging on
the two input ports of the beamsplitter (Beugnon et al.,
2006; Bylander et al., 2003; Kaltenbaek et al., 2006; Leg-
ero et al., 2003). The calculation, outlined in Appendix
C, yields the following expression for the normalized two-
photon detection rate for zero difference between the two
photon paths, g(2)(0):

g(2)(0) =
1

2

(
1− |−→gAT∗ · −→gB |2

)
=

1

2

(
1− |〈1 : gA|1 : gB〉|2

)
(117)
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One observes that the HOM destructive interference
is perfect only when |−→gAT∗ · −→gB |2 = 1, implying that
−→g A = −→g B within a phase term (Beugnon et al., 2006;
Ou, 2017): single photons ”coalesce” on the beamsplitter
only when they are in modes which are strictly identical,
both for their space and time dependences. If the modes
are orthogonal, one retrieves the classical value 1/2 for
the normalized coincidence rate.

b) There is a second physical situation for HOM
interference, which was actually the one of the initial
experiment (Hong et al., 1987), consisting in using en-
tangled two-photon states generated by parametric down
conversion. The calculation is outlined in Appendix C.
Using the Schmidt decomposition of the input state one
finds that the coincidence rate for zero path length dif-
ference between the two arms vanishes not only when the
input quantum state is a product of single mode states,
but also when it is entangled, provided all the Schmidt
modes of the parties A and B have identical space-time
dependences: ∀i−→g iA = −→g iB . Such a perfect two-by-two
matching for all the Schmidt modes of the two beams
is achieved when there is total symmetry with respect to
the exchange between the signal and idler A and B parts,
i.e. when the matrix Gsi introduced in (98) is symmetric.

XI. MULTIMODE AMPLIFICATION AND
ATTENUATION

A. effect on squeezing

The quantum aspects of single-mode attenuation and
amplification have been studied and understood for a
long time (Caves, 1982; Caves et al., 2012): losses, as
well as phase insensitive amplification, lead to a neces-
sary coupling between the considered mode and the outer
world, which results in added noise, meaning reduction of
squeezing and a minimum 3 dB noise penalty in the noise
figure of the amplifier. Only phase-sensitive amplifiers
are authorized to be noiseless by the laws of Quantum
Mechanics (Marino and Lett, 2012). It is therefore im-
portant to see in which respect these properties extend
to the multimode case (Lane et al., 1983), considering
the fact that many kinds of multimode optical ampli-
fiers have been developed in the recent years, for exam-
ple Erbium-doped fibers amplifiers (Nykolak et al., 1991),
parametric amplification in crystals (Allevi et al., 2006)
or in fibers (Guasoni, 2016), image amplifiers based on
four wave mixing in atomic vapors (Boyer et al., 2008b;
Ferrini et al., 2014; Gigan et al., 2005).

In this section, we follow mainly the argument given
in (Leuchs et al., 2006). We restrict ourselves to the case
of a phase insensitive multimode attenuator or amplifier,
which is characterized by an intensity multiplicative fac-
tor P , acting on a N-mode modal space having mode

basis
−→
f m and corresponding annihilation operators b̂m.

At the classical level, the output field E(+)out is equal to√
P E(+)in for any input E(+)in. At the quantum level,

the corresponding relation for the column vector of anni-
hilation operators in the Heisenberg representation

−→
b̂ out =

√
P
−→
b̂ in (118)

cannot be valid, except when P = 1, because it is not a
commutator preserving relation. One therefore needs to
introduce a set of N ′ ancilla modes, characterized by a
mode basis −→g n and corresponding annihilation operators
ân, which are coupled to the amplifier modes. The actual
input-output relation writes then:

−→
b̂ out =

√
P
−→
b̂ in + L

−→
â in +M

−→
â in,† (119)

where L and M are N ′ lines N columns matrices. The

canonical commutation relations [
−→
b̂ out,

−→
b̂ †out] = 1N are

ensured when:

MM† − LL† = (P − 1)1N (120)

Let us now consider the amplifier case P > 1 and define
a new column vector of operators:

−→
ĉ in =

1√
P − 1

(L†
−→
â in,† +M†

−→
â in) (121)

One deduces from relation (120) that [
−→
ĉ in,
−→
ĉ in,†] = 1N ,

so that
−→
ĉ in is a column vector of bosonic annihilation

operators, associated with modes that can be called noise
modes. One can finally write:

−→
b̂ out =

√
P
−→
b̂ in +

√
P − 1

−→
ĉ in,† (122)

By definition
−→
b̂ out and

−→
b̂ in are of dimension N , whereas−→

ĉ in is of dimension N ′, which implies that N ′ = N .

In the attenuator case P < 1 one has similarly:

−→
b̂ out =

√
P
−→
b̂ in +

√
1− P

−→
d̂ in (123)

with the operators
−→
d̂ in = 1√

1−P (L
−→
â in +M

−→
â in,†) sat-

isfying bosonic commutation relations [
−→
d̂ in,

−→
d̂ in,†] = 1N

and [
−→
d̂ in,

−→
d̂ in] = 0.

We have therefore found that in the general case of
N -mode linear optical systems written in any mode ba-
sis, there are N associated ancilla modes which indepen-
dently bring excess noise to the ”useful” modes. These
noise modes depend on the physical system considered
and are not necessarily associated with optical modes.

If the noise modes are in the vacuum state, one can
write a simple relation for the evolution of the coherency
matrix, as well as for the quadrature covariance matrix
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valid in any mode basis and in both the attenuator and
amplifier cases:

Γ(1),out = P Γ(1),in + |P − 1|1N (124)

ΓoutQ = P ΓinQ + |P − 1|12N (125)

As in the single mode case, an energy gain P of 2 is
enough to bring above shot noise a highly squeezed input
state, even multimode.

