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Abstract 22 

Indian Summer Monsoon (ISM) rainfall and El Niño-Southern Oscillation (ENSO) exhibit an inverse 23 

relationship during boreal summer, which is one of the roots of ISM interannual variability and its 24 

seasonal predictability. Here we document how current climate and seasonal prediction models 25 

simulate the timing and amplitude of this ISM-ENSO teleconnection. Many Coupled General 26 

Circulation Models (CGCMs) do simulate a simultaneous inverse relationship between ENSO and 27 

ISM, though with a large spread. However, most of them show significant negative correlations before 28 

ISM, which are at odd with observations. Consistent with this systematic error, simulated Niño-3.4 29 

Sea Surface Temperature (SST) variability has erroneous high amplitude during boreal spring and 30 

ISM rainfall variability is also too strong during the first part of ISM. 31 

The role of the Indian Ocean (IO) in modulating the ISM-ENSO relationships is further investigated 32 

using dedicated experiments with the SINTEX-F2 CGCM. Decoupled tropical Pacific and IO 33 

experiments are conducted to assess the direct relationship between ISM and IO SSTs on one hand, 34 

and the specific role of IO feedback on ENSO on the other hand. The direct effect of IO SSTs on ISM 35 

is weak and insignificant at the interannual time scale in the Pacific decoupled experiment. On the 36 

other hand, IO decoupled experiments demonstrate that El Niño shifts rapidly to La Niña when ocean-37 

atmosphere coupling is active in the whole IO or only in its western part. This IO negative feedback is 38 

mostly active during the decaying phase of El Niño, which is accompanied by a basin-wide warming 39 

in the IO, and significantly modulates the length of ENSO events in our simulations. 40 

This IO feedback operates through a modulation of the Walker circulation over the IO, which 41 

strengthens and shifts eastward an anomalous anticyclone centered on the Philippine Sea and 42 

associated easterly wind anomalies in the equatorial western Pacific during boreal winter. In turn, 43 

these atmospheric anomalies lead to a fast ENSO turnabout via oceanic adjustement processes 44 

mediated by eastward propagating upwelling Kelvin waves. An experiment in which only the 45 

SouthEast Indian Ocean (SEIO) is decoupled, demonstrates that the equatorial SST gradient in the IO 46 

during boreal winter plays a fundamental role in the efficiency of IO feedback. In this experiment, 47 

simulated ISM-ENSO lead-lag correlations match closely the observations. This success is associated 48 

with removal of erroneous SEIO SST variability during boreal winter in the SEIO decoupled 49 

experiment. Finally, it is illustrated that most CMIP5 CGCMs exhibit similar SST errors in the SEIO 50 

during boreal winter in addition to an exagerated SEIO SST variability during boreal fall. 51 

Keywords: Indian Summer Monsoon; El Niño-Southern Oscillation; Indian Ocean; ocean-52 

atmosphere interactions; coupled climate model. 53 

54 
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1. Introduction 55 

The climate of South Asia is dominated by the monsoon, which returns with remarkable 56 

regularity in each summer and provides the rainfall needed to sustain over 60% of the world’s 57 

population. The Indian subcontinent is thus strongly dependent on the timing and amount of 58 

precipitation falling during the monsoon season (from June through September, JJAS 59 

hereafter) and is one of the most vulnerable regions of the world as far as water resources is 60 

concerned. Predicting and projecting (for the next century) the Indian Summer Monsoon 61 

(ISM) rainfall variability are, thus, both a scientific challenge and a key-societal need. 62 

On inter-annual time scales, the ISM rainfall exhibits the multiyear (3-7 years) El-Niño-63 

Southern-Oscillation (ENSO) frequency (Mooley and Parthasarathy 1983; Webster et al. 64 

1998; Lau and Wang 2006). ENSO is the most dominant form of ocean-atmosphere coupled 65 

variability on interannual time scales and affects climate worldwide through atmospheric and 66 

oceanic teleconnections (e.g., Tourre and White 1995; Alexander et al. 2002; Clarke 2008; 67 

Wang 2019). The effect of ENSO on the ISM has been intensively studied for decades 68 

(Walker 1924; Sikka 1980; Keshavamurthy 1982; Webster et al. 1998; Lau and Nath 2000, 69 

2012; Gadgil et al. 2004; Cherchi et al. 2007; Pillai and Anamalai 2012). During El Niños, the 70 

Walker circulation shifts eastward, inducing subsidence and dry conditions in the Indian 71 

sector and vice-versa during La Niñas (Walker 1924; Sikka 1980; Rasmusson and Carpenter 72 

1983; Webster et al. 1998; Lau and and Nath 2000, 2012). It is therefore extremely important 73 

to examine if the ENSO-ISM relationships are well simulated in state-of-the art climate and 74 

seasonal forecasting models (Annamalai et al. 2007; Terray et al. 2012; Sperber et al. 2013; 75 

Jourdain et al. 2013; Sabeerali et al. 2019; Krishna et al. 2019). 76 

Though the probability of occurrence of a weak (strong) ISM during an El Niño (La Niña) 77 

is large, still ENSO can explain only about 35% the interannual variance of ISM rainfall 78 

(Krishna Kumar et al. 2006). Moreover, the ISM-ENSO relationship has considerably 79 

weakened during some periods (Torrence and Webster 1999), so that it is important to look 80 

for other sources of ISM predictability. In addition to ENSO, many studies have pointed out 81 

significant connections between ISM and the Indian Ocean (IO) Sea Surface Temperatures 82 

(SST) anomalies (Rao and Goswami 1988; Ashok et al. 2001, 2004; Gadgil et al. 2004, 2005, 83 

2007; Krishnan et al. 2003; Terray et al. 2003, 2007; Cherchi et al. 2007; Park et al. 2010; 84 

Boschat et al. 2011; Lau and Nath 2012; Cherchi and Navarra 2013; Shukla and Huang 2016). 85 

In particular, it has been suggested that the Indian Ocean Dipole (IOD; Saji et al. 1999; 86 

Webster et al. 1999) interacts with both ENSO and ISM (Ashok et al. 2001, 2004; Drbohlav 87 
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et al. 2007; Loschnigg et al. 2003; Schott et al. 2009; Luo et al. 2010; Izumo et al. 2010; 88 

Wang 2019). Positive IOD events are associated with cool SST and shallow thermocline in 89 

the eastern Indian Ocean (IO), and warm SST and deep thermocline in its western part (Li et 90 

al. 2003; Gualdi et al. 2003; Spencer et al. 2005; Fischer et al. 2005; Schott et al. 2009). The 91 

way IOD can influence ISM remains controversial. Some authors suggest a direct influence of 92 

positive IOD events through moisture transport over the western IO or modifications of the 93 

local Hadley cell with increased ascendance over India, both factors enhancing ISM rainfall 94 

(Ashok et al. 2001, 2004; Gadgil et al. 2004; Behera et al. 2005; Ashok and Saji 2007). It has 95 

also been suggested that IOD counteracts the influence of ENSO on ISM (Ashok et al. 2001, 96 

2004; Ashok and Saji 2007; Ummenhofer et al. 2011; Krishnaswamy et al. 2015). 97 

More recently, more complex interactions between ISM, IOD and ENSO have been 98 

evidenced, adding even more complexity to the emerging picture. It has been suggested that a 99 

strong ISM can favor a negative IOD event by producing westerly wind anomalies over the 100 

equator IO during boreal fall and that ENSO, ISM and IOD are strongly inter-related 101 

components of the Tropospheric Biennial Oscillation (TBO) in the Tropics (Terray 1995; 102 

Meehl 1997; Meehl and Arblaster 2002, 2003; Loschnigg et al. 2003; Terray et al. 2003, 103 

2005b; Drbohlav et al. 2007; Webster and Hoyos 2010; Li and Hsu 2017). IODs have also 104 

been suggested as a potential trigger of ENSO events (Luo et al. 2010; Izumo et al. 2010; 105 

Zhou et al. 2015; Jourdain et al. 2016; Wieners et al. 2017ab; Cai et al. 2019). It has been 106 

further discovered that the the Indian Ocean Basin (IOB) mode, associated with ENSO-107 

related subsidence during the decaying phase of El Niños (e.g., Klein et al. 1999; Alexander 108 

et al. 2002; Xie et al. 2009, 2016; Schott et al. 2009; Wang 2019), provides an important 109 

forcing on ISM variability (Yang et al. 2007; 2010; Park et al. 2010; Boschat et al. 2011, 110 

2012; Chowdary et al. 2017). 111 

Because of the interactive nature of the tropical Indo-Pacific ocean-atmosphere system and 112 

the near-global patterns of ISM teleconnections summarized above, one of the best tools to 113 

simulate and predict ISM variability is a global Coupled General Circulation Model (CGCM; 114 

Wu and Kirtman 2005; Wang et al. 2005; Zhu and Shukla 2013). In order to provide reliable 115 

seasonal predictions and climate projections of ISM rainfall, it is nevertheless essential that 116 

CGCMs produce a reasonable simulation of the mean summer monsoon circulation and 117 

rainfall distribution, as well as its variability at different time scales. Unfortunately, this is still 118 

an area under rapid development, and CGCMs are still at a relatively early stage (Shukla et 119 

al., 2009). Most current CGCMS exhibit deficiencies in simulating ISM, ENSO and the IO 120 

variability (Bollasina and Ming 2013; Levine et al. 2013; Prodhomme et al. 2014, 2015; Li 121 
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and Xie 2012, 2014; Li et al. 2015, 2017ac; Ham and Kug 2014; Bellenger et al. 2014; 122 

Anamalai et al. 2017; Terray et al. 2018). So far, we have only a poor understanding of the 123 

relative roles of local ocean-atmosphere coupling (e.g. IO) and ENSO in the occurrence of 124 

extreme ISMs both in observations and coupled simulations (Gadgil et al. 2005; Saha et al. 125 

2016; Krishna et al. 2019). In particular, the way the IOD and IOB modes influence ISM and 126 

interact with ENSO remains unclear (Wu and Kirtman 2004ab; Achuthavarier et al. 2012; Li 127 

et al. 2015, Annamalai et al. 2017), and may limit drastically ISM seasonal predictability and 128 

the accuracy of ISM projections (Sabeerali et al. 2019; Li et al. 2017ac). 129 

Taking into account the large uncertainties in the sign and amplitude of the ENSO-IO-ISM 130 

relationships, we will document in this work, (i) the ability of state-of-the-art CGCMs to 131 

simulate the ENSO-ISM relationship and (ii) the possible role of the IO (e.g. the IOD and 132 

IOB modes) in modulating this relationship. More precisely, we will document errors in the 133 

simulation of the ENSO-ISM relationship in CMIP5 and some seasonal forecasting CGCMs 134 

and analyze a set of decoupling experiments performed with a global CGCM, the SINTEX-F2 135 

model (Masson et al. 2012), to diagnose the possible origins of these errors. Such decoupling 136 

approach has been already successfully used to analyze the role of Indian and Atlantic oceans 137 

on ENSO (Ohba and Ueda 2007; Luo et al. 2010; Santoso et al. 2012; Ohba and Watanabe 138 

2012; Terray et al. 2016; Kajtar et al. 2017), the impacts of SST errors on ISM (Prodhomme 139 

et al. 2014, 2015), and the IOD evolution and its forcing mechanisms in the absence of ENSO 140 

(Fischer et al. 2005; Behera et al. 2005, 2006; Yang et al. 2015; Cretat et al. 2017, 2018; 141 

Stuecker et al. 2017; Wang et al. 2016, 2019). 142 

This paper is organized as follows. The coupled models, the sensitivity experiments and 143 

validation datasets used in this study are described in Section 2. In Section 3, we document 144 

the ISM-ENSO relationships in observations and the errors in simulating these relationships 145 

by current CGCMs. In Section 4, we analyze decoupling experiments performed with the 146 

SINTEX-F2 CGCM, in which tropical Pacific or IO SST variability is removed, in order to 147 

assess the “intrinsic” role of IO SSTs on ISM, ENSO and the ISM-ENSO relationship and to 148 

understand their potential roles on the errors in the simulation of the ISM-ENSO relationship. 149 

