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Abstract The direct numerical simulation of blast waves

(accidental or industrial explosions) is a challenging

task due to the wide range of spatial and temporal

scales involved. Moreover, in a real environment (topog-

raphy, urban area . . . ), the blast wave interacts with

the geometrical obstacles resulting in reflection, diffrac-

tion and waves recombination phenomena. The shape of

the front becomes complex, which limits the efficiency

of simple empirical methods. This work aims at con-

tributing to the development of a fast running method
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for blast waves propagation in presence of obstacles.

This is achieved through an ad-hoc extension to the sim-

plified hyperbolic Geometrical Shock Dynamics model

for shock waves propagation. This leads to a drastic re-

duction of the computational cost, from the five three-

dimensional Euler equations to a two-dimensional prob-

lem with two equations. The new model, called Ge-

ometrical Blast Dynamics (GBD), is able to take into

account any type of source and interactions with obsta-

cles. Results are compared on a wide range of configu-

rations with experiments, semi-empirical models from

the literature and Eulerian simulations. A noticeable

restitution of the blast wave propagation is observed.

Keywords Blast waves · Geometrical Blast Dynam-

ics · Geometrical Shock Dynamics · Fast running

method · Lagrangian scheme
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1 Introduction

A blast wave results from the sudden release of a fi-

nite amount of energy from an impulsive source. A

precise prediction of airborne blast waves propagation

is required in numerous applications such as the py-

rotechnics industry, explosion hazards or noise annoy-

ance among others. The direct numerical simulation of

blast waves from the detonation neighborhood to long

range propagation is a challenging task due to the wide

range of spatial and temporal scales involved. Moreover,

the blast wave propagation is affected by numerous

physical conditions such as the source shape, the height

of burst, the interaction with obstacles or topography as

well as the atmospheric conditions. This results in nu-

merous physical phenomena such as diffraction, regular

reflection, Mach stem formation or waves recombina-

tion. The shape of the front becomes complex, which

limits the efficiency of simple empirical methods re-

stricted to basic configurations.

As examples of canonical cases, we can cite the use

of free field abacus such as Kinney and Graham’s ones [1],

coupled with empirical reflection [2] or with numeri-

cal diffraction [3] coefficients. Other examples include

the energy concentration factor [4] for predicting blast

propagation in partially confined geometries, or empir-

ical laws for Mach stem evolution [1, 5, 2, 6] in the case

of shock reflection over the ground. More sophisticated

methods exist for simple structures such as the image

burst method [5] for multi-reflected shock waves or the

ray tracing method [7] for diffraction around structures.

An example of the coupling of these methods can be

found in [3] for blast-wave mitigation by a prismatic

blast wall. For more complex three-dimensional con-

figurations, the FLASH (Fast Lethally Assessment for

Structures and Humans) code [8], designed to rapidly

estimate explosion effects in urban areas, compiles these

different geometrical methods. However, all these semi-

empirical models are limited to simple geometries and

their extension to arbitrary three-dimensional configu-

rations seems difficult. As an alternative way, Flood [9]

proposed to solved full Euler equations over a rough

mesh, and then to use a neuronal network to refine re-

sults. The neuronal network is coupled with a data base

previously provided by fine simulations. However, few

details are provided about this approach. Moreover, the

far field propagation turns out challenging given the im-

portant numerical diffusion occurring for rough meshes.

Consequently, the development of alternative simplified

models able to describe precisely blast waves propaga-

tion in complex environment and over long ranges is

required.

