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Inclusion of endophenotypes 
in a standard GWAS facilitate 
a detailed mechanistic 
understanding of genetic elements 
that control blood lipid levels
Qianqian Zhang1,6, Zexi Cai2,6, Marie Lhomme3, Goutam Sahana2, Philippe Lesnik4, 
Maryse Guerin4, Merete Fredholm5 & Peter Karlskov‑Mortensen5*

Dyslipidemia is the primary cause of cardiovascular disease, which is a serious human health problem 
in large parts of the world. Therefore, it is important to understand the genetic and molecular 
mechanisms that regulate blood levels of cholesterol and other lipids. Discovery of genetic elements 
in the regulatory machinery is often based on genome wide associations studies (GWAS) focused on 
end-point phenotypes such as total cholesterol level or a disease diagnosis. In the present study, we 
add endophenotypes, such as serum levels of intermediate metabolites in the cholesterol synthesis 
pathways, to a GWAS analysis and use the pig as an animal model. We do this to increase statistical 
power and to facilitate biological interpretation of results. Although the study population was 
limited to ~ 300 individuals, we identify two genome-wide significant associations and ten suggestive 
associations. Furthermore, we identify 28 tentative associations to loci previously associated with 
blood lipids or dyslipidemia associated diseases. The associations with endophenotypes may inspire 
future studies that can dissect the biological mechanisms underlying these previously identified 
associations and add a new level of understanding to previously identified associations.

Blood lipid levels are routinely measured to evaluate risk of cardiovascular disease (CVD), which is a devastat-
ing disease in humans. According to WHO, 17.5 million people died from CVD in 2012. This was more than 
twice the number of deaths due to cancers. Furthermore, six million people were under age 70 as CVD caused a 
premature end of life1. This places CVD as the leading cause of death and early demise in the world. The culprit 
of CVD is dyslipidemia, and this emphasizes why it is of crucial importance to understand the mechanisms that 
regulate serum levels of blood lipids.

Whole body cholesterol content and serum levels of cholesterol are regulated by a balance in uptake of cho-
lesterol from food, excretion of cholesterol via the bile, de novo biosynthesis of cholesterol in the body as well as 
microbial metabolism and reduction of cholesterol to coprostanol2,3. Several genes and molecules that facilitate 
and regulate uptake, excretion and fluxes of cholesterol between compartments and over cell membranes have 
been described4–8. De novo biosynthesis of cholesterol can take place in any cell in the body, but the great major-
ity of the molecule is synthesized in the liver in a tightly regulated process9. The homeostatic mechanisms are 
however only partly understood.

Two separate pathways for cholesterol biosynthesis have been described; the Bloch pathway (BPW)10 and 
the Kandutsch-Russel pathway (KRPW)11. The initial steps in cholesterol synthesis are shared by both pathways. 
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HMG-CoA reductase (the target of current cholesterol-lowering statin therapy) is central in the early step of 
the cholesterol synthesis where mevalonate is formed from acetyl-CoA. Mevalonate is hereafter converted to 
squalene (Sq), which again is turned into lanosterol (Lan), which has the cyclic nature of cholesterol. Lan is the 
starting point for both the BPW and KRPW. In the BPW, Lan is converted to cholesterol via an intermediate 
called desmosterol (Des), whereas cholesterol is synthesized from Lan via an intermediate called lathosterol 
(Lat) in the KRPW.

A fundamental regulatory mechanism for de novo synthesis involves sensing of intracellular cholesterol lev-
els by the SREBP proteins (sterol regulatory element binding protein 1 and 2). If cholesterol is present, SREBP 
binds to SCAP and INSIG-1. Else, INSIG-1 dissociates from the complex and allows cleavage of SREBP, which 
is then free to migrate to the nucleus where it acts as a transcription factor for a number of genes including the 
LDL-receptor gene (LDLR) and the HMG-CoA reductase gene (reviewed by REF12). Up-regulation of the LDL-
receptor increases uptake of low-density lipoprotein cholesterol (LDL-C) from the blood and up-regulation of 
the HMG-CoA reductase gene increases de novo biosynthesis of cholesterol. The SREBP proteins regulate the 
initial steps of cholesterol synthesis. Regulatory mechanisms later in the cholesterol biosynthesis are not as well 
characterized. It has been observed in mice that relative use of the BPW or the KRPW is tissue specific, but the 
mechanisms, that regulate relative use of the two pathways, are unknown13.

The present genome-wide association study (GWAS) is designed to dig deeper into the uncharacterized 
regulatory mechanisms by the use of intermediate phenotypes—also known as endophenotypes.

Use of endophenotypes in genetic mapping have been advocated since the beginning of the century14. The 
rationale is that an intermediate phenotype is more proximal to the direct effect of a single gene. Hence, an 
endophenotype is expected to be genetically less complex than an end-point phenotype. This has implications 
both for the power of a GWAS study and for the interpretation of GWAS results into biological function. A 
GWAS detects the effect of a variation in the genome—most often a single nucleotide polymorphism (SNP). 
Associating a SNP with an appropriate endophenotype determines the direct effect of the given SNP, whereas 
associating the SNP with an end-point phenotype determines a derived effect of the SNP. The derived effect may 
be influenced by other genes and/or environmental factors and the resulting noise cause a reduction in statistical 
power. The biological complexity of an end-point phenotype furthermore hampers the biological interpretation 
of an identified association because the associated SNP, or genes near the genetic variant, may affect one of many 
phenotype-determining factors. For the endophenotype, on the other hand, the associated SNP, or genes nearby, 
may affect one of few endophenotype-determining factors.