The final section summarizes the main results of the present work and discusses if and how 150 

these results apply to CMIP5 models. 151 

 152 

2. Observed datasets, coupled models and sensitivity decoupling experiments 153 

2.a Observed datasets 154 
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To study ISM variability and its teleconnection with ENSO, we have used three different 155 

observed rainfall datasets. Firstly, we considered the extensively used classical All-India-156 

Rainfall (AIR) dataset, based on quality-controlled rain-gauge data, for the period 1870-2012 157 

(Parthasarathy et al., 1994; Krishna Kumar et al. 1999; Bodai et al. 2020). The second rainfall 158 

dataset included in our analysis is a high-resolution (e.g. 0.25ᴼ x 0.25ᴼ) quality-controlled 159 

gridded (daily) rainfall dataset, for the period 1901-2013, as obtained from the Indian 160 

Meteorological Department (IMD; see Pai et al. 2015 for precise details).  Finally, we also 161 

used the Global Precipitation Climatology Project rainfall dataset (GPCP at 1ᴼ x 1ᴼ spatial 162 

resolution; Huffman et al. 2001), which combines measures of precipitation gauges and 163 

satellite data. GPCP is analysed for the 1979-2012 period. For both IMD and GPCP, the ISM 164 

Rainfall (ISMR) time series is defined as the average of rainfall anomalies for the land grid 165 

points in the region 5°N to 25°N and 70°E to 95°E. 166 

The Niño-3.4 SST (monthly average of SST anomalies in the region 5°S to 5°N and 170° 167 

to 120°W) time series is chosen for the ENSO index since in observations the strongest 168 

correlations between ISMR and tropical Pacific SSTs occur over this region (not shown). This 169 

is consistent with past studies (Krishna Kumar et al. 2006; Jourdain et al. 2013). However, 170 

this practical choice implies that our study mainly focuses on canonical ENSO events rather 171 

than on El Niño Modoki events (Ashok et al. 2007). The Niño-3.4 SST time series is 172 

estimated from the Hadley Centre Sea Ice and SST dataset (HadISST1.1; Rayner et al. 2003). 173 

But similar results (not shown) are obtained with other SST datasets such the ERSST dataset 174 

(Huang et al. 2017) or the AVHRR only daily Optimum Interpolation SST version 2 175 

(OISSTv2) dataset (Reynolds et al. 2007). 176 

2.b Climate models 177 

In order to give a complete overview of the capacity of current CGCMs to simulate the 178 

ENSO-ISM relationship, we first considered monthly mean outputs from Coupled Model 179 

Intercomparison Project Phase 5 (CMIP5) coupled models available at url: http://cmip-180 

pcmdi.llnl.gov/cmip5/data_portal.html (Taylor et al. 2012). We analyzed the twentieth 181 

century simulations of 25 CMIP5 models (see Table S1 in Supplementary Materials for list of 182 

models) and for all the models we use the first ensemble member (‘‘r1i1p1’’ from CMIP5 183 

database) from each model. We also used long free runs of two state-of-the-art global 184 

CGCMs, the CFSv2 (Saha et al. 2014) and the SINTEX-F2 (Masson et al. 2012). The lengths 185 

of these control simulations are 80 and 210 years, respectively, for the CFSv2 and SINTEX-186 

F2 CGCMs. 187 

http://cmip-pcmdi.llnl.gov/cmip5/data_portal.html
http://cmip-pcmdi.llnl.gov/cmip5/data_portal.html
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The CFSv2 is the CGCM adopted for operational seasonal forecasting in the US by the 188 

National Centers for Environmental Prediction (NCEP; Saha et al. 2014) and in India, in the 189 

framework of the Monsoon Mission project (Rao et al. 2019). Its atmospheric model, the 190 

Global Forecast System (GFS) is run at T126 spectral resolution (about 0.9° by 0.9°) with 64 191 

sigma-pressure hybrid levels. Its oceanic component has a 0.25-0.5° horizontal resolution, 40 192 

vertical levels and includes an ice model. The atmosphere and ocean exchange quantities such 193 

as heat and momentum fluxes every half an hour, with no flux adjustment. See Saha et al. 194 

(2014) for further details on the CFSv2 model. 195 

The SINTEX-F2 is used by JAMSTEC (e.g. Japan) for operational seasonal forecasting 196 

(Luo et al. 2005; Doi et al. 2016). A comprehensive description of SINTEX-F2 can be found 197 

in Masson et al. (2012). The atmospheric component is ECHAM5.3 and is run at T106 198 

spectral resolution (about 1.125° by 1.125°) with 31 hybrid sigma-pressure levels (Roeckner 199 

et al. 2003). The oceanic component is NEMO (Madec 2008), using the ORCA05 horizontal 200 

resolution (0.5°), 31 unevenly spaced vertical levels and including the LIM2 ice model 201 

(Timmermann et al. 2005). The coupling information, without any flux corrections, is 202 

exchanged every 2 h using the Ocean-Atmosphere-Sea Ice-Soil coupler (Valcke 2006). The 203 

performance of the SINTEX-F2 model in simulating the mean state and interannual 204 

variability in the Indo-Pacific areas has been assessed many times and is not repeated here 205 

(Masson et al. 2012; Terray et al. 2012, 2016, 2018; Prodhomme et al. 2014, 2015; Cretat et 206 

al. 2017, 2018). 207 

Note, finally, that the SINTEX-F2 and CFSv2 configurations used here employ fixed CO2 208 

concentrations corresponding to present day conditions. This is consistent with the use of 209 

recent observations (e.g. mostly 1979-2012) for validation of model outputs. 210 

In all simulations, we characterize the ISM by the JJAS average precipitation over India 211 

(5°-25°N and 70°-95°E, land only; ISMR index hereafter) and ENSO by the Niño-3.4 box-212 

average SST as in observations. 213 

2.c Partial decoupling experiments 214 

In addition to the 210-year control run described above (named CTRL hereafter), we 215 

perform three partial decoupling experiments (named FTPC, FTIC and FSEIC hereafter), 216 

where the model SSTs in the tropical Pacific, Indian oceans and SEIO region are, 217 

respectively, nudged to a daily SST climatology obtained from CTRL (see Table 1 for details 218 

and definition of the acronyms used to design the nudged experiments), as described in Luo et 219 

al. (2005) and Appendix. The damping constant used is -2400 W m-2 K-1,, which corresponds 220 
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to the 1-day relaxation time for temperature in a 50-m ocean layer. In these experiments there 221 

are no significant changes in SST mean state and seasonal cycle in the nudged regions, but 222 

also in the whole Tropics compared to CTRL (see Figs. 1b-d and 2), but, SST variability is 223 

suppressed in the nudged region (not shown; see Terray et al. 2016 and Cretat et al. 2017 for 224 

illustration). The FSEIC experiment is designed to assess the role of the SST SEIO 225 

variability, and by extension of the IOD (as the SEIO region almost matches the eastern pole 226 

of the traditional IOD index in observations). Furthermore, despite the SST SEIO bias is 227 

modest in the annual mean (Fig. 1a), this region is affected by severe seasonally varying SST 228 

mean and variability biases in the SINTEX model (Fig. 2; Fischer et al. 2005; Terray et al. 229 

2012; Prodhomme et al. 2014; Cretat et al. 2017). The CGCM simulates a too shallower 230 

thermocline in the eastern Indian Ocean during boreal summer and fall. The thermocline-231 

surface coupling is thus amplified in the annual cycle with deeper and cooler water easily 232 

upwelled at the surface, cooling drastically the SST mean and enhancing the SST variability 233 

in the SEIO during boreal summer and fall (Fig. 2). In addition, the SEIO SST is affected by a 234 

strong warm mean bias and also a too strong SST variability during late boreal winter in 235 

CTRL (Fig. 2). The FSEIC experiment will therefore be useful to understand the specific role 236 

of this amplified SST variability in the SEIO during these two critical seasons on the 237 

simulated ENSO, ISM and their relationships. 238 

Finally, in order to discuss the remote or local origins of these SST errors in the SEIO in 239 

Section 5, an additional partial decoupling experiment (named FTPC-obs hereafter) will be 240 

considered. This run is similar to the FTPC experiment, excepted for the use of a daily 241 

climatology computed from the OISSTv2 dataset for the 1982-2010 period (Reynolds et al. 242 

2007) in the nudging procedure (Table 1). In this FTPC-obs run, the large feedback value 243 

applied removes the SST mean biases (in CTRL) with respect to the observed SST 244 

climatology, in addition of suppressing the SST variability in the restoring tropical Pacific 245 

domain (Fig. 1e). 246 

Table 1 summarizes the specifications of the different sensitivity experiments used here 247 

and the different nudging domains are displayed in Fig.1b-d. Finally, in the analyses 248 

described in Sections 3, 4 and 5, the first 10 years of all simulations have been excluded due 249 

to the spin-up of the coupled model. 250 

 251 

3. ISM-ENSO relationships in observations and CGCMs 252 

We first document the amplitude and timing of the relationship between ENSO and ISM in 253 
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observations in order to provide a basis for a fair assessment of the performance of current 254 

CGCMs with respect to this metric in the next subsection. 255 

3.a Observed ISM-ENSO relationships 256 

In order to illustrate this relationship, we computed the lead-lag correlations between the 257 

different ISMR time series and the Niño-3.4 SST bimonthly time series in a three years 258 

window from the beginning of year -1 to the end of year +1, the year 0 referring to the year of 259 

the ISM season (Fig. 3a-b). Correlation coefficients have been estimated with and without 260 

detrending of the different rainfall and SST time series in order to assess the robustness of the 261 

results with respect to anthropogenic related trends and nonstationarity of the time series. 262 

Detrending has been performed with locally weighted regression, a non-parametric method 263 

for fitting a smoothed regression curve to data through local smoothing (Cleveland and 264 

Devlin 1988). As results are similar, we only show the results from detrended data here. 265 

Consistent with the TBO pattern, involving ENSO and ISM (Yasunari 1990; Meehl 1997; 266 

Meehl and Arblaster 2002; Loschnigg et al. 2003; Terray et al. 2003, 2005b; Webster and 267 

Hoyos 2010), two distant correlation peaks of opposite signs are noted (Fig. 3a-b). Positive 268 

correlations are evident one year before the monsoon for most ISMR indices and time 269 

periods. Theses significant positive correlations preceding ISM have largely amplified during 270 

recent decades, e.g. after the 1976/77 climate shift and have been explained by a delayed 271 

ENSO effect on the ISM, mediated by the IOB warming, which follows the strong El Niño 272 

events, such as the 1982-83 and 1997-98 events (Yang et al. 2007, 2010; Park et al. 2010; 273 

Boschat et al. 2011, 2012. The correlations switch sign around April-May (AM) and become 274 

again statistically significant only in June-July (JJ) of year 0 (Webster and Yang 1992; 275 

Webster et al. 1998). These negative correlations between Niño-3.4 SSTs and ISMR peak 276 

during boreal fall and fade away progressively after, e.g. during the peaking and decaying 277 

phases of El Niño (Fig. 3a-b). The significant negative correlation between ISMR and Niño-278 

3.4 SSTs during boreal summer of year 0 implies that warmer (cooler) SSTs over these 279 

regions will suppress (enhance) ISM rainfall consistent with the studies summarized in the 280 

introduction. This synchronous effect can be termed the “direct” ENSO effect by opposition 281 

to the “indirect” effect mediated by the IOB warming induced by ENSO (Wu et al. 2012). 282 

Fig. 3a-b also demonstrates that the synchronous correlation between ISM and ENSO  is 283 

decreasing for more recent (and shorter) time periods. Interestingly, the lead correlations 284 

between ENSO of year -1 and ISM follow an opposite evolution. The decreasing synchronous 285 

correlation has lead to the suggestion that the ISM-ENSO relationship has weakened during 286 
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recent decades for reasons which are still a matter of debate (Krishna Kumar et al. 1999, 287 

2006; Torrence and Webster 1999; Gershunov et al. 2001; Ashok et al. 2001, 2004, 2007; 288 

