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Abstract— We address ethical dilemma situations that may
arise during autonomous driving. To evaluate how this delib-
eration could work, we propose a decision-making algorithm
based on a Markov Decision Process (MDP) which controls
the vehicle in normal conditions. When a dilemma situation is
detected, the collision severity is determined by an evaluation
of the harm incurred by different types of road users. Then,
to illustrate different moral approaches, three different policies
are proposed: one based on ralwsian contractarianism, another
on utilitarianism, and finally on egalitarianism. Each policy
supports a different view of the concept of fairness, potentially
producing different behaviors for the same dilemma situation.

I. INTRODUCTION

One of the main motivations for research in autonomous
vehicles (AV) is the possibility of traffic accident reduction.
The U.S. 2015 road accident data indicates that 94% of all
accidents are caused by human error [1]. Although such a
decrease is expected by most experts, the deployment of
AVs in the real world will create new types of accidents,
due to the AV’s sensorial limits and the interaction between
autonomous systems and road users, among other reasons.
These issues present a risk for the AV’s acceptability, since
without a careful treatment, these situations would be solved
using criteria defined for common driving, which could result
in morally unjustifiable results. Thus, even if situations like
the ones described remain scarce, public disapproval would
increase with time, threatening the use of not only AVs, but
the full range of autonomous solutions that may be deployed
in future years.

Ethical dilemma situations raise concerns for vehicle man-
ufacturers, the general public, and policy makers. Given
that every measurement and action taken are probabilistic,
and the enormity of interactions that can happen in an
urban context, ethical dilemma situations, regardless of the
AV’s impressive capabilities, can and will occur [2]. As
such, the AV’s decision-making must be implemented in
such a way as to incorporate ethical considerations. The
main contribution of this article is the proposition of an
algorithm to represent the AV’s normal decision-making,
an idea of how to measure action consequences, and three
ethical dilemma policies which provide different deliberative
methods from which the ideal action can be chosen. The
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Cousin, 75005 Paris, France (katherine.evans@vedecom.fr,
stephane.chauvier@sorbonne-universite.fr)

3 Institut VEDECOM, 23bis Allée de Marronniers, 78000 Versailles,
France (ebru.dogan@vedecom.fr)

purpose is to simulate different situations and to stimulate
reflections on the possibility of ethical AV decisions.

This article is organized as follows: section II presents
relevant research on decision-making for AVs and the im-
plementation of ethical decision-making in autonomous sys-
tems. Section III details the decision-making algorithm used
to guide the AV, while section IV introduces a harm quantifier
for AV actions and proposes three different policies to
deliberate in dilemma situations. Then, section V shows the
results obtained in the AV simulation and finally, section VI
provides a summary of the obtained results and next steps.

II. RELATED WORK

According to the driver’s problem solving model proposed
by [3], and adapted for the autonomous vehicles context
by [4], the AV’s planning problem structure is popularly
defined by three levels: strategic, tactical and operational.
The expression decision making refers to the tactical level of
the planning problem, when a global route has been traced
by the strategic level but the AV must decide how it should
be executed, given the movements of other road users and
any infrastructure limitations that may exist.

A. Decision making for AVs

Building on the deterministic decision-making models
used in the 2007 DARPA Challenge [5], probabilistic de-
cision making is often modelled as a Markovian decision
process (MDP) [6]. In [7], the state space is considered as
continuous, actions are represented as behaviors by a Dy-
namic Bayesian Network (DBN) which is realized as Bézier
parameters, where Monte Carlo Sampling (MCS) is used to
approximate the transition model. Uncertainties related to
perception and the behaviour of surrounding vehicles were
introduced into the reward function calculation using MCS
in [8], with a continuous state space and a discrete action
set.

Adding state observation uncertainties can be achieved
by expanding the MDP to a Partially Observable Markov
Decision Process (POMDP), as is done in [4]. Limiting
itself to a lane change operation, this model uses a variant
of the real-time belief space tree (RTBSS) to calculate the
resulting policy in real-time. In another implementation of
POMDP, [9] proposes the generalized policy graph to be
used as a solution instead of a policy. Each node is a
high-level action for the AV (stop, go, etc.), while edges
are represented by the observation, guiding the Bellman
backup through the graph. Also adopting the POMDP model,
[10] returns to the implementation in [7], this time using
particle filtering to calculate α-vectors and a state space



representation in the form of an offline decision tree, which
it then executes online. With intersections as a use-case, [11]
defined a POMDP to control the AV’s acceleration using an
Adaptive Belief Tree (ABT) to sample the most likely future
states, creating a belief representation. Bayesian change-
point detection is used in [12] to classify observed states from
other vehicles based on predefined action-policies (formed
by low-level commands), which are used as AV actions. To
calculate the solution, these policies are used in the value
calculation, creating a sort of ‘single stage’ MDP.