There has been a general realization that endophenotypes are required in order to resolve genetic 
heterogeneity15 and to enable a functional characterization of newly discovered genetic variants16. Nevertheless, 
efforts to increase statistical power in GWAS has until now mainly been focused on increasing sample sizes17. 
This has also been the case for GWAS studies on blood lipid levels and CVD in humans. Here, sample sizes have 
increased to several hundred thousand individuals18–20. However, the measured phenotypes in these studies are 
still the crude end-point phenotypes, LDL-C, HDL-C, TG levels, or a CVD diagnosis.

In the present study, we investigate the power of including endophenotypes in the analyses instead of increas-
ing sample size. Furthermore, we use the pig, which is an established model for the highly prevalent human 
diseases involving lipid metabolism (metabolic syndrome, diabetes, obesity, and cardiovascular diseases)21–23. 
The pig offers an attractive alternative model to rodents because of their anatomical and physiological similarities 
to humans and the availability of genomic, transcriptomic, metagenomic, proteomic, and metabolomic tools for 
analysis of this species24. Regarding blood lipids, pigs transport most of their cholesterol in LDL-C, as do humans, 
while rodents carry the majority of cholesterol in high-density lipoprotein cholesterol (HDL-C) rather than 
LDL-C, making them less than desirable as models25. Additionally, high-cholesterol diets can induce human-like 
changes in the plasma lipoprotein profile of pigs, with ~ 60% of plasma cholesterol distributed in LDL particles. 
Currently, there is no single golden standard animal model of atherosclerosis and CVD development, but the pig 
is probably the best way to recreate human plaque instability that can be linked to hypercholesterolemia, obesity, 
and diabetes, which contributes to accelerated atherosclerosis26,27.

The goal of the present study is, like in other GWAS studies, to identify loci with an ultimate effect on choles-
terol levels, TG levels and CVD. However, unlike previous studies, we include levels of intermediate metabolites 
in the cholesterol synthesis pathways as endophenotypes in the analyses. This includes serum levels of Lan as 
well as the BPW and KRPW specific intermediate metabolites, Des and Lat. Furthermore, serum levels of phy-
tosterols and microbiota-derived sterols are included in the analyses. These sterols are absorbed from the gut by 
the same mechanisms as cholesterol. Hence, serum levels of these lipids provide an estimate for the efficiency of 
cholesterol absorption from the gut28–30. Our goal is to dissect the cholesterol phenotypes and thereby identify 
loci controlling specific steps and pathways for biosynthesis, catabolism, and cholesterol transport mechanisms. 
Hereby we will add to a deeper understanding of biological and genetic mechanisms in cholesterol regulation.

Results
The examined endophenotypes and end-point phenotypes are listed in Table 1 and results of the GWAS analy-
sis are summarized in Table 2. We identified two genome-wide (p < 4.8E−08) and 10 suggestive associations 
(p < 4.8E−07). As a general overview, six loci were found to be associated with levels of different precursor 
molecules in the cholesterol synthesis pathway (Lan, Des, Lat, and Sum of intermediates (Sint)). One of these 
was genome-wide significant. Two suggestive associations were identified for end-point phenotypes LDL-C and 
total cholesterol (TC). Three associations (1 genome-wide significant) were identified for levels of phytosterols; 
campesterol (Cste), betasitosterol (Bsit), and sum of phytosterols (Sphy). One suggestive association were identi-
fied for levels of the microbiota-derived sterol, coprostanol (Csta).
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Six of the genome-wide or suggestively associated SNPs were located in introns of protein-coding genes and 
six were within intergenic regions. Strong functional candidate genes were found for seven of the associated 
SNPs and one locus appeared to have a pleiotropic effect.

The association between Des and a SNP on chromosome (Chr) 6, 157,486,305 bp was the most significant 
association identified (p = 1.06E−11) (Fig. 1a). The markers in strong linkage disequilibrium (LD) with this SNP 
position encompass a region of 4397 bp entailing exon 1 of DHCR24 (Fig. 2a). This gene encodes the enzyme 
24-dehydrocholesterol reductase that converts desmosterol to cholesterol and different mutations in this gene 
has been shown to cause desmosterolosis (OMIM:602398; Refs.32,33). Our finding shows that the limiting step for 
Des serum levels in the examined pigs are not synthesis of the molecule but rather conversion of the molecule 
to cholesterol by DHCR24.

The four phenotypes Lat, Des, Sint and TC were found to be suggestively associated with four different SNPs 
on Chr 13 in strong LD with each other. The Des-associated SNP was located in an intron of the HPS3 gene 
but the remaining three SNPs were located in intergenic regions. All of them were located close to the CP gene, 
which encodes ceruloplasmin. Ceruloplasmin concentrations has previously been shown to be strongly cor-
related with serum triglyceride and cholesterol levels37. Furthermore, ceruloplasmin administration has been 
shown to produce a partial correction of dyslipidemia, manifested by normalization of levels of TG, TC, LDL-C 
and HDL-C38. A mechanistic explanation for this may be found in the ability of ceruloplasmin to oxidize LDL 
particles (reviewed by Ref.39). The oxidized particles are scavenged and degraded by macrophages (reviewed by 
Ref.40) and thereby ceruloplasmin has a LDL-C lowering effect.

LDL-C level was furthermore suggestively associated with a SNP on Chr 2 in an intron of FCHO2. The FCH 
and mu domain containing endocytic adaptor 2 encoded by FCHO2 plays a direct role in clathrin-mediated 
endocytosis of LDL-C by organizing clathrin-coated structures for LDLR endocytosis31. Hence, this gene plays 
a role in clearance of LDL-C from the blood stream.

Sint and Lan were found to be suggestively associated with positions in introns of LINGO1 on Chr 7 and 
NYAP2 on Chr 15, respectively. To our knowledge, this is the first time these two genes has been linked to levels 
of cholesterol precursors in the blood, or blood lipid levels in general.

