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Abstract : We report an experimental study of the compaction behaviour of zirconia 

granules formed by a spray drying process. Using two different binders that were fully 

characterized, we have investigated the influence of the binder spatial distribution in the 

granules on compaction of a granule packing. Spatial distributions were modified by 

tuning binder adsorption on the ceramic nanoparticles in the spray dried suspensions. 

Granule powders with binder either located between nanoparticles only, or partly 

concentrated within a segregated layer at the surfaces of granules were thus obtained. 

We have found the role of the segregated layer is fully negligible during granule 

compression, and we justify that result by providing estimates of the theoretical 

compression energies of segregated layers and polymer bridges. We discuss the role of 

the binder bridges between nanoparticles, and we suggest a picture accounting for the 
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experimental influence of binder mechanical properties and concentration on the 

compaction behaviour of spray-dried granules.   

Keywords: ceramics, binder layer, cold compaction, density, mechanical modelling 

 

1. Introduction 

It is well known that adding a polymeric binder to ceramic powders before their cold 

compression greatly improves the properties of the resulting green body. In particular, a 

binder increases the powder cohesion and thus the strength of the green body [1], 

opening the way for cold machining processes [2]. However, addition of a binder is also 

known to potentially result in a large porosity of the ceramics after the sintering step, 

during which all the organic content is removed. The optimum amount of binder is 

therefore determined by a compromise between the gain in green body strength and loss 

of density. In addition, the spatial distribution of binder in granules is as well known to 

have possible large consequences on the properties of the green body, but also of the 

sintered ceramics. It is well established that during spray drying process the binder can 

segregate to the surface of the granule, and further form a layer at that surface. 

Evidences for that layer have been provided [3, 4] and it has been shown to form with 

binders that do not (or only poorly) adsorb onto the surfaces of the ceramic colloidal 

particle before spray drying. Segregated layers are suspected to have a role on green 

strength by enhancing the adhesion between granules [1, 5]. However, they can be also 

detrimental to the quality of the final ceramics: their removal leaving coarse defects, 

segregated layers have been found to be at the origin of defaults in the final sintered 

ceramics [6]. They are also thought to have an effect on the structure of the compacts 
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[4]. However further investigation is needed to understand the role of that layer during 

the compression step, for given mechanical properties of the binder. 

In this work, we have used spray dried granules of zirconia to investigate the link 

between the compaction behaviour and the spatial distribution of the added binder. We 

have tuned the adsorption of the binder on the zirconia particles to determine the role of 

a segregated layer during compaction. The question we address is the following: what is 

the mechanical role of the binder and hence what should be the optimal distribution of a 

binder for the compaction step? The answer is supported by experimental data but also 

by a modelling of the behaviours at stake. 

 

2. Materials and methods 

2.1 Zirconia granules 

Zirconia powders (Zirpro, Saint-Gobain) were de-agglomerated in water and milled 

with a repeatable water milling step to reach a median radius of 180 nm for the 

nanoparticles. During that step, dispersion of the nanoparticles was ensured by addition 

of either a dispersant (Dolapix Ce64 - Zschimmer & Schwarz) or by increase of the zeta 

potential by 0.1wt% acetic acid. The pH of the obtained suspensions (Zirconia volume 

fraction 15%) was further modified in order to induce a slight aggregation of the 

Zirconia particles and promote the formation of spherical granules during the 

atomization process [7]. The suspensions were spray dried in a Niro atomizer after 

possible addition of a binder. Temperature of injected air was set at 280°C, and 

outcoming air had a measured temperature of 110°C. The spherical granules formed had 

an average diameter of 60µm. The spray drying conditions were such that the Péclet 



4 
 

number for the polymer was larger than 100, ensuring that the polymer distribution is 

not sensitive to small variations of these conditions. As a result of the slightly 

aggregated state of the suspension, the granules are formed by a packing of colloidal 

aggregates comprising about ten particles. As shown, in the following, that specific 

structure is expected to influence granule compaction only at its very first stages. 

2.2 Polymers 

Two different binders were used: Poly(Vinyl Alcohol) (PVA) and an acrylic latex. They 

are listed in Table I together with their properties. Since PVA is plasticized by water, 

special care was taken to control the humidity rate in the granules. It was kept smaller 

than 0.5wt%. Glass transition temperatures of the polymers were measured by 

Differential Scanning Calorimetry (DSC) for the same humidity rate.  

 

2.3 Mechanical characterisation of polymers 

The polymers were dissolved in water, further lyophilised and molded at high 

temperature into parallelipedic samples of dimensions 1x5x20 mm. Tensile tests were 

performed on the acrylic latex  sample at an engineer extensional rate of 0.18s-1 with a 

DMA Q800 (Dynamic Mechanical Analysis, TA Instruments), and on the PVA sample 

at a rate of 0.36s-1 with a Zwick Roell. 

Figure 1 shows the data correspond to true stress and strain measured for the different 

binders. The Young’s modulus given in Table 1 are values averaged over 3 different 

samples for each polymer. As displayed in Fig. 1, the polymers exhibit qualitatively 

different mechanical behaviours at room temperature: PVA is semi-cristalline and 
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below its glass transition and thus has a large modulus value and presents a fracture at a 

strain value of 5%, while acrylic latex is viscoelastic and can sustain large strain values. 

     

Plastic behaviour has been reported for PVA samples during tensile tests [8]. The 

measured yield stress was 55MPa and the yield strain 4%, both values being very close 

to the stress and strain at break we have measured (Fig. 1). It is likely that defaults are at 

the origin of the rupture of our sample before occurrence of plastic deformation. In the 

following, we will consider PVA deforms plastically above the reported yield values.  