Geometrical Shock Dynamics (GSD) model [10, 11,

12] is identified as a good alternative model for blast
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waves propagation. It is able to estimate at a moderate

cost, but with a reasonable accuracy, the propagation

of a shock interacting with geometrical elements. This

model is based on the decomposition of the shock front

into elementary ray tubes. Assuming small changes in

the ray tube area and neglecting the influence of the

post-shock flow on the shock itself, a simple relation can

be established [13], linking the local curvature and the

front velocity, known as the A−M rule. It is well known

that GSD is quite accurate for sustained shock propa-

gation problems. It has been investigated by numerous

authors in the past, including among others cases of

converging flows [14, 15], propagation through nonuni-

form media [16], and outdoor propagation [17] . Nev-

ertheless, the model suffers from an intrinsic limitation

for the issue of shock diffraction over a convex wall.

For sufficiently weak shocks, no solution of GSD model

exists up to the wall above a given deflection angle.

This is in contradiction with experimental studies [18]

showing that the diffracted shock front should still exist

at the wall, even for weak shocks and at large deflec-

tion angles. Theoretical approach of nonlinear acous-

tics indicate that weak shock diffraction is dependent

on the overall waveform, this means is influenced by

post-shock flow [? ]. Some modifications of GSD model,

such as its extension to post-shock flow [13], or a mod-

ified treatment of the wall condition [19], are able to

recover the inflection point experimentally observed for

strong shocks, but do not remove the restriction. The

more recent Kinematic model [20, 21, 22] is no more

efficient to remove this limitation [23]. Based on the

original Oshima’s idea [24, 25] of transverse flow along

the shock, an ad-hoc modification of the A−M relation

for two-dimensional configurations has recently be pro-

posed in [26]. The closure is designed to systematically

remove the limitation of the model.

GSD model is quite accurate for sustained shock

propagation problems, for which post-shock flow has

little influence on the shock propagation. In such a

problem, the source energy is indeed infinite and con-

tinuously supplies the shock front. Consequently, the

shock propagation is only driven by the local changes

of shock geometry. It is no longer the case for blast

waves propagation with a finite source of energy. Tak-

ing into account post-shock effects in the A − M re-

lation yields an infinite sequence of Ordinary Differ-

ential Equations (ODE) with higher-order post-shock

flow terms [13]. Truncation at zeroth-order corresponds

to the original GSD model. The dynamical influence

of post-shock flow over the shock front is introduced

as of first-order truncation. Nevertheless, an analysis

of flow non-uniformities effects for blast waves reveals

the complexity of choosing the order of truncation [27].
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The objective of this paper is to present a simple ex-

tension of the GSD model to blast waves, much simpler

than the high-order extension of the post-shock flow.

The new model, called GBD model (Geometrical Blast

Dynamics), is based on a decoupling between the shock

front geometrical changes and the blast effects in the

A−M relation. It consists in modeling the post-shock

flow term with an empirical law for spherical charges.

As previously proposed [26], GBD model also includes

additional transverse flow effects designed to remove

the limitation of GSD model for the case of a shock

diffracting over a convex wall.

The present paper is organized as follows. First, sec-

tion 2 recalls the phenomenology of blast waves and

presents some semi-empirical models selected to evalu-

ate GBD model. Secondly, the derivation of GSD model

and its ad-hoc modification to incorporate transverse

flow is reviewed in section 3. The simple extension of

GSD to blast waves is then fully described in section 4.

The two-dimensional axisymmetrical conservative La-

grangian scheme, designed to solve GBD model, is also

briefly recalled in this section. In section 5, GBD model

is evaluated for several cases of increasing complexity

and compared to semi-empirical models, Eulerian sim-

ulations and experimental data. Finally, section 6 pro-

vides a conclusion and suggests ways for further im-

proving.

2 Problem set up

A blast wave results from a sudden and local release

of a finite amount of energy from an impulsive source.