Equation (124) is not valid for a phase sensitive ampli-
fication, for which the 3dB penalty does not exist. Am-
plification with reduced added noise has been observed
in the case of parametric amplification of optical images
(Mosset et al., 2005)

B. effect on entanglement

We can now determine whether entanglement is pre-
served or not under such a linear processing. For bipar-
tite entanglement between modes 1 and 2, we may use
the Duan-Mancini criterion (Giovannetti et al., 2003):

〈

(
X̂1 + X̂2√

2

)2

〉〈

(
P̂1 − P̂2√

2

)2

〉 < 1 (126)

For a maximally entangled EPR input state, the X
quadratures are perfectly anticorrelated, and the P
quadratures are perfectly correlated. This implies that
the l.h.s. quantity is zero at the input of the linear device,
amplifier or attenuator. At its output, it is equal, accord-
ing to (124), to (P − 1)2. This quantity is smaller than
one whatever P < 1, so that the entanglement survives
for any attenuation factor, with a decreasing violation of
the inequality when the losses increase. In the amplifier
case, the Duan-Mancini criterion is satisfied only when
P < 2: like for squeezing, entanglement survives only for
gains smaller than 2. For energy gain P greater than 2
the criterion is no longer satisfied. If one assumes that
there are no X-P correlations, then the Duan criterion
is necessary and sufficient for Gaussian states, and one
is sure that entanglement ”dies” for gains higher than
2. Squeezing and entanglement are equally destroyed by
amplification and attenuation. This is another proof that
they are indeed the two faces of the same physical prop-
erty , which has two different ”avatars” according to the
choice of the mode basis.

XII. MODE SHAPE CONTROL

An important property of optical modes is their ability
to be shaped at will so as to match as well as possible
the spatio-temporal dependence needed in a given appli-
cation, such as optimized parameter estimation (section
XIII), coupling with quantum memories or reconfigurable
quantum information processing (section XIV).

Mode shaping can be implemented in different ways:

• as a mode converter, which transforms a given sin-
gle mode input to another single mode output,
while keeping unchanged the quantum state defined
in the mode ;

• as a mode extractor, which filters a mode of inter-
est from a multimode field, while keeping its quan-
tum properties and its correlations with the not-
extracted modes. Such a device would enable us to
keep this mode for further use, for example to cor-
rect it in a feedforward scheme. This is easy to do
of course when the modes are spatially, spectrally
or temporally separated, with a mutual ”distance”
large enough to be separable by the current tech-
nology, but not when the mode are overlapped;

• as a mode multiplexer/demultiplexer which con-
verts in a parallel way a set of input modes into
an orthonormal basis of modes that are easy to
propagate in a given system, and makes the re-
verse process at its output, while keeping the in-
trinsic properties of the state, and in particular the
principal modes and their squeezing performances.
As an example in classical optics, in Wavelength
Division Multiplexing the different input frequency
channels are merged in a single mode fiber (multi-
plexing) and are physically separated at its output
(demultiplexing) using dispersive devices. An even
more advanced concept is a programmable network
in which this whole process can be modified at will
according to the chosen application.

This domain of optics is very active, especially with the
recent availability of Spatial Light Modulators (SLM),
and both at the classical and quantum levels. We will
of course focus on its quantum aspects, and will be con-
cerned by the evolution of the modes, but also by the
induced evolution of the quantum state of the system
when the modes in which is it defined are converted or
distorted by some optical process.

For quantum applications, as losses destroy squeezing
and entanglement, the mode shaping must be lossless
and conserve energy. If the mode conversion preserves
energy and is linear, it conserves the number of photons:
an input n-photon Fock state |n : fin〉 must be then
transformed into the same Fock state in the output mode
|n : gout〉 whatever n. The conservation of the quantum
state in the mode shaping process is therefore true for
any input state, because Fock states form a basis of the
Hilbert space of quantum states.

In the following we will separately describe mode shap-
ing effect effected by linear optics and by nonlinear optics.

A. Linear conversion

Let us first consider spatial modes: it has been math-
ematically proved in the general case (Morizur et al.,
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2010) that one can convert any input spatial mode to
any output spatial by using reflections (or transmissions)
on two appropriately chosen phase plates separated by
free space. One needs a larger, but finite, amount of re-
flexions on successive phase plates in order to convert a
whole spatial mode basis into another arbitrary mode ba-
sis. This can be implemented with low conversion losses
(Labroille et al., 2014) in a device called ”Multiplane
Light Converter” (MPLC) with the help of Spatial Light
Modulators (SLM) or phase plates. There are of course
other linear optical spatial mode converters, but they
are useful only for a subset of transformations: lens and
free propagation for spatial Fourier transform, telescope
for beam magnification, Babinet-Soleil-Bravais birefrin-
gent filter for temporal derivative (Labroille et al., 2013).
Fractional Fourier transform allows to design Laguerre-
Gauss mode sorters (Zhou et al., 2017), which, com-
bined with an astigmatic mode converter from Hermite-
Gauss to Laguerre-Gauss modes consisting of cylindrical
lenses (Beijersbergen et al., 1993), can also sort Hermite-
Gauss modes (Zhou et al., 2018). Tapered fibers down to
nanometer scale (Tong et al., 2003), or photonic lanterns
(Fontaine et al., 2012) are also used to manipulate modes
of fibers. A SLM can also be used to ”preform” the mode
before it interacts with a random scattering medium in
order to obtain at its output a well focussed beam having
kept its quantum properties (Defienne et al., 2016).

If one now considers time/frequency modes, passive
unitary conversion is not possible from a given input fre-
quency mode to a frequency shifted output mode, be-
cause changing the frequency of light amounts to chang-
ing the photon energy. This cannot be done by a pas-
sive transformation, whereas in the spatial case, chang-
ing the direction of propagation of a photon does not
change its energy. So passive unitary frequency mode
conversion can only involve phase changes at the differ-
ent frequencies, which are implemented using SLMs in-
serted between a pair of diffraction gratings and lenses
(Weiner, 2011). Such linear devices are also used in a
non-unitary way by implementing frequency dependent
losses to shape the light spectrum. These last devices de-
stroy the quantum properties of the quantum state in the
CV regime as shown in section XI, and the probability of
single photon counts in the DV regime. In addition, they
will never be able to induce a broadening of the spec-
trum. This kind of lossy filtering technique allows for
multiplexing/demultiplexing techniques, for example for
single photons in the multiple spatial modes of a silicon
photonic crystal fiber (Carpenter et al., 2013), or tempo-
ral (Pérez et al., 2015). Long dispersive fibers provide an
efficient way to make a wavelength to time mapping of
a multimode input light pulse (Chandrasekharan et al.,
2017).