2.4 Polymer adsorption on Zirconia 

Adsorption of polymers on Zirconia was determined by measuring the equilibrium 

concentration of polymers in the interstitial solution using Total Organic Carbon 

method (TOC-VCSH, Shimadzu). The amounts of polymer adsorbed on nanoparticles 

were inferred from these measurements and they are shown in Fig. 2 as a function of the 

initial polymer concentration in the suspensions. Clearly, the adsorbed amount of PVA 

plateaus at 0.5wt% whereas acrylic latex strongly adsorbs onto Zirconia and no plateau 

was observed within the measured range. However, Fig. 2 shows that addition of a 

dispersant almost fully inhibits the adsorption of acrylic latex. It is therefore possible to 

obtain samples in which acrylic latex adsorbs either fully or only very poorly onto the 

nanoparticles. Since a segregated polymer layer is expected at the surface of spray dried 

granules from samples in which the polymer is free, in the following, we tune the binder 

adsorption with dispersant in order to investigate the role of polymer segregated layers 

on the compression of green bodies. 

 



6 
 

In addition, we have used the thermal treatment suggested in [3] in order to visualize the 

segregated polymer layers at the surface of spray dried granules. Such layers were 

evidenced in samples contaning both an adsorbing polymer (Acrylic latex or PVA) and 

a dispersant to inhibit polymer adorption on Zirconia. In contrast, a sample made with 

acrylic latex and no dispersant did not exhibit these layers after thermal treatment, 

confirming that no segregated layer forms with a fully adsorbing polymer. 

 

The thickness of the formed segregated layers can be estimated from the polymer 

content, that point will be addressed in the following. 

2.5 Compaction experiments 

A given weight (0.105g) of granule powder was poured in a cell of diameter 5mm. 

Compaction experiments were carried out using a Zwick Roell equipped with a 10kN 

force sensor. After a pre-compression at 0.04MPa in order to set the zero-displacement 

position, the sample was compacted at a constant rate of 0.02 mm.s-1. All compactions 

were performed at 20°C. 

 

3. Results 

3.1 Effect of binder segregated layers on the compaction behaviour 

In Fig. 4, we compare the compaction behaviour of granules made with the two 

different binders, with and without addition of dispersant for each binder. In agreement 

with reports in the literature, the compaction is a two-step process in all cases: first, the 

volume fraction only weakly varies with pressure, but above a threshold pressure, 
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density increases linearly with the logarithm of the pressure. The curves quantitatively 

differ according to the nature of the binder, which is expected considering the strongly 

different mechanical properties of the binders. In particular, the threshold pressure is 

larger for PVA than for acrylic latex. It however varies by less than one decade between 

both polymers whereas the Young’s modulus of the two binders differ by three orders 

of magnitude. Finally, at pressures larger than ca. 10MPa, all curves converge to the 

same limit curve. Therefore, the nature of the binder influences the compaction process 

only within a limited pressure range. 

We now focus on the role on compaction of the binder distribution in the granules. As 

detailed above, acrylic latex strongly adsorbs onto the surfaces of the nanoparticles in 

the absence of dispersant and only very poorly in the presence of dispersant. Therefore, 

the curves obtained with and without dispersant respectively correspond to granules 

having a binder layer at their surfaces (dashed line) or not (full line). As a reference, in 

Fig. 4 we show the curves obtained with and without dispersant with a PVA binder that 

poorly adsorbs onto the surface of the nanoparticle. Only 0.5%wt is expected to adsorb, 

which represents 25% of the total binder content. A segregated layer therefore forms 

with and without dispersant, its thickness being smaller by 25% without dispersant (full 

line) than with dispersant (dashed line). 

For acrylic latex, the threshold pressure is smaller by about 20% when a segregated 

layer is present. A similar feature was reported during the compaction of alumina with a 

polyacrylic acid binder [5]. However, in the present experiments, the differences of 

behaviour of the samples in which the binder distribution has been tuned remain very 

close to the ones of the reference samples in which segregation layers are present. It is 

therefore likely that the differences we observe result from dispersant addition. We can 
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therefore conclude from the data of Fig. 4 that tuning the binder distribution does not 

result in any significant modification of the compaction curves.   

The influence of segregated layers has been examined in past studies. In particular, the 

compression behaviour and structure of the formed compacts were investigated in 

alumina with two different binders: PVA that forms a segregated layer during spray 

drying, and poly-acrylic acid (PAA) that is homogeneously distributed within the 

granules [4]. Differences in the compression curves and structures were observed. The 

internal structure of the granule was also found to differ with the used binders. 

However, the binder distribution was not varied independently of its mechanical 

properties. PVA and PAA actually differ by both their Tg and their state, PVA being 

semi-crystalline and PAA amorphous. We therefore suggest that the differences 

reported in Tanaka et al.’s paper mainly originate from the binder mechanical properties 

rather than from the distribution of the binder. In the present work we demonstrate that, 

whereas the compaction behaviour clearly depends on the mechanical properties of the 

binder, tuning the formation of a segregated layer does not significantly modify the 

compaction curves for a given binder. We show in the following that this result is 

consistent with the negligible contribution of the binder layer to the compaction energy. 

In addition, we show that the main contribution to that energy results from the 

deformation of the polymer between nanoparticles. In the next paragraph, we detail 

how, even when the binder does not adsorb onto the surfaces of nanoparticles, part of it 

is expected to remain between nanoparticles within the granules. 