Another way to calculate a POMDP problem solution
is to use reinforcement learning. Similar to the action-
policies used in [12], [13] proposes a deep reinforcement
learning (DRL) network capable of producing high-level
decisions and low-level actions, which are represented by
option policies for a four-way intersection environment. For
the lane change operation, [14] tries to tackle the usual slow
learning rate of DRL algorithms using only thirteen features
to model the state: using information about distances, relative
velocities in respect to other users, and the AV’s absolute
velocity. It also proposes an action verification using a
highway code formalization [15].

As was done in [14], including risk assessment is a
common theme in POMDP models. Using GIDAS (Ger-
man in-depth accident study) data to build a car-pedestrian
benchmark, [16] trained a hybrid POMDP planner and DRL
algorithm to generate collision-free trajectories for AVs.
Returning to an MDP implementation, [17] assess the risk
for highway environments using common parameters, such
as time to collision (TTC), time-headway (TH) and time-to-
front (TTF) for future states, while the action state sequences
are realized by a dynamic model predictive control (MPC).

B. Ethical decision making

Since the advent of autonomous systems and our ex-
pectations for their deployment in the real world, certain
ethical concerns related to these systems have become a
well known problem. In [18], two implementations of the
casuistry approach were used to compare similarities and
differences between ethical dilemma cases and to retrieve
other cases that may be relevant to the one considered.
Ethical constraints for autonomous weapons were addressed
by [19] through an ethical governor capable of evidence-
based reasoning, which transforms evidence into logical
assertions to be used by mandatory constraints.

Formal methods were used by [20] to model dilemma
situations, making it possible to apply an ethical frame-
work which classifies actions as acceptable or unacceptable.
Beyond this, [21] proposes a formal language to model
a generic ethical dilemma, allowing the artificial agent to
reason about an ethical choice during its occurrence using the
information at hand. However, both methods do not include
a probabilistic component in their decision-making model.

To deliberate in an AV dilemma scenario, [22] advocates
for an AV’s mixed strategy, the result of the Nash equi-
librium. Using another approach, [23] applies the Maximin

principle from rawlsian contractualism, outlining an algo-
rithm to implement such a principle while using a ”veil of
ignorance” to conceal information that could create a bias.

But one can only go so far with hypothetical situations.
Parameters such as dynamic interactions between agents and
uncertain action consequences must be taken into account
to produce fair, realistic, and acceptable ethical deliberation.
Focusing on a situation when an AV must decide between a
collision with pedestrians or a physical barrier, [24] used an
estimation of the AV’s deformation against the barrier and
statistical data to define a risk velocity for the pedestrian
collision. Addressing low level decision-making, [25] defined
normal control constraints, such as steering wheel limits,
traffic rules and smooth driving, as deontological and conse-
quentialist constraints in an MPC controller for an overtaking
operation.

III. MODELING AV DECISION MAKING

Five components define a finite horizon MDP [6]: state
space (S), action set (A), transition probability function (P),
reward function (R) and the discount factor (γ). Unlike many
MDP (or POMDP) implementations that consider the state
of the other road users in the state definition, the proposed
method uses only the AV’s configuration, composed by the
AV’s middle rear-axis point coordinates (x,y), direction θ ,
scalar velocity v and steering angle φ , given by 1, as state
variables.

st = [xt ,yt ,θt ,vt ,φt ] (1)

The behavior prediction of other road users is determined
outside the MDP process and accounted for in the reward
function. A policy is the final result, dictating which action
should be executed at each state to achieve the best trajectory,
then passed to the AV’s controller. Up to this point no ethical
considerations are used in the decision making process. This
is addressed in section IV.

