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Abstract: We analyzed the role of predictable and unpredictable variability in the identification
of optimal renewable energy mixes in an electricity system. Renewable energy sources are the
fastest growing energy generation technology, but the variable nature of production linked to
climate variability raises structural, technological and economical issues. This work proposes the
differentiation of the treatment applied to predictable and unpredictable variability in the context
of Markowitz portfolio theory for optimal renewable deployment. The e4clim model was used as a
tool to analyze the impact of predictable sources of generation variability on the optimal renewable
energy mixes. Significant differences appeared, depending on the consideration of risk, all of them
showing room for improvement with respect to the current situation. The application of the methods
developed in this study is encouraged in mean-variance analyses, since its contribution favors
scenarios where unpredictable variability in the climate-powered renewable energy sources are
considered for their risk introduction.

Keywords: renewable energy; mean-variance analysis; climate variability; PV generation; predictability

1. Introduction

According to the International Energy Agency (IEA) [1], in a scenario that incorporates the current
policy intentions and targets, wind and solar photovoltaics (PV) become the most relevant renewable
sources of energy. Demand is projected to grow by 1% each year to 2040, but more than half of this
increase is covered by low-carbon sources, led by solar PV. The IEA [2] has reported an increase of
almost 3% in renewable electricity generation in the first three months of 2020 with respect to the
same period of 2019. An increase of nearly 5% is expected in 2020, and this expectation was even
higher before the COVID-19 crisis. The COVID-19 crisis has also been related to drops exceeding
20% in electricity demand during times of full lockdown, which has translated into a decrease in the
demand of fossil fuels but a rise in the demand of electricity from renewable sources, pointing to
renewable generation as the most important energy source for a sustainable future. Independently of
the recovery rate regarding the crisis, renewables are expected to continue experiencing an increase.
More specifically, solar PV is the renewable energy source with the highest expected growth in 2020.
Overall, in the path towards a renewable future, wind energy and solar PV are the most important
sources according to the International Renewable Energy Agency (IRENA) [3].

Accordingly, the European Union (EU) is setting the guidelines at the European level for an
efficient energy transition [4,5]. The goal is to achieve long-term climate neutrality, by having no net
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carbon emissions by 2050. For that, the EU has planned a path with intermediate objectives for its
member states through setting targets for 2030 [6], including a 32% renewable energy share and a
decrease of at least 40% in greenhouse gas emissions with respect to 1990. The European Union is
advancing in the achievement of the objectives, since 21 member states (including Spain) are complying
with or exceeding the goals that marked this trajectory for the period 2017–2018.

Within Europe, the Mediterranean is an area especially susceptible to some aspects of climate
change [7], and has had significantly greater consequences from some of its effects. For instance,
the warming effect is stronger in the Mediterranean region [8], as well as unevenly distributed within
the months of the year [9]. The United Nations Environment Programme (UNEP) [10] states that
there is a need for an investment in renewable energy sources and an increase in their efficiency in
the Mediterranean region, due to the need for an equilibrium in the use of food, water and energy.
Therefore, it is highly fundamental for the Mediterranean to have an efficient renewable energy supply
in the long run.

Countries in Europe have developed national plans to meet the EU goals. The path towards the
2050 climate neutrality cannot be fixed by the EU, but by individual countries. The Spanish plan [11]
was successful in the 2017–2018 period and more ambitious goals are set towards 2030. In particular,
the objectives are: 23% drop in greenhouse gas emissions with respect to 1990; 42% renewable
energy at final use, doubling the 20% of 2020; 39.5% increase in energy efficiency in the next decade;
and 74% renewable energy presence in the electricity sector, in accordance with the 100% goal for 2050.
An analysis of the implications that these types of objectives have on the energy system, specifically in
the 2020 objective of 20% penetration, was carried out in Gómez et al. [12], also in the specific case
of Spain.

In the particular case of Spain, investments are put towards understanding the relation of climate
and the energy system. More specifically, the Spanish National Plan for Adaptation to Climate
Change [13] puts forward the necessity to improve our understanding of the effects of climate on
the renewable production and use this information in energy planning stages. Similarly, the climatic
effects on the functionality and resilience of the different elements of the electricity system need to be
understood in order to adapt these infrastructures to the final goal of reliable and stable generation.
Even though this plan is meant to begin in 2021, the scientific community is already progressing
towards this understanding of the electricity system. Datas et al. [14] found that PV and battery
installation in buildings could have a very positive effect in individual consumers both in terms of fuel
and economic savings. Santiago et al. [15] studied the efficiency of different PV cells to find the one
that best suits southern Spain. Santos-Alamillos et al. [16] analyzed the importance of balancing PV
and wind technologies in the south of the Iberian Peninsula. These types of studies that balance the
deployment of PV and wind technology are of particular interest in a context which predicts a global
increase in penetration for both technologies in the upcoming years [17,18].

Grid integration of renewable energy is key for a successful electricity system and requires
planning and management at all time scales [19]. This is where the concept of complementarity
becomes fundamental. Complementarity can be temporal (storage) or spatial (grid), although no
consensus definition for the concept exists [20]. A strong knowledge of how the complementarity works
can help match generation curves to demand curves, whose mismatch poses one of the major problems
in renewable deployment [21,22]. For instance, François et al. [23] studied the complementarity of
run-of-river hydropower and PV in northern Italy, finding a strong dependency of the share with the
time scale of interest. Raynaud et al. [24] found that using diverse energy sources in an energy mix
helps reduce the frequency of energy droughts.

A method for the adaptation of an energy system to the climate characteristics of the regions is
the Markowitz portfolio theory [25]. This approach aims to maximize the penetration of renewable
energies while minimizing the risk, which is usually defined in terms of cost or generation variability.
Tantet et al. [26] applied this theory to the different regions of Italy and showed the robustness of
the general optimal penetrations to the different possible climate data sources; Zedda [21] used
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this method to maximize the penetration of a set of wind plants in Sardinia, finding possible a
coverage of up to 94% of the demand if the optimal mix were to be used; Beltran [27] inferred the
optimal renewable mix in Mexico, finding that the same risk could be achieved with lower cost and
vice versa; Roques et al. [28] determined the optimal deployment among five European countries,
shedding light on the importance of an interconnected grid in the European context; Roques et al. [29]
studied the UK market from a more economical point of view, showing optimal scenarios in terms
of electricity and CO2, and used a Monte Carlo approach to obtain the input data of the Portfolio
from a model of investment, showing the variety of data origins that can be absorbed by this type
of optimization; Thomaidis et al. [30] optimized the mix of concentrating solar power and wind in
the Southern Iberian Peninsula, introducing the preference for risk or return of the portfolio manager;
Santos-Alamillos et al. [31] explored wind repowering potential in Spain, while introducing different
repowering scenarios considering realistic investments in the deployment of wind farms.

Using portfolio theory implies an approach where the return is maximized and the risk is
minimized. However, the exact definition of return and risk may vary between different studies.
Zedda [21] did not specify the methodology used, but adapted financial theory to the coverage of
the demand curve by the different wind farm production approaches. Tantet et al. [26] found the
optimal mixes for PV and wind through maximizing the share of the demand covered by renewable
energy sources (penetration) and minimizing its variability in Italy; Beltran [27] did so for Mexico,
Roques et al. [28] for a combination of European countries, Thomaidis et al. [30] for the Southern
Iberian Peninsula, and Santos-Alamillos et al. [31] for the wind farms of Spain. However, this is not the
only valid definition of the return and risk. Roques et al. [29] applied the optimization to the economics
of renewables and took the net present value (difference between present value inflows and outflows,
a sign of money return per unit of installed capacity) and found what would be the optimal mixes
from the investor’s point of view. Similarly, Muñoz et al. [32] for Spain and Marrero et al. [33], in a
worldwide approach, optimized return in economical terms. On a similar note to the generation cases,
Kitzing [34] maximized the Sharpe ratio (the mean-risk ratio of a resource) with respect to the different
support levels (price levels that the renewable generation does not fall below). Another interesting
approach taken in Heide et al. [35] aims at minimizing the storage energy capacity, the balancing
energy, and the balancing power in their different combinations (this case is a double minimization
instead of a parallel maximization and minimization, but the concept remains the same, as the two
minimized quantities work in opposite ways).