As a consequence, a shock wave develops in air with

a dramatic reduction in its strength as it propagates

from away the source. For the ideal case of a spher-

ical source in free field, Figure 1 sketches the typical

temporal pressure signal. The shock, characterized by

the peak overpressure ∆P+, reaches the observation

point (a gauge for example) at time ta, called arrival

time. The shock is continuously overtaken by an un-

steady rarefaction wave resulting in an alternation be-

tween positive phase, where the pressure is up to am-

bient pressure p0, and negative phase where it is down

to p0. The positive phase is fully described in terms of

ta, ∆P+, the positive phase duration t+ and the posi-

tive phase impulse I+. The negative phase duration t−,

the pic underpressure ∆P− and the negative phase im-

pulse I− characterizes the negative phase. The negative

phase is usually not considered for most considerations

such that the load evaluation on structures.

2.1 Free field laws

For a spherical or hemispherical charge of TNT1, the

empirical Kinney’s laws [1] provides an approximation

for main characteristics of blast waves. In particular,

1 TNT: Trinitrotoluene, C7H5N3O6.
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Fig. 1 Typical temporal pressure signal for an ideal blast

wave according to [1].

the evolution of the non-dimensional peak overpressure,

ζK = ∆p+/p0, is expressed as

ζK(Z) =

808
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where Z = r/W 1/3 is the scaled distance, r the distance

at the source and W the mass of TNT expressed here in

kilogram. The blast wave intensity, characterized by the

peak overpressure, rapidly decreases with the distance

as seen in figure 2. It degenerates to an acoustical wave,

with an overpressure bellow to 20 mbar, at only 43 me-

ters from the source. Another empirical laws for peak

overpressure can be found in the literature, referred as

Kingery’s law [28] or the Needham’s law [5] for exam-

ple. In this paper, only Kinney’s law is considered for

condensed explosives. For another nature of explosive

such that gaseous charges, let us cite the empirical law
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Fig. 2 Evolution of the peak overpressure in free field for

the explosion of 1 kg of TNT from Kinney’s law (1). GSD

model is drawn as an indication. Results for GSD are obtained

by solving (29) with a RK4 algorithm. The initial data are

r0 = 0.25 m and M0 ≈ 10.124, value calculated with (1)

and (6).

for a stoichiometric propane-oxygen mixture [3]:

log (ζE(Y )) = 0.0895− 1.7633 ln (Y ) + 0.1528 ln (Y )2

−0.0066 ln (Y )3 − 0.0021 ln (Y )4
, (2)

with ζE = ∆p+/p0, and where Y is the scaled dis-

tance reported to the released energy: Y = r/E1/3 (in

m/MJ1/3).

2.2 Blast wave reflection

Outdoor blast waves are affected by numerous physical

conditions such as source shape, height of Burst (HoB)

or interaction with obstacles. For a spherical explosion

above the ground as sketched in figure 3, the shock wave

interaction with the ground first results in a Regular

Reflection (RR): incident and reflected shock waves are
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Fig. 3 Schematic representation of the interaction of an ex-

panding spherical shock wave over the ground. Figure comes

from [6].

attached to the ground. From a distance at the ground

R0, depending on the shock intensity and the angle of

incidence, both waves are unable to redirect the stream

completely back into its original direction resulting in

a Mach Reflection (MR). Incident and reflected shock

waves are then detached from the surface and a third

shock, called Mach stem, appears joining both waves

to the ground at an intersecting point so-called Triple

Point (TP). The Mach stem may be regarded as the fu-

sion of the incident and reflected shock waves resulting

in a rise of the peak overpressure [29]. The regime of

reflection depends on past history of the shock and two

main parameters [1]: the incident shock overpressure

∆Pi, or equivalently the incident Mach number Mi (6),

and the angle of incidence β. The empirical Kinney’s

formula [1] provides an estimation of the critical angle

of transition, βmax, between RR and MR:

βmax =
1.75
Mi − 1

+ 39 (in degree). (3)
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Fig. 4 Reflected pressure coefficients from UFC [2].