A. State space discovery

Starting from the AV’s initial position, all si ∈ S are dis-
covered by propagating the position using an action through
the vehicle model. Actions are defined a priori, consisting of
linear acceleration and steering angle velocity pairs, (v̇, φ̇),
which are applied over a period of time ∆tpol . For the AV’s
motion model, the single track vehicle model with front
wheel drive and without slippage is used. Its analytical model
is given by equation 2.


ẋt+1 = vt cosθt cosφt

ẏt+1 = vt sinθt cosφt

θ̇t+1 = vt
l sinφt

(2)

The available actions are combinations of
v̇ = {−c,0,c}(m/s2) and φ̇ = {−40,−20,0,20,40}(◦/s), c
being a constant.



B. Transition probability definition

Given that φ̇ controls the AV’s direction (and thus which
maneuver is executed), it defines the transition probability.
As a hypothesis, if a positive acceleration is chosen, then
the AV velocity will increase (or respectively decrease for
a negative one). Such simplification is sufficient to analyze
possible dilemma situations. The position of other road users
are considered to be known.

In each set of actions with equal acceleration, the chosen
action will have a probability of 0.8 of being successful,
meaning that for state s0,0, in figure 1, the action a3 takes
AV to s1,3 with probability of 0.8 and to s1,2 or s1,4 with
probability of 0.1 each. If only one neighbor exists, then it
becomes 0.9/0.1 (action a0).

s0,0

s1,0 s1,1 s1,2 s1,3 s1,4

a0

0.9 0.1

a3

0.1 0.8 0.1

Fig. 1: State transition uncertainty for a0 and a3

C. Reward function

The reward function indicates to the system which actions
are preferable to achieve a certain goal. It is based on
two parameters: performance (sperf) and action consequences
(sconseq), as given by equation 3.

R(st ,at ,st+1) = sperf + sconseq (3)

Performance for the vehicle is measured as distance to
the strategic path and its endpoint. Equation 4 calculates
the reward using three variables: qlat represents the lateral
distance to the trajectory, ∆θ is the offset angle between the
direction of the AV and the trajectory and qeta represents the
estimated time of arrival (ETA).

sperf = wlat ·qlat +wdir ·∆θ +weta ·qeta (4)

If the AV has a velocity equal to zero, then equation 4 is
replaced by a fixed cost ceta. The weights wlat , wdir, weta are
calibrated heuristically, enabling the AV to arrive at its goal
following the trajectory (disregarding other road users).

Action consequences are measured by two parameters,
adherence to the traffic code (straf) and proximity to other
road users (sprox), as equation 5 indicates. The values straf
and sprox can assume negative values or 0, with the latter
approximately 10 times lower than the former (sperf can as-
sume positive or negative values). Such measure avoid trade-
offs between traffic code violations and possible collisions.
Traffic code violations are not considered to be constitutive
of a dilemma situation event, since the objective of this paper
is to focus in unavoidable collisions.

sconseq = straf + sprox (5)

A cascade of if-else emulates some traffic rules into the
AV’s decision process by adding costs when necessary.
• Velocity above limit: add the cost cvel to reward.
• AV in opposite lane: add the cost coplane to reward.
• AV in the sidewalk: add the cost csidewalk to reward.
The evaluation of sprox considers the proximity to other

road users and the occurrence of a collision. Figure 2 defines
the security zones close to the vehicle, which are the regions
between the vehicle’s body and the red lines. These frontiers
represent an implicit risk measure for the reward function,
since their role is to verify if breaking while maintaining the
same direction is still a valid collision avoidance policy and
if it is not, the action’s reward is negatively impacted.

dw

dl

dl

dbr d f r

Fig. 2: AV with all the proximity limits

If a road user is predicted to be inside one of these zones,
then a cost, calculated by equation 6, is added to the reward.
Lateral frontiers are placed at a distance equal to dl from the
AV’s body (dw). The frontal limit is given by d f r plus dbr
(breaking distance). Both d f r and dl take into account the
displacement of other road users during tpol .

sprox = cst +wv ·
[
∆vproj

t+1−∆vproj
t

]
(6)

In equation 6, cst is the static cost related to the road
user’s presence inside the AV’s limits. Both ∆v measure the
difference between the road user’s and AV’s projected ve-
locity onto the distance vector between them; the projections
can be seen in Figure 3. Such quantity shows if the AV is
converging on (∆v negative) or diverging from (∆v positive)
the road user. Therefore the weight wv increases or decreases
how fast the AV changes direction due to possible collisions.

dob j

vnext
av

vnext
avproj

vnext
ru

vnext
ruproj

Fig. 3: Calculation of velocity projections

IV. EVALUATING DILEMMA SITUATIONS

Until now the AV has been controlled without any ethical
considerations. A dilemma situation is characterized by the



AV’s inability to avoid an accident. It can be detected when
all ai ∈ A cause an accident. In such a case, the reward
function as proposed by equation 3 does not account for the
moral implications arising from the chosen course of action.
These actions necessarily have a moral component, since
they impose a risk distribution in the environment which has
consequences for all road users [2].