Three SNPs were associated with levels of different phytosterols. These results establish the first identified 
loci associated with serum levels of phytosterols. The three SNPs were located on Chr 13 but not close to each 
other. The Sphy associated SNP at 75.59 Mb on Chr 13 was genome-wide significant (p = 1.3E−08) (Fig. 1b) and 
the ANAPC13 gene, encoding anaphase promoting complex subunit 13, was located within a region in strong 
LD with the lead-SNP (Fig. 2b). This gene has not previously been associated with serum levels of phytosterols 
or other lipids. A SNP suggestively associated with Cste was located close to the genes FAIM and FOXL2. The 
two genes are not obvious candidate genes for phytosterol levels but they are involved in lipid metabolism. FAIM 
deficiency enhances SREBP signaling and promotes lipogenesis in liver34. FOXL2 represses expression of Star, a 
protein that controls cholesterol transport from the outer to the inner mitochondrial membranes35,36.

Table 1.   Phenotypes. All endophenotypes were measured in µg/dl. End-point phenotypes were measured in 
mg/dl. SD = standard deviation of the mean.

Phenotype Abbreviation n Min Max Mean SD

Endophenotypes

Intermediates in cholesterol biosynthesis

Squalene Sq 245 0.70 17.30 4.96 3.69

Lanosterol Lan 284 1.43 5.89 3.42 0.91

Lathosterol Lat 299 13.06 96.99 49.85 17.15

Desmosterol Des 300 22.33 123.63 68.35 20.06

Sum of intermediates Sint 300 36.15 222.51 129.05 35.00

Phytosterols

Betasitosterol Bsit 297 45.36 470.17 186.60 96.30

Campesterol Cste 288 106.68 862.77 392.42 158.37

Stigmasterol Stig 249 0.16 2.56 1.14 0.48

Sum of phytosterols Sphy 290 187.96 1253.79 577.60 232.74

Microbiota-derived sterols

Coprostanol Csta 298 1.95 31.12 13.66 6.35

Epicoprostanol Esta 276 0.23 5.41 2.23 1.11

Sum of microbiota-derived sterols Sste 303 2.17 35.01 15.84 7.28

End-point phenotypes

LDL-Cholesterol LDL-C 296 30.82 86.53 57.70 10.67

HDL-Cholesterol HDL-C 317 13.00 57.00 36.19 7.92

Total Cholesterol TC 297 67.78 137.84 100.88 13.88

Triglycerides TG 295 42.57 200.12 119.68 31.02
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The microbiota-derived sterol, Csta, was suggestively associated with a SNP on Chr 3. The SNP was located 
within an intron of the CALN1 gene. To our knowledge, it is the first time this locus has been associated with 
lipid absorption or lipid metabolism and the result needs to be confirmed by further studies.

We furthermore identified 52 SNPs with a p -value between 1E−05 and 4.8E−07. Associations at this sig-
nificance level will inevitably contain many false positive results. Table 3 lists 28 of the 52 SNPs. These SNPs are 
located in loci, which previously have been linked to blood lipid levels and/or dyslipidemia associated comor-
bidities. We classify these SNPs as tentative associations. Our results suggest that the previously identified effects 
may be mediated via specific molecular mechanisms identified by the tentative associations with specific endo-
phenotypes in our study. For example, the ARNT2 (Chr 7) and the TSPYL5 (Chr 4) genes have previously been 
associated with blood lipid levels, regulation of lipid metabolism and fatty acid synthesis41–43. In our results, 
these two loci are tentatively associated with Lan. Hence, our results point more precisely towards a function of 

Table 2.   Genome-wide and suggestively significant GWAS results. Summary data of lead-SNPs surpassing the 
genome-wide (p < 4.8E−08) or suggestive (p < 4.8E−07) significance level. Results are listed in chromosomal 
and positional order. Chromosome number (Chr) and base-pair (BP) position refer to pig genome assembly 
Sscrofa 11.1. MAF = minor allele frequency. P = p value. B = regression coefficient. SE = standard error for B. 
r2 = The squared correlation coefficient between pairs of SNPs as a measure for linkage disequilibrium (LD). 
Phenotype abbreviations: Serum levels of the following lipids, Lanosterol (Lan), Lathosterol (Lat), Desmosterol 
(Des), Sum of intermediates in the cholesterol synthesis pathway (Sint) i.e. Lan + Lat + Des, Betasitosterol 
(Bsit), Campesterol (Cste), Stigmasterol (Stig) Sum of phytosterols (Sphy) i.e. Bsit + Cste + Stig, Coprostanol 
(Csta), low-density lipoprotein cholesterol (LDL-C), total cholesterol (TC).

Pheno-type Chr Lead-SNP BP MAF P B SE Genomic region Candidate gene

Position of 
functional 
candidate gene Functional link

Region in 
strong LD 
with lead-SNP, 
r2 > 0.8

LDL-C 2 82,111,387 0.10 4.60E−07  − 6.78 1.34 Intron, FCHO2 FCHO2 82,117,891-
82,248,407

The FCHO2 
gene product 
is involved in 
clathrin-mediated 
endocytosis of 
LDL-C31

81,958,868-
82,859,296

Csta 3 15,599,531 0.08 7.30E−07  − 4.24 0.86 Intron, CALN1 n/a n/a 15,580,136-
15,637,077

Des 6 157,486,305 0.19 1.06E−11  − 13.58 2.00 Intron, DHCR24 DHCR24 157,483,794-
157,519,059

DHCR24 encodes 
the enzyme 
that converts 
desmosterol to 
cholesterol32,33

157,481,935-
157,486,331

Sint 7 57,828,885 0.22 3.62E−07 18.54 3.64 Intron, LINGO1 n/a n/a 57,707,845-
60,000,893