Kinter et al. 2002; Annamalai et al. 2007; Kucharski et al. 2007, 2008; Chen et al. 2010; 289 

Boschat et al. 2012; Li and Ting 2015; Srivastava et al. 2015; Cash et al. 2017; Yun and 290 

Timmermann 2018; Feba et al. 2019;  Bodai et al. 2020).  291 

3.b Simulated ISM-ENSO relationships 292 

We first focus on the capacity of the SINTEX-F2 and CFSv2 coupled models to simulate 293 

the ISM-ENSO relationship (Fig. 4a). The two CGCMs are able to reproduce the synchronous 294 

negative correlation between ISM and ENSO, though with varying amplitude (Fig. 4.a). 295 

However, before ISM, the two CGCMs show large discrepancies from observations with 296 

negative and significant correlations during an extended period of several months before ISM. 297 

In the CFSv2 model, the lead-lag correlations suggest that ISM is linked to ENSO before ISM 298 

rather than during and after ISM since the maximum negative correlation occurring at lag 0, 299 

e.g. JJ of year 0. Moreover, after ISM, the negative correlation quickly fades away in 300 

disagreement with observations. The SINTEX-F2 performs slightly better, but shares the 301 

same deficiency during the pre-onset period. 302 

We next examined the lead-lag correlations between the Niño-3.4 SST and ISMR in 303 

CMIP5 CGCMs (Fig. 5a). Here, the correlation coefficients are computed from the first 304 

member of each model’s ensemble of historical runs and for the period 1950-2000. ISM and 305 

its relationships to ENSO in CMIP5 models have already been investigated in many studies 306 

(Sperber et al. 2013; Terray et al. 2012); Jourdain et al. 2013; Ramu et al. 2018), but most of 307 

them focus on the synchronous relationship (e.g. during boreal summer) between the two 308 

phenomena. Here we examine the lead-lag relationships between the two phenomena in more 309 

details following the same framework as used above for observations, the SINTEX-F2 and 310 

CFv2 models, complementing the results of Jourdain et al. (2013). 311 

Many CMIP5 CGCMs are able to reproduce the synchronous negative correlation between 312 

ISM and ENSO, although in many models the amplitude of this correlation is erroneous and 313 

the diversity (e.g. spread) is large between the CGCMs (Figure 5a). However, a striking 314 

feature is that almost all of the CMIP5 CGCMs fail to capture the observed lead-lag 315 

relationships between ENSO and ISM. In particular, most CGCMs show erroneous large 316 

negative correlations before ISM, which are completely absent in observations, and the 317 

observed TBO pattern with positive correlations preceding the ISM by nearly one year is 318 

lacking in all CMIP5 CGCMs. In a similar fashion, the simulated correlations are much 319 
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weaker than observed after the boreal summer of year 0. 320 

In other words, current CGCMs show large deficiencies in recovering the observed leag-321 

lag relationships between ISM and ENSO, which is of paramount importance for seasonal 322 

forecasting (Gadgil et al. 2005) or climate projections of ISM rainfall (Li et al. 2017ac). It is 323 

therefore necessary to go a step further in the model validation to analyze more thoroughly 324 

the reasons of this deficiency in current CGCMs, which is the goal of the next sections. 325 

3.c Simulated ENSO seasonal phase-locking 326 

Though considerable improvements in the simulation of ENSO have been made during the 327 

past decades, current CGCMs still need to be improved with regard to realistically 328 

representing ENSO (Bellenger et al. 2014). As an illustration, the tendency to produce a 329 

double intertropical convergence zone in the Pacific basin, a poor representation of the SST 330 

annual cycle and mean pattern in the tropical Pacific, and a substantial underestimation of 331 

ENSO variability are recurrent biases shared by many past and present CGCMs (AchutaRao 332 

and Sperber 2002, 2006; Li and Xie 2012; 2014; Bellenger et al. 2014). Thus, a biased 333 

representation of ENSO in the tropical Pacific itself can be a primary plausible reason for an 334 

improper simulation of the ISM-ENSO relationship in current CGCMS (Jourdain et al. 2013). 335 

However, Indian and Atlantic SSTs can also matter as they have an overall damping effect on 336 

ENSO and modulate the length of the ENSO events (Dommenget et al. 2006; Terray et al. 337 

2016). 338 

The phase locking of ENSO events to the annual cycle, with a tendency to peak at the end 339 

of the calendar year, the amplitude and length of El Nino events (e.g. ENSO periodicities) are 340 

among the most distinctive characteristics of ENSO (Rasmusson and Carpenter 1983; Clarke 341 

2008; Ham and Kug 2014; Li and Hsu 2017). Obviously, the incorrect annual phase-locking 342 

of ENSO’s variability is a plausible candidate for explaining the current failure of state-of-343 

the-art CGCMs in the simulation of the ISM-ENSO lead-lag relationships, since most coupled 344 

models do simulate a boreal summer monsoon over India (Figs. 4d and 5d). In Figures 4b and 345 

5b, we show the monthly standard deviations of the Niño-3.4 SST anomalies from 346 

observations, the SINTEX-F2, CFSv2 and CMIP5 CGCMs, respectively. Observed ENSO 347 

variability typically peaks in boreal winter and diminishes in boreal spring with relatively 348 

modest variability in boreal summer and early fall (Fig. 4b), which is related to the fact that El 349 

Niño’s onset frequently occurs in boreal spring or early boreal summer (Clarke 2008). 350 

It is apparent that both the SINTEX-F2 and CFSv2 models have a preference for relatively 351 

high SST variability in the Niño-3.4 region during boreal winter, as observed (Fig. 4b). 352 
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However, the monthly Niño-3.4 SST standard deviations in these models are higher than 353 

observed during boreal spring suggesting that ENSO onset is early than observed or that 354 

ENSO decay is slower than observed in the CGCMs. This bias is consistent with the lead-lag 355 

ISM-ENSO relationships simulated in the two models, especially the unrealistic negative 356 

correlations between ISM and the Niño-3.4 SST preceding the ISM onset (Fig. 4b). This is 357 

further confirmed by a lead-lag correlation analysis of SSTs with the ISMR index in the 358 

SINTEX-F2 model (see Fig. S1a-f or Figures 3 and 5 of Boschat et al. (2012) for similar 359 

analysis on observations). Also consistent with these erroneous negative correlations, the ISM 360 

rainfall monthly standard deviations are also exaggerated at the beginning of ISM in the 361 

simulations (Fig. 4c). 362 

On the other hand, many CMIP5 models show a different seasonal Niño-3.4 SST 363 

evolution, with the peak of canonical El Niños occurring at any season (Fig. 5b; Ham and 364 

Kug 2014; Taschetto et al. 2014) and only a few models have Niño-3.4 SST variability above 365 

observations during boreal winter (Fig. 5b). This can be related to many factors, especially 366 

spatial shift of simulated SST variability over the equatorial Pacific often associated with the 367 

cold tongue bias (Collins et al. 2010; Li and Xie 2014; Swapna et al. 2015). However, most of 368 

them also produce a too large and erroneous ENSO variability during boreal spring as the 369 

SINTEX-F2 and CFSv2 models (Figs. 4b and 5b). Consistent with this deficiency and the 370 

erroneous negative correlations before ISM (Fig. 5a), the simulated ISM rainfall monthly 371 

standard deviations are again exaggerated at the beginning of ISM in most CMIP5 models 372 

(Fig. 5c). This exaggerated simulated ENSO variability during boreal spring and early 373 

summer can be due to (i) ENSO onsets occurring earlier in the CGCMs, (ii) ENSO events 374 

lasting longer with an extended maturing phase compared to observations, or both. 375 

While SST mean biases, ENSO pattern or position of peak and deficient ENSO 376 

teleconnections may also modulate ISM-ENSO relationships in CGCMs (Jourdain et al. 377 

2013), we will show in the next section that length and seasonal phase-locking of ENSO 378 

events are key-factors for a realistic simulation of the lead-lag ISM-ENSO relationships. 379 

 380 

4. Indian Ocean impacts on the ENSO-ISM relationship in the SINTEX-F2 CGCM 381 

To disentangle the role of IO SST variability in shaping the ISM-ENSO relationships, we 382 

now analyzed decoupling experiments performed with SINTEX-F2 (see Section 2c). 383 

4.a Intrinsic ISM teleconnections 384 
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We first investigate the possible “intrinsic” role of SST anomalies outside of the tropical 385 

Pacific on the ISM, as an important factor in shaping the ENSO-ISM relationship. The 386 

analysis is done with the help of the FTPC simulation, where ENSO is removed. By contrast, 387 

in the next subsection, we will investigate the possible role of IO SST anomalies on ENSO 388 

itself, as a second factor in shaping the simulated ENSO-ISM relationship with the help of the 389 

other sensitivity experiments in which the tropical IO SST variability, or parts of it, is 390 

suppressed. 391 

Figure 6.a-d displays the regressions of the JJ and August-September (AS) 850-hPa wind 392 

and rainfall fields onto the ISMR index for CTRL and FTPC. As expected, Fig. 6.a-d show 393 

enhanced rainfall over India and the neighboring oceanic regions, as well as a strengthening 394 

of both the monsoon low-level winds over the Arabian Sea and the Somali jet along the 395 

African coast. Next, ISM rainfall anomalies are very sensitive to the perturbation of the 396 

Walker circulation that is characteristic of La Niña/El Niño episodes in CTRL (Fig. 6.a-b). 397 

Positive rainfall anomalies develop over the maritime continent and neighboring ocean areas 398 

and a negative IOD like rainfall pattern emerged over the equatorial IO during AS of strong 399 

ISMs and La Niña episodes, consistent with previous works (Webster et al. 1998; Lau and 400 

Nath 2000, 2003, 2012; Cretat et al. 2017). 401 

By contrast, in FTPC, the atmospheric response associated with the strong/weak ISMs is 402 

mostly confined northward of 10°N and is characterized by an anomalous rainfall pattern 403 

opposing India and the northwest Pacific region (Fig. 6c-d; Terray et al. 2005a; Wang 2006; 404 

Gu et al. 2010; Kosaka et al. 2013; Cretat et al. 2017). Interestingly, ISMR rainfall standard 405 

deviations are only slightly reduced (at most of 0.2 mm/day, see Fig. 8c) in FTPC. This result 406 

may seem contradictory with the expectation that ENSO is the main driver for ISM 407 

interannual variability, but is consistent with the large internal variability associated with ISM 408 

and the fact that ISM is also an active player in tropical climate (Yasunari 1999; Kirtman and 409 

Shukla 2000). Further, boreal summer rainfall and wind anomalies are very weak outside this 410 

north Indo-Pacific region, especially over the equatorial IO. 411 

We now examine the extent to which SST forcing outside the tropical Pacific may explain 412 

ISM rainfall variability in the absence of ENSO. This is done through a lead-lag correlation 413 

analysis between the ISMR index and bi-monthly SST and 200-hPa velocity potential 414 

anomalies in the CTRL and FTPC experiments (Figs. S1 and 7). Correlations between ISMR 415 

and SSTs in CTRL confirm the existence of a significant statistical association between ISM, 416 

ENSO and IOD (Fig. S1a-f), as discussed in the Introduction. Some significant correlations 417 

are also seen in the extratropical Pacific and the tropical Atlantic during boreal summer and 418 
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winter (Fig. S1c-f), which are also consistent with well-known ENSO teleconnections (Wang 419 

2019). On the other hand, correlations between ISMR and SSTs are strikingly different in 420 

FTPC (Fig. 7a-f). They are weak before, during and after ISM, except for a significant 421 

cooling (warming) of the Arabian Sea (the south of the bay of Bengal) during boreal summer 422 

(Fig. 7a-f). This local response is fully consistent with a “slave ocean scenario” in which the 423 

