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Abstract: Background: In many neurodegenerative and muscular disorders, and loss of innervation
in sarcopenia, improper reinnervation of muscle and dysfunction of the motor unit (MU) are key
pathogenic features. In vivo studies of MUs are constrained due to difficulties isolating and extracting
functional MUs, so there is a need for a simplified and reproducible system of engineered in vitro
MUs. Objective: to develop and characterise a functional MU model in vitro, permitting the analysis
of MU development and function. Methods: an immortalised human myoblast cell line was
co-cultured with rat embryo spinal cord explants in a serum-free/growth fact media. MUs developed
and the morphology of their components (neuromuscular junction (NMJ), myotubes and motor
neurons) were characterised using immunocytochemistry, phase contrast and confocal microscopy.
The function of the MU was evaluated through live observations and videography of spontaneous
myotube contractions after challenge with cholinergic antagonists and glutamatergic agonists. Results:
blocking acetylcholine receptors with α-bungarotoxin resulted in complete, cessation of myotube
contractions, which was reversible with tubocurarine. Furthermore, myotube activity was significantly
higher with the application of L-glutamic acid. All these observations indicate the formed MU are
functional. Conclusion: a functional nerve-muscle co-culture model was established that has potential
for drug screening and pathophysiological studies of neuromuscular interactions.

Keywords: motor unit (MU); neuromuscular junction (NMJ); motor neuron (MN) co-culture; myotube;
human myoblast

1. Introduction

Neuromuscular junctions (NMJs) consist of presynaptic motoneuron terminals and postsynaptic
motor endplates located on skeletal muscle fibres. The NMJ is required for the transmission of electrical
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signals from the nervous system to be ultimately transformed into skeletal muscle contraction [1].
At the NMJ, an action potential from a motoneuron reaches the presynaptic terminal, inducing release
of acetylcholine (ACh) into the synaptic cleft. The binding of ACh to postsynaptic Ach receptors on the
skeletal muscle motor endplate initiates depolarisation along the sarcolemma that induces calcium
release from the sarcoplasmic reticulum to enable cross-bridge cycling and hence skeletal muscle
contraction [2]. Loss of motor neurons and/or defects in the NMJ result in paralysis of the muscle [3].
Consequently, neuromuscular diseases (NMD) such as myasthenia gravis [4] are accompanied of severe
skeletal muscle weakness and wasting and/or early onset of muscle fatigue. Additionally, the diseases
and age-linked loss of muscle mass and function are associated with denervation through the loss of
motor neurons [5] and postsynaptic disintegration of acetylcholine receptors (AChRs). Despite the
fact that degeneration of the NMJ is a fundamental aspect of neurodegenerative diseases and muscle
wasting associated with ageing and diseases, existing methods to investigate the specific contribution
of degeneration of the NMJ to the aetiology of such conditions are limited [6]. Given the importance
of innervation and functional NMJs for muscle differentiation and function [7], models and methods
that enable the analysis and modulation of NMJs may considerably enhance understanding of NMD
pathogenesis and provide a platform for the validation of new treatments. To address the issue of NMJ
formation through functional innervation, several murine and rodent studies have been reported [8].
However, they are fundamentally a poor surrogate for human biology, in particular in terms of MU
(motor unit) or NMJ mechanistic studies and drug discovery with no real translational impact being felt
in the last decade or so. Moreover, the study of the MU from a mechanistic perspective is challenging
in in vivo models. To elucidate potential mechanisms and pathways, there is a need to develop a
robust and physiologically relevant model that contains all the components of MU to overcome the
limitation of existing animal models in studying NMJ development and physiological function. Few
contemporary nerve-muscle co-culture systems have been produced using human embryonic stem
cells induced pluripotent stem cell and cross species systems using co-culture of primary human
myoblasts with mouse or rat neuronal cells [9].

Furthermore, the reduction and replacement of animal use in research should be a target for
all researchers. An alternative is cell culture, but most in vitro models to study the neuromuscular
system are monocultures of skeletal muscle cells (SkMCs), frequently of animal origin [10,11], and the
absence of functional innervation and lack of NMJ formation in these models result in an incomplete
replication of in vivo conditions [12]. Given the importance of innervation and functional NMJs for
muscle differentiation and function [13], models where NMJs are generated may considerably enhance
understanding of neuromuscular pathologies and sarcopenia and provide a platform for the validation
of new treatments.