Mode extractors are also very important tools to han-
dle modes in view of applications: it is for example pos-
sible to filter a given Hermite-Gauss mode by using a

Fabry-Perot cavity which transmits one mode and re-
flects all the other ones. One also extracts Laguerre-
Gauss modes using especially designed phase holograms
(Ren et al., 2017). The MPLC device also allows to multi-
plex/demultiplex a number of orthogonal spatial modes,
of the order of 10.

B. Non-linear conversion

If one wants to include frequency changes in the mode
transformation one must rely on nonlinear effects, either
in the microwave domain or in the optical domain. Let
us consider as an example the sum-frequency generation
(SFG) (Eckstein et al., 2011), which uses a χ(2) type II
non linear medium (equation 93). It is here pumped by
a low frequency gate beam of spectral amplitude αg(ω),
treated classically. The corresponding Hamiltonian is

Ĥ ′ =
∑
`1,`2

(G′`1,`2 â`1 â
′†
`2

+ H.C.) (127)

where â`1 is the annihilation operator of input photons
in the single frequency mode f`1 of frequency ω`1 , and
â′`2 is the annihilation operator of SHG photons in the
single frequency mode f ′`2 of frequency ω`2 . G′`1,`2 =
a′`1,`2αg(ω`2−ω`1) is a product of a mode coupling factor
a′`1,`2 and by the pump amplitude at frequency ω`2−ω`1 .
This Hamiltonian is a double sum of terms describing
transfer processes from mode f`1 to mode f ′`2 operating
in very different spectral ranges. A Singular Value De-
composition (SVD) of matrix G′ leads to the following
expression of the Hamiltonian, analog to the one describ-
ing a beamsplitter:

Ĥ ′ =
∑
i

(µib̂ib̂
′†
i + H.C.) (128)

b̂i and b̂′i are respectively annihilation operators of pho-
tons in Schmidt input mode gi and ”twin” Schmidt mode
g′i. The spectral shape of these Schmidt modes depends
on the matrix G′`1,`2 and therefore on the pump, or gate,
spectral shape αg(ω) and on the phase matching prop-
erties of the nonlinear crystal. If the gate has a Gaus-
sian shape HG0, the Schmidt modes gi and g′i are both
Hermite-Gauss spectral/temporal modes of same index
HGi (Ansari et al., 2018; Eckstein et al., 2011). If the
group velocities of the input and gate modes are matched,
the Singular Value Decomposition leads to a single non
negligible coefficient in the Schmidt sum. More precisely
if the pump is in the mode HGj , then the single input
Schmidt mode is also HGj , whereas the SFG Schmidt
mode is the Gaussian mode HG0 whatever the pump.

In the last configuration, if the gate is weak, and when
there is only one term, of index 1, in the sum (128) the
evolution operator writes:

Û = 1̂− iµ′1(b̂1b̂
′†
1 + b̂†1b̂

′
1) (129)
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where µ′1 = µ1L/~c, L being the crystal length. If the
input state is for example a single photon state g1, |1 :
g1〉, the output state |Ψout〉 is:

|Ψout〉 = |0 : g′1, 1 : g1〉 − iµ′1|1 : g′1, 0 : g1〉 (130)

where µ′i = µiL/~c, L being the crystal length: the single
photon has been transferred from Schmidt mode g1 to
the Schmidt twin mode mode at the double frequency
g′1. If one increases the gate pump beam power, but still
in the undepleted pump approximation, the input output
relations for the annihilation operators of the input and
SHG Schmidt modes are:

b̂out1 = i sinµ′1 b̂
′in
1 + cosµ′1 b̂

in
1

b̂′out1 = cosµ′1 b̂
′in
1 + i sinµ′1 b̂

in
1 (131)

When µ′i is equal to π/2, then b̂′out1 = ib̂in1 . We have here
a perfect mode extractor : only one input mode g1 is per-
fectly transferred to SHG mode g′1, whereas all the other
modes are left unchanged by the nonlinear process. One
easily changes the mode which is extracted by changing
the shape of the pump gate beam. One can therefore
extract selectively from a multimode input beam a given
Hermite-Gauss modeHGj by using a gate beam precisely
in the mode HGj . This device is often called a ”Quan-
tum Pulse Gate”. Note that the model presented here is
a simplified one, and that getting an efficiency close to
100% is not straightforward (Reddy and Raymer, 2018).
To get perfect efficiency, one can extract a mode without
changing the quantum state which ”dwelled” in the input
mode and its correlations with the other modes.

So Sum Frequency Generation through three- and four-
wave mixing is an ideal tool to change the mode of a
given quantum state (McKinstrie et al., 2012) . It has
been mainly implemented for single photon states and
weak coherent states, for example to shift them from a
wavelength range to another with good conversion effi-
ciency (Tanzilli et al., 2005), to select a given mode (spa-
tial or temporal) with efficiencies of the order of 70%
(Brecht et al., 2014; Reddy and Raymer, 2018) and good
fidelity for the output state (McGuinness et al., 2010),
or to manipulate specific temporal modes among many
others (Pérez et al., 2015; Ra et al., 2017; Reddy et al.,
2014). Let us mention that other nonlinear processes,
such as frequency down conversion, can be used to trans-
fer single photon states (Curtz et al., 2010; Lenhard et al.,
2017) in an entanglement preserving way. Cavity QED
effects can also be used to shape at will temporal modes
of single photons (Morin et al., 2019).

Temporal focussing and imaging of a non-classical
state is an interesting issue (Kolner and Nazarathy,
1989). It can be implemented also in a noiseless way
using sum frequency generation (Patera et al., 2018), so
that squeezing can be preserved by the operation, with
a change of the Fourier spectrum of the quantum fluc-
tuations. One can also use electro-optic modulation as

a unitary time lens able to compress the spectral width,
and enhance the peak intensity of single photon states
(Karpiński et al., 2017).

XIII. MODE OPTIMIZATION IN PARAMETER
ESTIMATION

Light is often used as a tool to perform very accurate
or sensitive measurements of some parameter, like dis-
tance, velocity, time delay, frequency.... We will name a
this parameter in a generic way. It is important to know
what is ”the best light” which will enable us to make
the best estimation of a. We have of course the choice
of the quantum state of the light, but also of the spatial
and temporal shape of the mode(s) in which this state
is defined. So far, most attention has been given to the
quantum state issue, and there is an extensive literature
on its choice (Giovannetti et al., 2011; Wiseman and Mil-
burn, 2009), which constitutes an important part of the
domain of quantum metrology, but much less attention
has been given to the mode issue.