3.2 Binder distribution 
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The presence of binder between nanoparticles results from binder adsorption at the 

surface of nanoparticles but part of the binder can also be trapped if it does not adsorb 

and remains free in the solvent. Actually, during the high Peclet numbers drying 

involved in spray-drying, part of the free binder concentrates at the surface of the 

granules to form the segregated layer, but another part remains trapped in capillary 

bridges between nanoparticles. An estimate of the amount of binder trapped between 

nanoparticles can be provided by considering the drying process of a porous medium 

[9]. The stage of drying at which the nanoparticles reach the random close packing and 

the air/solvent interface penetrates in the granules is the funicular stage. During that 

stage, there are continuous solvent paths in the granule and the solvent keeps 

concentrating at their surface. However, as drying proceeds, the paths become 

discontinuous. During the final drying regime (pendular regime), the solvent is trapped 

within capillary bridges between the surfaces of neighbouring nanoparticles. As a 

consequence, once drying is completed, roughly 15% of the binder is located between 

neighbouring nanoparticles [9] if the binder is initially free in the solvent, as already 

pointed out in the literature [10]. 

More quantitatively, estimates of the thicknesses of the segregated layer and of the 

binder bridges can be provided for given binder content and adsorption. Assuming 

homogeneous repartition of the binder either around the granules or the Zirconia 

particles yield simple geometric relations giving the thicknesses as a function of the 

volume fractions of the adsorbed and free binder. The results are summarized in Table 

II.  

The thickness of the segregated layer for poorly adsorbing polymer is a fraction of 

micron, in agreement with results from the literature [10]. The thickness of the bridges 
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between nanoparticles are of the same order of magnitude for both binders. The latter 

values are only indicative averages since they do not account for the heterogeneous 

distribution of the polymer that is expected around the nanoparticles. 

In conclusion, if the binder does not adsorb on the nanoparticles surface, at the end of 

the spray drying process, about 85% of its initial content is distributed in segregated 

layers at the surface of the granules and the remaining part is trapped in bridges between 

nanoparticles surfaces. Therefore, a significant amount of binder is expected to remain 

between nanoparticles, whatever their interaction with the binder. In the following, we 

compare the effects of the deformation of segregated layers and polymer bridges during 

compaction. 

 

3.3 Discussion: Modelling the role of the binder 

In Appendix A, we provide an estimate of contribution of the binder layer to 

compaction of ceramic granules. We show that the folding energy of the segregated 

layer has three contributions. Actually, when layers are packed, their shapes evolve 

towards a polyhedral shape and the transformation from a spherical shell to a 

polyhedron implies formation of faces, as well as edges and vertices. In appendix A, we 

show that the binder layer at the vertices opposes the largest resistance to compaction. 

That effect can be quantified by the void volume fraction at the vertices, which is shown 

as a function of pressure in Fig. 5. It is compared to the total void volume fraction 

inferred from the compaction curves of Fig. 4. 

Figure 5 demonstrates that the voids created by the deformation of granules into 

polyhedrons are filled by the binder layers at an early stage of the compaction process. 
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For instance, at pressure values larger than 0.2MPa, the segregated layers do not oppose 

any resistance to compaction even when they are constituted by a large Young modulus 

binder as PVA.  

As a result, the contribution of the binder to the mechanical behaviour during 

compaction mainly originates from the binder bridges between nanoparticles. As 

pressure increases, the bridges are expected to respond differently according to the 

binder’s nature. As shown by mechanical characterisation, acrylic latex deforms 

elastically up to large strains. In contrast, PVA deforms plastically. In the 

approximation of an isotropic pressure equally distributed over all the bridges, we 

derive the relation between the macroscopic pressure  and the thickness ℎ of the bridge 

in Appendix B. For an elastic deformation, and a binder volume fraction larger than 

0.6%, the macroscopic pressure is independent of the binder volume fraction and is 

simply given by:     

𝑃 ≈
𝐸

2
(1 −

ℎ

ℎ0
)  (1) 

This relation is derived in Appendix B. It demonstrates that at pressure values close to 

the Young’s modulus of the binder, the gap between particles goes to zero, and friction 

between nanoparticles starts influencing compaction. Remarkably, the threshold 

depends on the polymer content only through the initial thickness of the bridges, h0. At 

a given pressure value, the thickness of polymer bridges is therefore all the more larger 

than the initial thickness is large. 

In the case of a plastic deformation the pressure at yield point is shown in Appendix B 

to be: 
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𝑃 = 𝜎𝑦
2

3
(
𝜑

3𝑍𝑓𝑐
)
1/4
𝐽 ((

𝜑

3𝑍𝑓𝑐
)
1/4

√
𝑅𝑝

ℎ0
)   (2) 

Where 𝜎𝑌 is the yield stress, 𝜑 the volume fraction of polymer distributed in the bridges, 

Z the number of half-capillary bridges by nanoparticle, and fc the volume fraction of 

solid particles. J is the function defined in appendix B. 𝑅𝑝 and ℎ0 are respectively the 

radius of a nanoparticle and the thickness of the capillary bridge. Typical values for a 

disordered packing of spheres were used to provide numerical estimates: Z=6 and  

fc=0.6. The volume fraction of polymer in the bridge is expected to be the same as the 

total volume fraction for a fully adsorbing binder, and only 15% of that content for a 

non-adsorbing one.   

Below this pressure threshold, the binder bridge does not yield and respond elastically. 