To address the issue of NMJ formation through functional innervation, nerve-muscle co-culture
systems have been produced using human embryonic stem cells [14] and induced pluripotent stem
cells [15]. In addition, cross-species systems co-culturing primary human myoblasts with mouse or rat
neuronal cells have been developed [16–18]. However, the intricate nature of these systems results in
large variations in experimental procedures and outcomes. For instance, the inclusion of sera (e.g.,
fetal calf) introduces indeterminate variables to the system due to differences in serum composition
between samples [19], which may influence the results of experimental interventions and hence hamper
reproducibility. In fact, there is some evidence that serum employed in these systems produces retarded
motor neuron myelination in vitro [20]. Furthermore, the use of primary myoblasts acquired from
muscle biopsies has its own distinctive limitations in co-culture systems. Primary myoblasts have a
limited capacity for expansion and undergo phenotypic alterations, including senescence through
successive cell expansion, as well as becoming a less homogeneous cell population [21,22]. Recent
advances in the application of cells derived from embryonic stem cells and induced pluripotent stem
cells to generate myoblasts [23], and motor neurons may overcome some of these limitations [24].
However, besides ethical issues of using human embryonic stem cells, motor neurons derived from
stem cells are difficult to culture and require media formulations with neurotrophic factors that
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interfere with SkMC differentiation [25]. Furthermore, co-cultures of myoblasts with stem cell-derived
motor neurons produce unstable NMJs that are not suitable for longer studies [25]. Moreover, these
models use complicated cocktails culture media that contain more than 15 neural growth factors.
This further complicates drug discovery and toxicology studies due to possible cross-communication
of the novel compound with factors contained within the added media, possibly explaining why
many promising therapies do not translate to clinics [26]. Recently, we have developed a co-culture of
rat embryonic spinal cord explants with primary human myoblasts resulted in NMJ formation and
enhanced differentiation of myotubes that was stable for at least 2 weeks without the need of serum or
neural growth factors [27].

The aim of the present study was to establish, characterise and functionally assess an easily
reproducible MU co-culture system. The co-culture system was established using streamlined methods
and did not require serum and growth/neurotrophic factors, improving experimental reproducibility.
Motor neurons were generated using spinal cord explants sliced from rat embryo spinal cord. The
explants were used to innervate immortalised human myoblasts, which were simultaneously being
differentiated to myotubes. Here, we show that this co-culture system resulted in NMJ formation
with the co-localisation of motor neuron axon terminals with AChR accumulations on differentiated
contractile myotubes. The formation of functionally active NMJs presenting with mature pre/post
synaptic characteristics with the typical twisting perforated structure was also observed. This simplified
co-culture system thus presents a promising tool to study the mechanisms underlying NMJ dysfunction
associated with muscle wasting in ageing and neuromuscular disorders and a platform to trial
innovative therapies.

2. Experimental Section

2.1. Immortalised Human Skeletal Muscle Cell Culture

An immortalised human SkMC line was generated at the institute of Myology (Paris, France).
The cell line was established using primary human myoblasts obtained anonymously from Myobank,
a tissue bank affiliated to Eurobiobank, which has the agreement from the French Ministry of
Research (authorisation # AC-2013-1868). The primary myoblasts originated from biopsies of the
semitendinosus muscle of a 25-year-old man, not diagnosed with any genetic defects or disease.
Myoblast immortalisation was achieved using transduction with both telomerase-expressing and
cyclin-dependent kinase 4-expressing vectors [28]. A cryopreserved suspension of 1× 106 immortalised
human myoblasts was thawed and resuspended in 10 mL of complete growth media (GM) (Table 1),
then pipetted into a T75 flask and incubated for SkMC proliferation. The cells were incubated at 37 ◦C
with a 5% CO2 atmosphere until the flask was 80% confluent. Subsequently, cells were washed twice
with Dulbecco’s Phosphate Buffered Saline (DPBS) from Lonza (Basel, Switzerland). The cells were then
disassociated for 5 min in 2 mL of TrypLE™ Express Enzyme from Thermo Fisher Scientific (Waltham,
MA, USA) at 37 ◦C in 5% CO2. The 2 mL cell suspension was then transferred into a conical tube and
homogenised in 8 mL of GM. The cells were counted and seeded on a 35 mm glass-bottom µ-Dish from
Ibidi® (Martinsried, Germany) at a density of 350 cells/mm2. After 24 h of incubation, the myoblast
density reached 90–100% confluence. The cells were then washed twice with DPBS and incubated for
24 h at 37 ◦C with a 5% CO2 atmosphere in a simplified differentiation medium (DM), consisting of
99% (v/v) DMEM (Dulbecco’s Modified Eagle Media), 1% (v/v) L-glutamine, 10 µg/mL recombinant
human insulin and 10 µg/mL gentamicin, before plating the rat embryo spinal cord explants.
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Table 1. Complete growth media for skeletal muscle cell proliferation.