In this context, a technology of particular interest, especially in the consideration of risk, is PV.
PV is strongly predictable, with the main variation mode emerging from astronomical cycles [36].
Clouds are only second in the representation of the solar radiation variability, but are the main physical
parameter for co-variability of surface solar radiation [37]. The instantaneous presence of clouds
is unpredictable over climatic time-scales, unlike the astronomical radiation, which represents the
predictable component of the radiation. All of this matches perfectly with the spectral analysis carried
out in Lave and Kleissl [38] in four sites in the state of Colorado, which found that the highest energy
periods are the 24-h and its harmonics (mainly 12, 8, 6, and 4 h, in order of peak intensity). This effect
is not explicitly accounted for in portfolio theory, where the entire variability of the surface radiation is
considered as risk, ignoring the advantages of its predominant predictable component. The motivation
of this study originated from the idea that the predictable nature of the largest component of PV
generation is underutilized and that this characteristic can be explicitly accounted for when optimal
mixes are pursued.

The predictable intermittency of PV generation can already be considered in the design of the
system, and spatial (grid) and temporal (storage) variability of the renewable generation sources can
be taken into account [39,40]. The large presence of renewable intermittent energy sources makes the
installation of storage resources a valuable option, since the generation cannot be generally matched
directly to the demand. The long-established fuel-based system, producing electricity when it is
needed, led to an inefficient, over-designed, and expensive system [41]. The introduction of storage,
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especially in a context where the intermittency introduced by the renewable energy sources cannot
be avoided, can simplify the balancing of production and demand, as it decouples generation and
load [42], and brings with it an overall more stable electricity system. From a management and
planning perspective, predictable variability can be translated to periods where energy will be saved or
extracted from storage. Although unpredictable variability is easier to handle with storage, its erratic
behavior yields distinct risks in the system, contrarily to predictable variability. Even though part of the
unpredictable variability can be predicted in the climatic sense, the need for instantaneous satisfaction
of the generation-demand balance requires more detailed knowledge of the variability of the electricity
system components. The overall cost of renewable integration can be significantly reduced through
improvements in the allocation of renewable generation plants [43] in order to provide more stable
and predictable generation.

While prediction costs are usually found not to dominate the integration cost, it is still significant
that they are minimized [44]. A deep knowledge of the predictable or unpredictable nature of the
energy generation sources is key in reaching a mix with minimal prediction costs. In a mix with
wind and PV as the renewable energy sources, PV shows a strong predictable component, whereas
wind presents generally unpredictable behavior at hourly time scales. Taking this predictability into
account presents a powerful approach that was not considered in the optimizations of existing studies.
This aspect can contribute towards reaching more optimal mixes that better account for the variability
introduced by the climate resource. Additionally, while some studies estimate prediction costs, they do
not always take them into account in their optimization of energy mixes, and in particular, there is
no apparent instance of studies differentiating the impacts of PV and wind on prediction costs and
optimizing the mix while taking this differentiation into account.

The objective of this study was to discern the predictable and unpredictable variability of the
radiation for PV generation in portfolio theory. Since the predictable variability can more effectively
be accounted for at the planning stage, unpredictable variability should be distinctively considered
in the risk definition in a portfolio context, thereby penalizing the unpredictable factors more in
the risk assessment of an energy mix. A redefinition of PV risk in portfolio theory is proposed,
where only the unpredictable nature of the PV generation is penalized in the optimization process.
The proposed technique does not penalize regions for having strong daily cycles, a consideration that
can help existing approaches take into consideration the strong difference in behavior between the
two components and find more optimal mixes in an application that more closely resembles the actual
behavior of PV generation.

The article is structured as follows. The models and data used are explained in Section 2 together
with a definition of the predictable and unpredictable components of the risk. The impacts on
mean-variance optimization of the proposed methodology are shown and discussed in Section 3.
Section 4 gives an overview of the findings of this study and provides the concluding remarks.

2. Methodology

In this study, we use the energy for a climate integrated model (e4clim) presented in
Tantet et al. [26] to analyze the impacts of climate variability on optimal renewable energy mixes,
focusing on the development of a method for dealing with the risks that come from the presence of
predictable and unpredictable variability components. e4clim strikes as the most suitable tool for this
purpose for multiple reasons. First, it is focused on the climatic resource, which powers renewable
energy generation and is its main source of variability. Second, it allows for a combination of hourly
climate data at the resolution of the climate-data grid and regional electricity data, allowing one to
get regional capacity-factor and demand estimations to optimize regional mixes. At its core, e4clim
is a modeling platform to optimize renewable energy mixes regionally based on climatic features,
which allows one to assess the sensitivity of optimal energy mixes to how the different elements in the
generation and demand components are incorporated. Additionally, objectives of the optimization
being defined heuristically (mean and variance, in the context of a mean-variance analysis, one of the
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possibilities offered by e4clim) allows us to focus on the variability of the production, while avoiding
running a full power-system model to estimate system costs. We can thus focus on renewable energies,
which facilitates sensitivity analyses.

2.1. Data Used

We used the The Modern-Era Retrospective Analysis for Research and Applications, Version 2
(MERRA-2) [45] reanalysis as our reference climate data. The temporal resolution of MERRA-2 data
is one hour, with a grid of 0.625◦ in longitude and 0.5◦ in latitude. We used 20 years of climate data,
spanning from 1999 to 2018. In order to ensure representativity of the regionally aggregated series,
administrative regions with low numbers of climatic points were clustered with larger neighboring
administrative regions to form a larger modeled region. An example is the region of Cantabria,
which we merged with Asturias to form the “Northern Iberian Peninsula” region in e4clim simulations.
The use of calibration with observed electricity data to the model also helped correct these issues.

Spanish electricity data were obtained from Red Eléctrica de España (REE). Monthly regional
renewable generation series were obtained, whereas only yearly regional demand series were available
from REE. A calibration period, covered by uninterrupted quality-checked (using REE reports and API)
data for both regional generation and demand covers the years 2014 to 2018. Regional installed capacity
data for this period was also obtained from REE. Moreover, we also used REE hourly national demand
series in the downscaling process of the yearly regional demand to hourly frequency. In particular,
the national series was scaled to match the yearly total of the yearly regional series to render the
regional hourly estimate.

2.2. Model and Parameterizations

The model calculates hourly wind and PV generation from climate data at each climate model
gridpoint. The wind generation is modeled by passing the wind magnitude computed from the zonal
and meridional wind and rescaled by the density to a power. The PV generation is parameterized
from surface downward shortwave radiation and temperature, which is used to estimate the panel
efficiency. A more detailed description of these models is given in the Appendix A.3 of Tantet et al. [26].
These calculated generations are then uniformly averaged over regions, the latter being the division
present in the electricity system and the scale at which the system is to be optimized.

The temperature-dependent demand parameterization was fitted using the regional hourly
demand series over the calibration period (see below), for which both electricity and climate data were
available. We then applied the fitted demand function to the temperature data over the whole 20-year
study period to obtain regional hourly demand series.