Bsit 13 53,636,117 0.39 2.57E−07  − 41.50 8.05 Intergenic n/a n/a 53,062,778-
54,254,135

Sphy 13 75,586,650 0.32 1.30E−08  − 106.55 18.74 Intergenic n/a n/a 75,586,650-
75,723,225

Cste 13 79,228,431 0.47 2.58E−07  − 65.28 12.67 Intergenic FAIM
FOXL2

79,398,049-
79,411,772 
79,708,693-
79,709,825

FAIM deficiency 
enhances SREBP 
signaling and 
promotes lipo-
genesis in liver34. 
FOXL2 represses 
expression of Star, 
which controls 
cholesterol 
transport in 
mitochondria35,36

79,109,893-
79,247,374

Sint 13 88,500,932 0.53 2.37E−07 15.30 2.96 Intergenic CP 89,398,185-
89,463,223

CP encodes 
ceruloplasmin. 
Ceruloplasmin 
concentrations 
are correlated 
with serum 
triglyceride 
and cholesterol 
levels37

88,087,429-
89,821,031

Lat 13 88,852,202 0.50 3.38E−07 8.02 1.57 Intergenic CP 89,398,185-
89,463,223 Do 88,084,836-

90,249,783

Des 13 89,367,223 0.48 4.67E−07 8.48 1.68 Intron, HPS3 CP 89,398,185-
89,463,223 Do 88,084,836-

91,010,648

TC 13 89,563,053 0.47 2.84E−07 4.65 0.91 Intergenic CP 89,398,185-
89,463,223 Do 88,084,836-

89,993,057

Lan 15 127,265,666 0.20 8.43E−08 0.57 0.11 Intron, NYAP2 n/a 127,032,688-
127,295,095 n/a 127,263,233-

127,267,733
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ARNT2 and TSPYL5 in the early steps of cholesterol synthesis where Lan is formed from Sq. Similarly, previous 
studies have linked PID1 (Chr 15) to HDL-C level44 and PEX2 (Chr 4) to levels of HDL-C and TC45, whereas the 
tentative associations in the present study point more precisely towards a function of these loci in the KRPW 
for cholesterol biosynthesis because the two loci are associated specifically with Lat levels. On the other hand, 
the associations between Des levels and the two genes ARV1 (Chr 14) and ACSL1 (Chr 15) identify functions 
of these loci in the BPW of cholesterol biosynthesis. These loci were previously associated with levels of LDL-C, 
free cholesterol in circulation and accumulations of cholesterol in the liver46,47, whereas our tentative results 
point more precisely towards an effect on BPW cholesterol synthesis. More examples like these are described in 
Table 3. Overall, the tentative results in the present study suggest new hypotheses about the fundamental factors 
and mechanisms causing previously identified end-point phenotype associations. The tentative results of the 
present study may therefore form a foundation for future studies to clarify these mechanisms.

Correlations between phenotypes are listen in Supplementary Table 1. In general, serum levels of interme-
diate molecules in the cholesterol synthesis pathway were correlated with each other, phytosterol levels were 
correlated with each other and levels of microbiota-derived sterols were correlated with each other. Despite the 
close functional relationship between endophenotypes and end-point phenotypes, correlations between these 
phenotypes were generally weak and non-significant. However, a moderate correlation was observed between 
Des and TC. Additionally, we observed a moderate correlation between Lan and the two phytosterols Bsit and 
Stig. LDL-C was more strongly correlated with TC than HDL-C.

Figure 1.   Manhattan plot illustrating results of the genome-wide association study for the phenotypes (a) 
Desmosterol (Des) and (b) Sum of phytosterols (Sphy). Chromosome numbers are indicated on the X-axis 
and − log(p values) on the Y-axis. Horizontal red line: Genome-wide significance threshold (− log(4.8E−08). 
Horizontal dashed blue line: Suggestive significance threshold (− log(4.8E−07).
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Figure 2.   LocusZoom plots of regional genome-wide association results, linkage disequilibrium and gene 
annotation for the two genome-wide significant associations. (a) Cover the region on chromosome 6 associated 
with serum levels of desmosterol. (b) cover the region on chromosome 13 associated with sum of phytosterols 
in serum. Genome positions are indicated on the X-axes. Annotated genes in the regions are indicated above the 
X-axes; exons and introns are indicated by boxes and lines, respectively. − log(p values) are indicated on Y-axes. 
The squared correlation coefficients (r2) as a measure of linkage disequilibrium between SNPs are indicated by 
color. SNPs with r2 > 0.8 are considered in strong linkage disequilibrium.
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Pheno-
type Chr Lead-SNP BP MAF P B SE

Genomic 
region Candidate gene

Position of 
functional 
candidate gene Functional link

Region in 
strong LD 
with lead-
SNP, r2 > 0.8

Sste 1 5,288,352 0.30 7.64E−06  − 3.20 0.72 Intron, PACRG​ PACRG​
PRKN

4,967,800-
5,465,157
5,698,508-
6,731,132

PACRG​ and PRKN are 
located head to head and are 
co-regulated (Entrez gene). 
PRKN encodes parkin, 
which is a lipid-responsive 
regulator of cellular fat 
uptake48 and has an effect 
on lipid absorption from 
the gut49

5,288,352-
5,288,352

TC 1 26,458,317 0.12 2.56E−06 5.29 1.12 Intergenic TNFAIP3 26,473,985-
26,489,555

The product of TNFAIP1 is 
a suppressor of the ASK1 
activation that plays a key 
role in development of non-
alcoholic steatohepatitis50,51

26,313,479-
26,469,377

LDL-C 1 26,864,925 0.19 6.60E−06 4.76 1.06 Intergenic TNFAIP3 26,473,985-
26,489,555 Do 26,864,925-