At pressures larger than the threshold, the bridge thins down until its thickness reaches 

the value corresponding to the applied pressure. As shown in fig. 6, the yielding 

pressure is always significantly smaller than the polymer yield stress. For bridges of 

thickness ℎ0 = 6𝑛𝑚, the yielding pressure is close to 0.1𝜎𝑦. In addition, according to 

eq. (2), the yielding pressure only weakly depends on the polymer volume fraction, 

which in agreement with the weak variation of the compaction curves observed by 

adding dispersant (thus changing the content of polymer in the bridges). 

In the above description, we have assumed a homogeneous distribution of the binder in 

the granules. In the case of a non adsorbing binder, concentration gradients are actually 

expected in the granules. However, the curves of Fig. 4 show that the differences 

between a fully adsorbing binder (for which the distribution is homogeneous) and a 

non-adsorbing binder are very small. In addition, as already mentioned, we have found 
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the dependence on binder volume fraction is weak, which further justifies the 

assumption of a homogeneous distribution.  

Equations (1) and (2) provides estimates for the threshold pressures above which 

friction between nanoparticles start opposing compaction. The values for Acrylic latex 

and PVA are indicated in Fig. 5 (dashed lines) and they roughly correspond to the 

change in the slope of the compaction curves. Owing to the heterogeneous distribution 

of polymer between nanoparticles, a wide distribution of bridge thicknesses is expected, 

and above the threshold pressures polymer bridges still influence compaction.  Actually, 

the compaction curves are observed to tend toward a limit curve at much larger pressure 

values (close to 100MPa), which is indicative of a compaction driven by friction only at 

that stage. 

In summary, we suggest the following picture: During drying, the binder may 

concentrate at two scales, forming layers at the surface of granules and capillary bridges 

between neighbouring nanoparticles. The segregated layer only forms for a non-

adsorbing binder, whereas the capillary bridges form even in the case of a non-

adsorbing polymer owing to solvent trapping during drying. During granule 

compaction, the segregated layer contribution to pressure is fully negligible. The voids 

at the scale of the granules are only maintained because of the binder forming bridges 

between nanoparticles that significantly oppose compaction. However, when the 

pressure is increased, the voids begin to disappear because the bridges deform 

significantly.  This corresponds also to the pressure at which the bridges collapse and 

solid friction starts opposing compaction. Last, the threshold pressure only weakly 

depends on the binder volume fraction. As a result, compaction only weakly depends on 

the nature of the binder and its volume fraction. The onset of compaction regime is just 
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set by the collapse of the inter-particle bridges. Compaction is driven by a coexistence 

between the increasing number of solid/solid friction in between particles, and the 

decreasing number of remaining binder bridges. 

4. Conclusion 

In conclusion, we have investigated the role of the segregated binder layer on 

compaction behaviour of spray dried zirconia granules. We have used a dispersant to 

tune the formation of the layer for the same (Acrylic latex) binder. We demonstrate 

segregated layers have no significant influence on compaction, which is fully explained 

by a model showing the layers deform during the early stages of compaction. In 

contrast, the compaction curves depend on the mechanical properties of the binder 

bridges between nanoparticles. We explain that result by demonstrating compaction is 

driven by compression of the binder bridges between nanoparticles, that may collapse. 

This collapse results in particles/particles solid friction, and we provide an analytical 

expression for the resulting macroscopic pressures of the onset of friction, that are in 

agreement with our observations. Our analysis opens the way for a better understanding 

of the influence of the nature of the binder on compaction of spray-dried granules, and 

in particular on the relevant mechanical properties of the binder. In addition, it shows 

the optimal distribution of the binder should be determined by considering other steps of 

ceramic fabrication process than cold compaction. 

Acknowledgements: The study was funded by ANRT and Saint-Gobain Research 

Provence. The authors thank Hélène Montes for fruitful discussions on the mechanics of 

polymeric materials. 
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Appendix A  

Mechanics of the segregated layer around granules 

We aim at providing estimates of the contribution of an elastic shell on granule 

compression. In order to isolate the contribution of the shell, we first assume that there 

is no cohesion between nano-particles. That rough approximation allowing estimates of 

the contribution of the shell mechanics on the compaction. In that case, as usually done 

in granular matter we assume that the stress is isotropic. We estimate the elastic energy 

corresponding to the deformation of the shells under compaction, which transforms the 

granule from a spherical shape to some polyhedral one as schematized in figure A1.  

We will show that the shell contribution is fully negligible, as a result and for the sake 

of simplicity, we provide a rough estimate of the shell contribution to. In the first stage 

of compression, due to the packing of the granules, the parts or the granules surfaces 

that are around the initial contact points flatten, as depicted in figure A.2. The granules 

progressively flatten against their neighbours at the middle of the faces of the polyhedra. 

As pressure increases, these faces tend towards the ones of the final polyhedra. The last 

stage of compression involves two mechanisms, namely folding at the edges and folding 

at the vertices.  

Let us first provide estimates of the contribution of the flattening of the granules one 

against the others. The elastic energy of the shell increases while granules flatten on the 

face of the polyhedra, due to the change of curvature of the shell.   

 

First we estimate the volume of the void. The volume of a conical part (with an  angle 

) of a truncated sphere  of radius R𝑔, with a truncation of h with respect to the apex) is: 
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V𝑡𝑟 =
1

3
𝜋(−3ℎ2R𝑔 + 2R𝑔

3 − 2R𝑔
3Cos(𝛽)) (A1) 

When the granules are compressed, an amount of matter is displaced from the 

truncation. As a result the sphere increases its radius, by a quantity  δ𝑡𝑟 =
ℎ2

2Rg(Cos(𝛽)−1)
, 

which is of the second order in h and that will be neglected in the following. 