Growth Media Components/Company Concentration Catalogue #

Dulbecco’s Modified Eagle Media (DMEM) from Lonza 59% (v/v) 12–914F
Medium 199 with Earle’s Balanced Salt Solution from Lonza 20% (v/v) 12-119F

Heat-inactivated fetal bovine serum (FBS) from Thermo Fisher Scientific 20% (v/v) 10500-064
L-glutamine from Lonza 1% (v/v) 17-605E

Fetuin from fetal bovine serum from Sigma-Aldrich (St Louis, MO, USA) 25 µg/mL F3004
Recombinant human basic fibroblast growth factor (FGFb) from Thermo Fisher Scientific 0.5 ng/mL PHG0311

Recombinant human epidermal growth factor (EGF) from Thermo Fisher Scientific 5 ng/mL PHG0311
Recombinant human hepatocyte growth factor (HGF) from Sino Biological Inc. (Beijing, China) 2.5 ng/mL 10463-HNAS

Recombinant human insulin from Sigma-Aldrich 5 µg/mL 91077C
Dexamethasone from Sigma-Aldrich 0.2 µg/mL 10103483

Gentamicin from Thermo Fisher Scientific 10 µg/mL 15710-049

2.2. Isolation of Rat Embryonic Spinal Cord Explants

All animal work undertaken was approved by the Home Office and carried out at the University
of Manchester, in accordance with the Animal Scientific Procedures Act 1986 [27]. Time-mated Sprague
Dawley rats obtained from Charles River Laboratories (Oxford, UK) were sacrificed with CO2 when
embryos were roughly embryonic development day (ED) 13.5. The uterine horn was removed from
the pregnant rat and transferred to a sterile sample-collection pot containing Hank’s Balanced Salt
Solution from Lonza with 10% FBS. Embryo dissection was performed in a 100 mm dish under a
binocular microscope using 21-gauge needles. The spinal cord was dissected in one piece from each
embryo and the surrounding connective tissue was removed, ensuring the dorsal root ganglia (DRGs)
remained intact and attached to the spinal cord. Following removal of connective tissue, the spinal
cord was sliced transversally into ~1–2 mm3 explants.

2.3. Co-Culture

Following 24 h of incubation with DM, the SkMCs were primed for innervation as they were in
the initial phases of differentiation, transitioning from myoblast to myocyte, before substantial cell
fusion and myotube formation occurred. The DM was removed from the 6-well plate dishes, and the
cells were washed twice with DPBS. Then, DM was added to each dish, thinly coating the cells on the
glass bottom. Between three and six evenly spaced explants were placed into each dish and incubated
for 6 h (under the previously mentioned atmospheric conditions), to allow the explants to adhere with
the SkMCs. Following incubation, the explants become slightly affixed to the SkMCs, at which time an
additional DM was added dropwise to each dish to prevent dehydration of the SkMCs and spinal cord
explants. The cells were then incubated for an additional 24 h before adding a further DM to each dish.
While the myocytes fuse into immature myotubes between 24 and 48 h, sprouting neurites from the
explants innervate the cells at this stage of development. Co-cultures were maintained by changing
half the DM every 48 h. Live cells were visualised using a Leica DMI6000 B inverted microscope
from Leica Microsystems (Wetzlar, Germany). Myotube contractions were video captured for 30 s at
24 frames per second with phase contrast microscopy.

2.4. Immunocytochemistry

The cells were washed twice with DPBS and fixed in 4% paraformaldehyde for 10 min at 21 ◦C.
The fixed cells were washed thrice with DPBS and permeabilised by incubation with 1x perm/wash
buffer from Becton, Dickinson (BD) Biosciences (Franklin Lakes, NJ, USA) for 30 min at 21 ◦C, followed
by washing twice with DPBS. Subsequently, the cells were incubated for 1 h in a blocking solution of
0.2% Triton X-100 with 10% normal goat (GS) or normal donkey serum (DS) all from Sigma-Aldrich.
The blocking solution was removed, and the cells washed once with DPBS. The primary antibody
diluent consisted of 3% GS or DS with 0.05% Tween-20 from Sigma-Aldrich. The primary antibodies
(Table 2) were added to the cells and incubated for 18–24 h at 4 ◦C. Following primary antibody
incubation, the cells were washed thrice with DPBS before incubation with the corresponding secondary
antibodies, along with 4′,6-Diamidine-2′-phenylindole dihydrochloride (DAPI) from Sigma-Aldrich for
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30 min at 21 ◦C. Confirmation of myotube innervation and NMJ formation was assessed via confocal
and immunofluorescence microscopy using a Leica DMI6000 B inverted microscope and a Leica TCS
SP5 confocal microscope from Leica Microsystems.

Table 2. Primary antibodies.