26,875,955

Bsit 1 97,876,982 0.01 8.22E−06  − 161.68 36.26 Intron, ZBTB7C ZBTB7C 97,610,258-
98,018,149

The product of ZBTB7C 
changes transcription factor 
binding dynamics of SREBP-
1C in mice52

97,872,191-
97,877,224

HDL-C 1 261,632,218 0.10 5.24E−06  − 4.37 0.96 Intergenic DAB2IP 261,659,799-
261,859,833

DAB2IP is associated with 
risk of coronary heart 
disease in humans53 that 
is correlated with HDL-C 
levels54,55

261,632,218-
261,653,928

TC 2 80,066,762 0.07 2.60E−06  − 7.83 1.67 Intron, 
COL23A1 COL23A1 79,766,160-

80,137,598

COL23A1 encode a collagen 
variant found in lipid rafts 
in cell membranes56, which 
are involved in cholesterol 
transport57

80,066,184-
80,075,271

Sint 4 6,495,094 0.08 2.29E−06 26.14 5.53 Intergenic MIR30D 6,948,669-
6,948,747

MIR30D is negatively corre-
lated with HDL-C levels and 
positively correlated with 
LDL-C levels58

6,198,095-
6,774,519

Lan 4 39,414,823 0.04 7.52E−06 0.85 0.19 Intergenic TSPYL5 39,362,978-
39,367,404

Down-regulation of TSPYL5 
occur concomitantly with 
a reduction in cellular 
cholesterol and fatty acid 
synthesis and a decrease in 
total cholesterol and free 
fatty acid levels42,43

39,414,823-
39,414,823

Lat 4 58,499,547 0.05 5.38E−06 14.81 3.26 Intergenic PEX2 59,252,313-
59,270,099

PEX2 controls levels of 
HDL-C and TC45

58,499,547-
58,515,494

TG 4 108,751,861 0.03 1.42E−06  − 34.01 7.05 Upstream vari-
ant, RAP1A RAP1A 108,673,364-

108,694,720
RAP1A regulates hepatic and 
plasma PCSK9, plasma TC 
and LDL-C in mice59

108,751,861-
108,751,861

TC 4 119,813,955 0.13 9.39E−06 5.05 1.14 Intergenic SNX7 119,162,676-
119,255,839

SNX7 is associated with 
LDL-C levels60

119,765,369-
119,828,033

Csta 5 90,450,047 0.14 5.80E−06  − 3.24 0.71 Intergenic EEA1 90,131,742-
90,259,208

EEA1 encodes an early 
endosome antigen, which 
is a core component of 
endosome docking61 and 
may play a role in transport 
of lipids between membrane 
compartments62

90,344,197-
90,566,508

Sste 5 90,450,047 0.14 9.69E−06  − 3.63 0.82 Intergenic EEA1 90,131,742-
90,259,208 Do 90,344,197-

90,566,508

Sphy 6 71,581,677 0.10 9.99E−06  − 136.25 30.84 Upstream vari-
ant, DISP3

DISP3
UBIAD1
ANGPTL7
MTOR
MFN2

71,584,051-
71,640,673 
71,419,574-
71,431,237 
71,350,921-
71,356,683 
71,286,991-
71,412,884 
72,027,996-
72,056,434

DISP3 encodes a sterol-
sensing-domain-containing 
protein63

UBIAD1 may be involved 
in cholesterol metabolism 
(Entrez Gene)
ANGPTL7 plays a role 
in lipid trafficking and 
metabolism64

MTOR encodes a SREBP1 
regulator65

MFN2 plays a role in 
regulation of cholesterol 
synthesis66

71,549,824-
71,591,026

TG 7 8,862,047 0.29 1.31E−06 11.88 2.46 Intergenic EDN1 8,752,082-
8,758,348

Endothelin-1 encoded by 
EDN1 inhibits IRS-1 expres-
sion and IRS-1 activity67. 
IRS-1 is a determinant for 
HDL-C and TG levels68

8,862,047-
8,863,301

Continued
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Discussion
Larger and larger cohorts has been the mantra for increasing power in GWAS for many years, and for a good 
reason of course. Results obtained repeatedly in large cohorts are more trustworthy than those, which are only 
supported by a few more or less coincidental observations in a small sample. However, in the incessant race for 
larger studies and big consortia, it seems the value of meticulous phenotyping has been comparatively neglected. 
The power of a study depends on the statistical significance criterion, the sample size and the magnitude of the 
effect that we want to detect. In a GWAS, the phenotypic effect of any nucleotide variant may be fixed but the 
accurate ascertainment of the phenotypic effect has consequences for the power of the study. At least two factors 
play a critical role for accurate measurement of the phenotypic effect. Firstly, any confounding environmental 

Table 3.   Tentative associations in regions previously associated with blood lipid levels or dyslipidemia 
associated comorbidities. Tentatively significant results of the genome wide association analyses for loci, 
which has been associated with blood lipid levels and/or dyslipidemia associated comorbidities in previous 
studies and have a p value < 10E−5 in the present study. All associations are listed in chromosomal and 
positional order. Chromosome number (Chr) and base-pair (BP) position refer to pig genome assembly 
Sscrofa 11.1. MAF = minor allele frequency. P = p value. B = regression coefficient. SE = standard error for B. 
r2 = The squared correlation coefficient between pairs of SNPs as a measure for linkage disequilibrium (LD). 
Phenotype abbreviations: Serum levels of the following lipids, Lanosterol (Lan), Lathosterol (Lat), Desmosterol 
(Des), Sum of intermediates in the cholesterol synthesis pathway (Sint) i.e. Lan + Lat + Des, Betasitosterol 
(Bsit), Campesterol (Cste), Stigmasterol (Stig) Sum of phytosterols (Sphy) i.e. Bsit + Cste + Stig, Coprostanol 
(Csta), Epicoprostanol (Esta), Sum of microbiota-derived sterols (Sste) i.e. Csta + Esta, low-density lipoprotein 
cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), total cholesterol (TC), Triglycerides 
(TG). The tentative associations with endophenotypes in the present study point towards specific biological 
mechanisms, which may be the underlying causes for the observed associations with end-point phenotypes in 
previous studies.