The approach presented from this point onwards uses
a quantitative variable to measure the consequences of an
action for each road user, and a deliberation process to decide
which action is more appropriate given a moral theory. It
intervenes when, and only when, a dilemma situation is
detected (since in non-dilemma situations the AV, as it was
defined, should be able to cruise only with analytical param-
eters). Three different deliberation processes are proposed,
one based on rawlsian contractualism [26], one based on
utilitarianism [27] and another based on egalitarianism [28].

A. Defining Harm

To estimate an accident’s severity, the most popularly
employed measurement is the difference of velocity (∆v)
between road users prior to a collision [29], [30]. But ∆v
does not consider the accident context (road user’s mass and
collision mechanics, for example). One can start considering
that h ∝ ~J, cvul , h representing the road user’s harm, J for
the impulse applied during collision and cvul for a measure
of physical vulnerability. The expression then becomes h ∝

∆~p, cvul , resulting in the equation 7, for a road user k:

kh(st ,at ,s′t) =
kcvul ·

(
‖~v f − k~vi‖

)
(7)

To calculate the velocity after collision, v f , both road
users (k and l) are considered as punctual masses and all
dissipation forces are neglected in equation 8.

mk
k~vi +ml

l~vi = (mk +ml)~v f (8)

For collisions with pedestrians, it is considered that the
pedestrian’s ~v f is equal to the AV’s ~vi. Thus, the AV’s
velocity does not change, and its harm is equal to zero.

A plethora of studies exist in accidentology addressing
collisions for pedestrians or vehicles. The role of cvul is to
represent the inherent physical vulnerability of each road
user. It is proportional to injury probability given a ∆v
between two road users involved in a collision. This is an
indirect measurement, since it is velocity dependent, but it
should give an estimate of the physical differences between
pedestrian and vehicles.

The accuracy level of this evaluation depends on which
information is used to plot the risk vs ∆v curves. Ideally
one would need data that considers angle of collision,
compatibility between vehicles, vehicle masses and different
types of road users but, regrettably, such detailed data is hard
to find. These curves are more abundant for fatality risk and
frontal collisions. For the simulation in section V, they will
be adopted as the source for the cvul determination ([30] and
[31]).

B. Action deliberation

Using the harm value, defined by equation 7 for each road
user, an action could be chosen in a dilemma situation. But
the transition probability should also be taken into account,
and is covered by equation 9 which defines expected harm.

khexp(st ,at) = ∑
st+1∈S

p(st+1|st ,at)
kh(st ,at ,s′t) (9)

In dilemma scenarios, some form of ethical reasoning
should be used to deliberate about an action. Since most
ethical theories are created for personal forms of practical
reason, or states and societies, some degree of conversion
from this context to the dilemma situations an AV might face
is required. Three different ethical theories were chosen:

1) Contractarian: Two principles of justice are proposed
by [26], the first requires that all individuals have
access to an equal and maximal degree of liberty and
rights, which is translated in our context as a road
user’s right to not be targeted or directly disadvan-
taged in the AV’s deliberation . The second principle
requires that if there is some injustice, characterized
by a difference of rights or treatment, it should be
beneficial to the worst off. Thus, starting from the most
equal state, when the standard deviation is minimal
for an action a (equation 10; hexp(a) represents the set
ihexp(a), 0 ≤ i ≤ n, n being the number of road users
in the scene), the largest expected harm is minimized,
as long as the harm for all others does not increase
(equation 11).

aint = argmin
a∈A

σhexp(a) (10)

Min
a

{ihexp(a)
}

, subject to jhexp(a)≤ jhexp(aint)