Antibody/Company Concentration Catalogue #

Anti-Vesicular Acetylcholine Transporter (VAChT) from Merck Millipore (Burlington, MA, USA) 1:100 ABN100
Anti-Choline Acetyltransferase (ChAT) from Merck Millipore 1:100 AB144

Anti-Glial Fibrillary Acidic Protein (GFAP) from Sigma-Aldrich 1:100 G3893
Anti-Neurofilament Heavy (NFH) from Merck Millipore 1:100 AB5539

Anti-Synaptotagmin (Syt1) from Abcam (Cambridge, UK) 1:100 ab13259
Anti-Ryanodine Receptor 1 (RyR) from Merck Millipore 1:100 AB9078

Anti-Calcium channel L type DHPR alpha 2 subunit (DHPR) from Abcam 1:100 ab2864
Anti-Receptor-Associated Protein of the Synapse (Rapsyn) from Abcam 1:100 ab11423

Anti-Muscle-Specific Kinase (MuSK) from Abcam 1:100 ab92950
Anti-Beta Tubulin Class III Alexa Fluor® 488 conjugate from Thermo Fisher Scientific 1:400 53-4510-82

α-Bungarotoxin, Alexa Fluor® 647 conjugate from Thermo Fisher Scientific 1:400 B35450

2.5. Assessment of Functional NMJ Formation

Co-cultures were functionally evaluated to validate the formation NMJs via live video analysis
of myotube contraction frequency in response to agonist/antagonist treatments. The co-cultured
cell dishes were positioned onto a DMI6000 B inverted microscope stage enclosed by an incubation
chamber to maintain atmospheric conditions of 37 ◦C in 5% CO2, allowing for spontaneously induced
myotube contractions. Following 5 min of sustained spontaneous myotube activity, the cultures
were treated with the cholinergic antagonists’ alpha-bungarotoxin (α-BTX) at a dilution of 1:400 or
(+)-tubocurarine chloride pentahydrate (DTC, Sigma cat # 93750) at a concentration of 8 µM from
Sigma-Aldrich, to block AChRs at the NMJ. Co-cultures were also treated with the glutamatergic
agonist L-glutamic acid from Sigma-Aldrich (cat # G1251) at a final concentration of 400 µM to stimulate
glutamate receptors on the motor neurons. The specified concentrations where selected based on
previously established studies [29–31]. Myotube contraction frequency was measured 30 s before
treatment to determine spontaneous baseline contractile activity. Subsequently, contraction frequency
was measured immediately upon addition of the treatment to the cells and then measured again after
1 min, 2 min, 5 min, 10 min, 30 min and 1 h. After 1 h, the cells were washed twice with DPBS and
fresh untreated DM was added to the cells. Contraction frequency was measured again immediately
following washout and resupply of DM, then again at 1 h 30 min and 24 h after the initial treatments.
Live video analysis was conducted at 24 frames per second with phase contrast microscopy. Myotube
contraction frequency was expressed as a mean± standard deviation using the equation that Hertz = 60
cycles per minute.

2.6. Statistical Analyses

The results presented from the experimental outcomes of this work are representative of a
minimum of three independent experiments. Results were analysed using GraphPad Prism v6.05
statistical analysis software. Data was expressed as mean plus/minus standard deviation (± SD).
Statistical differences were analysed with unpaired t test. Statistical significance was accepted if
p < 0.05.

3. Results

3.1. Co-Culture Morphological Characterisation

Myoblasts were co-cultured in a simplified DM with spinal cord explants from embryonic
development day (ED) 13–14 rat embryos (Figure 1). At 24 h, SkMC fusion was absent and the cells
displayed typical characteristics of mononucleated myocytes, indicating the cells were still in the initial
stage of differentiation (Figure 1a). Successfully adhered explants sprouted neurites and expanded
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over the SkMCs. At 48 h, clear SkMC differentiation had commenced, and neurite length expanded
further to 962 µm ± 57, (Figure 1b). After 72 h, neurite growth expanded to 1503 µm ± 148, with
progressive myotube maturation (Figure 1c). Importantly, connections of motor neuron axon terminals
with myotubes were visible (Figures 1d and 2) and the first spontaneous contractions of individual
myotubes were observed.
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Figure 1. Immortalised human skeletal muscle cells co-cultured with rat embryo spinal cord explants. (a)
Phase contrast image of explant (orange star) sprouting neurites (shown in enlarged inset) after 24 h over
undifferentiated myocytes. Image captured at 10x magnification. Scale bar: 100 µm. (b) Multinucleated
myotube formation (indicated with yellow lines) after 48 h with continued expansion of neural
projections (shown in enlarged inset) emanating from the spinal cord explant (orange star). Image
captured at 10x magnification. Scale bar: 100 µm. (c) Maintained neurite growth (shown in inset) and
continued myotube formation (yellow lines) at 72 h. Image captured at 10x magnification. Scale bar:
100 µm. (d) Neuronal axons (pink arrows) form a visible link (circled in red) with a myotube (green
arrow). Image captured at 40x magnification. Scale bar: 25 µm.