Several empirical laws allows to estimating the dis-

tance of transition between RR and MR as well as the

Height of Triple Point (HTP) [1, 2, 6, 30]. Boutillier et

al. [6] defined an empirical law from experimental data

for C4. The scaled ground distance, SR0 = R0/W
1/3,

and the scaled height of burst, SHTP = HTP/W 1/3,

are expressed for TNT as:

SR0 = 1.99× 10−3E1/3
q SHoB2 + 0.601SHoB, (4)

SHTP = 0.07
SHoB

SR2
0

(
SD2 − 2SR0SD + SR2

0

)
, (5)

where Eq is the TNT equivalency taken to 1.28 here.

SD is the scaled distance at the ground: SD = D/W 1/3.

These laws are valid for SHOBs ranging from 22.7

cm/kg1/3 to 159.7 cm/kg1/3.

The reflected overpressure at the ground, ∆Pr, can

be estimated with empirical reflection coefficients from

UFC [2], shown in figure 4. This reflection table depends

on β and ∆Pi, where ∆Pi can be evaluated with a free
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field law such as Kinney’s one (1). The reflection table

intrinsically takes into account the regime of reflection.

2.3 Blast wave diffraction

In the case of diffraction of a spherical blast wave as

sketched in figure 5(a), [3] proposes a numerical aba-

cus inspired from reflection table (see figure 5(b)). This

table gives the diffraction coefficient,

Cd =
∆Pd

∆Pff
,

from the incident overpressure at the edge, ∆Pi, and the

deflection angle θw < 0. The diffracted overpressure at

the wall, ∆Pd, is then evaluated by multiplying Cd and

the free field overpressure at the geometrical distance

from the source to the observation point, ∆Pff .

(a) (b)

Fig. 5 Configuration for blast wave diffraction over a convex

corner (a) and diffracted pressure coefficients (b) from [3].

This abacus was established from numerical simula-

tions in a 2D-axisymmetrical configuration for a struc-

ture with a deflection angle of −90◦ and high of 1.85

m/kg1/3 as sketched in figure 5(a). Sensors were located

every 10◦ at ε = 0.015 m/kg1/3 from the corner and

recorded the peak overpressure.

All empirical and semi-empirical laws are alterna-

tive approaches to the direct simulation of blast waves

for simple geometries. Nevertheless, they are unable to

estimate blast waves propagation in interaction with

complex environment. An intermediate model, able to

account for the shock interaction with structures of any

shape, is the Geometrical Shock Dynamics model.

3 Review of GSD model

In this section, we recall the classical derivation of the

Whitham’s Geometrical Shock Dynamics (GSD) model [12].

Its limitation for expansive shock waves is discussed,

followed by the presentation of a simple correction aim-

ing at removing this restriction.

We consider the propagation of a shock wave in a

uniform, quiescent, and calorically perfect gas. We de-

note by ρ, p, and v the density, pressure, and fluid ve-

locity respectively. For a perfect gas, the sound speed c

reads

c =
√
γp

ρ
,

with γ the specific heat ratio of the gas, supposed con-

stant and equals to 1.4 for air. These variables are in-
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dexed by 0 for the initial state of the gas at rest. The

standard conditions for air are p0 = 101, 325 Pa, that

is p0 = 1.01325 bar, ρ0 = 1.225 kg/m3 and c0 = 340.3

m/s.

We introduce the shock Mach number:

M =
U

c0
≥ 1,

where U denotes the shock velocity. The Rankine-Hugoniot

relations [31] links this quantity to the shock overpres-

sure ∆P+:

M =

√
1 +

γ + 1
2γ

∆P+

p0
. (6)

The shock position, x, is a solution of the Ordinary

Differential Equation (ODE):

dx

dt
= Un = c0Mn, (7)

where t is the arrival time of the shock, and n denotes

the unit outward normal vector at the front.

3.1 Geometrical Shock Dynamics model

The Whitham’s GSD model is a simplified model for

shock wave propagation based on a geometrical vision

of the evolution of the shock front. The key idea behind

GSD model consists in splitting the shock front into

elementary areas, A, propagating along ray tubes in

which the cross-flow is neglected. The model of shock

propagation is thus reduced to the 1D problem of a

planar shock moving into a channel with varying cross

section.