The void is just the difference between the pyramid with a height of Rg-h and the 

sphere, on the considered cone. Its values is, up to the first order in h, is given by: 

𝑉 =  
1

3
R𝑔

3(2𝜋(Cos(𝛽) − 1) + 𝜋Tan(𝛽)2) − 𝜋R𝑔
2Tan(𝛽)2ℎ (A2) 

Therefore:  

 
𝜕𝑉

𝜕ℎ
= −𝜋R𝑔

2 tan(𝛽)2  (A3) 

We have now to provide an estimate the elastic energy induced by the flattening of the 

spherical shell. It combines bending and dilation, but bending is negligible compared to 

dilation [11]. However, the dilation is a compromise between radial and orthoradial 

deformation which are expected to be of the same orders of magnitude. Our aim here is 

not to solve exactly that very difficult problem but rather to show that the shell 

contribution to the pressure can be neglected. We will thus overestimate the elastic 

energy, by a factor about 2, by assuming the orthoradial deformation is zero. To that 

extent, we consider the following deformation, which clearly overestimate the energy 

by assuming that the orthoradial stress remains zero. A circle of matter is initially 

located on the sphere and centred on the cone axis, has an initial radius R𝑔 sin 𝜑 where 

𝜑 is the polar angle indicated on figure A.2. It is displaced to the flat surface keeping a 
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constant radius, its centre remaining on the cone axis. The radial deformation is just 

simply given by (𝑐𝑜𝑠(𝜑) − 1). The energy is therefore given by: 

𝑈𝐹 =
𝐸𝑒

2
∫ (𝑐𝑜𝑠(𝜑) − 1)22𝜋𝑅𝑔

2ω

0
𝑑𝜑 (A4) 

The integration starts from the apex - 𝜑 = 0 to an angle 𝜑 = 𝜔. This last angle is given 

by the the value at which the sphere of radius R𝑔 intersects the face, at z= Rg-h. This 

writes : cos(𝜔) = 1 −
ℎ

𝑅𝑔
. After integration, up to the lowest order in h , we get :  

 

𝑈𝐹 =
√2Ee𝜋ℎ5 2⁄

5R𝑔
3 2⁄   (A5) 

To obtain the pressure, we use the classical relation 𝑃 =
−𝜕𝑈𝐹

𝜕𝑉𝑡𝑟
. With /6, it yields: 

 𝑃 =
18√2Eeℎ3 2⁄

Rg5 2⁄    (A6) 

This pressure contribution of the face varies from zero to about 25.5Ee/Rg (for h varying 

from zero to Rg), and we will see above that this contribution is small when compared to 

the one of the vertices and the edges. 

When the flattening of the shells becomes important, the mechanical energy 

concentrates into the folding at the edges and the curvatures near the vertices of the 

polyhedra. Estimates of the pressure must therefore be given in these two situations. 

We assume in the following that contributions of the folding at edges and vertices are 

independent, they have their own voids and folding energy. The pressure is estimated as 

the derivative of the energy versus the voids density for each situation. We will see at 
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the end that the flattening of the granules at the faces is negligible as compared to the 

folding at the edges and the vertices. We first consider the edges. 

During the final stage of compression, around each edge, the surface withdraws from 

the polyhedra. This defines the voids regions near the edges and the vertices. For the 

sake of simplicity, we assume that the edge lengths are constant, their values being 

nearly equal to Rg and that there are NE edges per granule. We also assume that the 

edges are symmetrically shared between three adjacent granules. A section 

perpendicular to the edge is shown in fig. A.3.  

The area of the void region, associated to one granule,  in a plane perpendicular to the 

edge is (√3/3 − 𝜋 6⁄ )𝑙𝐸
2 . The volume of the void domain along the edges, per granule, 

is then about  𝑉𝑒 ≃ 0.054𝑁𝐸𝑅𝑔𝑙𝐸
2 , where NE is the number of edges per granules, and 

taking Rg for the length of the edges. Using the classical theory of shells [12], one can 

show that for this bending mode, the shell of thickness e and of modulus E,  has an 

energy per surface unit given by 𝐸𝑒3
(𝑙𝐸−𝑅𝑔)

2

24𝑙𝐸
2𝑅𝑔

2. In the limit of 𝑙𝐸 small compared to Rg, it 

reduces to 
𝐸𝑒3

24𝑙𝐸
2. Per granule, the contribution has thus to be multiplied by the length of 

the arc, 
𝜋

3
𝑙𝐸 and by the total length of the edges of the granule, NE Rg. This leads to a 

total energy, per granule for the folding at the vertices given by: 

𝑈𝑒 ≃
𝜋

72
𝑁𝐸𝐸

𝑒3𝑅𝑔

𝑙𝐸
  (A7) 

The contribution to the pressure can now be deduced. It is given by the derivative of the 

energy with respect to the volume. Note that the pressure is independent of the number 

of edges and writes 
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𝑃𝑒 =
−𝜕𝑈𝑒

𝜕𝑙𝐸

𝜕𝑙𝐸

𝜕𝑉𝑒
   (A8) 

Using the above equations, one gets  

𝑃𝑒 ≈ 0.41 𝐸 (
𝑒

𝑙𝐸
)
3
  (A9) 

We can now writes the pressure as a function of the void – at edges – volume fraction   