Pheno-
type Chr Lead-SNP BP MAF P B SE

Genomic 
region Candidate gene

Position of 
functional 
candidate gene Functional link

Region in 
strong LD 
with lead-
SNP, r2 > 0.8

Lan 7 49,354,803 0.22 4.27E−06  − 0.41 0.09 Intron, ARNT2 ARNT2 49,259,648-
49,450,466

ARNT2 is associated with 
blood lipid levels41

49,347,252-
49,354,803

Cste 7 53,150,849 0.14 6.45E−06  − 83.75 18.57 Intron, CRTC3 CRTC3
CRTC3 is associated with 
total cholesterol plasma 
levels69

53,038,983-
53,169,774

LDL-C 8 131,059,165 0.13 6.10E−06 5.88 1.30 Upstream vari-
ant, PKD2 SPP1 131,077,825-

131,085,327

SPP1 regulates CYP7A1, 
which converts cholesterol 
to hydroxyl-cholesterol in 
the first step of bile acid 
synthesis70

131,057,567-
131,064,130

TG 9 121,527,397 0.14 8.42E−06 16.21 3.64 Intron, 
TOR1AIP1 TOR1AIP1 121,515,664-

121,566,795

TOR1AIP1 encodes Torsin 
1A interacting protein 1, 
which regulates hepatic 
VLDL secretion71

121,527,397-
121,527,397

Sint 12 38,331,125 0.19 3.98E−06  − 16.31 3.54 Intergenic LHX1 38,461,948-
38,563,314

LHX1 is associated with 
circulating lipid levels72

38,331,125-
38,331,452

Des 12 38,656,438 0.16 8.52E−06  − 10.69 2.40 Intron, ACACA​ ACACA​ 38,581,541-
38,875,025

ACACA​ is involved in fatty 
acid synthesis73

38,656,438-
38,723,182

TG 12 40,823,266 0.16 5.54E−07  − 17.69 3.53 Intergenic CCL2 40,740,308-
40,799,969

The CCL2 gene has been 
associated with TG level, 
atherosclerosis and myocar-
dial infarction74 and knock-
out of CCL2 in mice results 
in lower levels of cholesterol 
and TG75

40,823,120-
40,850,200

Sint 14 12,003,949 0.27 1.02E−06  − 18.11 3.71 Intergenic PBK 11,543,665-
11,561,923

PBK interacts with 
cholesterol and modulate 
cell-signaling76

12,001,579-
12,021,393

Des 14 59,484,064 0.09 3.56E−06 13.54 2.92 Intron, TTC13 ARV1 59,397,433-
59,408,878

Decreased expres-
sion of ARV1 cause 
hypercholesterolemia47

59,389,882-
59,541,999

HDL-C 14 64,268,082 0.03 2.85E−06 7.58 1.62 Intergenic CDK1 64,233,839-
64,249,546

CDK1 encodes a kinase, 
which stabilized SREBP177

61,776,948-
64,843,717

Des 15 45,876,346 0.04 6.44E−07  − 21.42 4.30 Intron, ACSL1 ACSL1 45,867,356-
45,933,112

Hepatic ACSL1 depletion 
causes a hypercholester-
olemic phenotype in mice46

45,665,239-
46,524,879

Bsit 15 93,370,432 0.02 3.23E−06  − 116.95 25.12 Intergenic COL3A1 93,556,914-
93,595,678

Expression of COL3A1 is 
affected by plant sterols78

93,370,432-
93,370,432

Lat 15 130,395,782 0.12 1.29E−06 9.42 1.95 Intergenic PID1 130,079,133-
130,332,658 PID1 controls HDL-C level44 130,384,947-

130,395,782
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factor must be minimized. Secondly, the direct effect must be measured rather than a secondary or a derived 
effect, which may be genetically more complex and hence biased by other loci in the genome. In the present 
study, we minimized environmental effects by using the pig as an animal model and by raising the animals in 
a highly controlled environment including a uniform diet for all animals. Furthermore, in order to detect a 
more direct effect of genetic variants, we measured a number of endophenotypes, for example intermediate 
metabolites in the cholesterol synthesis pathway. On the other hand, opposing the trend towards larger studies, 
we reduced the number of animals in the study to a number, which must be considered an absolute minimum 
for a study of this kind.

Despite the very small sample size, our approach resulted in detection of two genome-wide significant asso-
ciations with p -values of 1.06E−11 and 1.30E−08. While p -values like those are remarkable for a GWAS with 
this sample size, the many suggestive and tentative associations also show that the number of animals was too 
restrictive and statistical power suffered from that. Nevertheless, strong functional candidate genes were found 
for a large fraction of the suggestively and tentatively associated loci. Furthermore, many of those demonstrated 
how inclusion of endophenotypes could be used to dissect genetic and molecular mechanisms underlying more 
complex end-point phenotypes. Many of the loci associated with endophenotypes in the present study have 
previously been associated with the more complex end-point phenotypes HDL-C, LDL-C or a dyslipidemia-
associated disease. In the previous studies, detection of the relatively weak effect of these loci on the end-point 
phenotypes was only possible because large cohorts were studied. The associations to end-point phenotypes 
were not confirmed for these loci in the present study, because it was underpowered to detect loci with weak 
effects on complex end-point phenotypes. Instead, by including endophenotypes we found these loci associated 
with some of the genetically less complex but biologically more fundamental mechanisms, which ultimately 
cause a change in levels of LDL-C, HDL-C or disease risk as documented by the previous large cohort studies. 
That is, we detected the same loci in a simpler setup and at a lower cost, and at the same time, we obtain a more 
detailed understanding of the biological mechanism by which the loci have an effect on the complex end-point 
phenotypes.