To estimate a parameter a by optical means, one needs
first an optical system that generates a a-dependent
beam of light. This light is measured by one way or
another, yielding data that are then processed in order
to derive an estimator ã of a, from which a value of a is
inferred. Generally speaking, the light used in the mea-
surement may be multimode, the detection may be mul-
tiplexed, and the data processing may involve the analog
or numerical processing of the measured quantities. We
will restrict ourselves to non-biased estimators, in which
case the quality of the measurement is evaluated by its
”sensitivity”, i.e. by the standard deviation ∆a of the
estimated values of a around the ”true” value of the pa-
rameter (that we will take for simplicity to be 0), which
gives an upper limit to the smallest measurable variation
of a.

We will concentrate here on single parameter estima-
tion using pure states, less ”noisy” than mixed states, and
call |Ψ(a)〉 the (possibly multimode) quantum state of
the light that is submitted to measurement. The Quan-
tum Cramér-Rao limit (Braunstein and Caves, 1994; Hel-
strom, 1998, 1969, 1967) allows us to find the smallest
value of the standard deviation ∆a of the estimated val-
ues optimized over all possible processing procedures of
the experimentally recorded data and over all possible op-
tical measurements performed on the a-dependent beam.
But there is so far no known optimization procedure over
all possible quantum states of light, and many different
authors have proposed many possible non-classical quan-
tum states giving a ”quantum advantage” in parameter
estimation. Note that the mode optimization issue in
parameter estimation is related to the problem of state
discrimination (Pirandola and Lloyd, 2008).

We will here restrict ourselves to the subset of mul-
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timode Gaussian states(Nichols et al., 2018; Pinel et al.,
2013, 2012a,b; Šafránek, 2018; Šafránek et al., 2015) (sec-
tion VII). Such a choice excludes highly non-classical
states like Fock or NOON states, but includes squeezed
and EPR entangled states. It has the interest of compris-
ing also the bright coherent states which can be readily
experimentally produced with mean photon numbers N
as high as 1015, which is far from being the case for Fock
or NOON states. Two modes umean and udet play an
important role in the present problem:

umean(r, t, a) =
1

E(1)
√
N
〈Ψ(a)|Ê(+)(r, t)|Ψ(a)〉(132)

udet(r, t) = a0
∂

∂a
umean(r, t, a)|a=0 (133)

where E(1) is the single photon electric field (equation
25), and N the mean photon number. a0 is the scal-
ing factor necessary to normalize the mode udet to 1.
udet, called the detection mode, characterizes the spatio-
temporal distribution of the sensitivity of the optical sys-
tem to a variation of the parameter. It can be used as
the first mode of a new mode basis {un}.

The determination of the Quantum Cramér-Rao
bound ∆aQCR in the case of a Gaussian state with high
N value is simplified, as one can show that the mean
value of the field is a-dependent while its covariance noise
matrix ΓQ is a-independent which leads to the following
result (Pinel et al., 2012a)

∆aQCR =
a0

2
√
N

∆det (134)

where ∆det is the quantum noise factor, equal to :

∆det =
1√

(Γ−1
Q )udet

. (135)

(Γ−1
Q )udet

being the first diagonal element of the inverse
covariance matrix in the detection mode.

If the noise in this mode is not correlated with all the
other modes of the basis, ∆det is simply the r.m.s. value
of the quantum noise of a given quadrature of the de-
tection mode: expression (134) shows that the quality of
the a measurement is limited only by the quantum noise
in the detection mode. It is insensitive to the noises in
all the other modes orthogonal to udet (in the general
gaussian illumination case, one can show that the opti-
mal use of ressources consists in populating the detection
mode with the best squeezing source available, and in
that case this mode is not correlated to the other modes
(Pinel et al., 2012a). ∆det is equal to 1 when the a-
encoding light quantum state is a coherent state. In this
case ∆aQCR = a0/2

√
N : this is the so-called standard

Quantum Cramer Rao limit. ∆det is below this value
if one injects a squeezed vacuum state in the detection
mode together with an intense coherent state in mode

umean(Fabre et al., 2000a). Expression (134) also im-
plies that injecting squeezed or EPR entangled states
in other modes than udet will not decrease further the
Quantum Cramer Rao bound: a single squeezed state is
enough to reach the bound, provided it is put in the right
mode, namely the detection mode (Pinel et al., 2012a).
This implies also that it is not possible to accumulate
the beneficial effects of squeezed states in two different
modes for the measurement of a single parameter. Note
that ∆aQCR vanishes if one uses an infinitely squeezed
vacuum state in the detection mode. Such a state is not
physical, as it has an infinite energy. If one imposes a
constraint of total finite energy N~ω0, equal to the sum
of the mean energies of the modes umean and udet, the
limit scales as N−3/4 (Barnett et al., 2003; Caves, 1981),
an intermediate scaling between the standard quantum
noise and the N−1 Heisenberg scaling.

Actually, it is not enough to find the ultimate limits in
parameter estimation. One needs of course to find a way
to reach them. Generally speaking, a balanced homo-
dyne detection with a Local oscillator put in the detec-
tion mode allows to attain the limit in all configurations
(Delaubert et al., 2008), but there are in some cases more
convenient ways, for example determine the a estimator
by computing combinations of photo-currents recorded
in different parts of the illumination beam (Treps et al.,
2003), or linear combinations of its spectral components,
using the multiplexed detection outlined in section X E.