The capacity factors per region estimated from the climate data present biases coming from the
climate data and model parameterizations, as well as the grouping over regions. We used observed
electricity data to improve the regional capacity factors estimated from climate data. To do so,
we performed linear regressions over the 5-year calibration period (2014–2018) for each region to
estimate scaling factors relating the capacity factors computed from the climate data to the electricity
data. We then applied this correction to the full 20-year study period to obtain the corrected generation
series from each region. An instance of the importance of the calibration can be seen if a region is
not particularly windy overall but has a specific area with sustained winds where wind farms are
installed. In general, this region presents strong renewable potential even though it is unseen when
the coarse climatic resolution and the homogeneity of the region are considered. The final inputs to the
mean-variance optimization are hourly time series of demand, wind generation, and PV generation
over the 1999–2018 study period.

The mean-variance analysis is an application of the portfolio selection introduced in economics
by Markowitz [25]. This strategy, applied to energy mixes, aims at finding optimal combinations of
installed capacities per region and technology that maximize the renewable energy penetration while
minimizing the risk, based on the regional series of capacity factor and demand. The penetration of
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renewable generation sources is defined as the expected value of the ratio of total renewable generation
over total demand:

µ = E
[
∑
k

ωk
~ηk

∑i ~Di

]
= ∑

k
ωkE

[
~ηk

∑i ~Di

]
(1)

The risk is defined here as the variance of the series:

r = V
[
∑
k

ωk
~ηk

∑i ~Di

]
(2)

where µ is the renewable energy penetration and r the risk. In Equations (1) and (2), E and V represent
the expected value and variance operators over time. The index k is a multi-index where each k
represents a pair k = (i, j) of region (i) and technology (j). ~Di is the demand time series for region
i, ωk represents the installed capacity (IC) for a region–technology pair and ~ηk is the capacity factor
(CF) time series for a region–technology pair, so the product ωk~ηk represents the generation time
series for a region–technology pair. In the optimization process, the mix of IC (ωopt

k ) that minimizes
the risk is identified for each penetration level, since the bi-objective optimization is approached as
an iteration over individual optimization problems where µ is discretized into its possible values
(the whole development of the process is shown in Appendix B of Tantet et al. [26]).

A reformulation of the expression of the risk can help separate the different components that
constitute it, i.e., the variances of individual region–technology pairs and their covariances with other
region–technology pairs. By definition, the risk defined as the variance can be expressed as

r = V
[
∑
k

ωk
~ηk

∑i ~Di

]
= ∑

k,l
ωkωlCov

(
~ηk

∑i ~Di
,

~ηl

∑i ~Di

)
(3)

where Cov represents the covariance matrix between the series of capacity factors normalized by
the demand. By definition, the covariance matrix includes all covariances between regions and
technologies and also the variances of technology-region pairs. If the terms in Equation (3) are
separated, the risk can be expressed as:

r = ∑
k

ω2
kV
(

~ηk

∑i ~Di

)
+ ∑

k 6=l
ωkωlCov

(
~ηk

∑i ~Di
,

~ηl

∑i ~Di

)
(4)

Therefore, the risk is expressed as the sum of the individual variances of the region–technology
pairs with an extra term accounting for the covariances between them. The first term on the RHS
of Equation (4) is always positively defined, as the variance is. Contrarily, the second term on the
RHS shows that it is possible for the risk to be reduced (resp. augmented) by the presence of negative
(resp. positive) covariances. Having non-zero ωk in two negatively correlated region–technology pairs
produces lower risk than the case in which they are positively correlated or even uncorrelated.

However, the definition of the optimization problem is not complete, as some constraints are
necessary to make sure the optimization results represent realistic and plausible changes in the
real world. First, IC is by nature a positively defined vector (ωk ≥ 0 ∀ k). When considering a
repowering scenario, where the total IC in the system is an upper bound in the optimization and at
most redistributed regionally, the total IC of the mixes cannot exceed the reference total IC. In our
case, the IC installed in 2018 in the Spanish electricity system is taken as the reference (ωtotal2018).
Putting together the definitions and constraints, we have the complete optimization problem used in
this study:

max
ωk

µ (5)
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min
ωk

r (6)

subject to ωk ≥ 0 ∀ k (7)

and ∑
k

ωk ≤ ωtotal2018 (8)

This mimics the basic optimization problem solved by Tantet et al. [26]. The solution to
Equations (5)–(8) are the optimal energy mixes under the current climate, allowing a repowering of the
whole electricity system. This assumes that the total power installed remains constant, independent
of technology.

An alternative scenario is obtained when IC in the optimization process is bounded for each piece
of technology (PV and wind). In that case, the total capacity constraint in Equation (8) is substituted by:

∑
i

ωi,j=PV ≤ ωtotal PV (9)

∑
i

ωi,j=wind ≤ ωtotal wind (10)

This is obviously a more constrained problem than Equations (5)–(8), but its solution represents a
more realistic renewable deployment mix, in the sense that the solution to Equations (9) and (10) reveals
where the currently installed PV panels and wind turbines would have produced higher penetrations
and lower risks to the current Spanish electricity system. It is well known that the deployment of PV
and wind plants depends on many factors, with specific regional policies among them [46], but the
solution to Equations (9) and (10) provides information regarding the optimal deployment of currently
installed means with no inference from more socially steered decision mechanisms.

2.3. The Pareto Front and Its Relevant Elements

The solution of the optimization problems described above is ~ω as a function of either the
penetration µ or the risk (expressed here as

√
r). This is known as a Pareto front [47] and for each

constraint (maximum total IC or maximum per-technology IC), a ~ω(µ) or ~ω(
√

r) is obtained. A useful
tool to visualize the solutions of the two-parameter optimization problem (Equations (5)–(8), also in
the case where (9) and (10) are used) is the so called penetration-risk diagram (Figure 1a).

Any combination of IC (~ω) produces a specific penetration and risk (Equations (5) and (6)), so each
~ω can be represented by a point in the two-parameter space penetration-risk diagram. A solution
of the optimization problem (

√
r(~ω(µ))) can be represented as a line in this diagram. The optimal

unconstrained frontier (black line in the diagram) indicates the optimal mixes under no total installed
capacity constraint (i.e., the optimization in Equations (5)–(7), without the constraint in Equation (8)).

The Pareto frontier appears linear in the penetration-risk diagram when no total capacity
constraint is imposed. This is a consequence of the linear dependence of µ and

√
r with ~ω

(Equations (5) and (6)), together with the very nature of the optimization (maximizing µ and
minimizing r in the calculation steps, but

√
r when represented), which produces solutions of the

form ~ω = α~ωREF in this unconstrained case. Solutions ωk along this frontier (which differ among
them in the total installed capacity required to achieve each penetration/risk level) are proportional,
confirming that an optimal penetration-risk relative mix (i.e., proportion of IC among regions) exists
and defines the optimal regional distribution of PV and wind for each total IC capacity assumed.

The optimal unconstrained frontier divides the space in two regions. The gray region (to the left
and up from the black line) is unachievable by any combination of installed capacities, independently
of capacity constraints. The available climate resource and technology efficiencies in the system render
a minimum possible variability for each penetration level, and thus lower levels of risk cannot be
satisfied with the considered PV and wind technologies in Spain, regardless of the regional distribution
of IC (i.e., ~ω). Consequently, in the context of unlimited available capacity to install, mixes that
produce mean-risk values to the right and below the black line are suboptimal. When a constraint is
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applied to the total IC, regional ICs of the optimal mixes are not proportional to the penetration and
risk level anymore but nonlinear trade-offs of penetration and risk emerge. The optimal constrained
front (blue line) contains all points that are optimal under the conditions of the optimization problem
presented in Equations (5)–(8). This again divides the parameter space into two regions. Points
above and to the left of the constrained front represent unreachable mixes with the total capacity
available, whereas points below and to the right of the constrained front represent suboptimal mixes.
Points along the constrained front represent optimal energy mixes and the line describes the best
risk level achievable at a certain penetration level, and vice versa. Mixes ~ω along this line are all
optimal at each predefined penetration or risk level. Therefore, it is the target level of penetration and
tolerated risk set by policy makers and stakeholders that would determine the corresponding optimal
IC distribution (~ωtarget). The technology-constrained optimization process puts forward the optimal
mixes from Equations (5)–(7) with the constraint modifications in Equations (9) and (10). These are
the optimal mixes that are possible when the investment in renewable generation is identical to the
one made in Spain, with the same wind and PV ICs as the current Spanish scenario. By definition,
the technology-constrained front that results from this optimization always overlaps with the optimal
capacity-constrained front or the suboptimal area. The reason for this is that more restrictions are
applied and the best possible scenario is one where the optimal capacity-constrained energy mix has
the same PV–wind proportion as the technology-constrained front.