𝜑𝑒 ≃ 0.053 𝑁𝑉𝑅𝑔𝑙𝐸
2/(

4

3
)𝜋𝑅𝑝

3, for the contribution of the edges: 

𝑃𝑒 ≈ 0.097 𝐸
𝑒3

𝜑𝑒
3/2𝑅𝑔

3  (A10) 

We can now consider the case of plastic shell. Let us here assume that the yield stress is 

reached within the curved shell. The deformation remains elastic near the middle of the 

shell, between –eY and + eY  , and writes thus 
𝑧

𝑙𝐸
 between – eY and + eY. Outside this 

domain, the deformation is plastic and takes the values of ±Y on respectively outer and 

inner parts of the shell. The value of eY is given by 𝑒𝑌 = 𝜀𝑌. 𝑙𝐸. The energy writes : 

 𝜀𝑌
2(𝑒 −

2

3
𝜀𝑌. 𝑙𝐸). This yields for the energy per granules to  𝜀𝑌

2(𝑒 −
2

3
𝜀𝑌. 𝑙𝐸)𝑁𝑉𝑅𝑔

𝜋

3
𝑙𝐸. 

This energy is an increasing function of 𝑙𝐸 when  𝑙𝐸 is smaller than 
3e

4εY
. This leads to 

negative pressure, or an instable condition and 𝑙𝐸  tends towards zero. Thus when the 

yield stress is reached in the shell, it spontaneously folds into the vertex wedge.  

The folding at the vertices is more delicate to estimate. As explained above, the dilation 

is a compromise between radial and orthoradial deformation. As done for flattening, we 

assume a zero orthoradial deformation. To account for the deformation of the shell near 

the vertices, we assume that the vertices can be replaced by a right circular cone of 

angle he spherical surface of the shell is tangent to the cone at the location 
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where the cone and the granule are in contact. The shell is assumed to be spherical with 

its initial curvature close to the apex and conical on the other side of the contact line. 

Let us consider the following deformation, that clearly overestimate the energy by 

assuming that the orthoradial stress remains zero. A circle of matter is initially located 

on the sphere and centred on the cone axis, has an initial radius Rg sin 𝜑 where 𝜑 is the 

polar angle indicated on figure A4. It is displaced to the cone surface, with a constant 

radius, its center being kept on the cone axis. This deformation gives an upper bound for 

the actual elastic energy of the deformation.  

The elastic energy is related to the extension of the shell along the cone direction. More 

precisely if two circles are distant of Rgd, before deformation, their distance will 

become, after deformation:  

𝑅𝑔
𝑐𝑜𝑠(𝜑)

𝑠𝑖𝑛(𝛼)
𝑑𝜑   (A11) 

The shell is assumed to be elongated only in the direction of the cone axis, and its 

elongation will be: 

𝜀 =
𝑐𝑜𝑠(𝜑)

𝑠𝑖𝑛(𝛼)
− 1   (A12) 

Note that the maximum of deformation is reach at the vertices and is
1

𝑠𝑖𝑛(𝛼)
− 1 . Taking 

this maximum strain is about 0.15, just above the typical value of the yield strain 

of glassy or semi-crystalline polymer, 0.05. In this case of yielding polymer, one must 

just replace 
𝑐𝑜𝑠(𝜑)

𝑠𝑖𝑛(𝛼)
− 1 by the yield strain in the following formulas to have a good order 

of magnitude. Thus the elastic energy required to push the elastic shell against the cone 

is: 
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𝑈𝑏 =
𝐸𝑒

2
∫ (

𝑐𝑜𝑠(𝜑)

𝑠𝑖𝑛(𝛼)
− 1)

2

2𝜋𝑅𝑔
2𝜋 2⁄ −𝛼

𝜓
𝑑𝜑  (A13) 

The distance at which the shell comes away from a face to the vertex lV, requires that 

the integration boundary is set by 𝑠𝑖𝑛𝜓 ≃
𝑙𝑉

2𝑅𝑔
. 

The void volume can be estimated as the difference between the one of the portion of 

the cone and that of the spherical cap (see figure A.4). The volume of the cone writes, in 

between the contact line:  

𝑉𝑐𝑜𝑛𝑒 =
𝑙𝑉
3𝜋

3
.  𝑠𝑖𝑛2𝛼. 𝑐𝑜𝑠𝛼  (A14) 

 

 

The one of the truncation of the granule writes: 

𝑉𝑐𝑎𝑙 = 𝜋𝑅𝑔
3 (1 − 𝑐𝑜𝑠𝛽 +

𝑐𝑜𝑠3𝛽−1

3
)  (A15) 

We have also in the triangle AOC the geometrical relation: 

𝑅𝑔

𝑠𝑖𝑛𝛼
=

𝑙𝑉

𝑠𝑖𝑛𝛽
   (A16) 

Assuming that 𝑙𝑉 is smaller than Rg, we obtain the void volume : 

 𝑉𝑐𝑜𝑛𝑒 − 𝑉𝑐𝑎𝑙 = 𝜋 cos 𝛼 sin
3 𝛼 𝑙𝑉

3
 

For 𝛼 = 𝜋/3, this writes 𝑉𝑐𝑜𝑛𝑒 − 𝑉𝑐𝑎𝑙 = 1.02 𝑙𝑉
3
 

Using the relation between pressure, the energy and  the volume and lV  allows to 

estimate the pressure 𝑃𝑏 =
−𝜕𝑈𝑏

𝜕𝑉
. It yields: 
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𝑃𝑏 ≅ 4𝐸
𝑒𝑅𝑔