Let us apply the approach that we just exposed to the
well studied issue of a phase measurement using a Mach-
Zehnder interferometer at mid-fringe. It involves two in-
put modes f in1 and f in2 incident on the first beamsplitter,
where we consider the usual case of f in2 being a vacuum
mode, and two output modes fout1 and fout2 at the out-
put of the second beamsplitter. It is straightforward to
show that in this configuration umean = (fout1 +fout2 )/

√
2

and udet = (fout1 − fout2 )/
√

2. These output modes re-
spectively correspond, by back-propagation through the
interferometer, precisely to the input modes f in1 and f in2 .
It implies that the optimized configuration for an in-
terferometric measurement using Gaussian states is to
feed mode f in1 with an intense coherent state, and mode
f in2 with a squeezed vacuum state, a strategy that has
been found years ago by C. Caves (Caves, 1981) and
currently implemented in gravitational wave antennas
(Schnabel, 2017). The approach outlined in this section
therefore shows once again the optimized character of
Caves’ configuration and extends it to any optical mea-
surement with multimode Gaussian states. It has been
applied to the estimation of various parameters: trans-
verse displacement and tilt of a TEM00 light beam (De-
laubert et al., 2006; Hsu et al., 2004) (for which the de-
tection mode is the TEM01 mode), time delay (Lamine
et al., 2008; Thiel et al., 2016), propagation distance of a
light pulse immune from atmospheric perturbations (Jian
et al., 2012), mean frequency shift of broadband light,
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and transverse width of a highly focussed beam (Chille
et al., 2016). Several experiments have shown that it is
indeed possible to go beyond the standard Cramér-Rao
bound by using squeezed light in the appropriate detec-
tion mode (Pooser and Lawrie, 2015; Taylor et al., 2013;
Treps et al., 2002).

A general problem this approach can be naturally ap-
plied to is that of the ultimate resolution in optical imag-
ing, a problem in which diffraction effects induce the ex-
istence of the so-called Rayleigh limit. It has been firstly
tackled in the case of a coherent light image (Kolobov
and Fabre, 2000), and it has been shown that in this
case injecting squeezing in appropriate modes (namely
the prolate spheroidal ones) improves the optical resolu-
tion below the standard quantum noise (Kolobov, 2008),
and that one could improve further the resolution by tak-
ing into account the sparsity of the image (Wang et al.,
2012). It was more recently studied for incoherent illumi-
nation, more precisely to derive the ultimate resolution
limit on the separation between two TEM00 incoherent
sources (Tsang et al., 2016). It was shown that the Fisher
information contained in the intensity distribution in the
image about this separation falls to zero as the separation
drops below the Rayleigh limit, and that it is possible to
extract more information on the separation (Lupo and
Pirandola, 2016; Tsang et al., 2016), and therefore to in-
crease the accuracy of its estimation beyond the Rayleigh
limit, by other measurement strategies (Tsang, 2017).
This is a direct extension of the coherent estimation of
a beam displacement to the incoherent case, and in par-
ticular one can make a homodyne measurement with LO
in the TEM01 Hermite Gauss mode (Yang et al., 2017),
project it on the detection mode which is the combination
of two oppositely displaced TEM00 modes (Paúr et al.,
2016), or demultiplex the amplitude image on the basis
of spatial Hermite-gauss modes (Tsang, 2017) by mea-
suring the intensity of each Hermite -Gauss mode in the
decomposition of the image on such a mode basis. This
can be achieved in particular using the MPLC device de-
scribed in section XII . This scheme has been extended
to the estimation of the axial separation between two
point sources (Zhou et al., 2019), and to the time do-
main, using higher order Hermite-Gauss temporal modes
to distinguish the arrival times of two incoherent ultra-
short light pulses (Donohue et al., 2018). Furthermore,
once multimode demultiplexing is available, one can use
this information to perform multiparameter estimation,
as was recently proposed in (Napoli et al., 2019; Yu and
Prasad, 2018).

XIV. MODES AND STATES IN QUANTUM
INFORMATION PROCESSING

A. Measurement based quantum computing

Multimode light is naturally at the heart of optical
approaches to quantum computing, and while the objec-
tive of this review is not to address quantum informa-
tion processing with light in general, we wish to empha-
sise the interest of using the tools introduced and used
all along this review for quantum information process-
ing techniques. In this context, even though the cir-
cuit based approach is still the most studied one, and
for instance qubits can be successfully implemented on
frequency-bins (Lu et al., 2018), extending Wavelength
Division Multiplexing to the quantum domain, we will
concentrate in this section on a recent paradigm for quan-
tum computing, introduced in (Raussendorf and Briegel,
2001) as a One-Way Quantum Computer and more com-
monly named Measurement Based Quantum Computing
(MBQC). The idea is to replace circuit based approach,
where quantum gates are successively applied to the in-
put qubits in order to perform a given operation, by a
scheme where a large specific entangled state is gener-
ated and then successive measurements are performed
on individual nodes of this state. More specifically, the
input state should belong to a given class of graph states,
the cluster states, and the result of each measurement is
used to correct in a feedforward configuration the result-
ing state and to choose which observable will be measured
in the next step. While first introduced in the qubit ap-
proach, MBQC was also extended to Continuous Variable
domain (Gu et al., 2009; Menicucci et al., 2006) with the
advantage that cluster states in that regime can be de-
terministically generated.

B. Cluster states: concepts and experimental
implementation

We will focus here on the continuous variable approach,
where, as we will see, the possibility to generate entan-
glement between modes through mode basis change al-
lows for efficient and versatile generation of cluster states
in which the nodes are precisely the different modes in
multimode quantum light. These cluster states can be
defined in an operational approach: applying on N in-
finitely squeezed states a set of controlled-Z (Cz) gates

defined by Cz = eiX̂1X̂2 . This graph state structure is
embedded in an adjacency matrix V , a N ×N real sym-
metric matrix such that the multimode CZ gate writes:

Cz[V ] =
∏

1≤j≤k≤N

exp
(
iVjkX̂j ⊗ X̂k

)
(136)

In essence, the non-zero elements of V induce a connec-
tion between two nodes of the graph. Usually, V would
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be a matrix whose elements are either 0 or 1, but one can
also have weighted graphs where non-zero elements can
differ from 1.