(11)
2) Utilitarian: This approach is rooted in the Greatest

Happiness Principle, which states that the righteous-
ness of an action is proportional to how much happi-
ness it promotes, and consequently its wrongfulness
is proportional to how much pain it produces [27].
As such, utilitarianism defends the maximization of
the total amount of good (or happiness) as a method
to find the most rightful action. Using the second
formulation of the same problem, one can minimize
the total amount of expected harm to find the ”least
wrongful action”, as equation 12 proposes.

aeth = argmin
a

n

∑
i=0

ihexp(a) (12)

3) Egalitarian: Beyond the idea to minimize the overall
expected harm, egalitarianism also proposes to divide
the expected harm avoiding large discrepancies be-
tween each road user [28]. Therefore the variance of
each road user’s expected harm at each action is used
as a weight for the sum of expected harms. Equation
13 represents such idea.



aeth = argmin
a

n

∑
i=0

varhexp(i,a) ·
ihexp(a) (13)

As it can be seen, a road user is represented by his
expected harm. The number of passengers inside the vehicle,
or the pedestrians in close proximity, are not considered into
the decision making.

C. Solving the MDP

As previously stated in section III, the MDP to be solved
consists of a discrete state space and a discrete action set,
with a discount criterion and four transitions. An iteration
process uses equation 14, known as the Bellman’s equation,
to maximize the value for all states.

Vt+1(st) = max
a∈A

[
R(st ,a,st+1,e)+γ ·∑

st+1

P(st+1|st ,a)Vt(st+1)

]
(14)

When the convergence is achieved, arriving at a mean
squared error smaller that ε , the policy is extracted using
the equation 15.

π
∗(si) = argmax

a∈A
∑

st+1∈S
P(st+1|st ,a)Vt(st+1) (15)

Some states may have actions that cause collisions and
actions that do not. Those that cause accidents are discarded
during the iteration of 14. If a dilemma situation arises, then
one of the three deliberation methods of subsection IV-B is
used to select π∗(si) action.

But one should also consider the future consequences of
these actions that do not provoke an accident immediately.
This is done projecting future collisions into previous states.
Figure 4 shows how this mechanism works. Red states show
that a collision occurred during the transition, and in such a
case the AV breaks and stops. State s2,2 is critical, since all
its actions will cause an accident. When the deliberation is
done for s1,0, which is not critical per se, it realizes that s2,2
is. Thus s1,0 is considered to be critical and the information
used in the ethical deliberation of s2,2 is transfered to s1,0
to be used in its ethical deliberation. The same procedure is
done for s0,0.

s0,0 t = t0

s1,0 s1,1 s1,2 t = t0 +∆tpol

s2,0 s2,1 s2,2 t = t0 +2∆tpol

s3,0 s3,1 s3,2 t = t0 +3∆tpol

a1 a2 a3

a1 a2 a3

a1 a2 a3

Fig. 4: Projection of future collision into previous states

V. SIMULATION RESULTS
Using the WeBots simulator, the aforementioned algo-

rithms were tested in the scenario shown by figure 5. While
the AV is traveling in its lane, two pedestrians, P1 and P2
suddenly cross into the street (start moving at tsimul = 4s).
The AV cannot stop, so it decides to avoid them using the
opposite lane. At this moment, an incoming vehicle, VEH,
is detected, right in its immediate front, creating a critical
situation: the AV can collide with the vehicle, the pedestrians
or with the physical barriers along the sidewalk’s external
borders. Each moral profile will be used to determine the
best course of action.

(2,3.25,0,0,0)

AV (100,6.75,π,10)

VEH

(22.5,1.5, π

2 ,1)

P1

(25,0, π

2 ,1)

P2

Fig. 5: Initial simulation setup (other road users’ configura-
tion is represented by (x,y,θ ,v), not in scale)

All MDP parameters and the physical information of road
users’ are shown in table I.

TABLE I: Road users’ physical properties

AV Pedestrian Vehicle

Mass (kg) 2105+80 80 1065+80
Width, Height (m) 4.853,1.65 0.625,0.625 3.475,1.310

Wheelbase (m) 2.933 − 2.55

A. Decision making without dilemma situations

The AV should not produce accidents or critical situations
on its own. Varying the initial position of the vehicle (xveh)
and the velocity direction of one of the pedestrians (θped)
relative to figure 5, different AV behaviors can be observed.
Each policy predicts two seconds ahead, with one second
used for control ((v̇, φ̇) are directly fed into the AV). The
AV needs at least two transitions to verify if the next action
will not cause an accident, and that a state has actions which
will not necessarily lead to a dilemma situation. The weights
of equations 4 and 6 were set heuristically to obtain a result
representative of the MDP defined in section III.