We consider five mixes of special interest in the penetration-risk diagram. First, the current
mix (grey circle) represents where the 2018 Spanish electricity mix is located in terms of penetration
and risk. Other interesting mixes linked to the current IC can be easily identified on a mean-risk
diagram. The maximum-ratio mix (black circle) represents the highest penetration mix where the
capacity-constrained front and the unconstrained front overlap. This represents the energy mix that
could be achieved by repowering the current installed capacity in the most optimal way, by installing
all of the capacity in the optimal (unconstrained) proportion. The low-risk mix (blue and green
pentagons) represents the optimal mix at the 2018 mix penetration level but with the minimal
(optimal) risk. There are two low-risk mixes, one under total IC constraint and one under technology
constraint. The high-penetration mix (blue and green diamonds) is the optimal mix with the current
risk but maximum (optimal) penetration. Two high-penetration mixes are possible, depending
on whether exchange of power between technologies is allowed (capacity-constrained) or not
(technology-constrained). Finally, the free high-penetration mix (black cross) reveals the maximum
penetration that the climate resource in Spain allows one to produce with PV and wind plants under
the 2018 risk level. Achieving this IC regional distribution would require repowering 2018 installed
capacity and installing over 12,000 MW of additional technology, but would bring the highest possible
penetration to the system without assuming any further risk with respect to the 2018 level.

2.4. Interpretation of IC Evolution

A complementary tool to the penetration-risk diagram is the IC evolution diagram (Figure 1b),
which represents the regional IC against the global penetration along a particular Pareto front.

A first general characteristic of these representations is that regional ICs are proportional at low
penetration levels. At low penetrations, the optimal mixes satisfy the maximum installed capacity
inequality without being constrained by it (i.e., ∑k ωk < ωtotal2018). Imposing the installation of all
the IC of 2018 would render doubtfully relevant solutions in which capacity would be installed in
suboptimal regions to meet the low penetration level with excessive total IC. This smaller installed
capacity allows the system to follow the unconstrained mixes. For global penetration levels that
cannot be achieved with the constrained IC and the proportional distribution of capacities from the
unconstrained mix (ωunc

k ), nonlinearities between global penetration and regional installed capacities
(ωk) emerge. Interestingly, in high global penetration requirement cases, one region–technology pair
concentrates most IC, with negligible capacities installed in the other regions. These solutions are the
trivial mixes in which the global penetration is only achievable by installing capacity in the region
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and technology with the highest capacity factor. The optimization problem is in that case trivial, as
only a single mix fulfills the penetration requirement, and the minimal—despite being large—risk is
not determinant.

Figure 1. Standard visual representation of the optimization results. (a) CTL/CAL penetration-risk
diagram with the Pareto optimal front for the two basic optimization processes. Risk is represented
as
√

r, using standard deviation instead of variance. The blue line represents the Pareto optimal
capacity-constrained front and the green line represents the Pareto optimal technology-constrained
front. The black line represents the optimal unconstrained front. The black circle represents the
maximum-ratio mix, the highest penetration mix where the capacity-constrained and unconstrained
front overlap. The gray circle represents the 2018 mix. Blue and green pentagons represent the low-risk
mix in both constrained scenarios with, respectively, optimal risk and the same penetration as the
2018 mix. Blue and green diamonds represent the high-penetration mix in both constrained scenarios
with, respectively, optimal penetration and the same risk as the 2018 mix. The black cross represents
the free high penetration mix, with unconstrained optimal penetration and the same risk as the 2018
mix. (b) CTL/CAL installed capacity (IC) evolution along the capacity constrained front (blue line in
panel a). The dotted black line (right y axis) represents total risk of the mix. Risk is represented as

√
r.

Dashed and solid lines (left y axis) show wind and PV ICs respectively. Colors represent regions.

A noticeable trait is also the effect of covariances between regions as a regulator of the total risk.
The differences in the series of different region–technology pairs can make it easier to combine them
and reduce the total variability. The role of covariances can be seen especially well in the exchange of
IC as we move along the front increasing penetration. When the capacity constraint is active and one
region can no longer contribute to an optimal mix due to its low generation potential, it is replaced
by some other higher-penetration one. The relevant factors in determining what region this IC will
be assigned to are the relation between the penetration and the variance, and the relation between
the penetration and the covariances. The first consideration looks at the optimality of a region on its
own, whereas the second requires deeper insight onto its role in the entirety of the system. These two
different criteria to select optimal regions maintain an equilibrium in the determination of the optimal
mixes. For instance, a very favorable factor for the selection of one region is its correlation to the
region that can no longer take part in the optimal mix. This same procedure can be thought of in
reverse. The optimization problems identify minimum risk mixes. When the decomposition of risk in
Equation (4) is considered, the only contribution towards reducing the risk is either installing capacity
in regions with lower variance or selecting regions with weak covariances between them. Therefore,
when a region is not kept in the mix due to its low individual penetration, the ones highly correlated
to it are assumed to have similarly low covariances to the rest of the mix. This yields covariances to be
of critical importance when considering the minimization of the risk.
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2.5. Unpredictable Component of the Risk

The risk is defined in Equation (2) as the variance of the renewable resource (normalized by the
demand). This definition assumes all sources of variability of the capacity factor contribute equally to
the electricity system’s risks. However, this could introduce misleading solutions in the optimization
when the capacity factor is significantly affected by predictable components of variability. For example,
the hourly wind intensity is unpredictable over climatic time spans. Nearly all wind generation
variability at the hourly scale poses a risk when evaluated over decadal and larger scales. Indeed,
since the percentage of covered demand varies mostly unexpectedly, it generates management costs
that are implicitly parameterized by the definition of risk in Equation (2).

However, for energy sources that each have a significant component of predictable capacity
factor variability, the bulk definition of risk in Equation (2) does not account for the benefits that
predictable aspects of systems can offer. PV is the paradigmatic example of a highly variable source
with a large proportion of its variance associated with predictable variation of the source. In particular,
solar radiation can be decomposed into predictable and non-predictable components, the predictable
component being very accurately represented by the clear-sky radiation [36]. The non-predictable
component of the radiation is mainly dominated by cloud blocking and other radiative influential
effects [37]. Therefore, not all variability sources impact the renewable penetration risks equally.
Given the hypothetical example of two generation plants with equal mean capacity factor and variance,
the one with more predictable variations in the generation is undoubtedly preferred over the other
when looking for optimal mixes. This would be the case for twin wind and photovoltaic plants.

As a matter of fact, ignoring the differential treatment that predictable variations in an energy
source allows in mean-variance optimization problems undermines the identification of truly optimal
renewable energy mixes of a system, penalizing more predictable sources.

Now let us assume two regions, one with very high peak radiation values and one with very low
ones, and both regions showing no cloud cover, so the radiation arriving at surface is the clear-sky
radiation. The variance of the high-production series will be significantly larger than that of the
low-production series, but this difference will be smaller in the mean. This is due to the effect of the
night, which keeps differences in the mean limited. Although the difference in the amplitude will
be taken into account in the penetration, in terms of risk both regions are following their predictable
behavior with the clear-sky cycle of radiation; however, they are being penalized differently.