In order to study cluster state that can potentially
be implemented experimentally, one first has to consider
that the input states are finite squeezed states, the ideal
cluster state being obtained in the limit of squeezing go-
ing to infinity. Then, because the evolution equation
(136) corresponds to a quadratic Hamiltonian evolution
applied to squeezed states, cluster states remain Gaus-
sian states and can be constructed through symplectic
transformations applied to the vacuum. As introduced in

eq. (47), we name
−̂→
Qsqz the 2N elements column vector

made of the quadrature operators for the initial squeezed
states. One can show that the cluster state quadrature
operators are given by (Menicucci et al., 2006):

−→
Q̂clu = (Cz[V ])†

−→
Q̂sqz Cz[V ] =

(
1N 0
V 1N

)−→
Q̂sqz(137)

=

(
1N 0
V 1N

)
K
−→
Q̂vac

Where K = diag(σ1, σ2, . . . , σN , σ
−1
1 , σ−1

2 , . . . , σ−1
N ) is

the multimode squeezing matrix, with σi > 1 (we con-
sider input states squeezed on the P quadrature). One
finds that:

lim
σ1,σ2,...,σN→∞

〈
(−→
P̂ clu − V

−→
X̂ clu

)
〉 = 0 (138)

The N dimensional operator
−→
P̂ clu − V

−→
X̂ clu defines the

N nullifiers associated the graph, and hence governs its
structure. It connects the P quadrature of a node with
the X quadratures of the nodes connected to it. The
nullifiers are quantities measurable experimentally. They
are often used to assess the quality of a generated cluster
state. In order to show that the experimentally generated
state is indeed a cluster state, one needs to demonstrate
that the nullifier variances are below the vacuum limit,
but also that the graph shows multipartite entanglement
as defined in section VIII.

The Cz gate is hard to implement experimentally as its
symplectic representation is not a simple basis change,
but contains squeezing evolution. To bypass this dif-
ficulty, one can consider the total evolution from the
vacuum state, which is symplectic, and calculate the
corresponding Bloch Messiah decomposition (see section
VII.C.1). Being a gaussian state, any approximated clus-
ter state can be implemented with a multimode squeezer
and a basis change OV acting on the vacuum. It was
shown (van Loock et al., 2007) that the unitary matrix
U associated with the basis change OV as defined in (86)
is given by the condition Re(U) − V Im(U) = 0. Several
experimental groups hence adopted the strategy to gen-
erate a set of independent squeezed states and implement
the basis change OV corresponding to the desired cluster

states (Su et al., 2012; Ukai et al., 2011), leading to clus-
ter states with millions of modes(Yokoyama et al., 2013).
One should note that the OV matrix is not unique, and in
the case where the input squeezed states do not have the
same squeezing level, the obtained nullifier variances de-
pend on the actual OV which is used. Hence, optimising
this matrix is important to reach the best cluster state
for a given set of ressources (Ferrini et al., 2013, 2016).

Being gaussian, and thus the result of a quadratic
hamiltonian, cluster states can also be directly gener-
ated tailoring a non linear quadratic interaction, instead
of being produced from independent parallel squeezers
and basis change. For instance, one can use the resonant
frequency modes of an OPO as the nodes of the cluster,
and tailor the entanglement by engineering the pump of
the cavity. One can use several single frequency pumps
(Chen et al., 2014; Menicucci et al., 2008; Shahrokhshahi
and Pfister, 2011) or a pulse shaped pump ((Arzani et al.,
2018)). It is also possible to cascade χ(3) interaction in
atomic vapours (Jing et al., 2011; Pooser and Jing, 2014;
Qin et al., 2014b).

C. Non-Gaussian cluster states

Cluster states are gaussian, and as such allow only for
gaussian quantum information processing (Weedbrook
et al., 2012), which cannot lead to quantum advan-
tage (Bartlett et al., 2002), a property which can be
extended to any positive Wigner function state (Mari
and Eisert, 2012). Thus an ingredient acting on the
positivity of the Wigner function is required, which can
take the form of a qubic gate (Gu et al., 2009), or of
a non-Gaussian encoding such as the so-called GKP en-
coding (Gottesman et al., 2001) which has been proven
to allow for error corrected quantum computing proto-
cols (Menicucci, 2014) with a requirement on squeezing
now as low as 10dB (Fukui et al., 2018). Several propos-
als for GKP state preparation have also been published
(Eaton et al., 2019a,b; Weigand and Terhal, 2018).

In a spirit related to the scope of this review, an-
other possibility is to generate non-gaussian cluster states
that can then be used for universal quantum computing
(Gagatsos and Guha, 2019; Phillips et al., 2019; Que-
sada et al., 2018; Sasaki and Suzuki, 2006). The most
commonly used technique, in quantum optics, consists in
adding or subtracting one, or several, photons to a Gaus-
sian state (Ourjoumtsev et al., 2007; Parigi et al., 2007;
Takahashi et al., 2008; Wenger et al., 2004). However,
the challenge is to render this operation mode selective
in a multimode context, a process that we will study in
the following.

Let us consider the Wigner function WΓ(−→q ) of a
Gaussian state with covariance matrix Γ, as defined in
Eq. (81). This state can be a multimode entangled state
for instance, that one wishes to degaussify, would it be for
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quantum information or quantum metrology purposes.
We consider the coherent addition or subtraction of a
single photon in a given mode g, which amounts to the
normalised application of the associated creation oper-
ator b̂†g or annihilation operator b̂g. This mode g can
be any mode of the mode Hilbert space, and does not
have to be one of the mode basis in which the Gaussian
state is described. It can for instance be a non entangled
mode, but also be a mode highly entangled to the rest
of the system, such as the node of a cluster state. It can
be shown that the Wigner function becomes (Walschaers
et al., 2017a):

W±(−→q ) =
1

2

[−→q T∗Γ−1A±g Γ−1−→q − Tr(Γ−1A±g ) + 2
]
WΓ(−→q )

(139)
where the operator A±g is the one amounting for the extra
correlations induced by the single photon subtraction or
addition operation, defined as:

A±g = 2
(Γ± 1)Pg(Γ± 1)

Tr [(Γ± 1)Pg]
(140)

where Pg is the projector on the subspace associated with
mode g. For instance, when g is one of the modes of the
mode basis, Pg reduces to a diagonal matrix with zero
everywhere except for the two diagonal elements corre-
sponding to the two quadratures associated with g, where
it is equal to 1. One should note that expression (139)
is valid for both pure and mixed states, and it can be
easily applied to calculate the Wigner function of a sub-
party of a global state after photon addition or subtrac-
tion (Walschaers et al., 2017b). In particular it can be
used to study the negativity of the Wigner function, par-
ticularly simple in the case of non displaced states for
which it can be probed in −→q = 0 and amounts to deter-
mine the sign of the quantity 2− Tr(Γ−1A±g ).