Fig. 6 Shock position at times t1 and t2. Quantities indexed

by 0 are fluid parameters of the initial state of the gas, and

quantities indexed by − are fluid parameters disturbed by the

shock.

At time t, the shock front is identified as the zero

level set of a scalar function Φ :

Γ (t) = {x ∈ Ω ⊂ R3/Φ(x, t) = 0}. (8)

In the neighbourhood of the shock, we suppose that

Φ is differentiable and that ∇Φ is not identically null.

From (8), the unit normal vector at the shock front is

defined by

n =
∇Φ
|∇Φ| , (9)

and Φ verifies the equation:

∂Φ

∂t
+ Un ·∇Φ = 0. (10)
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Injecting (9) into (10), we get:

U = − ∂tΦ

|∇Φ| . (11)

Assuming a single-pass front, the level-set function Φ

may be defined as

Φ(x, t) = α(x)− c0t, (12)

where α describes the shock position. Since c0 is con-

stant, α = c0t is also called a pseudo-time for the

sake of simplicity. The unit normal vector at the shock

front, (9), is then

n =
∇α
|∇α| , (13)

and the normal velocity of the shock, (11), leads to the

local eikonal equation, equivalent to (7):

M |∇α| = 1. (14)

GSD model consists in splitting the shock front into

elementary areasA propagating along ray tubes in which

the cross-flow is neglected. The flow in a ray tube can

be expressed mathematically by the equation [11]

∇·
(n

A

)
= 0. (15)

By considering a ray tube as a channel with rigid walls,

a simple law linking A to M closes the system. This

relation, called A − M rule, is obtained from the 1D

Euler system with varying cross-section [13]:

1
A

dA
dα

+
Mλ(M)
M2 − 1

dM
dα

+ h(M)Q = 0, (16)

where

λ(M) =
(

1 +
2

γ + 1
1− µ2

µ

)(
1 + 2µ+

1
M2

)
, (17)

h(M) =
γ + 1

2
µ(µ− 1)
M2 − 1

, (18)

and µ is the post-shock Mach number :

µ =

√
(γ − 1)M2 + 2
2γM2 + 1− γ

. (19)

Q =
(∂tp+ ρc∂tv)−

p0c30
, indexed by − for quantities just

behind the shock, contains all the post-shock flow terms.

Q is an unknown of the problem. As

lim
M→1

h(M) = −0.6 and lim
M→+∞

h(M) = 0,

Whitham chose to neglect the term of truncation under

the assumption of the smallness of post-shock effects Q,

resulting in the simple form:

1
A

dA
dα

+
Mλ(M)
M2 − 1

dM
dα

= 0. (20)

This approximation appears to work remarkably well

in a large number of configurations [12, 32, 23] where

the post-shock effects have little influence on the shock

propagation as for sustained shock. Finally, GSD model

is composed of geometrical system (13)-(14)-(15) and

the A−M relation (20).

The function λ is a bounded increasing function,

varying from 4 at M = 1 to

λ∞ = 1 +
2
γ

+
√

2γ
γ − 1

≈ 5.074, for γ = 1.4, (21)
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as M → +∞.

From (20), A depends only on M and can be consider

as dimensionless:

A(M) = exp

− M∫
M0

mλ(m)
m2 − 1

dm

, (22)

with M0 a reference Mach number. It is straightfor-

ward to prove the hyperbolicity of GSD model provided

that A′(M) < 0, which is verified as λ(M) > 0 and

M ≥ 1. Some waves may thus develop on the shock

front. They are responsible for the modification of the

intensity, shape, and orientation along with front evolu-

tion. In particular, discontinuities, called shock-shocks,

appear. They correspond to the triple point position on

the shock when a Mach stem arises. It is worth noting

that Mach reflections systematically occur for compres-

sive flows due to the geometrical vision of the shock

wave. Nevertheless, for regular reflection conditions, it

has been noticed that the Mach stem height is small

enough to assimilate the reflection as regular [12]. In

any event, considering the simplicity of the model, a

good agreement with data can be observed as shown

in [23].