A more illustrative example of this can be to take a region with clear-sky radiation and the same
region showing cloud coverage on some days. The penetration (mean) for both series will be very
similar—only slightly lower for the cloud-covered version due to the moderating effect of the nights
and the days where cloud is not present. However, overall, the contribution to the variance will be
significantly smaller since the observed radiation will always be closer to the mean. The introduction
of cloud coverage always acts as a factor that reduces the variance, so regions with cloud coverage
are favored, despite their unpredictable nature. A graphical representation of this can be seen in
Figure 2a. The ratio between the mean and the standard deviation (we use the standard deviation√

r as a representation of the risk for clarity) is higher for clear-sky radiation than for cloud-covered
radiation. In an optimization process of these two radiative inputs, the cloud-covered one is generally
favored—only losing its predominant position at very high penetration levels where installing all the
ICs in this region could not satisfy the penetration required. Predictable variability can be planned
around, making its handling more efficient, besides being used in the planning of the use of resources.
However, the introduction of unpredictable factors requires exceptional measures by the system,
which can experience unexpected behaviors with very little warning and needs to be able to cope
with them. These types of unpredictable effects pose additional challenges to the system, and larger
investments are required in order to cope with them.
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Figure 2. Analysis of the (a) motivation and (b) effect of the proposed methodology. (a) Hourly
values of MERRA-2 surface downward shortwave solar radiation (blue line) and clear-sky values
(green line) for an sample illustrative day. Daily means are represented with horizontal lines. Inset table
includes a legend and the statistical summary for the two series—mean (mn), standard deviation
(sd) and the ratio between the two. (b) Analysis of the contributions to the regional variance for
Andalucia (An) and Pais Vasco (PaVa). An-Reg and PaVa-Reg show: regional predictable (blue),
regional unpredictable (purple) and covariance between them (orange). An-Nat and PaVa-Nat show:
national-averaged predictable (green), regional unpredictable (purple) and national-averaged regional
covariances between predictable and unpredictable contributions (red). Black crosses represent the
additions of all the terms of the variance. An-W and PaVa-W show the total variance of the wind
generation in brown bars.

We propose an alternative definition of risk that more precisely accounts for the most damaging
impacts of the variability of renewable energy sources. This assumes that the impacts associated with
the variability of the predictable component of the CF can be more easily mitigated at the planning
stage than the non-predictable part. It is of crucial importance that the IC is allocated in the right
areas, since the balancing costs (linked to fast unforeseen variations of the resource) represent the most
easily deductible costs of the system. However, it is true that the largest amount of system cost in the
renewables comes from the fact that conventional power plants remain indispensable independently
of the range of penetration, the so-called “utilization effect” [44]. Exchange of electricity at different
temporal and spatial scales is key in the path towards a higher renewable penetration system [48].
Following the objective of reducing the easily avoidable cost of the system in the unpredictable
variability, a new risk definition is proposed.

Since the wind has no predictable components at hourly frequency over climatic time spans,
this definition regards the PV generation only in our model. In particular, the PV contribution to the
risk associated with a particular mix is calculated using the unpredictable component of the total
surface radiation.

Given a region, we can separate its PV generation (x) into two different components,

~x = ~xP −~xNP (11)

where ~xP is the predictable generation and ~xNP is the unpredictable component, which is the difference
between the predictable and the observed generation. ~x is defined as the difference between its
predictable and unpredictable components in order to consider the clear-sky generation as the
predictable component and the unpredictable component as a positively-defined perturbation that
always has a reducing effect on the predictable component. This effect always contributes towards
reducing the radiation; the minus sign is explicit in Equation (11), so ~xNP is non-negative.
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Using this notation, the new definition of risk from unpredictable component of energy sources is:

rPV = V
[
∑

i
ωi

~ηi (~xNP)

∑i ~Di

]
(12)

This definition embraces the concept of risk as the probability of the occurrence of something
unaccounted for and more difficult to cope with than predictable variations.

This definition of risk is illustrative of the concept, and applicable to energy systems based on
single means of generation, in which regions with larger predictable variability would be arbitrarily
penalized in the original optimization problem. An example is a hypothetical system based only
on PV, where the definition in Equation (12) would not penalize southern regions against northern
regions for having larger average daily radiative oscillations as does Equation (2). However, removing
a substantial part of the variability for some solutions in an optimization problem that minimizes
variance (as in Equation (12)) introduces a significant favorable bias for the technologies presenting a
predictable component, independently of the magnitude of such component when compared to other
possibly less variable but nevertheless unpredictable technologies.

Admittedly, the variance of the predictable component of an energy source poses some
management challenges that must also be taken into account in the energy mix optimization
problem. Entirely removing the variance of the predictable part of an energy source produces
an overcorrection that is unrealistic, especially when the mix contains technologies with distinct
proportions of predictable versus unpredictable components.

To take this into consideration, and combine the need to account for a contribution to the variance
from the predictable component but not in a manner that penalizes regions and technologies with
larger ~xP, we use a reference ~x∗P across regions:

~x∗ = ~x∗P −~xNP (13)

This reference ~x∗P is intended to account for the predictable component of a technology, though
discarding intra-regional differences. A practical definition of ~x∗P is to use the national (energy system
wide) mean of ~xPi . The application of Equation (13) to PV renders an ~x∗P equal to the national mean of
the clear-sky radiation based generation. A reason why it is important to include a form of the daily
cycle, besides the aforementioned comparability to other sources, is that the resource will be lacking
during night hours and energy supply should remain covered. In other words, other energy sources
need to be available when PV is not, even when this unavailability is predictable.

The particular definition of the reference predictable component may have counterintuitive
impacts through the covariance term between the two components:

rPV = V (~x∗) = σ2
~x∗ = σ2

~x∗P
+ σ2

~xNP
− 2cov (~x∗P,~xNP) (14)

When ~x∗P and ~xNP are highly covariant, the total variance is reduced, and that scenario is favored
by the optimization problem. That is precisely the case when ~x∗P is the PV generation from an
average clear-sky source (astronomical daily cycle) and ~xNP is the PV generation deficit attributable
to cloudiness and other CF reduction factors (non-zero values only during the day). Therefore,
this term will promote regions with generation deficits in the optimization problem not because of
more convenient generation properties, but due to the covariances of the predictable and unpredictable
components of the renewable source.

To overcome this, the regional covariance term between predictable and unpredictable
components in the risk calculation is replaced by a nation-wide average:

rPV = σ2
~x∗P

+ σ2
~xNP
− 2〈cov (~x∗P,~xNP)〉R (15)
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Similarly to the case with the predictable cycle, the covariance term is replaced by its national
mean to account for the comparability to other energy sources together with the need to have other
sources available when PV is predictably unavailable. This is accounted for by replacing the different
variance terms with national averages and not removing them altogether. This proposed definition
of risk allows us to give separate treatment to the predictable and non predictable components of
a renewable source such as PV, thereby keeping the ability to compare them to other sources in a
mean-variance optimization problem. A visual representation of the effect of this decomposition on
two different regions can be seen in Figure 2b. The risk definition in Equation (15) expresses the core
novelty of the proposed method, which uses only unpredictable variability as a distinction between
regions and therefore does not disfavor regions on account for their predictable cycles.

2.6. Optimization Experiments

The motivation and impacts of the new risk definition are illustrated by our optimization
experiments. For the sake of readability of the text, experiments are labeled with acronyms (Table 1).

Table 1. List of experiments performed in this study. An additional NEW/UNIEFF experiment is
discussed and based on the NEW/NOCAL with uniform efficiencies across regions. CNT and NEW
refer to the risk definition being used, with original (control) risk and new risk definition, respectively.
If only a PV optimization was carried out, the experiment is labeled PV; the lack of such a label implies
the appearance of wind. Two labels relative to the radiation in original risk PV-only experiments are
used, CS for the case with the clear-sky radiation and OR for the original radiation case. CAL and
NOCAL determine whether calibration was carried out or not, respectively, in an optimization for PV
and wind.