The first of the AV’s behavior plots shown in figure 6,
for xveh = 100 is acceptable, avoiding the pedestrian and
returning to the other lane afterwards. All road user states are
considered observable and known, therefore at the beginning
of a policy calculation the AV can assert correctly all its
states and predict changes throughout the decision horizon.
But since the AV only has the capacity to predict two seconds
ahead of time, it starts the maneuver without knowing how
it will end. This can be seen more clearly in the second



Fig. 6: AV’s behavior for xveh = 100, 80, 40m

plot, for xveh = 80 when after the beginning of the maneuver,
it reaches a critical situation and simply collides with the
wall beyond the sidewalk. Adding one mode transition to
the policy produces a viable trajectory, seen in figure 7 first
plot, but increases the total calculation time from t = 60.1s to
t = 802.4s. In figure 8, we can see that there is a difference
between velocities and directions in t ∈ [3,7]. The capacity
to predict whether the other vehicle will end up too close to
the AV causes the AV to adjust its direction to return to the
correct lane as fast as possible.

Fig. 7: AV’s behavior for xveh = 80,40m with 5 transitions

Starting the other vehicle at xveh = 40m (third plot in
figure 6) creates a situation in which the AV cannot execute
the avoidance trajectory. It is perhaps intuitive for a human
driver to stop and wait for the pedestrians, but here the AV
only reduces its velocity at a certain point and continues
to move until the path is clear. Even with five transitions
(second plot in figure 7) the behavior is similar, meaning
that it needs more transitions to receive the delayed reward
from the future.

Some conclusions can be drawn from these three different
situations: it is essential for the decision-making of the
autonomous vehicle that the decision horizon be increased.
However, the exponential nature of the state space discovery
process (subsection II-A) must be avoided. One way to do
this is to sample the most probable next states given a
current state and an action, focusing only on these discovered
next states (as some POMDP solvers do). Another problem

Fig. 8: AV’s velocity, direction and trajectory for xveh = 80m

occurs when the AV’s velocity increases too much, causing
a single turn left action to create a dilemma situation, since
all actions and the transition time (∆tpol) are fixed. The
AV cannot compensate the increase of velocity into each
action consequence, therefore it chooses to turn right due
to the negative influence the cost has into each neighboring
state. To avoid these results, the actions and/or policy time
should be dynamic and dependent on the AV’s velocity. Risk
evaluation is also necessary to stop the AV from starting a
maneuver that cannot be completed in one policy, as done
in figure 6. Defining the state space without a fixed number
of transitions and using the end of a maneuver as a sign of
policy termination would always allow the AV to start and
end in low-risk states.

Changing the direction of the first pedestrian from π

2 rad
to 3π

4 rad creates a different situation, but the results obtained
are similar. Figure 9 shows the trajectory at xveh = 100 m and
40 m and figure 10 at xveh = 40 m for five transitions.

Fig. 9: AV’s behavior for xveh = 100, 40m and θped =
3π

4 rad

Fig. 10: Traj. for xveh=40m, θped= 3π

4 rad for 5 transitions



In comparison with figure 6, figure 9 produces similar
behavior, where an additional transition allows the AV to
avoid an accident. For xveh = 40 and 5 transitions, it makes
the AV choose to accelerate to avoid an accident, which
in turn causes it to invade the sidewalk. With only four
transitions the collision cost was not detected, only the
sidewalk invasion is avoided, which causes the accident.

Another critical point in the implementation is the weights
used for the reward function. Such weights were defined
heuristically for the specific use case considered. Even so,
they do not reproduce in the AV’s behavior an ideal trajec-
tory, which can be seen in figure 6 between [5,15] at the X
axis. The small but perceptible change in AV’s direction is
not illegal but pointless.

B. Decision making in dilemma situations

As mentioned in the previous subsection, the ethical
dilemma scenario is created moving VEH abruptly in just one
time step (also, the x coordinate of P1 and P2 are changed to
20 and 22.5, respectively). At this point (where the AV is in
the same state for all policies tested) the AV must deliberate
about an action, using one of the deliberation processes pro-
posed in subsection IV-B. The velocity difference between
each road user (∆v) is not significant enough to be identified
in the fatality probability versus ∆v graphic given by [30]
and [31], thus the constant cvul used for the collisions will
be equal to one.