𝑙𝑉
2 𝑡𝑎𝑛(𝛼) (

1

𝑠𝑖𝑛(𝛼)
− 1)

2
  (A17) 

The volume fraction of voids is: 

 𝜑𝑉 ≃
1.02 𝑙𝑉

3𝑁𝑉
4

3
𝜋𝑅𝑔

3    (A18) 

 

Eliminating lV between the two previous relation leads to the relation between the vertex 

contribution of pressure. With NV=20 and /3, one gets: 

𝑃𝑏 ≅ 𝐸
0.48 e

𝜑𝑉
2 3⁄ 𝑅𝑔

   (A19) 

In the case of yielding polymer, the relation can be obtained just replacing 

(
1

𝑠𝑖𝑛(𝛼)
− 1)

2
by 𝜀𝑌

2: 

𝑃𝑏 ≅ 𝐸
20 e 𝜀𝑌

2

𝜑𝑉
2 3⁄ 𝑅𝑔

  (A20) 

 

Appendix B 

Mechanics of the binder bridges 

The role of elastic bridges in granular materials has been investigated in [13]. The 

macroscopic elastic modulus was observed to be about ten times the one of the elastic 

bridges. This should have important consequences on the elastic recovery. The stress 

stored in the elastic bridges during compression, after load cessation, leads to a 

recovery strain of about one tenth of /E. The observed recovery above 10 MPa is about 

R=4%. For the acrylic binder, it corresponds to a stress stored in the elastic bridges of 
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the order of 10𝐸𝜀𝑟 = 0.4𝑀𝑃𝑎. AS a result, the elastic stress stored in the polymer 

bridges between nanoparticles has a negligible contribution to the macroscopic strain. 

Most of the strain is thus sustained by the granular network. We will now provide 

estimates of the thickness of the gap between neighbouring particles under stress. 

In a first stage, we consider two neighbouring nanoparticles of radius Rp. The distance 

between the particle surfaces is h0. The distance between the two particles surfaces 

depends thus on the distance r between their common axis – as shown in figure B1. This 

distance is given by, at the lowest order in r/Rp: 

ℎ(𝑟) = ℎ0 +
𝑟2

𝑅𝑝
     (B.1) 

 

We denote as a the radius of the binder bridge between the particles. The volume of 

binder v in a bridge is thus:  

𝜈 =  ∫ ℎ(𝑟)2𝜋𝑟𝑑𝑟
𝑎

0
= ℎ0𝜋𝑎

2 +
𝜋𝑎4

2𝑅𝑝
  (B.2) 

It is convenient to write the relation between the volume fraction of binders involved 

in the capillary bridges and a. Assuming Z half-capillary bridges by particle, and a 

volume fraction of solid particles of fC , we have the relation 𝜈 = 8𝜋𝑅𝑝
3𝜑/3𝑍𝑓𝑐. 

Assuming h0 <<Rp, it is easily inferred from (B.2) that: 

𝑎 = 2𝑅𝑝 ((
𝜑

3𝑍𝑓𝑐
)
1/4
+ 𝑂 (

ℎ0

𝑅𝑝
))   (B.3) 

The stiffness of a pair of particles, submitted to a displacement  parallel to the axis of 

symmetry in the absence of wall slipping can be estimated. We assume that the binder is 
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incompressible, and we use a lubrication approximation as usually performed in thin 

films hydrodynamics. We make the hypothesis that the distance between the two 

particles decreases from h0 to h0-In the frame of a lubrication approximation, the 

displacement profile between the two particles is parabolic. In consequence, the radial 

displacement has the following shape: 

𝑢𝑟 = 𝐴𝑧(ℎ − 𝑧)    (B.4) 

Where A is a function of r only. This profile assumes that there is no slip at each of the 

binder-particles interface. The incompressibility requires that, for each cylinder of 

radius r centred around the axis of symmetry, the decrease of volume due to the 

displacement  is exactly compensated by the volume of binder that goes out of the 

cylinder. This writes: 

2𝜋𝑟 ∫ 𝑢𝑟𝑑𝑧
ℎ

0
+ 𝜋𝑟2𝛿 = 0   (B.5) 

This determines A and gives A=-3rh3. 

If the binder is elastic, the energy of a compressed bridge is given by: 

𝑊𝑒𝑙 =
𝐺

2
∫ 2𝜋𝑟𝑑𝑟
𝑎

0
∫ (

𝜕𝑢𝑟

𝜕𝑧
)
2ℎ(𝑟)

0
𝑑𝑧   (B.6) 

Which yields, using eq. (B.4) and (B.3): 

 𝑊𝑒𝑙 =
3𝐺𝜋𝑅𝑝

2δ2

4h0
(1 + 𝑂 (

2√3ℎ0𝑍𝑓𝑐

𝑅𝑝𝜑
1/2 ))   (B.7) 

which at the lowest order in h0 is independent of the volume fraction, provided 𝜑 >

√
2√3ℎ0𝑍𝑓𝑐

𝑅𝑝
≈ 6. 10−3using the same parameters than below. So apart for extremely low 

volume factions of binder, the force of the sandwich particle/binder bridge/particule is 
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equal to : 
3𝐺𝜋𝑅𝑝

2δ

2h0
, and thus a relation between the macroscopic pressure and the gap is 

given by : 

ℎ = ℎ0 (1 −
2𝑃

3𝐺
)   (B.8) 

Note that the maximum of deformation is about √𝑅𝑝 ℎ0⁄ . This deformation can easily 

be overcome for glassy or semi-crytalline polymer for which the yield strain is about 

5%.  The previous equation is valid as long as the volume fraction is large enough as 

can be seen in eq. (B.7). In that case, local mechanical equilibrium yields the relation:  

−
𝜕𝑃

𝜕𝑟
+
𝜕𝜎𝑟𝑧

𝜕𝑧
= 0   (B.9) 

Eq. (B.9) provides the magnitude of the pressure gradient.  