Experiment Calibration PV Wind Risk Radiation Pareto Front

CNT/CAL YES YES YES Original MERRA-2 Figure 1a
CNT/NOCAL NO YES YES Original MERRA-2 Figure 4a

CNT/PVCS NO YES NO Original Clear-sky Figure 5a
CNT/PVOR NO YES NO Original MERRA-2 Figure 5b

NEW/PV NO YES NO Non-predictable Both Figure 6a
NEW/NOCAL NO YES YES Non-predictable Both Figure 7a

NEW/CAL YES YES YES Non-predictable Both Figure 8a

3. Impacts on Optimal Renewable Energy Mixes

The solutions to the penetration-risk optimization problem are highly sensitive to the definition of
risk. Installed capacities in optimal energy mixes can be hauled across regions and exchanged among
technologies when new risk definition refinements are introduced. Here, we analyze the impacts of
the multiple risk considerations made in Section 2.

3.1. Optimal Mixes for Spain with the Original Risk Definition

The 2018 (reference) mix of the PV and wind technologies in Spain shows a very diverse
distribution, with at least some installation of each piece of technology in practically all regions
(Figure 3a). Regional policies with incentives for renewable installation are an important cause for
this distribution.
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Figure 3. Maps representing renewable IC in Spain for PV (blue) and wind (orange). (a) REE-reported
2018 mix. CTL/CAL (b) low-risk, (c) high-penetration and (d) free high-penetration mixes.

An application of the mean-variance optimization as presented in Tantet et al. [26] to the Spanish
PV–wind energy mix (i.e., Equations (5)–(8)) is first introduced as the control experiment (CTL/CAL).

The solution to CTL/CAL (Figure 1a) reveals that major improvements compared to the actual mix
could be obtained by means of a simple redistribution, whether only geographical or a full repowering
of the system was applied. More specifically, the low-risk mix would represent a drop with respect to
current risk by around 20%. In the case of the high-penetration scenario, it represents an increase of
the current penetration of around 10%, which means that a significantly higher renewable penetration
would be possible while assuming no further system risk. Overall significant improvements with
respect to the current mix could be achieved through a repowering process or could have been achieved
by national coordination with a higher degree of influence of mean-variance analysis results.

The distribution of PV installed capacities along the capacity constrained front (Figure 1b) focuses
on two regions: Navarra and Galicia (see Figure 3a for reference location). Both are located on
the northern side of the Iberian Peninsula and do not have particularly high values of radiation
comparatively. Although their efficiency is higher than other regions with greater radiative exposure,
their average generation is still significantly lower than in these southern regions. This suggests that
the higher generation regions are being penalized for their higher variability. However, this larger
variability caused by a highly predictable larger daily cycle amplitude of the radiative resource should
be treated differently to the variability injected by unpredictable generation means. The part of this
variability that is favoring these regions is a combination of their lower daily radiation cycle combined
with a larger presence of cloud cover, similarly to the case shown in Figure 2a.

Maps contribute to better visualizing this geographical distribution of installed capacities
associated with particular mixes. The low-risk mix (Figure 3b) locates all PV capacity in the northern
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region of Navarra. This allocation may not be surprising since northern regions could be expected to
be associated with lower risks. However, the high-penetration scenario (Figure 3c) also results in all
PV IC in Navarra. Moreover, the free high-penetration mix (Figure 3d), a sample of the unconstrained
optimal mix, shows an even larger deployment towards northern regions. These regions present
radiation cycles with lower amplitudes and higher cloud coverage with respect to their southern
counterparts, which are clear indications of dysfunction in the risk assessment of the penetration-risk
analysis, which penalizes excessively large predictable daily cycles, despite its predictability.

3.2. Experiments with Non-Calibrated Mixes

In order to illustrate the differences in using the original and new definitions of risk, and for the
sake of clarity, the calibration of climate-driven generation is not applied. This prevents the calibration
from covering up the true effects of the new risk definition.

3.2.1. No-Calibration PV–Wind Original Optimization for Spain

The Pareto fronts for the experiment with original risk definition and no calibration (CONOCAL;
Figure 4a) do not differ significantly in terms of shape and values from those of the control experiment.
This, however, does not necessarily imply similar mixes.

The comparison of the optimal mixes resulting from calibrated against non-calibrated generation
series reveals some interesting aspects and limitations of the modeling framework. The PV IC in
Navarra and wind IC in Aragon (Figure 4b) showed insensitivity to the calibration process for these two
experiments. However, the Balearics showed great sensitivity to the calibration, as the climate-driven
data for that region had a bias towards a maritime environment due to the spatial resolution limitations
of MERRA-2, which attributed to the region a larger wind generation potential than the one actually
registered by REE. Interestingly, these resolution limitations act in the opposite direction in Andalucia
and the northern regions, where MERRA-2 data do not resolve local persistent winds responsible for
the higher generations reported in these regions by REE. As a consequence, the calibration process
modified the climate-estimated CFs by reducing the wind CF in the Balearics and increasing it in
Andalucia and the northern regions.

Besides these illustrative examples, the calibration allows us to correct limitations in the
climate-driven CF regarding intra-regional resource heterogeneity and the availability of suitable
installation areas in the territory. More specifically, the calibration of climate-driven generation
data for Spain tends to promote the wind over PV basically because wind production is frequently
underestimated, as actual wind plants are not generally installed in average sites within the region
(better represented by MERRA-2 data) but in selected areas with local climate characteristics favorable
for wind generation.

Figure 4. CONOCAL (a) penetration-risk diagram and (b) high-penetration mix.
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3.2.2. Effect of Radiation on the Optimization

The effect of the PV risk (rPV) on the optimization becomes explicit when only PV is considered.
With the approach of optimizing for a PV geographical repowering, the effects of the risk on the
mean-variance analysis can be observed. Two experiments were designed with this goal, wherein the
optimization problem with the original risk definition was solved first, using the clear-sky radiation
(CTL/PVCS; Figure 5a), and second, the observed radiation (CTL/PVOR; Figure 5b) was used to
illustrate the weaknesses of the original risk definition.

The first remarkable difference with respect to the front in CONOCAL (Figure 4a) is the magnitude
that the penetration and the risk have. The fact that the PV total capacity in the 2018 Spanish mix
is fairly low leads to some limitations to the IC. A noticeable difference between the two different
radiation experiments is that CTL/PVCS (Figure 5a) penetrations and risks are higher than CTL/PVOR
(Figure 5b). This was an expected result given the higher amplitude of the clear-sky radiation with
respect to the actual value, by definition.

Clear-sky radiation is the most predictable form of solar radiation. In a repowering scenario,
the predictability of the renewable resource and its high return are precisely valuable assets that are
pursued when PV technology is installed.

Figure 5. Penetration-risk diagram (a,b) and high penetration mix (b,d) for CTL/PVCS (a,c) and
CTL/PVOR (b,d).

The regional distribution of PV IC in the high-penetration mix for CTL/PVCS (Figure 5c) and
CTL/PVOR (Figure 5d) differs significantly from the PV IC distribution in CONOCAL (Figure 4b).
A detailed analysis of the covariance matrix clearly revealed that this difference is partly due to the
correlations between PV and wind generation and the higher availability of IC.
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The high-penetration mix for CTL/PVCS (Figure 5c) shows a disperse distribution of IC, with
sites in Galicia, the Balearics and Murcia. The Balearics appear in the mix as the region with the most
favorable mean-risk ratio, and Galicia as its complementary region due to their high correlation. Murcia
appears as the region with the best mean-risk ratio out of the high-penetration regions. In general
terms, this mix distributes PV IC into one northern region, the Balearics and one southern region.