Inclusion of endophenotypes furthermore enabled identification of one pleiotropic locus on Chr 13 associated 
with Lat, Des, Sint, and TC. The pleiotropic effect indicates either a direct effect at several levels of cholesterol 
biosynthesis or an early and strong fundamental effect reflected in levels of intermediates in all later stages of 
cholesterol synthesis. Hence, due to inclusion of endophenotypes, this locus can be identified as a master regula-
tor in cholesterol biosynthesis.

In addition to loci with effect on endophenotypes, the present study also identifies a number of loci with an 
effect on the end-point phenotypes, HDL-C, LDL-C, TC and TG. In several cases, these results point towards 
genes with a very central role in cholesterol synthesis or to loci with an effect on cholesterol clearance and/or 
excretion rather than synthesis. HDL-C level was tentatively associated with the CDK1 gene, the product of 
which stabilizes members of the SREBP family77. As mentioned above, SREBPs play a key role in the biosynthesis 
of cholesterol79. LDL-C level was suggestively associated with a key mechanism for LDL-C clearance from the 
blood, namely LDLR endocytosis, via an association with the FCHO2 gene. TC was tentatively associated with 
another transmembrane transport mechanism by its association with COL23A1. Full-length COL23A1 molecules 
are found in lipid rafts56, which are tightly packed microdomains of the cell membrane. Evidence suggests that 
these rafts are directly involved in reverse cholesterol transport57. Our results lend support to the cholesterol 
transporting capacity of COL23A1-containing lipid rafts and point to an important role in regulation of overall 
cholesterol levels. TG level was tentatively associated with TOR1AIP1, which plays an essential role in regulation 
of secretion of hepatic VLDL71, which is the principal carrier of TG in the blood. All these results are in agree-
ment with the expectation that a study of this scale will only be able to detect the loci with strongest effect for 
the genetically more complex end-point phenotypes.

The serum levels of phytosterols and microbiota-derived sterols can be used as a proxy for the efficiency of 
sterol absorption from the gastrointestinal canal. Our results confirm previous observations of a role for the 
PACRG/PRKN locus in lipid absorption from the gut. Besides that, our results indicate that loci with a more 
general effect on lipid transport and biosynthesis also have a role to play in sterol absorption.

Overall, the present study corroborate many previous results from studies in human and mice and the great 
overlap between results affirm the quality of the pig as an excellent animal model for human blood lipid metabo-
lism. Furthermore, we identify new loci associated with different blood lipid levels. These results must be further 
evaluated in future studies in humans and animal models. Most importantly, the study identifies suggestive and 
tentative associations between endophenotypes and genes, which previously have been associated with end-point 
phenotypes. These results suggest hypotheses about more fundamental molecular mechanisms underlying the 
previously identified associations with end-point phenotypes. We propose that these hypotheses should be evalu-
ated in future studies in humans and in animal models. The study demonstrates how inclusion of endophenotypes 
has the power to detect biologically important loci even in a small-scale study. This is a cost-effective approach 
compared to larger GWAS with complex end-point phenotypes. At the same time, the results demonstrate how 
the inclusion of endophenotypes facilitates elucidation of specific details in biological mechanisms underlying 
variation in end-point phenotypes.

Material and methods
Animal material and sample collection.  All animals used in the present study were a three-way cross 
between Duroc, Landrace and Yorkshire used in the Danish pig production system. The sows from crossings 
between Landrace and Yorkshire were inseminated with mixed semen from Duroc boars to produce the pigs 
used in the study. All parental animals were provided by Danbred (Herlev, Denmark). The pigs were produced in 
a production farm and raised under the conditions for production pigs in Denmark observing guidelines in the 
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Danish “Animal Maintenance Act” (Act 432 dated 09/06/2004) and the “Order regarding animal experimenta-
tion” (BEK nr 12 af 07/01/2016) and approved by the Danish Veterinary and Food Administration. All pigs were 
ear-tagged with individual ID at weaning. Both female and male pigs were used in the study. All pigs were fed 
the same diet. None of the pigs was subjected to any treatment. At an age of approximately 6 month and a body 
weight of approximately 100 kg, animals were send to an approved commercial abattoir where they were slaugh-
tered in the morning after overnight fasting. Blood and serum samples were collected immediately after exsan-
guination in BD K2E (EDTA) tubes and BD Vacutainer SST tubes, respectively, from Thermo Fisher Scientific.

DNA isolation, genotyping and imputation to whole genome sequence variants.  High qual-
ity DNA was isolated from EDTA stabilized blood using a classic salting out procedure80. SNP genotyping was 
performed by Edinburg Genomics, Ashworth Laboratories (Edinburgh) using the 700  K Affymetrix Axiom 
PigHD chip. To establish marker positions in the newest assembly of the pig genome (Sscrofa11.181), sequences 
of the probes for Affymetrix Axiom PigHD SNPs were mapped to the new assembly using BWA82. Markers 
with a unique map position were retained for further analyses. Whole genome sequence (WGS) from a refer-
ence population of 217 animals from three pig breeds (89 Duroc, 61 Landrace and 67 Yorkshire) was used to 
impute genotypes at a WGS variant level based on HD chip genotypes. Non-autosomal markers and indels with 
a position coinciding with HD chip markers were removed. To phase the haplotype for the HD marker set and 
the WGS marker set, we used Eagle83 with default parameters. The WGS dataset comprised 26,581,741 bi-allelic 
markers on 18 autosomes. Finally, Minimac384 was used to impute the HD marker set to WGS level. SNPs with 
a minor allele frequency below 2%, SNPs with large deviation from Hardy–Weinberg proportions (P < 1.0E − 4) 
and SNPs with imputation accuracy below 0.4, reported by Minimac3, were removed. After this, 14,763,710 
markers were retained for association analyses.