𝜕𝑃

𝜕𝑟
≈ −

𝜎𝑦

ℎ
   (B.10) 

The pressure is thus the integral of the previous expression: 

𝑃(𝑟) = ∫
𝜎𝑦

ℎ0+
𝑟′2

𝑅𝑝

𝑑𝑟′
𝑎

𝑟
   (B.11) 

Which gives after integration: 

𝑃(𝑟) =

𝑅𝑝𝜎𝑦

(

 Arctan(
𝑎

√ℎ0𝑅𝑝

)−Arctan(
𝑟

√ℎ0𝑅𝑝

)

)

 

√ℎ0𝑅𝑝
  (B.12) 

As a result, the force between the particles, which corresponds to the integral of the 

pressure over the bridge section is:  

𝐹 = 𝜋𝑅𝑝𝑎𝜎𝑦(1 −
√ℎ0𝑅𝑝

𝑎
Arctan (

𝑎

√ℎ0𝑅𝑝
))   (B.13) 
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Which corresponds to a macroscopic pressure of F/RP
2.  

In consequence, the relation between the pressure and the bridge height yields: 

𝑃 =
𝑎

𝑅𝑝
𝜎𝑦𝐽 (

𝑎

√ℎ0𝑅𝑝
)  (B.14) 

We note J(x)=1-Arctan(x)/x. The series expansion of J is 𝐽(𝑥) =
𝑥2

3
+ 𝑂(𝑥4) and J(x) 

tends towards 1 for x going to infinity. We can replace the value of the bridge radius by 

eq. (B.3) and thus obtain the relation between the macroscopic pressure and the 

thickness of the binder bridge at the onset of plasticity: 

𝑃 = 𝜎𝑦
2

3
(
𝜑

3𝑍𝑓𝑐
)
1/4
𝐽 ((

𝜑

3𝑍𝑓𝑐
)
1/4

√
𝑅𝑝

ℎ0
)  (B.15) 

In order to provide a numerical estimate of the pressure at the onset of friction, we use 

the following parameters: 

Z=6, fc=0.6, =3.10-2, Rp=2.107m, h0=10-10m.  
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Figures 

Fig. 1: Tensile 

stress as a function of strain measured with the two binders. The slope change in the 

curve for PVA corresponds to the rupture of the sample. The strain rate was 0.18 s-1 for 

acrylic latex and 0.36 s-1  for PVA. 
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Fig. 2: Quantity of polymer adsorbed on Zirconia as a function of the initial polymer 

concentration for acrylic latex (red/light markers) and PVA (blue/dark markers). 

Adsorption was measured in two different acrylic latex samples: a dispersant-free 

(circles) and a sample with  dispersant (squares). The dotted line indicates full polymer 

adsorption. 

 

Fig. 3: Optical microscopy image of the fractured surface of a green body after thermal 

treatment at 300°C for 1h. The spray dried granules were obtained with a Zirconia 

suspension containing PVA (3.7 wt% for the dry sample) and dispersant to inhibit 
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polymer adsorption on Zirconia. The black parts correspond to the polymer layers 

degraded by thermal treatment. 

 

Fig. 4: Compaction curves for dispersant free samples (full lines) and samples 

containing dispersant (dashed lines) in order to prevent binder (Acrylic latex (red) and 

PVA (blue)) adsorption and promote the formation of a segregated layer. In all cases, 

the binder content was 2% wt. 
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Fig. 5: Void volume fraction as a function of compaction pressure for dispersant-free 

samples with Acrylic latex (full red line) and PVA (full blue line). The data are the 

same as in Fig. 4. Additional data corresponds to the computed void volume fraction at 

vertices filled by the segregated layers of Acrylic latex (red dotted line on the horizontal 

axis) and PVA (blue dotted line) respectively computed using Eq. (A19) and Eq. (A20) 

of Appendix A. The dashed vertical lines show the pressure values at which friction 

between nanoparticles is expected to be at stake respectively in samples with Acrylic 

latex and PVA. 
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Fig 6: Schematic view of the packing of granules considered in the model in the case of 

a non-adsorbing polymers. The granules of radius Rg are themselves a packing of 

nanoparticles of radius Rp. The binder is distributed in a shell of thickness e and within 

the granules, forming bridges between nanoparticles. The height and radius of the 

bridges are respectively denoted as h0 and a. 
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Fig. 7: Yielding pressure for plastic deformation of a polymer bridge between 

nanoparticles as a function of the thickness of the bridge following eq. (2) and with 

parameters corresponding to the sample with PVAS as binder. 
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Fig. A.1: The granules under compression progressively transforms into polyhedra. At 

the end of the process, the voids are mostly on the vertices and on the edges of the 

polyhedra. 
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Fig. A.2. Geometry of one face generated by the flattening of the shell one against its 

neighbours. 

 

Fig. A3: Shells arrangement at edges. The red part corresponds to the void associated 

with the granule at the bottom. 

 

Fig. A.4: Sketch of the granule at a vertex.  

 

Fig. B1: Scheme of a binder bridge between two nanoparticles. 
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