The high penetration mix for CTL/PVOR (Figure 5d) differs significantly for the clear-sky mix.
Overall capacity is more uniformly distributed, although the general north–south distribution remained
the same as for CTL/PVCS experiment. The effect of clouds is a redistribution in the northern and
southern areas to further spread out the IC. More specifically, four northern regions and three southern
ones show PV IC in this experiment, compared to the single northern and southern ones in CTL/PVCS.
The change in the north–south redistribution is not significant, with roughly the same IC in both areas
as in the clear-sky case.

The comparison of CTL/PVCS with CTL/PVOR underlines the dysfunction described in Section 2
and produced by the excessive attribution of risk to larger amplitude intermittent renewable sources
from predictable components. These results shed light on the research question of this study and
motivated the proposal for an alternative definition of risk, accounting for the practical differences
between predictable and non-predictable components of the resource.

3.2.3. A Comparable Version of Risk from Unpredictable Variability

The definition of variance as risk for PV sets the path for a redefinition that especially penalizes
unpredictable variability. However, the variance of unpredictable variability in itself is significantly
lower than the variance of any other technology (for instance, wind) whose variance is a valid proxy
for the risk. Therefore, the definition in Equation (15) aims at maintaining a comparable value for the
risk while not favoring regions with larger unpredictable energy resource.

An experiment using the risk definition in Equation (15) and allowing PV technology installation
was designed (NEW/PV; Figure 6a). The Pareto fronts are very similar to CTL/PVOR, although with
total overlap between the constrained and unconstrained fronts. This reveals that the constraint on
the IC is not effective in the constrained solution, indicating that the optimal penetration-risk levels
can be achieved without installing all available capacity. The role of total capacity constraint in this
case is to limit the span of penetrations achievable by the constrained problem when all capacity is
installed in the region with higher CF, and thus to discontinue the line. The regional distribution
for the high-penetration mix of NEW/PV (Figure 6b) shows a focus of all the available capacity in
only one region, Murcia. The regional distribution of the IC is independent of the penetration levels
achieved—higher or lower penetrations only represent more or less IC—but it is always installed in
Murcia. This allocation is aligned with the fact that Murcia presents high radiative exposure with
scarce cloud coverage.

In order to assess the impact of the proposed definition of risk in the mean-variance analysis
problem when applied on the combined PV and wind energy Spanish system, we devised a new
experiment (NEW/NOCAL; Figure 7a). As expected from the definition, the solutions for this
experiment show lower values of risk for all relevant mixes. Admittedly, the quantitative value of
the risk is irrelevant because it varies with the definition. However, the differences in the distribution
of ICs in the solutions of the optimization problem are highly informative. Considering this PV risk
definition, the current penetration could be achieved with around 20% less risk. Similarly, the risk that
is currently being assumed could yield penetrations around 20% higher.
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Figure 6. NEW/PV (a) penetration-risk diagram and (b) high-penetration mix.

Figure 7. NEW/NOCAL (a) penetration-risk diagram and (b) high-penetration mix. (c) NEW/UNIEFF
high-penetration mix.

The geographical distribution of IC in the high-penetration mix (Figure 7b) reveals that the
majority of the PV technology is shifted towards the north-west of Spain with respect to CONOCAL.
This PV distribution seems counter-intuitive at first glance, since the regions with the largest radiation
are located towards the southern side of Spain. However, a closer analysis of the components that
form PV generation can help understand this scenario. In the experiment where only PV technology
was present, it was the only possible option to satisfy the demands accounted for by renewable energy
sources. Therefore, the PV IC not only had to be the most optimal but also had to reach a certain
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level of penetration, since no other technology could contribute. Once wind technology is brought
into the mix, it can contribute to reaching the necessary renewable penetration, and therefore PV
distribution can lean towards more convenient locations despite the lower return. Southern regions
present greater radiative resources but also higher temperatures when the sun exposure is maximal.
As a consequence, it is possible for the higher cloud presence of northern regions during the summer
months to be more beneficial than the low efficiency of southern regions. Moreover, during summer
months, when radiation is largest, daily maximum temperatures in the northern regions are very
similar to the optimal operating temperature of PV cells (about 25 ◦C).

In order to better illustrate the role of the efficiency in the optimization problem, we conducted a
complementary experiment with uniform efficiency in all regions (NEW/UNIEFF), without climate
dependence. In this experiment, PV generation depended solely on radiation and drove the
geographical distribution of the IC in the optimal mixes. The change in the PV distribution in the
optimal mixes (high penetration mix as example; Figure 7c) is very significant. When the temperature
dependency of efficiency is not considered, the PV is all located in Castilla-La Mancha, one of the
regions with the most radiative resource. Therefore, the regional distribution of PV IC is largely
affected by the high sensitivity the efficiency of PV panels show with respect to air temperature.
Southern regions of Spain, despite having superior radiative exposure, also have excessive maximum
temperatures that penalize the efficiency and their presence in optimal scenarios.

3.3. Calibrated, Unpredictable Risk Optimal Mixes

The experiments presented in the previous sections allowed us to analyze the effects of predictable
and unpredictable components of the risk and underline the necessity for a different definition of risk.
In this section the mean-variance analysis is applied to the control experiment but using the definition
of risk in Equation (15) (NEW/CAL) in order to visualize how the risk definition affects the optimal
mixes in a context where calibration is present.

The results for NEW/CAL (Figure 8a) present the possibility for a rise by around 20% of the
penetration or a drop by around 25% of the risk using the newly proposed definition. These results
show similar values to those shown by the original risk definition (CTL/CAL) in Figure 1a. However,
this does not necessarily imply that the resulting mixes from both definitions are similar. This can be
seen when comparing the regional distribution of IC along the capacity constrained front (Figure 8b).
NEW/CAL optimal solutions show a large presence of PV in Navarra and Extremadura at low
penetrations (both contributions being significant, only overcome by the wind in the Balearics) which
decreases as the penetration grows larger, and the capacity is necessarily constrained. Comparatively,
in the CTL/CAL distribution (Figure 1b) Galicia and Navarra present PV technology, but show smaller
ICs in the CTL/CAL unconstrained mix than in the NEW/CAL one. In the CTL/CAL unconstrained
mix, wind in two regions provides a larger contribution to the mix than the regions with PV technology,
implying a less relevant role of PV technology in CTL/CAL than in NEW/CAL. In this case, the PV
behavior seems particularly different between both regions, as Navarra increases its IC after the mix
is already constrained, compared to Galicia whose IC goes to zero as soon as the total capacity is
constrained. This behavior is also different from that shown by Navarra and Extremadura in the front
with the new definition of risk.

The evolution of IC along the capacity constrained front in NEW/CAL is shown in Figure 8b.
In this case, the unconstrained mix consists of PV IC in Navarra and Extremadura, and wind IC in a
variety of regions, with the Balearics having the greatest presence and there being capacity installed
in northern and southern regions, all of which have important either coastal or mountain influences.
At very high penetrations, most of the installed capacity in the optimal mixes is based on wind
technology, as it provides higher levels of generation.
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The low-risk scenario (Figure 9a) shows a wind IC distribution identical to the one in
CTL/CAL (Figure 3b). However, the PV IC is divided between Navarra and Extremadura,
compared to its presence solely in Navarra obtained in the CTL/CAL and northern regions for
the NEW/NOCAL experiment.

Figure 8. NEW/CAL (a) penetration-risk diagram and (b) high-penetration mix.