3.2. Spontaneous Myotube Contractions

The first spontaneously contracting myotubes were observed ~72 h after co-culture, while no
contractions were observed in aneurally cultured myotubes which confirm our previous observation [27],
as myotubes matured in the co-culture, the number of contracting myotubes and their contraction
frequency increased. After seven days in co-culture, the myotubes were contracting continuously in a
systematic pattern as a unified network (see Video S1), behaving as an individual motor unit prompted
by motor neuron stimulation.
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3.3. Characterisation of Neuronal Cells

NMJ formation begins with the convergence of cholinergic motor neurons and SkMCs [32].
Therefore, the primary intention was to confirm cholinergic motor neurons and skeletal muscle
myotube co-localisation in culture. Confirmation of co-localisation was achieved via antibody
staining. Both choline acetyltransferase (ChAT), a cytoplasmic transferase enzyme found in elevated
concentration in cholinergic neurons [33], and vesicular acetylcholine transporter (VaChT), a functional
mediator of ACh storage and transport by synaptic vesicles [34], were stained to reveal cholinergic
motor neurons. Staining myotubes for myosin heavy chain (MHC) was used as an indicator of SkMC
differentiation (Figure 2). Staining revealed an abundance of cholinergic motor neurons, with axons
terminating at differentiated myotubes. Axon terminals were also seen forming several contact points
with individual myotubes, comparable to observations of embryonic innervation. In vivo, preliminary
myotube innervation occurs via numerous branching axons, which originate from different motor
neurons. Maturation causes axon pruning to occur, leaving individual motor neurons to innervate
hundreds of mature muscle fibres, generating a functional motor unit [35]. Notably, SkMCs in this
co-culture model also exhibit multiple innervation (e.g., 2 or more NMJs per myotube; Figures 3 and 4)
similar to what is seen in vivo before axon pruning occurs.
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Existing co-culture systems focus predominantly on describing the muscle and nerve cells with
marginal consideration of associated cells involved with NMJ generation, regulation and development.
As mentioned earlier, Schwann cells cap motor nerve terminals in vivo. These cells are an essential
component in neuromuscular synaptic maintenance and repair [36]. Therefore, revealing Schwann
cells in the co-culture system and the subsequent detection of interactions between motor neurons
and Schwann cells may explain the robustness of NMJs generated in this co-culture system. Glial
fibrillary acidic protein (GFAP), an intermediate filament cytoskeletal component, was used as a marker
to reveal the existence of non-myelinating Schwann cells [37]. Motor neurons were distinguished
by β-III-tubulin staining, a microtubule cytoskeletal component found in neurons [38] (Figure 3).
Co-localisation of neurons and Schwann cells was evident throughout the co-culture. The enlarged
inset image in Figure 3 illustrates the interaction between these cells that is indicative of Schwann cells
capping axons, as observed in vivo. The discovery of co-localisation and cellular interaction between
myotubes, motor neurons and Schwann cells within the co-culture supports the concept that this
co-culture model provides functional and robust innervation of myotubes via precisely coordinated
NMJ formation, mirroring in vivo conditions.

3.4. NMJ Formation

After validation of co-localisation between cholinergic axon terminals and myotubes, we sought
to verify NMJ formation. The formation of NMJs is characterised by the substantial aggregation of
AChRs at the myotube membrane in apposition of motor neuron axon terminals. Axon terminals were
identified by marking motor neurons for β-III-tubulin (Figure 4) [39]. The accumulation of AChRs on
the myotubes was characterised with fluorescently labelled α-BTX, known to bind specifically with
AChRs on the myotube membrane [40]. Staining of the co-cultures revealed abundant axon terminals
overlying AChRs on myotubes. Comparable to what is seen in vivo, AChR clusters exhibited greater
concentrations where axon terminals overlapped the clusters, signifying functional NMJ formation.
Additionally, diffused fragments of AChRs were speckled on myotube membranes in the absence of
axon terminals, indicating that AChRs aggregate in the presence of a nerve terminal.

Further characterisation of NMJ formation and subsequent functionality was assessed through the
examination of the presynaptic apparatus. When an action potential arrives at a presynaptic terminal,
the local increase in the Ca2+ concentration triggers the release of ACh. This calcium-dependent
exocytosis involves the precise docking of synaptic vesicles to the presynaptic membrane, which is
regulated in part by the calcium sensor synaptotagmin (Syt1) [41]. To confirm presynaptic NMJ activity,
staining for NFH was used to visualise axons while activity at the terminal was shown by marking
Syt1 (Figure 5).
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image of co-culture stained for neurofilament heavy (NFH) (green), synaptotagmin (Syt1) (red) and
DAPI (blue). Scale bar = 7.5 µm.