As is well known, starting from a pure squeezed state,
photon subtraction induces negativity, while whatever
the input state photon addition induces negativity. The
very same property does extend to graph states. How-
ever, the amount of negativity that is obtained depends
more on the purity of the input state than on the quan-
tity of squeezing available. In the multimode scenario,
the complexity of this interplay can be examined using
the above formula, in particular how non-Gaussianity
spreads among a graph state, such as a cluster state.
Remarkably, it can be shown for instance that if one re-
moves a photon from a node of a cluster states, the non-
gaussianity spreads up to two nodes away from the node
on which the photon is subtracted (Walschaers et al.,
2018). This gives a method to induce fully non-gaussian
cluster states for quantum information purposes. Finally,
this formula can also be used to study how entanglement
is induced by single photon operations. Starting from
a pure state, one can simply evaluate the purity of the
reduced state in a sub-space after the single photon op-
eration. One can use this property to demonstrate that,

for instance, the intrinsic separability of Gaussian states
as defined in section VII.C.5 does not extend to photon
added or photon subtracted Gaussian states. The struc-
ture of the state after single photon operation can be
fundamentally different from the original Gaussian one,
in the sense that for a well chosen mode of single pho-
ton operation the state becomes entangled whatever the
mode basis.

In most experiments heralded single mode photon sub-
traction has been implemented using a weakly reflecting
beamsplitter followed by a photon counter. When it de-
tects a photon, one is sure that one photon has been
removed from the transmitted beam. This process can-
not be used for mode selective photon subtraction, be-
cause the beamsplitter and the photon detector do not
discriminate between photons of different modes. As a
result of this uncertainty the transmitted beam is in a
mixed state. To get mode selectivity and significant neg-
ativity, the authors of (Ra et al., 2019) have used the
process of sum frequency generation (SFG), which has
already been presented in section XII in the context of
mode conversion. They operated in the weak gate beam
case, for which the evolution operator, given by (127) is
the same as the one for a weakly reflecting beamsplitter,
but only for a single Hermite-Gauss input mode, the one
which is identical to the Hermite-Gauss mode HGi of
the gate beam. All the other Hermite-Gauss modes are
not affected by the nonlinear process (Ra et al., 2017).
As a result, when one photon is recorded on the g′1 up-
converted mode, one is sure that it has been removed
from the HGi mode of the multimode input beam. The
process is very flexible and can subtract a photon from
linear superpositions of modes, from two-mode entangled
states and from cluster states. When the device is fed
at its input by the multimode quantum frequency comb
described in section IX A4, significant levels of negativ-
ity are measured in these different configurations. The
spreading of non-Gaussianity mentioned in the previous
paragraph has also been observed.

Single mode photon addition can be implemented
by parametric amplification in a χ(2) nonlinear crystal:
when one detects a photon on the idler mode, one is sure
that one photon as been added to the input quantum
state of the signal mode (Zavatta et al., 2004). The pro-
cess has be extended to the photon addition to two tem-
poral modes leading to micro-macro entanglement (Biagi
et al., 2018), with a possibility of scalability to a larger
number of modes.

XV. CONCLUSION

The authors hope to have convinced the readers that
considering in a comprehensive way the quantum states
and the modes in which they are defined provides an in-
teresting insight into many quantum optics issues and ef-
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ficient ways to generate highly entangled quantum states.
Increasing by a large factor the number of modes in
an optical system does not pose intractable problems.
Modes can be easily manipulated and computer con-
trolled using Spatial Light Modulators, so that multi-
mode quantum states, with well mastered mode shapes
and correlations are promising scalable and reconfig-
urable carriers or processors of quantum information.
Another advantage compared with the Discrete Variable
approach is that highly entangled multimode states of
light such as cluster states are generated in a determin-
istic, unconditional way whatever the size of the cluster
state. But an important problem remains to be solved
concerning the unconditional preparation of multimode
non-Gaussian states.

Appendix A: Counting spatial modes in laser beams

The number of spatial modes oscillating in a laser is
an important parameter to characterize imperfect, non-
single mode, laser beams (Karny et al., 1983) . The
number M , coming from the”M2factor” introduced by
Siegman (ref), is often considered as giving a direct mea-
sure of the number of transverse modes. We would like
to know whether this approach is compatible with the
quantum one introduced in this paper.

Let us call k the wave vector in direction x. The M2

factor is defined as:

M2 =
∆x∆k

(∆x∆k)min
= 2∆x∆k (A1)

1/2 being the minimum value of the product ∆x∆k al-
lowed by the Fourier-Heisenberg inequality.

Let us now take as an example the case of a laser gen-
erating an incoherent superposition of p Hermite-Gauss
modes hn(x), with equal probabilities for each one and
equal intensities in order to simplify the discussion. From
a quantum mechanical point of view, it is described by
the density matrix:

ρ =

p∑
n=1

1

p
|α : hn〉〈α : hn| (A2)

where |α〉 is a Glauber coherent state. The same rea-
soning as in section ??, based on the coherency matrix,
tells us that ρ describes indeed a quantum state having
an intrinsic number of modes equal to p. We want now
to know the relation between p and M : as the coherency
matrix is diagonal in the Hermite-Gauss mode basis, and
using the properties of Hermite-Gauss modes, one has:

∆2x =
〈
∫
dxx2N̂〉
〈N̂〉

=

∑p−1
n=0

|α|2
p (2n+ 1)w2∑p−1
n=0

|α|2
p

(A3)

and

∆2k =
〈
∫
dxk2N̂〉
〈N̂〉

=

∑p−1
n=0

|α|2
p (2n+ 1)

4w2
∑p−1
n=0

|α|2
p

(A4)

Knowing that
∑p−1
n=0(2n+ 1) = p2, one finally finds:

∆2x = p2w2 ; ∆2k =
p2

4w2
; ∆k∆x =

p2

2
(A5)

so that p is indeed equal to M in this specific case, and
close to this value in the general case.