Figure 9. NEW/CAL (a) low-risk mix, (b) high-penetration mix and (c) free high-penetration mix.
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The high-penetration scenario (Figure 9b) again displays a redistribution of PV technology with
respect to CTL/CAL (Figure 3c). Wind distribution is only slightly modified, with the wind installation
in Extremadura being redistributed among all other regions where wind was already present, and C.
Valenciana takes up a small amount of wind IC as well. These small discrepancies with respect to
CTL/CAL can be attributed to the variation of PV not particularly affecting the wind IC distribution.
Additionally, some PV IC is moved from Extremadura in the control experiment toward Navarra,
although both regions retain some PV IC.

The free high-penetration scenario (Figure 9c) represents the specific values of the unconstrained
mix where the assumed risk is the same as for the actual 2018 mix. This scenario again is very similar
to the low-risk and high-penetration with PV in Extremadura and Navarra, and wind in Galicia, North,
Aragon and Andalucia. The wind in Aragon presents the largest IC, whereas the Balearics have no IC
in this optimal mix due to their low levels of available climate resource.

Overall, when calibration with registered electricity data is reactivated, the number of regions
that remain in the mix are the same. The effect of the calibration step is large and causes some regions
to stand out and remain alone in the optimal mixes. Particularly, PV in Navarra is very highly favored
by the calibration process. This calibration effect in Navarra is consistently seen in CTL/CAL and
NEW/CAL experiments. Therefore, although risk redefinition manages to reallocate some of the PV
IC, the calibration shows the largest contribution to the IC distribution. However, differences appear
with respect to CTL/CAL, showing that using the proposed risk definition helps us to introduce a new
interpretation of optimal mixes under this interpretation of risk.

4. Summary and Conclusions

In a world with increasing needs for efficient renewable energy deployment, portfolio theory
sets out a very attractive path for decision-making in terms of renewable energy penetration and
regional capacity allocation. e4clim is a model that aims at evaluating and optimizing energy
deployment strategies with higher shares of variable renewable energies, through assessing the
impacts of new technologies and of climate variability and conducting sensitivity studies. Its current
implementation of the mean-variance optimization avoids solving a full-mix cost-minimization
problem by taking the mean and variance of the renewable production–demand ratio as proxies
to renewable energy penetration and risk to the electrical system. This approach is simple and
powerful, but further refinements are needed to take into consideration the different accountability the
predictable component of the variance must have on the risk estimation. In this sense, we propose a new
risk parameterization method which reduces the penalty associated with the predictable component of
the generation sources in the mean-variance optimization problem. The proposed definition removes
the intraregional differences originating from the predictable component of the resource, thereby
avoiding the preference for lower-amplitude against higher-amplitude oscillating energy sources
due to reduced variance. Such is the case for solar incoming radiation and the preference of the
optimization problem to include regions with significant climatological cloud cover in the optimal
mixes due to the diminishing effect of the cloud cover on the variance, the original proxy for risk.

The impacts on the solutions of the mean-variance optimization problem of linking the definition
of risk more closely to the unpredictable component of the energy sources were investigated by
analyzing multiple portfolios. In the original version of risk, all factors reducing the resource variability,
even cloud cover for PV generation, contributed favorably due to the risk definition. The proxy for
risk proposed in this study does not penalize regions with large radiative daily cycle. In particular,
the proposed definition favors mixes that each have a larger component of predictable generation,
which implicitly assumes the more manageable and easy to cope with challenges this variance poses to
the electrical system, as opposed to the unpredictable variability modes. The conducted experiments
showcase the sensitivity of the optimization to the risk definition and put forward the importance of
interpreting the optimal mixes in alignment with the risk consideration. The way the risk is defined
affects the decision making that lies behind selecting the optimal mix that will be pursued. It is a subtle



Energies 2020, 13, 5132 22 of 25

but significant detail that can help discern the optimal mix for a particular situation among a collection
of them.

Our results confirm that the optimal mixes of variable renewable energies which account for the
predictability of the resource provide more weight to the PV technology and northern regions than the
full variance definition. This unexpected result was derived from the effect of low covariances between
the PV generation in these northern regions and the wind generation in other highly productive
regions. However, the optimization with the proposed risk definition selects these scenarios by
means of more realistic optimality and the daily cycle is not being penalized. Our experiments
show that the selected mixes also benefit from the good combination that spans from these regions
interacting with the installed wind technology. Undoubtedly, the definition of variable renewable
energy deployment plans is not only a scientific question. Besides the identification of optimal
deployments in the maximum penetration minimum risk sense, the portfolios show the relevance
of multiple socioeconomical and political factors which appeared in the conducted experiments in
the form of calibration and play a role in the determination of the optimality of a specific region.
However, the results of this study underline the necessity to deal with the variability of predictable and
unpredictable components of renewable energy sources separately, since the predictable variability
of an energy source should be considered at the planning stage in order to mitigate its associated
intrinsic impact on the electric system. The criteria to identify optimal regional deployment scenarios
should account for the unpredictable and inherently damaging variations that can cause failures
in the electricity supply. The distinction between the predictable and unpredictable components of
generation is key from an energy mix design and management point of view. Not accounting for this
important distinction drives the installation towards suboptimal scenarios, since it highlights areas
with lower resources as having strictly lower risk as well. This result does not accurately represent the
risk of PV generation, since two areas following their daily cycles should also be considered as having
the same risk.

The method that we propose in this study offers the main advantage of allowing regions with
the largest PV resources to be distinguished in the model. This also implies that the regions with
high PV generation are not penalized in the optimization problem simply by having this higher
generation. Admittedly, given the absolute priority of quality of service, the identification of optimal
mixes basically reduces to economic criteria. An introduction of cost as a regulator term would allow
one to compare the actual cost of introducing batteries or of transport, both of which are not considered
in this approach. Additionally, fossil fuel technologies are treated in this study as an external factor to
the renewable deployment, but the introduction of cost would also allow for a more intricate approach
to renewable optimal mixes. Nevertheless, the climate-oriented proposed technique allowed for the
valuable first investigation of the treatment of variability components in the selection of optimal
energy mixes.

Our research raises the question about risk management in portfolio analysis. Future work should
consider the costs of renewable installations, storage and the fossil-based technologies that are used to
mitigate the intermittent nature of renewables in order to more accurately assess the actual feasibility of
the different options and find optimal mixes that better fit a cost-based risk definition, a very common
approach in real-life applications. For instance, this approach could help distinguish the optimal
between scenarios where high production peaks and batteries are installed and scenarios with lower
but sustained generation and a significantly lower investment in storage. Additionally, further research
into the implications of renewable penetration EU and national policies is needed (an example for
the case of Lithuania can be seen in Gaigalis and Katinas [49]). Furthermore, AI-based methods such
as SVM kernel soft computing models [50] and deep echo state network [51] should be considered
in future research for their promising results and potential, as they seem to commonly outperform
more traditional methods of renewable generation prediction. Moreover, further investigation is
necessary to find the best approach for the risk definition while taking into account the inherent
climate characteristics.
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Multi-decadal (climatic) time scales are relevant for the long-term investment in renewable-energy
capacities (i.e., the optimization of the capacity distributions). On such long time scales,
the astronomical cycles are undeniably predictable, but the statistics of the wind and PV production
are also predictable to a large extent, given our knowledge of climatology. This means that the
system could be dimensioned to handle not only the astronomical cycles but also to cope with the
variability of the wind production. This implies having enough reserves [52] and efficient balancing
and intra-day markets, possibly thanks to long-term capacity markets to encourage investment in
balancing capacities. Once these long-term investments are made and that the system is prepared to
cope with variability, short-term prediction models (day-ahead, intraday) are needed to be able to use
these mechanisms as efficiently as possible when the time comes. However, this short-term production
is beyond the scope of this study and could be considered in future work.

Both demand and renewable generation depend strongly on climate features, making
them fundamental components of the electricity system that should be further investigated.
Climatic expertise from the scientific community should be further integrated into the renewable
energy deployment optimization, considering the relevant role of climate as the power source for the
renewable energy technologies.
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