Subsequent experiments were conducted to identify postsynaptic proteins known to co-localise
with AChRs at the endplate. Agrin is crucial for AChR clustering in the postsynaptic membrane and is
vital for precise NMJ formation and functions through activation of its muscle-specific receptor tyrosine
kinase (MuSK), which forms an initial scaffold for the receptor-associated protein of the synapse
(Rapsyn) to advance recruitment of other postsynaptic membrane elements [42]. It was revealed that
both Rapsyn and MuSK (Figure 6) precisely overlaid the pretzel shaped structure of the AChR clusters
on the postsynaptic membrane.
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Figure 6. Characterisation of postsynaptic neuromuscular junction formation at Day 14. (a) shows
co-culture stained for alpha-bungarotoxin (α-BTX) (red), MuSK (magenta) and DAPI (blue). (b) is
representative of co-culture stained for α-BTX (red), Rapsyn (green) and DAPI (blue). (c) reveals
interaction and detailed conformation of postsynaptic proteins MuSK (magenta) and Rapsyn (green) at
the AChR stained with α-BTX (red) and DAPI (blue). Scale bar = 25 µm.
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3.5. Functional Assessment

Experiments were conducted to validate the formation of functional NMJs and demonstrate
myotube contractions were indeed generated through NMJ formation. Muscle contractions in vivo are
induced through the presynaptic release of ACh at the NMJ and postsynaptic binding with AChRs.
It is well established that α-BTX and DTC inhibit muscle contraction by blocking AChRs at the NMJ
in vivo [43,44]. Thus, the application of these toxins to this in vitro co-culture system should inhibit
myotube contractions if functional NMJ formation representative of in vivo conditions had occurred.
Additionally, it is known that motor neurons in vivo are stimulated by glutamatergic neurotransmitters
via nervous input through glutamate receptors. The application of glutamatergic agonists in vitro
increases the generation of action potentials in motor neurons [45,46], leading to an increase of ACh
released by the excited motor neurons. Therefore, the addition of the glutamatergic agonist L-glutamic
acid (L-Glut) to the co-cultured cells should induce motor neuron excitation resulting in elevated
concentrations of ACh at the NMJ and increased myotube contraction frequency.

In Figure 7a, the first time point (30 sec before the treatment) shows there is no significant difference
in baseline contraction frequency (1.25 Hz ± 0.27 vs. 1.18 Hz ± 0.33, p = 0.6) 30 s before treating cells.
At the second time point, (0 sec) α-BTX was applied to the cells with equal volume of DM added to the
controls, resulting in complete stoppage of all contractions in both control and treated cells, due to
changes in environmental conditions from added volume of solution. After one minute of the treatment,
myotube contractions in the controls were observable and continued to increase in frequency over
time until contraction frequency returned to initial baseline levels after 10 min. However, the α-BTX
treated cells exhibited loss of myotube contractility even after washout and media change, indicative
of permanent inhibition of AChR function at the NMJ. The cells treated with DTC displayed similar
cessation of myotube contractions (Figure 7b). However, 30 min following treatment, contractions
were observed in the DTC treated myotubes at a significantly reduced frequency (1.18 Hz ± 0.23 vs.
0.14 Hz ± 0.09, p < 0.0001). Contraction frequency increased one hour following treatment, though
at a significantly decreased rate compared to controls (1.03 Hz ± 0.22 vs. 0.51 Hz ± 0.16, p < 0.0001).
Following washout, the DRC treated cells returned to baseline contraction frequency (1.15 Hz ± 0.28
vs. 1.20 Hz ± 0.23, p = 0.7) 1 h and 30 min after initial treatment was applied to the cells. Contrasting
an irreversible receptor antagonist such as α-BTX, DTC does not inactivate the receptor but decreases
the potential of ACh activating it. Spontaneous contraction activity was restored following DTC
dissociation from binding sites and clearance from AChRs. These findings demonstrate that myotube
contractions were driven by ACh binding with postsynaptic AChRs at the NMJ, which can be abated
by blocking the AChRs in this co-culture system.
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Figure 7. Functional assessment of NMJ formation via the effects of α-bungarotoxin, tubocurarine and
L-glutamic acid on myotube contraction frequency at day 14. (a) shows the effect of α-bungarotoxin
on myotube contraction frequency compared to controls. (b) demonstrates tubocurarine effects on
myotube contraction frequency compared to controls. (c) displays the impact of L-glutamic acid on
myotube contraction frequency compared to controls. Data are means ± SD, n = 12, each time point
analysed with unpaired T-test, ** p < 0.01, **** p < 0.0001. Time points: (1) -30 s, (2) 0 s, (3) 1 min,
(4) 2 min, (5) 5 min, (6) 10 min, (7) 30 min, (8) 1 h, (9) 1 h 1 min (washout), (10) 1 h 30 min, (11) 24 h.
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In contrast to AChR blockers, that halt contractions by acting directly on the postsynaptic
myotube motor end plate, L-glut was used to stimulate motor neurons and augment the presynaptic
release of ACh, leading to increased contraction frequency (Figure 7c). There was no significant
difference between baseline contraction frequencies before the application of L-Glut to the co-cultures.
However, comparable to BTX and DTC treatments, there was an immediate cessation of myotube
contractions when the treatment diluent or DM was added to the cells (Figure 7). One minute after
the application of L-Glut, myotube contraction frequency was slightly yet significantly higher than
controls. After two minutes, the treated cells were contracting at a significantly increased frequency
of 1.5 Hz higher than the controls. When contraction frequency was measured at 5 min the treated
cells increased frequency further to over 2.5 Hz higher than controls. However, after 10 min, the
contraction frequency in the treated cells retuned to baseline spontaneous activity similar to controls,
where it remained for the duration of the experimental timeline. These findings show that myotube
contractions in this co-culture system are instructed through functional NMJ formation.