Appendix B: Counting modes in parametric down
converted light

The complexity of a bipartite quantum state, in par-
ticular its entanglement properties, is related to the
Schmidt number (Dyakonov et al., 2014; Guo and Fan,
2013; Namiki, 2016; Sharapova et al., 2015), i.e. the num-
ber of terms in the Schmidt decomposition. We would
like to know whether the Schmidt number is indeed the
mode number calculated from the coherency matrix.We
will consider only a simple example, namely a bi-partite
system the two parties A and B are multimode, for ex-
ample the two-photon quantum state produced by para-
metric down conversion, written, in the 1D case, as:

|Ψ〉 =

∫
dkAdkBg(kA, kB)|1 : kA〉 ⊗ |1 : kB〉 (B1)

g(kA, kB) containing the phase matching and pump spa-
tial properties, and |1 : kA〉 being a single photon state
of party A and wavevector kA. Thanks to the Mercer
theorem, |Ψ〉 can be written as a Schmidt sum:

|Ψ〉 =

S∑
i=1

λi|1 : uiA〉 ⊗ |1 : uiB〉 (B2)

uiA and uiB being orthonormal eigenmodes in parties A
and B, λi the corresponding positive eigenvalue, and S
the so-called Schmidt number.

Let us call b̂iA and b̂i
′

B the annihilation operators in
modes uiA and uiB . We now use the property that the
mode number is the dimension of the space spanned by
the vectors b̂iA|Ψ〉 and b̂i

′

B |Ψ〉. One has:

b̂iA|Ψ〉 = λi|1 : uiB〉 ; b̂i
′

B |Ψ〉 = λi′ |1 : ui
′

A〉 (B3)

All these vectors are orthogonal, meaning that the di-
mension of the generated space is 2S. We have therefore
shown that the number of modes is twice the Schmidt
number.
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Appendix C: Modal dependence of the coincidence rate in
the Hong-Ou-Mandel experiment

We start from formula (115), and chose two bases of
modes, labeled {fAmA

} for beam A and {fBmB
} for beam

B, in such a way the modes of same index (mA = mB)
are ”mirror images” of each other with respect of the
beamsplitter. In this case, one can express simply the
corresponding annihilation operators in function of the
operators b̂Ain and b̂Bin acting on the state before the
beamsplitter, which is the factorized state |1 : gA, 1 : gB〉

b̂Am =
1√
2

(b̂Ainm + eiφb̂Binm ) ; b̂Bm =
1√
2

(b̂Ainm − b̂Binm ),

(C1)
the phase term eiφ accounting for some delay, or some
path diffference, between the two arms of the interferom-
eter. Using relation (42) and the completeness relation
for the mode basis, one gets the following expression for
the normalized coincidence rate:

g(2) =
1

2

(
1− |←−g A · −→g B |2 cos 2φ

)
(C2)

There are therefore no coincidences at zero path differ-
ence φ = 0 when the modes of the two input photons are
identical, spatially as well as temporally.

In the second configuration of the HOM interference,
the input state generated by parametric down-conversion
can be written, like in Appendix B, as the Schmidt sum
(B2):

|Ψ2〉 = |0〉+

S∑
i=1

√
pi|1 : giA〉 ⊗ |1 : giB〉 (C3)

with
∑
i pi = 1. Using as previously mode bases that are

mirror images of each other, one finds for the normalized
coincidence rate at zero delay:

g(2)(0) =
1

2

1−
∑
i,j

√
pipj (←−g iA · −→g

j
B)(←−g jA ·

−→g iB)∗


(C4)

The coincidence rate vanishes when −→g iA = −→g iB ∀i, i.e.
when there is a perfect two-by-two matching for all the
Schmidt modes of the two beams. This is achieved when
there is total symmetry with respect to the exchange be-
tween the signal and idler A and B parts, i.e. when the
matrix Gsi introduced in (98) is symmetric.

One can now consider the same problem but with input
coherent states of equal amplitudes and phase difference
ψ, |α〉 and |αeiψ〉. A calculation analog to the previous
one, based on formula (73), leads to the following result
for g(2)(φ = 0):

g(2)(0) =
1

2

(
1− |←−g A · −→g B |2 cos 2ψ

)
(C5)

When the two modes are identical, the ”HOM dip” is as
expected zero for identical or opposite fields, and equal
to 1/2 for incoherent fields. But one finds also a 100%
dip if ψ takes randomly one of the two values 0 and π,
as it was recently stressed in (Sadana et al., 2018).
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L Ortiz-Gutiérrez, AS Villar, P Nussenzveig, and M Mar-
tinelli (2018), “Hexapartite entanglement in an above-
threshold optical parametric oscillator,” Physical review
letters 121 (7), 073601.

Barbosa, Felippe AS, Antonio S Coelho, Katiuscia N
Cassemiro, Paulo Nussenzveig, Claude Fabre, Marcelo
Martinelli, and Alessandro S Villar (2013), “Beyond spec-
tral homodyne detection: complete quantum measurement
of spectral modes of light,” Physical review letters 111 (20),
200402.

Barnett, Stephen M, Claude Fabre, and Agnes Maıtre (2003),
“Ultimate quantum limits for resolution of beam displace-
ments,” The European Physical Journal D-Atomic, Molec-
ular, Optical and Plasma Physics 22 (3), 513–519.

Barnett S, Allen L, Padgett M J (2016), Optical Angular Mo-
mentum (Taylor Francis).

Bartlett, Stephen D, Barry C Sanders, Samuel L Braunstein,

and Kae Nemoto (2002), “Efficient Classical Simulation
of Continuous Variable Quantum Information Processes,”
Physical Review Letters 88, 869.

Beck, M (2000), “Quantum state measurement with array
detectors,” Phys. Rev. Lett. 84, 5748.

Beijersbergen, Marco W, Les Allen, HELO Van der Veen, and
JP Woerdman (1993), “Astigmatic laser mode converters
and transfer of orbital angular momentum,” Optics Com-
munications 96 (1-3), 123–132.

Bennink, Ryan, and Robert Boyd (2002), “Improved mea-
surement of multimode squeezed light via an eigenmode
approach,” Physical Review A 66 (5), 053815.
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Thiel, Valérian, Pu Jian, Claude Fabre, Nicolas Treps,
and Jonathan Roslund (2016), “Absolute measurement
of quantum-limited interferometric displacements,” arXiv
preprint arXiv:1602.02581.

Thirring, W.,, Bertlmann, R.A., Köhler, P., and Narnhofer,
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