SST is mainly controlled by evaporative cooling and local upwelling associated with the 424 

strengthening of the monsoon low-level winds and the sea-saw between ISM and the 425 

northwest Pacific monsoon discussed above (see Fig. 6c-d). Moreover, simulated ISM 426 

variability is not significantly associated with SST anomalies or modulations of the Walker 427 

cell over the equatorial IO during boreal summer and fall (Fig. 7c-e and i-k) despite the fact 428 

that IODs do exist in the absence of ENSO in FTPC (Fig. 2b; Cretat et al. 2017, 2018). These 429 

results invalidate the hypothesis that the direct impact of IOD on ISM may induce a 430 

significant modulation of the ENSO-ISM relationship in SINTEX-F2. 431 

On the other hand, the results in CTRL (Fig. S1) are fully consistent with a scenario in 432 

which ENSO, ISM and IOD are strongly inter-related components of the TBO in the Tropics 433 

(Meehl and Arblaster 2002, 2003; Drbohlav et al. 2007; Webster and Hoyos 2010) since a 434 

strong ISM is significantly correlated with La Niña and a negative IOD in CTRL (Fig. 6a-b 435 

and S1). However, the FTPC experiment demonstrates that this ENSO-ISM-IOD coupling is 436 

mainly due to the ENSO forcing on both ISM and the equatorial IO separately, and not to a 437 

direct association between ISM and the equatorial IO, at least in this CGCM. 438 

Furthermore, the 200-hPa velocity potential anomalous patterns associated with ISMR 439 

variability confirm the hypothesis that ISM is an active player for the whole tropical 440 

circulation in the absence of ENSO. The only physically consistent anomalous 200-hPa 441 

velocity potential pattern emerging in Fig. 7g-l is the strong upper-level divergence flow 442 

associated with ISM itself and the induced significant strengthening of the subtropical 443 

anticyclones over the Pacific and South Atlantic (Fig. 7i-j). Thus, the upper-level circulation 444 

anomalies during boreal summer in FTPC are dominated by an enhancement of the zonal 445 

monsoon cyclone-subtropical anticyclone circulation driven by the east-west differential 446 

heating (Rodwell and Hoskins 2001; Chen 2003). On the other hand, in CTRL, the 200-hPa 447 

velocity potential correlation pattern (Fig. S1g-l) has a more large-scale structure and is 448 

tightly and significantly linked to ENSO evolution (Fig. S1a-f), as expected (Webster et al. 449 

1998). 450 

In summary, the results of this section strongly suggest that direct (e.g. when ENSO is 451 

removed) effects of interannual SST anomalies outside of the tropical Pacific on ISM are 452 
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weak and do not play a direct role in shaping the ENSO-ISM relationship in the SINTEX-F2 453 

model. 454 

4.b Indian Ocean impacts on ENSO 455 

However, the tropical IO can also influence the ENSO-ISM relationship by directly 456 

modulating ENSO in the tropical Pacific itself. Many studies have also highlighted the strong 457 

impact of the IOB in accelerating the El Niño to La Niña transition in the tropical Pacific 458 

(Kug and Kang 2006; Dommenget et al. 2006; Ohba and Ueda 2007; Jansen et al. 2009; 459 

Okumura et al. 2011; Ohba and Watanbe 2012; Kug and Ham 2012; Santoso et al. 2012; 460 

Terray et al. 2016; Xie et al. 2009, 2016; Kajtar et al. 2017). Several authors suggested that 461 

positive IOBs generate easterly wind anomalies over the western Pacific during boreal winter 462 

and spring as an atmospheric Kelvin wave response to the local diabatic warming (Annamalai 463 

et al. 2005; Terao and Kubota 2005; Kug and Kang 2006). Watanabe and Jin (2002) also 464 

argued that a positive IOB strengthens an anomalous low-level NorthWest Pacific 465 

Anticyclone centered on the Philippine Sea (NWPA, also referred to as Philippine Sea 466 

anticyclone or western North Pacific subtropical high in the literature; see Wang et al. 2000) 467 

during the mature-decayed phase of El Niño. Collectively, these atmospheric anomalies may 468 

fasten the transition from El Niño to La Niña since the associated zonal wind stress anomalies 469 

over the western Pacific force upwelling oceanic Kelvin waves that propagates eastward 470 

along the Equator and favor the transition to the La Niña phase (Kug and Kang 2006; Ohba 471 

and Ueda 2007; Ohba and Watanbe 2012; Kug and Ham 2012; Wang 2019). Some recent 472 

studies suggest, on the other hand, that the major forcing for the NWPA during boreal winter 473 

is from the central Pacific, as rainfall anomalies and associated diabatic warming over the IO 474 

are very modest during this season and, thus, cannot trigger an atmospheric Kelvin wave 475 

intruding into the western Pacific (Chen et al. 2016; Wu et al. 2017ab; Li and Hsu 2017; Li et 476 

al. 2017b). Luo et al. (2010) and Izumo et al. (2010) also found that IOD has highly 477 

significant impacts on both ENSO variability and predictability. 478 

Our decoupling experiments allow to reinvestigate the significance of the IO feedback 479 

during boreal winter and spring in a consistent modeling framework, and may challenge the 480 

view that this IO negative feedback is weak during boreal winter (Li et al. 2017b). Moreover, 481 

what may be the impact of IO variability on the ENSO-ISM relationships despite the modest 482 

role of IOD on ISM suggested above? 483 

To answer this question, Figure 8a-b displays the Niño-3.4 SST-ISMR lead-lag 484 

correlations and the monthly Niño-3.4 SST standard deviations in the FTIC and FSEIC 485 
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experiments in which IO or SEIO SST variability is removed (see Table 1 and Section 2c). 486 

The negative Niño-3.4 SST-ISMR correlations before the ISM onset and ISMR standard 487 

deviations during (early) boreal summer are substantially amplified in FTIC, while the ISMR 488 

seasonal cycle remains the same (Fig. 8a, c-d). In other words, FTIC showed prominent 489 

negative correlations with the Niño-3.4 SSTs before rather than synchronous and after the 490 

ISM. These errors, already present in CTRL, are thus significantly amplified in FTIC. By 491 

contrast, the simulated ISM and ENSO relationships in FSEIC closely resemble the observed 492 

ones (Fig. 8a). FSEIC is able to recover the slow change of sign of the ISM-ENSO 493 

correlations from positive to negative from year -1 to year 0 as observed. The differences 494 

between the simulated and observed correlations for the different lags have been tested for 495 

statistical significance with a Fisher Z transform approach  (see Morrison 1990; pp 102-106) 496 

and FSEIC is the only simulation, which does not show any statistical difference with 497 

obseravtions at the 95% confidence level for any lags. Interestingly, this success is not related 498 

to changes in the SST mean state (Figs. 1d and 2a) or ISMR seasonal cycle (Fig. 8d). 499 

Evidences will be presented in this section to demonstrate that these large improvements are 500 

related to changes in the characteristics of the model’s El Niño during its decaying phase in 501 

FSEIC. 502 

Consistent with a strong damping of ENSO variability by IO variability, the Niño-3.4 SST 503 

standard deviations increase significantly in FTIC (Fig. 8b). This increase is more prominent 504 

during boreal spring and summer, which correspond to ENSO transitions. This suggests that 505 

ENSO is less phase-locked to the annual cycle and that the length of ENSO events has 506 

increased in FTIC. On the other hand, the Niño-3.4 SST variability is decreased in FSEIC 507 

compared to both CTRL and FTIC. Interestingly, the Niño-3.4 SST monthly standard 508 

deviations, as simulated by FSEIC, now match the observed Niño-3.4 SST standard 509 

deviations during ENSO transitions (e.g. boreal spring). This suggests that ENSO events start 510 

later or last shorter in FSEIC. In order to quantify more rigorously these differences between 511 

the simulations, power spectra of the simulated Niño-3.4 SST time series are shown in Figure 512 

9. Both FTIC and FSEIC spectra are strikingly different from CTRL spectrum, e.g. ENSO is 513 

predominantly biennial or quasi-biennial in FSEIC while it lasts much longer in FTIC than in 514 

CTRL and these results are statistically significant at the 95% confidence level (Fig. 9).  515 

These important differences not only confirm that IO SSTs interact significantly with ENSO 516 

in the SINTEX-F2 model, but also suggest that the spatial and temporal details of IO SST 517 

variability play also a substantial role in the damping (or enhancement) and the length of the 518 

simulated ENSO. 519 
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We first focus on the synchronous ISM-ENSO teleconnection during boreal summer. The 520 

rainfall and 850-hPa regressions onto the ISMR index in FTIC have spatial patterns similar to 521 

those in CTRL during JJ and AS (Fig. 6e-f). This demonstrates again that ENSO forcing is 522 

critical and that local ocean-atmosphere coupling is only a secondary factor for the generation 523 

of these anomalous patterns. However, consistent with a stronger (and partly erroneous) 524 

ENSO teleconnection during early summer (Fig. 8a,c), the rainfall and 850-hPa anomalies 525 

have greater amplitude almost everywhere in the Indo-Pacific region during JJ than AS in 526 

FTIC (Fig. 6e-f). The monsoon flux over the western IO is further increased during the whole 527 

ISM in FTIC compared to CTRL, resulting in enhanced rainfall over the Arabian Sea and 528 

western India (Fig. 6e-f). Interestingly, a negative IOD like rainfall pattern also emerges along 529 

the Equator in FTIC despite the absence of local coupling, demonstrating again the strong 530 

ENSO forcing on the regional rainfall pattern (Fig. 6e, f). In FSEIC, the 850-hPa wind and 531 

rainfall regressions onto the ISMR index show that the ISM-ENSO teleconnection gradually 532 

increases from JJ to AS in contrast to FTIC (Figs. 6g-h). 533 

However, the interactions between the Indian and Pacific oceans need not to be restricted 534 

to the boreal summer, and may concern other seasons as well, and still be important for 535 

shaping the ENSO-ISM relationship. Indeed, the negative lagged correlations of ISM with the 536 

Niño-34 SSTs during boreal winter and spring preceding ISM are very different, while the 537 

lead correlations between ISM and the following Niño-34 SST anomalies are very similar 538 

among the simulations (Fig. 8a), suggesting that the IOB may play a prominent role in the 539 

ENSO damping and explain the relative success of FSEIC compared to both CTRL and FTIC. 540 

In order to test the hypothesis that the IOB produces a direct forcing on ENSO itself in the 541 

simulations, Figs. 10 to 12 display lagged regressions of tropical Indo-Pacific SST, rainfall, 542 

850-hPa wind and depth of 20°C isotherm anomalies during year +1 onto the December-543 

January (DJ) Niño-3.4 SST index in the different simulations. Here, numerals such as 0 and 544 

+1 denote the ENSO developing (0) and decay (+1) years, respectively. Lagged regressions of 545 

850-hPa stream function, 850- and 200-hPa velocity potential anomalies during February-546 

March (FM) of year +1 onto DJ Niño-3.4 SST index are also displayed in Fig 13 in order to 547 

diagnose physical processes responsible of the differences in ENSO damping between the 548 

simulations. 549 

First, the results confirm the robustness of the link between the decaying phase of El Niño 550 

events and the IOB in CTRL and FSEIC in which ocean-atmosphere coupling is (partly) 551 

active in the IO (Figs. 10a and 10c). As expected, the SST regression patterns over the 552 

tropical Pacific during FM(+1) show enhanced warming over the central and eastern Pacific 553 
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and a well-developed cold horseshoe signature in the extra-tropical Pacific in all experiments. 554 

However, the Pacific SST anomalies are more confined meridionally in the FSEIC 555 

experiment during FM(+1) and AM(+1)  (Fig. 10c). The IO warming is basin-wide and 556 

uniform in CTRL and absent by design in FTIC (Fig. 10a-b). On the other hand, decoupling 557 

the SEIO enhances the warming in the other IO areas, especially over the western IO, and 558 

leads to a substantial anomalous SST equatorial gradient in the IO during FM(+1) (Fig. 10c). 559 

The modulation of the Walker circulation during El Niño induces local atmospheric 560 

subsidence (Fig. 13), which reduces cloud cover and forces near surface wind anomalies (Fig. 561 

11) and surface heat fluxes over the IO, and, thus, initiates and sustains the basin-wide IOB 562 

warming in CTRL and FSEIC (Klein et al. 1999; Alexander et al. 2002; Schott et al. 2009). 563 