4. Discussion

In order to provide new avenues that facilitate the study of NMJ in development, disease
progression to therapeutic intervention, appropriate NMJ experimental models are therefore needed.
In the present study, we extended our recent work [27] to fully characterise the NMJ in a rat spinal
cord segment and primary human muscle cells co-culture and assess its contractile functionality.
The advantages of this platform are (1) the presence of supporting Schwann and glial cells may
possibly enhance NMJ robustness and improve function of motor neurons in vitro and (2) the
formation of functional NMJs that are associated with highly differentiated and motor neuron-driven
contracting myotubes.

The co-culture model has advantages over previous skeletal muscle cell cultures as a research tool
for investigating neuromuscular and muscle wasting disorders. Firstly, aneurally cultured SkMCs
did not spontaneously contract in culture nor did they express the morphological characteristics of
innervated SkMCs. However, as similarly occurs in vivo, innervated myotubes exhibited endogenously
stimulated contractions [47]. Previous research has shown that treating aneurally cultured human
myotubes with secretome from rat-nerve/human-muscle co-cultures resulted in a negligible increase of
AChR clustering on the myotube [48,49] with no spontaneous contractile activity. This finding suggests
that neuronal cell secretions alone are unable to induce in vitro contractile function in myotubes,
emphasising the requirement of NMJ formation for appropriate development of mature myotubes,
which is thus, more representative of the in vivo environment.

Furthermore, it has also been demonstrated that denervated myotubes within a nerve-muscle
co-culture system fail to exhibit contractile function or characteristics of mature development;
they eventually deteriorate, despite the elevated concentration of nerve-derived secretions in the
culture environment [50]. Interestingly, the myotubes in our co-culture model initiated spontaneous
contractions as early as 72 h post co-culture [27], suggesting the initial emergence of NMJ formation,
due to the myotube requirement for nervous input from the motor neurons to induce contraction [51].
When compared to aneural in vitro SkMC cultures, the benefits of our co-culture system are apparent,
as co-cultured myotubes exhibit advanced stages of differentiation that monocultures of SkMCs fail
to achieve. Thus, making this co-culture system suitable for the accurate elucidation of skeletal
muscle wasting conditions and development of therapeutic approaches that can mitigate, prevent
or ultimately counteract skeletal muscle wasting and weakness of a neural origin. The co-culture
model was established using a modified culture media devoid of serum, neurotrophic factors and
growth factors. We are not aware of any other models that have generated functional NMJs without
supplementation or media enrichment with growth factors [15,30,52,53]. Our simplified approach is
easily repeated and diminishes experimental variability thereby improving research potential for drug
discovery and to investigate mechanisms responsible for innervated differentiation of myotubes and
mature formation of NMJs.
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Methods applied throughout this study were designed to optimise the time required for
spontaneous myotube contractions while producing functional NMJs [27]. Previously established
nerve-muscle co-culture models involve intricate methods requiring various culture media formulations
for separate myotube or motor neuron differentiation for at least 10 days before co-culturing [30].
While other studies have presented NMJ formation at 21 days [15]. These lengthy protocols lead to
avoidable postponements and possible unintended variation to experimental procedures. In our model,
individual myotubes begin to contract by Day 3. The contraction frequency increased, and synchronous
unified contractions were apparent by Day 7. To ensure the occurrence of appropriate and mature
NMJ formation, the co-cultures were maintained by changing half the culture media on alternating
days, with characterization conducted on Day 14. Although co-cultures were characterized on Day
14, preliminary viability experiments were conducted and revealed long-term co-culture studies
were possible with this co-culture system, as myotube contractions were observed until experimental
termination on Day 30. Notably, the innervated myotubes had the potential for further viability had we
continued to maintain the culture beyond 30 days. Some established nerve-muscle models have been
considered unsuitable for long-term investigation as they only expressed preliminary characteristics
of NMJ formation and lack extended viability [29], though more recent culture systems have shown
sustained viability, yet only generating immature NMJs [52].