As it can be seen in figure 11, the result for all cases
is a collision with the pedestrian. But each policy chooses
a different action, which imposes different collision conse-
quences. Take the contractarian policy, table II: instead of
decreasing the velocity right before the collision (actions 1
through 5), it chooses to maintain it (vAV = 4m/s) to escape
a collision with the other vehicle (action a5). The AV ends
up colliding with P1 (in the next calculated policy) with
(vAV = 4m/s).

Fig. 11: Trajectories for contractarian, utilitarian and egali-
tarian policy, respectively

For the utilitarian policy, (second plot of figure 11), action
a0 is chosen because it minimizes the total amount of harm,

TABLE II: Expected harms and σhexp for contractarian policy

Action (m/s2,◦/s) AV P1 VEH P2 σhexp

a0 (−1,−40) 3.64 0 6.94 0 2.89
a1 (−1,−20) 3.64 0 6.94 0 2.89
a2 (−1,0) 3.61 0 6.90 0 2.87
a3 (−1,20) 3.54 0 6.77 0 2.82
a4 (−1,40) 3.49 0 6.76 0 2.81
a5 (0,−40) 0.383 4.38 0.730 4.00 1.83

as can be seen in table III. It decreases the velocity to
vAV = 3.5m/s and then increases to vAV = 4m/s as to escape
the other vehicle. The final collision velocity, in the next
calculated policy is vAV = 3.1m/s.

TABLE III: Expected harms and Σhexp for utilitarian policy

Action (m/s2,◦/s) AV P1 VEH P2 Σhexp

a0 (−1,−40) 0.364 3.90 0.694 0 4.96
a1 (−1,−20) 3.28 0.433 6.25 0 9.96
a2 (−1,0) 3.63 0 6.93 0 10.57
a3 (−1,20) 3.58 0 6.83 0 10.40
a4 (−1,40) 3.55 0 6.81 0 10.36

The egalitarian policy, trying to achieve a compromise
between total expected harm minimization and dispersion
minimization actually increases the velocity right after the
ethical deliberation, and ends up colliding with the pedestrian
with vAV = 4.5m/s. Action a10 predicts that both pedestrians
will be struck by the AV. This policy, in this example,
produces more negative consequences than the other two,
but maybe with another formulation (for example not using
variance as weight, but another measure) it can represent a
compromise between a contractarian and a utilitarian policy.

TABLE IV: Expected harms and total cost for egalitarian
policy

Action (m/s2,◦/s) AV P1 VEH P2 Total

a0 (−1,−40) 3.77 3.34 7.20 0 95.06
a1 (−1,−20) 3.76 3.05 7.18 0 98.07
a5 (0,−40) 0.385 4.69 0.735 0 50.00
a6 (0,−20) 3.46 2.73 6.61 0 77.50
a10 (1,−40) 0.431 4.91 0.824 4.60 46.05

VI. CONCLUSION AND NEXT STEPS

The deployment of autonomous vehicles presents an op-
portunity to decrease the number of traffic accidents, but
one also must consider the moral issues that can arise if
this autonomous system provokes accidents. To explore the
consequences of different ethical approaches when a colli-
sion is inevitable, a framework was proposed, consisting of
a measure of harm for collisions and different interpretations
of ethical theories that could be used as an action deliberation
method in dilemma scenarios. However, we do not advocate
a specific ethical approach.



In terms of future work, the MDP algorithm must be
adapted to consider maneuvers through its policy calculation,
passing through the increase in prediction capacity. A more
efficient state space sampling, together with a dynamic
method for transition probability estimation, is essential to
accomplish such an objective. It would likewise be inter-
esting to consider higher velocities to measure the trade-
offs between cvul and velocity variation during collisions.
Additionally, the harm calculation would be more precise if
detailed ∆v diagrams were available and more informative if
probability of serious injury was used as a risk parameter.

For the ethical deliberation, it is also necessary to consider
deontological rules, like [20] and [21], since a quantification
of actions is a soft constraint, while morally there are actions
which can be considered unjustifiable, even from a harm-
minimization standpoint.
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