Next, Fig. 10 illustrates that the Pacific SST anomalies during boreal spring and summer of 564 

the decaying phase of ENSO are different in the three simulations. First, the El Niño related 565 

warm anomalies persist up to the boreal summer of year +1 in FTIC, but have disappeared by 566 

the end of boreal spring in FSEIC, while CTRL exhibits an intermediate evolution of tropical 567 

Pacific SST anomalies between these two extreme scenarios. These results are consistent with 568 

the different seasonal phase locking of Niño-3.4 SST variability in the simulations (Fig. 8b). 569 

Cold equatorial Pacific SST anomalies emerge during boreal summer in FSEIC, signaling the 570 

beginning of a La Niña episode. Because of the slow response of the IO to ENSO forcing, the 571 

IOB persists until the following boreal summer in both CTRL and FSEIC (Figs. 10a, c). 572 

Surprisingly, IOB warming is more intense in FSEIC than in CTRL despite of the quick 573 

demise of the El Niño SST pattern in FSEIC. 574 

In summary, these results first demonstrate that the IOB has a considerable impact on the 575 

anomalous climate during the decaying phase of ENSO in SINTEX-F2 (Figs. 10 to 12), 576 

consistent with previous studies (Kug and Kang 2006; Ohba and Ueda 2007; Ohba and 577 

Watanabe 2012; Terray et al. 2016; Cai et al. 2019; Wang 2019). However, the significant 578 

differences between FSEIC and CTRL highlight that the details of the IOB warming, 579 

especially the SST differences between the western IO and SEIO during late boreal winter, do 580 

also matter a lot, which is an important result of the present study. 581 

In order to provide an explanation, we focus on the atmospheric circulation during FM(+1) 582 

(Fig. 13), when the differences in IO SST anomalies between the simulations are particularly 583 

well developed (Fig. 10 first row of panels). During the peak of El Niño, all the simulations 584 

show an enhanced convective activity over the central equatorial Pacific and reduced rainfall 585 

over the Maritime Continent (not shown) and such anomalous diabatic heating pattern is still 586 

seen during FM(+1), despite that Maritime Continent rainfall starts already to recover during 587 
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this season (Fig. 11 first row of panels). The associated 850- and 200-hPa velocity potential 588 

anomalies reveal that the Walker circulation shifts eastward in response to the diabatic 589 

warming (cooling) due to the enhanced (reduced) convection over the central Pacific 590 

(Maritime Continent). The 850-hPa stream function anomalies reveal a quadrupole structure 591 

straddling the Equator and asymmetric about it, which can be interpreted as a direct Rossby 592 

wave response to this anomalous convective pattern in all experiments (Fig. 13a,e,i). This 593 

four-cell structure plays a fundamental role in the maintenance of the rainfall and anomalous 594 

low-level circulation (Fig. 11, first row of panels), and is largely contributed by the tropical 595 

Pacific SST anomalies, which are very similar in the different simulations. 596 

Focusing now on the IO and west Pacific, important differences in both the position and 597 

strength of the NWPA and its southern hemisphere counterpart exist between the simulations 598 

(Fig. 13a,e,i), which can directly be related to the different SST anomalies in the IO (Fig. 10 599 

first row of panels). First, in both CTRL and FSEIC, in which IOB warming is present, these 600 

anticyclones are shifted eastward and the NWPA becomes stronger than its southern 601 

hemisphere counterpart. Second, these shifted anticyclones are further considerably 602 

strengthened in FSEIC compared to CTRL in response to a well-developed anomalous east-603 

west circulation over the equatorial IO due to the enhanced SST zonal gradient in this run 604 

(Fig. 13j-k). Such an anomalous Walker cell over the IO is obviously absent in CTRL (Fig. 605 

13b-c) in which the IOB warming is basin-wide and uniform (Fig. 10a). Moreover, this zonal 606 

dipole pattern in 850- and 200-hPa velocity potential anomalies in FSEIC, with anomalous 607 

ascending (descending) motion in the western (eastern) IO, is exactly similar to the observed 608 

pattern (see Fig. 5 of Li et al. 2017b for example). 609 

Such modulation of the Walker circulation over the IO seems to be the key-factor to 610 

explain the strength of the IO negative feedback on ENSO during boral winter in FSEIC as 611 

positive rainfall anomalies are restricted to a small region in western IO and are seen in all the 612 

runs, including FTIC in which IOB is absent (Fig. 11 first row panel). It is therefore unlikely 613 

that such restricted rainfall anomaly is associated with a well-defined basin-wide diabatic 614 

heating anomaly, which may cause an atmospheric Kelvin wave response over the Western 615 

Pacific, consistent with the view of Chen et al. (2016) or Li et al. (2017b). On the other hand, 616 

the modulation of the Walker circulation over the IO induces more upper level convergence 617 

over the Maritime Continent and western Pacific in FSEIC (Fig. 13k), which strengthens 618 

considerably the NWPA and its southern counterpart (Fig. 13i), and the associated easterly 619 

wind anomalies over the western Pacific (Fig. 13l). 620 

Thus, our results highlight that the IOB warming, but also the existence of an anomalous 621 
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SST gradient over the equatorial IO during boreal winter, are critical for the strength/position 622 

of the NWPA, the generation of the associated anomalous easterlies over the western 623 

equatorial Pacific and, finally, the turnabout of ENSO phases in our CGCM. As the equatorial 624 

easterlies over the western equatorial Pacific are weaker in FTIC compared to CTRL and 625 

much weaker than those in FSEIC (Fig. 13d,h,l), they may consequently have only a modest 626 

influence on the Pacific SSTs one or two seasons later (Fig. 10b). 627 

This working hypothesis, that the IOB warming and its spatial structure play a fundamental 628 

role in hastening the ENSO transition through the generation of upwelling oceanic Kelvin 629 

waves in both CTRL and FSEIC, is further supported by the regressions of the 20°C isotherm 630 

depth (e.g. a proxy for the thermocline depth) anomalies during year +1 (Fig. 12). The slow 631 

ocean dynamic adjustment in the tropical Pacific is different among the simulations. The 632 

negative heat content anomalies (e.g. a shallower thermocline), which appear over the western 633 

Pacific during the peak of El Niño, have a faster eastward propagation along the equatorial 634 

Pacific in CTRL and FSEIC (Fig. 12a,c). This eastward propagation is very gradual in CTRL 635 

(Fig. 12a), but somewhat abrupt, from AM to JJ of year +1, in FSEIC (Fig. 12c). Moreover, 636 

FSEIC shows shallower 20°C isotherm anomalies than CTRL along the equatorial Pacific 637 

(Fig. 12a,c). The enhanced zonal wind stress associated with the stronger easterly wind 638 

anomalies over the western Pacific in FSEIC induces an enhanced vertical displacement of 639 

the equatorial thermocline via Ekman pumping and the upwelling Kelvin wave response is 640 

stronger in FSEIC. The arrival of these eastward Kelvin waves into the central equatorial 641 

Pacific erodes the local surface warming (Fig. 10c). Consequently, lagging two to four 642 

months behind the remote easterly wind anomalies over the western Pacific, cold SST 643 

anomalies emerged quickly and expand westward over the central and eastern equatorial 644 

Pacific during boreal summer of year +1 in FSEIC. Such ENSO transition is delayed in CTRL 645 

(Fig. 10a) in agreement with the more modest NWPA and associated anomalous easterlies 646 

over the western equatorial Pacific during FM(+1) seen in this run. 647 

Consistent with the reversal of the equatorial anomalous SST gradient in the Pacific, 648 

anomalous easterlies gradually emerge over the central Pacific during boreal summer of year 649 

+1 in FSEIC (Fig. 11c). On the other hand, the easterly wind anomalies over the western 650 

Pacific, seen during FM(+1) in FTIC, disappear quickly during AM(+1)  (Fig. 11b). As a 651 

consequence, both the El Niño-related thermocline and SST anomalies persist and we observe 652 

a revival of the El Niño-related circulation and rainfall anomalous patterns during boreal 653 

summer of year (+1) in FTIC. Finally, the evolution is again intermediate between these two 654 

extremes in CTRL (Fig. 11a). 655 
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In agreement with these different El Niño evolutions in the simulations, we note that ISM 656 

is again highly deficient during boreal summer of the decaying phase of El Niño in FTIC, 657 

weak during JJ only in CTRL and, finally, normal or strong in FSEIC (Fig. 11 third and 658 

fourth rows ). These assertions are further verified by computing regressions of boreal 659 

summer 200-hPa velocity potential anomalies onto the Niño-3.4 SST time series of the 660 

preceding boreal winter (Fig. 14). During El Niño decaying year, La Niña (El Niño) 661 

conditions prevail with a significantly strengthening (reduction) of the Walker circulation in 662 

the Indo-Pacific region in FSEIC (FTIC). Furthermore, strong (weak) upper level divergence 663 

is seen over the Indian region in FSEIC (FTIC) consistent with enhanced (reduced) diabatic 664 

heating associated with the ISM rainfall anomalies during boreal summer (Figs 11b-c third 665 

and fourth rows). Again, CTRL exhibits intermediate conditions between these two extremes 666 

with upper level convergence (e.g. subsidence) over India during JJ, but rather normal 667 

conditions in AS (Fig. 14a-b). These results demonstrate that the success to capture the 668 

seasonal evolution of the correlations between Niño-3.4 SSTs and ISMR in FSEIC (Fig. 8a) is 669 

plausibly related to the ability of this particular configuration to simulate correctly the space-670 

time evolution of the tropical Pacific SSTs during the decaying phase of El Niño. In both 671 

CTRL and FSEIC, IOB is well developed during boreal summer of year +1 (Fig. 10a, c), but a 672 

weak (strong) ISM is simulated in CTRL (FSEIC) demonstrating that the remote ENSO 673 

forcing is still dominant in explaining the ISM response during the decaying year of El Niño. 674 

This may be understood by the fact that IOB SST anomalies are basin-wide, but of reduced 675 

amplitude during boreal summer of year +1, so that they are a significant factor for ISM 676 

variability if, and only if, tropical Pacific SST and circulation anomalies are rather weak at 677 

this stage (Figs. 10 and 11). 678 

 679 

5. Summary and Discussion 680 

5.a Summary 681 

The present work examines the ability of current CGCMs in simulating the ISM-ENSO 682 

relationships. Consistent with previous studies (Terray et al. 2012; Jourdain et al. 2013; 683 

Sabeerali et al. 2019), we found that CGCMs used for climate projections or dynamical 684 

seasonal forecasting still exhibit significant errors with respect to this metric. Simulated ISM-685 

ENSO correlations are already significant and negative several months before the ISM onset 686 

contrary to what is observed..The origins of these common errors in the simulation of the 687 

ISM-ENSO relationship are investigated based on several decoupling experiments performed 688 
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with the SINTEX-F2 CGCM. 689 

First, a sensitivity experiment in which ENSO variability is removed (e.g. FTPC) 690 

demonstrates that relationships between ISM and SST variability outside the tropical Pacific 691 

are weak at interannual time scales in the absence of ENSO. As IODs still exist with 692 

exaggerated amplitude in such decoupling experiment in which ENSO is removed (Fig. 2b, 693 

see also Cretat et al. 2017, 2018), this suggests that IOD impact on ISM is not directly 694 

responsible of the modulated ISM-ENSO relationship in this CGCM. 695 

On the other hand, two others decoupling experiments in which IO SST variability is fully 696 

removed (e.g. FTIC) or only in the SEIO (e.g. FSEIC) show a large spread in simulated 697 

ENSO length and decay pace. ENSO becomes predominantly quasi-biennial in FSEIC while 698 

ENSO lasts much longer in FTIC compared to CTRL. In FSEIC, cold SST and easterly wind 699 

anomalies emerge quickly in the central equatorial Pacific during boreal summer of El Niño 700 

decay years. By contrast, FTIC displays the persistence of a fully developed El Niño-like 701 

pattern during the same time period. Finally, CTRL exhibits an intermediate evolution 702 

between the above two extreme scenarios, despite that IOB warming is present in CTRL as in 703 