Myoblasts were cultured with explants consisting of bare ventral horn without DRGs and spinal
cord mechanically dissociated to create a neuronal cell suspension for culture with myoblasts. Both these
conditions resulted in delayed initiation of spontaneous myotube contractions, increased arrhythmic
contractions, reduced contraction frequency and diminished NMJ formation with a poorly developed
or failed junction assembly. This suggests motor and sensory neurons originate from both the ventral
horn and dorsal root function collectively to innervate myotubes and form NMJs, representative of
an in vivo environment [54]. Additionally, explants with intact DRGs contain a range of progenitor
and supporting cells types. Vital functions such as NMJ formation and the ability to re-innervate the
muscle are enhanced by Schwann cells [55]. Therefore, the existence of Schwann cells may encourage
NMJ functionality and improved motor neurons function in vitro.

The heterogeneous composition (Schwann cells, motor neurons and muscle fibers) of this co-culture
model also enhances its applicability as a tool for the precise identification of species-specific pre-
or postsynaptic proteins, as the neuronal components in the model are generated from rat and the
muscle components from human. Research conducted using a rat-human nerve–muscle co-culture
model was developed to investigate the origins of acetylcholinesterase (AChE) in functional NMJs.
By exploiting species-specific immunocytochemical staining against AChE, the investigators were able
to determine the source of AChE from either the rat nerve cells or the human SkMCs at the synaptic
cleft [56]. Importantly, our rat-human co-culture model is devoid of any potential contaminating sera
and growth—presenting a novel and native, ex vivo/in vitro platform.

The most important observation of this study was that the treatment of the model with several
pharmacological agents showed that the spontaneous myotube contractile activity was indeed driven
by MN signalling through the NMJ. Functionality of NMJs was assessed through the impact of
agonist and antagonist pharmacological interventions that act presynaptically or postsynaptically.
The introduction of α-BTX to the co-cultures resulted in an immediate and permanent cessation of the
myotube contractions, indicating that the spontaneous contractions were elicited via activation of the
AChRs at the NMJ motor endplate, similar to that seen in in vivo mammalian NMJ [57].

The addition of tubocurarine to the co-cultures led to an immediate halt in myotube contractions
followed by a slow recovery of spontaneous activity, beginning with low frequency irregular spasms
rather than the typical synchronised contractions observed in control conditions. Although, the
re-establishment of contractile activity was observed (30 min) after the application of tubocurarine,
the spontaneous myotube contractions did not return to a typical synchronous frequency until the
co-cultures were restored to pre-intervention conditions. This observation is in line with reduced ability
of ACh to open the ACh receptor in the presence of tubocurarine, acting as a competitive inhibitor of
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ACh [58], while αBTX functionally inactivates the AChRs. The ability of myotube contractile activity
in the co-cultures to recover from tubocurarine is further evidence of functional neurotransmission in
this in vitro NMJ system.

L-Glut (neuron-specific excitatory neurotransmitter) had an immediate stimulating impact on
myotube contractility above that of control levels of spontaneous activity that returned to control levels
within 10 min following MN stimulation with L-Glut. L-Glut catalyses the formation of γ-Aminobutyric
acid (GABA), which enhances ACh release at the NMJ [59], thereby enhancing muscle contraction [60].
In summary, the responses to α-BTX, tubocurarine and L-Glut are all similar to that seen in in vivo
NMJs indicating that in our system physiological NMJs were formed [60,61].

It is unclear whether the NMJs in our system are more human- or rat-like, which may limit clinical
translation of data obtained with this cross-species culture system. Nevertheless, we have provided
evidence that in our rat-human cross-species culture system functional NMJs are formed that are
associated with a further differentiation of myotubes than we have seen previously with primary
human muscle cells and embryonic stem cells [62], supporting the relevance of the system for use as a
drug discovery platform to maintain neuromuscular interactions.

5. Conclusions

In summary, this study reports a platform that enables the analysis and modulation of NMJs,
motor neuron and muscle simultaneously, which may provide a physiologically relevant and more
effective translational model to enhance our understanding of NMJ physiology and pathophysiology.
Physiological assessments of MU function were confirmed by spontaneous contraction profiles
that were driven by motor neuron via the NMJ with inhibition and stimulation of the pre- and
post-synaptic membrane. The similarity to in vivo contractility demonstrated by mature myotubes
in this co-culture system improves research capabilities into neuromuscular physiology allowing
for improved pathophysiological elucidation, diagnosis and treatment of diseases associated with
neuromuscular dysfunction.
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