Phenotypes.  Serum levels of all lipids and sterols listed in Table 1 were measured by Gas Chromatography-
Mass Spectrometry (GC–MS) using a method adapted from Heuillet, et al.85 and Quehenberger, et al.86. Briefly, 
serum were supplemented with deuterium-labelled internal standards and esterified sterols were saponified 
with 500 µl 0.5 N KOH for 20 min at 60 °C. Sterols were extracted twice with 450 µl water and 900 µl hexane 
and derivatized with 60 µl BSTFA:TMCS (90:10), 1 h at 80 °C. Samples were dried and resuspended in 60 µl 
cyclohexane containing 1% BSTFA for GC/MS injection. Samples were analyzed using a Trace 1310-ISQ LT 
GC–MS instrument (Thermo Fisher Scientific). Sterols were injected at 250 °C in split mode and separated on 
a 30 m × 0.25 mm, 0.25 µm DB-5MS column (Agilent). Sterols were ionized using electronic impact (EI) and 
analyzed in SIM mode.

Outliers for each of the phenotypes were removed. A phenotypic value was considered an outlier if it was 
either below the first quantile − 1.5 IQR (interquartile range, which is the difference between third and first 
quantile), or above the third quantile + 1.5 IQR. The following linear mixed model was used to adjust the phe-
notypes for the fixed effects:

where y is the vector of phenotypes; b is the vector of fixed effects (i.e. batch, pen, sex, group); g is the vector of 
random polygenic effect estimated using a genomic relationship matrix constructed using the markers; e is the 
random residual. It was assumed that g follows a normal distribution N

(
0,Gσ 2

g

)
 , in which G was the matrix of 

genomic relationship between individuals estimated using HD marker genotypes following VanRaden87, and σ 2
g  

was the genetic variance. For random residuals, it was assumed that e ∼ N
(
0, Iσ 2

e

)
 , where σ 2

e  was the residual 
variance and I was an identity matrix. The corrected phenotypes were calculated as estimated genetic values plus 
residuals (yc = ĝ + ê) . These corrected phenotypes were used as the response variables in the association 
analysis.

Correlations between corrected phenotypes were calculated using the Hmisc R package (https​://www.R-proje​
ct.org). The False discovery rates (FDR) was calculated based on p -values using the p.adjust function of the R 
package.

Genome wide association analysis.  The method for identifying possibly closely linked QTL has been 
described previously88. We estimated the genomic relationship matrix (GRM) using GCTA​89 with the 700 K HD 
marker set. We estimated the GRM for each chromosome by leaving this chromosome out. This GRM was used 
for the following GWAS analysis. SimpleM90 was used to estimate the number of independent tests and set a 
genome wide significance threshold p-value of 4.8e−08 (− log10P = 7.32). A threshold for suggestive significant 
was set to 10 times the genome wide significance level (4.8E−07). Furthermore, SNPs with − log10(p value) < 5 in 
regions, which previously had been associated with blood lipid levels or dyslipidemia associated comorbidities, 
are reported.

The GWAS was performed in several rounds. In a first round, single SNP GWAS analysis using GCTA​89 was 
performed for each chromosome. Then all SNPs were ranked based on their − log10P value and the largest − log10P 
value within each chromosome was identified. If the − log10P value of a SNP exceeded five, and there were at 
least one SNP with − log10P > 4 within a 2 Mb region (1 Mb up and down stream of the lead SNP), this SNP was 
retained as lead-SNP. Then, for each lead-SNP we extracted the lead SNP’s genotype dosage, fitted it as a covariate, 
and scanned the whole chromosome again in a second round of the GWAS. If the result of second round detected 
another SNP that fulfilled lead-SNP criteria, and if this SNP had been a significant (− log10P > 5) non-lead SNP 
in the first round, then this SNP was added to the lead-SNP list. We then extracted the allele dosage of this SNP, 

y = Zb + Xg + e

https://www.R-project.org
https://www.R-project.org


11

Vol.:(0123456789)

Scientific Reports |        (2020) 10:18434  | https://doi.org/10.1038/s41598-020-75612-6

www.nature.com/scientificreports/

fixed it as another covariate, and scanned the chromosome in a third GWAS round. This procedure was iterated 
until no additional SNP remained significant.

Genomic heritability (the proportion of phenotypic variance explained by all HD markers) was estimated for 
each phenotype using GCTA --reml function89 and a GRM with all HD markers on autosomes. LD was calculated 
between each lead-SNP and all other SNPs with − log10P > 5 on the same chromosome as the lead-SNP. Pairwise 
LD (r2) was calculated using Plink91. LocusZoom 92 was used to illustrate regional GWAS and LD results for 
genome-wide significant SNPs.

Identification of candidate genes and comparative analysis with previous studies.  For each 
identified association, a 1  Mb region of the porcine genome (Sscrofa11.1) centered on associated SNP were 
analyzed. Even though strong LD in many cases extended considerably less than 0.5 Mb on each side of the 
associated SNP, a 1 Mb region were analyzed for all associated positions. All protein coding as well as non-
coding genes in the analyzed regions were catalogued. Previous knowledge about each gene was ascertained by 
searches in the PubMed database, the Entrez-Gene database and the database of www.genec​ards.org. Searches 
were performed with search terms combining each gene name with other relevant terms such as the specific 
endophenotype or end-point phenotype associated with the locus. For each gene, searches were also performed 
with a combination of gene name and the general search terms “sterols”, “cholesterol” and “blood lipids”.
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