FSEIC. As a consequence, weak ISMs are simulated during both El Niño developing and 704 

decaying years in FTIC (and also in CTRL), while weak ISMs and El Niños tend to be 705 

followed systematically by normal/strong ISMs and La Niñas in FSEIC. Further analysis 706 

confirms that these differences in the decay phase of El Niño are responsible of the errors in 707 

the simulated ISM-ENSO lead-lag relationships in CTRL. 708 

Overall, our results suggest that progresses or changes in the simulation of the ISM-ENSO 709 

relationships in CGCMs can be traced back to modifications of ENSO length and seasonal 710 

phase-locking related to the impact of the IOB on ENSO and details of its spatial structure 711 

(namely the equatorial SST gradient in the IO) during boreal winter. Surprisingly, the IOD or 712 

the direct relationship between IO SSTs and ISM only play a secondary role in modulating 713 

the ISM-ENSO relationship in our CGCM despite that it simulates an exaggerated IOD 714 

variability, with or without ENSO, as many current CGCMs (Cai and Cowan 2013; Li et al. 715 

2016; Annamalai et al. 2017). 716 

Our results are also fully consistent with the suggestion that a fast ENSO transition in the 717 

tropical Pacific and the persistence of IOB from boreal winter to boreal summer provide 718 

favorable conditions for the occurrence of a strong ISM (Yang et al. 2007, 2010; Boschat et 719 

al. 2011, 2012; Park et al. 2010; Chowdary et al. 2016, 2017). The emerging La Niña episode 720 

will strengthen the ISM circulation and the IOB warming will tend to enhance the local 721 
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evaporation, moisten the atmosphere and reduce the moist stability; all factors tend to increase 722 

ISM precipitation in FSEIC (Park et al. 2010). 723 

5.b Discussion 724 

In order to understand the physical processes, which are responsible of these different 725 

evolutions, it is important to highlight first that mean-state errors are the same in the different 726 

decoupled experiments analyzed here (Fig. 1a-d). This means that westward extension of cold 727 

tongue bias and of the El Niño pattern in the tropical Pacific, which have been identified as 728 

playing a seminal role in errors of the simulated ENSO decay pace and responsible of large 729 

inter-model spread in CMIP3 or CMIP5 models (Kug and Ham 2012; Tao et al. 2016; Li et al. 730 

2019) cannot explain directly (or alone) the differences among the runs. 731 

The crucial role of the IOB warming in hastening the El Niño to La Niña transition (well 732 

illustrated by the differences between the FTIC and CTRL) is consistent with previous studies 733 

(Watanabe and Jin 2002; Kug and Kang 2006; Ohba and Ueda 2007; Xie et al. 2009, 2016; 734 

Terray et al. 2016). On the other hand, the fact that the rapid decay of El Niño events and the 735 

emergence of a La Niña developing event are likely to be the effect of the spatial details of the 736 

IOB warming during boreal winter, rather than its simple existence or intensity per se, is an 737 

important result of the present study as many recent works suggest that the IOB capacitor 738 

effect is key mainly during the boreal summer of El Niño decay year, but not before (Chen et 739 

al. 2016; Li et al. 20017b). 740 

By comparing further CTRL and FSEIC, it is demonstrated that the simulation skill of the 741 

ENSO decay pace and ISM-ENSO relationship is partly controlled by the (erroneous) SEIO 742 

SST variability simulated in the CGCM. As illustrated by Fig. 2b, this SST variability bias is 743 

characterized by an amplified seasonal cycle of SST variability with a double peak, one 744 

during boreal winter (e.g. February) and the other during boreal fall (e.g. September). 745 

Furthermore, Fig. 15b demonstrates that this erroneous double peak of SST variability in the 746 

SEIO is a bias shared by most CMIP5 models, despite SINTEX-F2 and CMIP5 models differ 747 

in their seasonal cycle of SST mean bias over SEIO (Figs. 2a and 15a). Most CMIP5 models 748 

exhibit a cold bias throughout the seasonal cycle in the SEIO while the SINTEX-F2 model 749 

exhibits a warm SST bias during boreal winter and a cold SST bias during boreal fall. 750 

The cold SST mean bias and enhanced SST variability in the SEIO during boreal fall is a 751 

well-known and long-standing problem of both the SINTEX-F2 and CMIP5 models (Fischer 752 

et al. 2005; Terray et al. 2012; Prodhomme et al. 2014; Cretat et al. 2017; Cai and Cowan 753 

2013; Li et al. 2015, 2016; Jourdain et al. 2016; Annamalai et al. 2017). Surprisingly, this 754 
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exaggerated SEIO SST variability during boreal fall, linked to the IOD, cannot explain the 755 

differences in ENSO evolution as described above. 756 

On the other hand, the exaggerated SST variability in the SEIO during boreal winter in 757 

both SINTEX-F2 and CMIP5 models is less explored in the literature despite our analysis 758 

demonstrates its significant role on ENSO length and ISM-ENSO relationship. A working 759 

hypothesis for the existence of this SST bias is, however, the cold tongue bias and the 760 

associated excessive westward extension of El Niño SST warming along the equatorial 761 

Pacific found in most current CGCMs (Masson et al. 2012; Wang et al. 2014; Li and Xie 762 

2012, 2014). These tropical Pacific biases have already been suggested to be very detrimental 763 

for a realistic simulation of both the ENSO-NWPA relationship and the negative IO feedback 764 

in CMIP5 models as they produce erroneous warm SST anomalies in the equatorial western 765 

Pacific during the El Niño decaying year, obstructing the formation of the anomalous NWPA 766 

(Kug and Ham 2012; Tao et al. 2016; Li et al. 2019). In order to investigate if the SEIO SST 767 

mean and variability biases are remotely forced by tropical Pacific errors in the SINTEX-F2 768 

model, the annual cycle of monthly means and standard deviations of SEIO SSTs simulated in 769 

the FTPC and FTPC-obs decoupled experiments (see Section 2c) are displayed in Fig. 2. As 770 

ENSO variability is removed in both FTPC and FTPC-obs, but the Pacific mean-state errors 771 

are corrected only in FTPC-obs (Figs. 1e and 2a), the results suggest that SEIO biases during 772 

boreal fall have primarily local origins, as they are still present in both FTPC and FTPC-obs. 773 

On the other hand, those found during boreal winter are partly due to the remote Pacific 774 

forcing, as the erroneous SEIO SST variability during boreal winter is significantly damped in 775 

both FTPC and FTPC-obs, and the corresponding SST mean-state error is eliminated in 776 

FTPC-obs. 777 

Thus, our results complement the previous studies, which focused primarily on the ocean-778 

atmosphere and atmospheric processes over the equatorial western Pacific to explain the 779 

relationships between the ENSO decay pace, the NWPA and the local easterlies wind 780 

anomalies during boreal winter (Wang et al. 2000; Wu et al. 2017ab; Li et al. 2017b) and their 781 

degraded representation in current CGCMs (Kug and Ham 2012; Tao et al. 2016; Li et al. 782 

2019). In SINTEX-F2, the negative IO feedback on ENSO is severely damped not only 783 

because of the local response (over the western equatorial Pacific) to the westward shift of the 784 

El Niño-related anomalies over the tropical Pacific, but also because such erroneous ENSO 785 

pattern produces an unrealistic remote forcing in the SEIO. The removal of the erroneous 786 

SEIO SST variability in FSEIC is sufficient to restore a realistic strength and position of the 787 

NWPA and associated equatorial easterlies and a correct ISM-ENSO relationship (Fig. 8) 788 
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related to the reduction of ENSO length. As most CMIP5 models exhibit exactly the same 789 

SST variability biases in the SEIO (Fig. 15a), it is not unlikely that correcting or removing the 790 

SEIO errors in these CGCMs will lead to similar improvements in their simulation of ENSO 791 

and ISM-ENSO relationships. 792 

Past analysis of observations illustrate that the synchronous ISM-ENSO relationships has 793 

weakened, but that the impact of El Niño decaying phase on ISM has strengthened during 794 

recent decades (Fig 3; Yang et al. 2007, 2010; Boschat et al. 2012). This is fully consistent 795 

with the hypothesis of an enhanced negative IO feedback associated with the sustained IO 796 

warming (especially in the western IO), partly induced by anthropogenic forcing (Roxy et al. 797 

2014) and the more frequent occurrence of the ENSO-related IO warming in recent decades 798 

(e.g., Boschat et al. 2012; Xie et al. 2016). Our numerical experiments do suggest that the IO 799 

is effectively an important climate element to explain the evolution of the ISM-ENSO system 800 

in the 20th century, as we are able to restore a realistic simulation of the lead-lag relationships 801 

between ISM and ENSO in a CGCM by simply eliminating the erroneous SST variability in 802 

the SEIO (Fig. 10a). In other words, it is conceivable that the intensified warming and 803 

negative feedback of the IO are important factors in the long-term variability of ENSO and 804 

ISM. This may have significant implications for our future projections of ENSO and ISM 805 

variations in a changing climate. 806 

Additional testing with other CGCMs should therefore be performed in the future to 807 

promote a better understanding of the nature, seasonal timing  and long-term behavior of the 808 

IO feedback on ENSO and ISM. However, the present work demonstrates that tropical SST 809 

biases in current CGCMs must be drastically reduced in order to shed new light on the 810 

mechanisms underlying the ISM variability. It is unlikely that state-of-the-art CGCMs will 811 

provide robust projections of ENSO or the ISM-ENSO relationship before prior reductions of 812 

systematic errors in the different tropical basins, like the cold tongue bias and the westward 813 

shift of the ENSO pattern in the tropical Pacific, the spurious IOD-like pattern in the IO or the 814 

unrealistic representation of the Atlantic zonal mode. Such systematic errors already preclude 815 

the robust attribution of the observed evolution of the ISM-ENSO relationships during the 816 

20th century (illustrated in Fig. 3) to the anthropogenic forcing with the current CMIP5 817 

simulations, as illustrated by the persistent controversies in the literature on this topic (Chen 818 

et al. 2010; Li and Ting 2015; Srivastava et al. 2015; Cash et al. 2017; Yun and Timmermann 819 

2018; Feba et al. 2019;  Bodai et al. 2020). 820 

As illustrated in this work and summarized in two recent reviews (Cai et al. 2019; Wang 821 

2019), interactions between the Indian, Pacific and also Atlantic basins play a seminal role in 822 
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explaining large-scale phenomena, like ENSO or ISM. From a modeling perspective, our 823 

results further highlight that remote SST mean-state and variability errors in one basin, for 824 

example the IO, can also interfere with SST biases in other basins like the Pacific and play a 825 

key-role in the simulation of ENSO or ISM in current CGCMs (see also Terray et al. 2016). 826 

In other words, this inter-basin framework is also fundamental to diagnose and correct the 827 

severe biases still affecting current CGCMs. 828 

 829 

Appendix 830 

 831 

The SST nudging is performed inside the SST equation of the ocean model. We suppressed 832 

the SST variability in a specific domain by applying a strong nudging of the SST toward a 833 

SST climatology computed from a control experiment or observations (see Table 1 and 834 

Section 2c for details). More precisely, this is done through a modification of the non-solar 835 

heat flux provided by the atmosphere to the ocean by adding a correction term that is 836 

proportional with the SST difference with the target climatology at each time step: 837 

 838 

Qns = Qns + dq/dt*( SST - SSTclim ) 839 

 840 

Qns: the nonsolar heat flux received from atmosphere 841 

dq/dt: -2400 W m-2 K-1 (corresponds to the heat flux needed to warm a 50m thick ocean layer 842 

of 1 K during 1 day) 843 

SSTclim: the target SST daily climatology, after a linear interpolation at each time step of the 844 

day 845 

 846 

The very strong dq/dt constant used here implies that the SST variability is almost suppressed 847 

in the selected domain. A Gaussian smoothing is finally applied in a transition zone in both 848 

longitude and latitude at the limits of the SST restoring domains (see Table 1). 849 

 850 

This approach is interesting because the ocean dynamics (e.g. also thermocline variations) 851 

will be consistent with the SST in the ocean model, which is not the case when the SST is 852 

changed in the coupling interface of the coupled model as it is commonly done in many 853 

past/recent studies. 854 

 855 
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Figure captions 1477 

Figure 1: a) SST means difference (°C) between CTRL (years 11-210) and HadISST1.1 1478 

dataset (years 1979-2012); b) SST means difference (°C) between FTPC (years 11-110) and 1479 

CTRL; c) SST means difference (°C) between FTIC (years 11-110) and CTRL; d) SST means 1480 

difference (°C) between FSEIC (years 11-60) and CTRL and e) SST means difference (°C) 1481 

between FTPC-obs (years 11-50) and CTRL. The nudging domains for FTPC, FTIC and 1482 

FSEIC experiments are shown, respectively, in panels b (blue), c (green) and d (purple). 1483 

 1484 

Figure 2: a) Monthly means of the SEIO (90°E-115°E and 0°S-10°S; unit: °C) SST time 1485 

series from HadISST1.1 dataset (for the 1950-2012 and 1979-2012 periods) and the CTRL, 1486 

FSEIC, FTPC and FTPC-obs experiments performed with the SINTEX-F2 model; b) 1487 

Monthly standard deviations of the SEIO SST time series (unit: °C) from HadISST1.1 dataset 1488 

(for the 1950-2012 and 1979-2012 periods) and the CTRL, FSEIC, FTPC and FTPC-obs 1489 

experiments. 1490 

 1491 

Figure 3: a) Lead-lag correlations between AIR time series and bi-monthly Niño-3.4 SSTs 1492 

for different time periods, starting from the beginning of the previous year (e.g. year - 1) to 1493 

the end of the following year of the monsoon (e.g. year +1) and b) Same as a) but using the 1494 

ISMR time series derived from the IMD dataset. X-axis indicates the lag (in 2 months 1495 

interval) for a 36 months period starting one year before the developing year of ISM and Y-1496 

axis is the amplitude of the correlation. Thus, the coefficients corresponding to -1, 0, +1 1497 

month lags refer, respectively, to the correlations between AIR in year 0 (e.g. JJAS ISM 1498 

rainfall) and April-May, June-July and August-September Niño-3.4 SSTs, also during year 0, 1499 

and so on. Lead-lag correlations between ISMR time series estimated from GPCP dataset and 1500 

bi-monthly Niño-3.4 SSTs  for the period 1979-2012 are also displayed in panels a and b for 1501 

comparison. All time series are detrended with a LOESS method (Cleveland and Devlin 1502 

1988). Black diamond symbols indicate correlations that are above the 95% significance 1503 

confidence level according to a phase-scrambling bootstrap test (Ebisuzaki 1997) with 999 1504 

samples. 1505 

 1506 

Figure 4: a) Lead-lag correlations between ISMR time series and bi-monthly Niño-3.4 SSTs, 1507 

starting from the beginning of the previous year (e.g. year - 1) to the end of the following year 1508 

of the monsoon (e.g. year +1) as simulated in the control experiments (CTRL) of the 1509 
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SINTEX-F2 and CFSv2 models and observed during the period 1979-2012. All time series 1510 

are detrended with a LOESS method (Cleveland and Devlin 1988). Black diamond symbols 1511 

indicate correlations that are above the 95% significance confidence level according to a 1512 

phase-scrambling bootstrap test (Ebisuzaki 1997) with 999 samples. For observations, GPCP 1513 

and HadISST1.1 datasets are used, respectively, for estimating the ISMR and Niño-3.4 SST 1514 

time series; b) Monthly standard deviations of the Niño-3.4 SST time series from HadISST1.1 1515 

dataset (for the 1950-2012 and 1979-2012 periods) and the CTRL experiments of the 1516 

SINTEX-F2 and CFSv2 models; c) Monthly standard deviations of the ISMR time series 1517 

from GPCP dataset (for 1979-2012 period) and the CTRL experiments of the SINTEX-F2 and 1518 

CFSv2 models; d) Monthly means of the ISMR time series from GPCP dataset (for 1979-1519 

2012 period) and the CTRL experiments of the SINTEX-F2 and CFSv2 models. 1520 

 1521 

Figure 5: Same as Fig. 4, but for historical runs of 25 CMIP5 models. For CMIP models, the 1522 

period 1950-2000 is considered and time series are only linearly detrended. Statistical 1523 

significance is not plotted, but correlation coefficients with an absolute value greater than 1524 

0.25 are above the 95% significance confidence level according to a Student two-tailed t test. 1525 

For observations, GPCP and HadISST1.1 datasets are used, respectively, for estimating the 1526 

ISMR and Niño-3.4 SST time series. The ensembles mean and spread across the CMIP5 1527 

models are also displayed. The spread is computed as the ensemble mean plus and minus the 1528 

ensemble standard deviation (thick black circles in all panels). 1529 

 1530 

Figure 6: (a, b) June-July and August-September mean rainfall (shading) and 850-hPa wind 1531 

(vectors) anomalies regressed against the ISMR index (e.g. JJAS ISM rainfall) in the CTRL 1532 

experiment; (c, d) same as (a, b) but for the FTPC experiment; (e, f) same as (a, b) but for the 1533 

FTIC experiment and (g, h) same as (a, b) but for the FSEIC experiment. Unit for the rainfall 1534 

and 850-hPa wind regression coefficients are, respectively, in mm/day by mm/day and m/s by 1535 

mm/day. Only rainfall and 850-hPa wind regression coefficients above the 95% significance 1536 

confidence level according to a phase-scrambling bootstrap test (Ebisuzaki 1997) with 999 1537 

samples are shown. 1538 

 1539 

Figure 7: (a, b, c, d, e, f) correlation coefficients between the ISMR index (e.g. JJAS ISM 1540 

rainfall) and bi-monthly SST anomalies from February-March to December-January of year 0 1541 

in the FTPC experiment. (g, h, i, j, k, l) same as (a, b, c, d, e, f) but for bi-monthly 200-hPa 1542 
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velocity potential anomalies. Correlation coefficients above the 95% significance confidence 1543 

level according to a phase-scrambling bootstrap test (Ebisuzaki 1997) with 999 samples are 1544 

contoured. In (a, b, c, d, e, f), correlation coefficients in the Pacific nudging domain are 1545 

masked. 1546 

 1547 

Figure 8: Same as Fig. 4, but for the FTIC and FSEIC experiments done with the SINTEX-1548 

F2 model. The results for the control (CTRL) and FTPC experiments performed with the 1549 

SINTEX-F2 model are also displayed for comparison (only in panels c and d for FTPC). 1550 

 1551 

Figure 9: Power spectra of Niño-34 SST anomalies for CTRL (red), FTIC (green) and FSEIC 1552 

(blue) experiments. The bottom axis is the period (unit: year), the left axis is variance (unit: 1553 

°C2) and both axes are in logarithm scale. Dashed red curves show the point-wise 95% 1554 

confidence limits for the Niño-34 SST spectrum estimated from the CTRL experiment. 1555 

 1556 

Figure 10: a) bi-monthly SST anomalies regressed against the December-January Niño-3.4 1557 

SST time series for the following February-March, April-May, June-July, August-September 1558 

and October-November (e.g. in year +1) in the CTRL experiment; b) same as a) but for the 1559 

FTIC experiment; c) same as a) but for the FSEIC experiment. Unit for the SST regression 1560 

coefficients is in K by K. Regression coefficients reaching the 10% significance level 1561 

according to a phase-scrambling bootstrap test (Ebisuzaki 1997) with 999 samples are 1562 

contoured. 1563 

 1564 

Figure 11: a) bi-monthly mean rainfall (shading) and 850-hPa wind (vectors) anomalies 1565 

regressed against the December-January Niño-3.4 SST time series for the following February-1566 

March, April-May, June-July, August-September and October-November (e.g. in year +1) in 1567 

the CTRL experiment; b) same as a) but for the FTIC experiment; c) same as a) but for the 1568 

FSEIC experiment. Unit for the rainfall and 850-hPa wind regression coefficients are, 1569 

respectively, in mm/day by K and m/s by K. Only rainfall and 850-hPa wind regression 1570 

coefficients reaching the 10% significance level according to a phase-scrambling bootstrap 1571 

test (Ebisuzaki 1997) with 999 samples are shown. 1572 

 1573 
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Figure 12: a) bi-monthly mean 20°C isotherm depth (a proxy for thermocline depth) 1574 

anomalies regressed against the December-January Niño-3.4 SST time series for the 1575 

following February-March, April-May, June-July, August-September and October-November 1576 

(e.g. in year +1) in the CTRL experiment; b) same as a) but for the FTIC experiment; c) same 1577 

as a) but for the FSEIC experiment. Unit for the 20°C isotherm depth regression coefficients 1578 

is in m by K. Regression coefficients reaching the 10% significance level according to a 1579 

phase-scrambling bootstrap test (Ebisuzaki 1997) with 999 samples are contoured. 1580 

 1581 

Figure 13: (a, b, c, d) February-March 850-hPa stream function, 850-hPa velocity potential, 1582 

200-hPa velocity potential and 850-hPa zonal wind anomalies regressed against the preceding 1583 

December-January Niño-3.4 SST time series in the CTRL experiment; (e, f, g, h) same as (a, 1584 

b, c, d) but for the FTIC experiment; (i, j, k, l) same as (a, b, c, d) but for the FSEIC 1585 

experiment. Units for the stream function and velocity potential regression coefficients are in 1586 

105 m2 s-1 by K and for 850-hPa zonal wind in m s-1 by K. Regression coefficients reaching 1587 

the 10% significance level according to a phase-scrambling bootstrap test (Ebisuzaki 1997) 1588 

with 999 samples are contoured. 1589 

 1590 

Figure 14: (a, b) June-July and August September 200-hPa velocity potential anomalies 1591 

regressed against the preceding December-Januray Niño-3.4 SST time series in the CTRL 1592 

experiment; (c, d) same as (a, b) but for the FTIC experiment; (e, f) same as (a, b) but for the 1593 

FSEIC experiment. Units for the velocity potential regression coefficients are in 105 m2 s-1 by 1594 

K. Regression coefficients reaching the 10% significance level according to a phase-1595 

scrambling bootstrap test (Ebisuzaki 1997) with 999 samples are contoured. 1596 

 1597 

Figure 15: a) Monthly means of the SEIO (90°E-115°E and 0°S-10°S; unit: °C) SST time 1598 

series from HadISST1.1 dataset and the historical runs of 25 CMIP5 models; b) Monthly 1599 

standard deviations of the SEIO SST time series from HadISST1.1 dataset and the historical 1600 

runs of 25 CMIP5 models. All observed and simulated statistics are estimated from the period 1601 

1950-2000. The ensembles mean and spread across the CMIP5 models are also displayed. 1602 

The spread is computed as the ensemble mean plus and minus the ensemble standard 1603 

deviation (thick black circles in panels a and b). 1604 

 1605 
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Figure S1: (a, b, c, d, e, f) correlation coefficients between the ISMR index (e.g. JJAS ISM 1606 

rainfall) and bi-monthly SST anomalies from February-March to December-January of year 0 1607 

in the CTRL experiment. (g, h, i, j, k, l) same as (a, b, c, d, e, f) but for bi-monthly 200 hPa 1608 

velocity potential anomalies. Correlation coefficients above the 95% significance confidence 1609 

level according to a phase-scrambling bootstrap test (Ebisuzaki 1997) with 999 samples are 1610 

contoured. 1611 

1612 
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Table captions 1613 

Table 1: Summary of the numerical experiments with their main characteristics, including 1614 

length, nudging domain and SST climatology used for the nudging in the Indian or Pacific 1615 

oceans decoupled experiments. The nudged experiments are the Forced Tropical Pacific 1616 

Climatology (FTPC) run, the Forced Tropical Indian Climatology (FTIC) run, the Forced 1617 

South-East Indian Climatology (FSEIC) run and, finally, the Forced Tropical Pacific observed 1618 

Climatology (FTPC-obs) run. See text for more details. For the FTPC and FTPC-obs 1619 

experiments only ocean grid-points in the Pacific are included in the correction or smoothing 1620 

areas and, similarly, for the FTIC and FSEIC experiments for their respective domains. The 1621 

different correction domains are also displayed in Figure 1b-d.  The observed SST 1622 

climatology used in the FTPC-obs experiment is derived from the AVHRR only daily 1623 

Optimum Interpolation SST version 2 (OISSTv2) dataset for the 1982-2010 period (Reynolds 1624 

et al. 2007). 1625 

 1626 

Table S1: Description of the 25 Coupled Model Inter-comparison Project phase 5 (CMIP5) 1627 

models used in our analysis. We use the historical coupled model experiments contributing to 1628 

CMIP5 (see, url: http://pcmdi9.llnl.gov). Here, the first member of each model’s ensemble of 1629 

historical runs is used for all the analysis performed using CMIP5 models (e.g. Figures 5) and 1630 

computations are done for the period 1950-2000. Each model dataset has been re-gridded into 1631 

a 2.5°×2.5° horizontal grid, using a first-order remapping procedure implemented in the 1632 

Climate Data Operators (https://code.zmaw.de/projects/cdo), before processing. 1633 

 1634 

 1635 

http://pcmdi9.llnl.gov/
https://code.zmaw.de/projects/cdo
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Figure 1: a) SST means difference (°C) between CTRL (years 11-210) and HadISST1.1 dataset (years 1979-2012); 

b) SST means difference (°C) between FTPC (years 11-110) and CTRL; c) SST means difference (°C) between FTIC 

(years 11-110) and CTRL; d) SST means difference (°C) between FSEIC (years 11-60) and CTRL and e) SST means 

difference (°C) between FTPC-obs (years 11-50) and CTRL. The nudging domains for FTPC, FTIC and FSEIC 

experiments are shown, respectively, in panels b (blue), c (green) and d (purple).
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Figure 2: a) Monthly means of the SEIO (90°E-115°E and 0°S-10°S; unit: °C) SST time series from HadISST1.1 dataset (for the 

1950-2012 and 1979-2012 periods) and the CTRL, FSEIC, FTPC and FTPC-obs experiments performed with the SINTEX-F2 

model; b) Monthly standard deviations of the SEIO SST time series (unit: °C) from HadISST1.1 dataset (for the 1950-2012 and 

1979-2012 periods) and the CTRL, FSEIC, FTPC and FTPC-obs experiments.
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Figure 3: a) Lead-lag correlations between AIR time series and bi-monthly Niño-3.4 SSTs for different time periods, starting from

the beginning of the previous year (e.g. year - 1) to the end of the following year of the monsoon (e.g. year +1) and b) Same as a) 

but using the ISMR time series derived from the IMD dataset. X-axis indicates the lag (in 2 months interval) for a 36 months

period starting one year before the developing year of ISM and Y-axis is the amplitude of the correlation. Thus, the coefficients 

corresponding to -1, 0, +1 month lags refer, respectively, to the correlations between AIR in year 0 (e.g. JJAS ISM rainfall) and 

April-May, June-July and August-September Niño-3.4 SSTs, also during year 0, and so on. Lead-lag correlations between ISMR 

time series estimated from GPCP dataset and bi-monthly Niño-3.4 SSTs  for the period 1979-2012 are also displayed in panels a 

and b for comparison. All time series are detrended with a LOESS method (Cleveland and Devlin 1988). Black diamond symbols 

indicate correlations that are above the 95% significance confidence level according to a phase-scrambling bootstrap test 

(Ebisuzaki 1997) with 999 samples.
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Figure 4: a) Lead-lag correlations between ISMR time series and bi-monthly Niño-3.4 SSTs, starting from the beginning of the previous year (e.g. year - 1) to the end of the following year 

of the monsoon (e.g. year +1) as simulated in the control experiments (CTRL) of the SINTEX-F2 and CFSv2 models and observed during the period 1979-2012. All time series are detrended 

with a LOESS method. Black diamond symbols indicate correlations that are above the 95% significance confidence level according to a phase-scrambling bootstrap test (Ebisuzaki 1997) 

with 999 samples. For observations, GPCP and HadISST1.1 datasets are used, respectively, for estimating the ISMR and Niño-3.4 SST time series; b) Monthly standard deviations of the 

Niño-3.4 SST time series from HadISST1.1 dataset (for the 1950-2012 and 1979-2012 periods) and the CTRL experiments of the SINTEX-F2 and CFSv2 models; c) Monthly standard 

deviations of the ISMR time series from GPCP dataset (for 1979-2012 period) and the CTRL experiments of the SINTEX-F2 and CFSv2 models; d) Monthly means of the ISMR time series 

from GPCP dataset (for 1979-2012 period) and the CTRL experiments of the SINTEX-F2 and CFSv2 models.



Figure 5: Same as Fig. 4, but for historical runs of 25 CMIP5 models. For CMIP models, the period 1950-2000 is considered and time series are

only linearly detrended. Statistical significance is not plotted, but correlation coefficients with an absolute value greater than 0.25 are above the 

95% significance confidence level according to a Student two-tailed t test. For observations, GPCP and HadISST1.1 datasets are used, respectively, 

for estimating the ISMR and Niño-3.4 SST time series.The ensembles mean and spread across the CMIP5 models are also displayed. The spread is

 computed as the ensemble mean plus and minus the ensemble standard deviation (thick black circles in all panels).
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Figure 6: (a, b) June-July and August-September mean rainfall (shading) and 850-hPa wind (vectors) anomalies regressed against the ISMR index 

(e.g. JJAS ISM rainfall) in the CTRL experiment; (c, d) same as (a, b) but for the FTPC experiment; (e, f) same as (a, b) but for the FTIC experiment 

and (g, h) same as (a, b) but for the FSEIC experiment. Unit for the rainfall and 850-hPa wind regression coefficients are, respectively, in 

mm/day by mm/day and m/s by mm/day. Only rainfall and 850-hPa wind regression coefficients above the 95% significance confidence level 

according to a phase-scrambling bootstrap test (Ebisuzaki 1997) with 999 samples are shown.
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Figure 7: (a, b, c, d, e, f) correlation coefficients between the ISMR index (e.g. JJAS ISM rainfall) 

and bi-monthly SST anomalies from February-March to December-January of year 0 in the FTPC 

experiment. (g, h, i, j, k, l) same as (a, b, c, d, e, f) but for bi-monthly 200-hPa velocity potential 

anomalies. Correlation coefficients above the 95% significance confidence level according to a 

phase-scrambling bootstrap test (Ebisuzaki 1997) with 999 samples are contoured. In (a, b, c, d, e, f), 

correlation coefficients in the Pacific nudging domain are masked.



Figure 8: Same as Fig. 4, but for the FTIC and FSEIC experiments done with the SINTEX-F2 model. The results for the control (CTRL) and FTPC 

 experiments performed with the SINTEX-F2 model are also displayed for comparison (only in panels c and d  for FTPC).
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Figure 9: Power spectra of Niño-34 SST anomalies for CTRL (red), FTIC (green) and FSEIC (blue)

experiments. The bottom axis is the period (unit: year), the left axis is variance (unit: °C2) and both

axes are in logarithm scale. Dashed red curves show the point-wise 95% confidence limits for

the Niño-34 SST spectrum estimated from the CTRL experiment.
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Figure 10: a) bi-monthly SST anomalies regressed against the December-January Niño-3.4 SST time series for the following February-March, April-May, 

June-July, August-September and October-November in the CTRL experiment; b) same as a) but for the FTIC experiment ; c) same as a) but for the FSEIC 

experiment. Unit for the SST regression coefficients is in K by K. Regression coefficients reaching the 10% significance level according to a phase-scrambling

 bootstrap test (Ebisuzaki 1997) with 999 samples are contoured.
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Figure 11: a) bi-monthly mean rainfall (shading) and 850-hPa wind (vectors) anomalies regressed against the December-January Niño-3.4 SST

time series for the following February-March, April-May, June-July, August-September and October-November in the CTRL experiment; 

b) same as a) but for the FTIC experiment; c) same as a) but for the FSEIC experiment. Unit for the rainfall and 850-hPa wind regression 

coefficients are, respectively, in mm/day by K and m/s by K. Only rainfall and 850-hPa wind regression coefficients 

reaching the 10% significance level according to a phase-scrambling bootstrap test (Ebisuzaki 1997) with 999 samples are shown.
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Figure 12: a) bi-monthly mean 20°C isotherm depth (a proxy for thermocline depth) anomalies regressed against the December-January Niño-3.4 

SST time series for the following February-March, April-May, June-July, August-September and October-November in the CTRL experiment; 

b) same as a) but for the FTIC experiment ; c) same as a) but for the FSEIC experiment. Unit for the 20°C isotherm depth regression coefficients is 

in m by K. Regression coefficients reaching the 10% significance level according to a phase-scrambling bootstrap test (Ebisuzaki 1997) with 999 

samples are contoured.
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Figure 13: (a, b, c, d) February-March 850-hPa stream function, 850-hPa velocity potential, 200-hPa velocity potential and 850-hPa zonal wind anomalies 

regressed against the preceding December-January Niño-3.4 SST time series in the CTRL experiment; (e, f, g, h) same as (a, b, c, d) but for the FTIC

experiment; (i, j, k, l) same as (a, b, c, d) but for the FSEIC experiment. Units for the stream function and velocity potential regression coefficients are in

105 m2 s-1 by K and for 850-hPa zonal wind in m s-1 by K. Regression coefficients reaching the 10% significance level according to a phase-scrambling 

bootstrap test (Ebisuzaki 1997) with 999 samples are contoured.
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Figure 14: (a, b) June-July and August September 200-hPa velocity potential anomalies regressed against the preceding December-Januray Niño-3.4  

 SST time series in the CTRL experiment; (c, d) same as (a, b) but for the FTIC experiment; (e, f) same as (a, b) but for the FSEIC experiment. 

Units for the velocity potential regression coefficients are in 105 m2 s-1 by K. Regression coefficients reaching the 10% significance level according

 to a phase-scrambling bootstrap test (Ebisuzaki 1997) with 999 samples are contoured.



Figure 14: a) Monthly means of the SEIO (90°E-115°E and 0°S-10°S; unit: °C) SST time series from HadISST1.1 dataset and 

the historical runs of 25 CMIP5 models; b) Monthly standard deviations of the SEIO SST time series from HadISST1.1 dataset 

and the historical runs of 25 CMIP5 models. All observed and simulated statistics are estimated from the period 1950-2000.

The ensembles mean and spread across the CMIP5 models are also displayed. The spread is computed as the ensemble mean

plus and minus the ensemble standard deviation (thick black circles in panels a and b).
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Table 1 

Name CTRL FTPC FTIC FSEIC FTPC-obs 

Correction 
area 

None 

Pacific Ocean 

coast to coast 

25°S-25°N 

Indian Ocean 

coast to coast 

25°S-30°N 

Indian Ocean 

90°E to coast 

0°S-10°S 

Pacific Ocean 

coast to coast 

25°S-25°N 

Smoothing 
area 

None 

 

30°S-25°S 

25°N-30°N 
30°S-25°S 

85°E-90°E, 
115°E-120°E 

15°S-10°S 

0°-5°N 

30°S-25°S 

25°N-30°N 

SST data None CTRL CTRL CTRL OISSTv2 

Time 
duration 

(Year) 

210 

 

110 110 60 50 

 

Table 1: Summary of the numerical experiments with their main characteristics, including 

length, nudging domain and SST climatology used for the nudging in the Indian or Pacific 

oceans decoupled experiments. The nudged experiments are the Forced Tropical Pacific 

Climatology (FTPC) run, the Forced Tropical Indian Climatology (FTIC) run, the Forced 

South-East Indian Climatology (FSEIC) run and, finally, the Forced Tropical Pacific observed 

Climatology (FTPC-obs) run. See text for more details. For the FTPC and FTPC-obs 

experiments only ocean grid-points in the Pacific are included in the correction or smoothing 

areas and, similarly, for the FTIC and FSEIC experiments for their respective domains. The 

different correction domains are also displayed in Figure 1b-d. The observed SST climatology 

used in the FTPC-obs experiment is derived from the AVHRR only daily Optimum 

Interpolation SST version 2 (OISSTv2) dataset for the 1982–2010 period (Reynolds et al. 

2007). 
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