In presence of an obstacle, wall boundaries coincide

with rays in Whitham’s theory. Consequently, the front

is orthogonal to the wall. The hyperbolicity property of

GSD insures taking into account of the shock interac-

tion with structures.

3.2 Limitation of GSD model

α = 0 α > 0

M0 , θ0=0 M0 , θ0=0

M
w  , θ

w

incident shock

rarefaction
wave

diffracted shock

π+θw

(xw,yw)

Fig. 7 Scheme of a planar shock diffraction over a convex

corner in GSD theory. The solution is a rarefaction wave link-

ing the initial state (M0, θ0 = 0) to the wall state (Mw, θw).

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 0  20  40  60  80  100  120  140  160  180

1.310

90.0 113.7

M
0

-θw (deg)

No solution
up to the wall

Fig. 8 Restriction curve (24) for a solution to exist for the

diffraction of a planar shock over a convex wall. There is no

solution up to the wall if (M0, θw) is strictly below the curve.

Two particular cases discussed in the text are indicated as

examples by red and blue dotted lines.

As explained in [12, 26], the solution for GSD model

is not insured for an expansive sufficiently weak shock.

In 2D, this default is highlighted with the Riemann

problem of a planar shock diffraction over a convex



Extension of Geometrical Shock Dynamics for blast waves propagation 11

wedge as sketched in figure 7. In this elementary prob-

lem, the shock travels from the left to the right at initial

Mach number M0, and diffracts over a convex wall of

deflection angle θw < 0 at time α = 0. The first state

for the Riemann problem is given by the incident shock:

(M0, θ0 = 0). After diffraction, the wall Mach number,

Mw, and the deflection angle, θw, represent the second

state. It can be shown that a rarefaction wave links

the states (M0, θ0) to (Mw, θw), diminishing the Mach

number along the shock from M0 to Mw. In particular,

it results at the wall in [26]:

Mw∫
M0

√
λ(m)
m2 − 1

dm = θw − θ0 < 0. (23)

From (23), one can easily show that a solution such

that Mw ≥ 1 exists if and only if M0 ≥Mlim > 1, with

Mlim the minimal reachable value of the incident Mach

number:

Mlim∫
1

√
λ(m)
m2 − 1

dm = −θw. (24)

This means that, for a given incident Mach number

M0, no solution of GSD model exists up to the wall

above a given deflection angle. Equivalently, for a given

deflection angle θw < 0, the condition M0 ≥Mlim must

be verified to have a solution up to the wall.

The restriction (24) is plotted in figure 8. For any

pair of variables (M0, θw) in the area below the curve,

there is no solution up to the wall for the diffraction of

a planar shock over a convex corner. For instance, we

have Mlim ≈ 1.310 for θw = −90◦ and Mlim = 1.5 for

θw ≈ −113.7◦.

 1
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 0  20  40  60  80  100  120  140  160
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M0=3.0
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M
w
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Fig. 9 Diffraction of a planar shock over a convex corner.

Wall Mach number, Mw, with respect to deflection angle, θw

in degrees, for different incident Mach numbers M0. Com-

parison between Skew’s experimental data [18] (black dots),

GSD model (23) (black solid line), and GSDT model (25)

(red dashed line).

The restriction of GSD model is in contradiction

with Skew’s experimental observations [18] as seen in

figure 9. Indeed, experiments show that the diffracted

shock front still exists at the wall, even for weak shocks

(M0 = 1.2) and at large deflection angles (θw up to

−165◦). Consequently, a modification of GSD is neces-

sary.

3.3 Ad-hoc modification of the A−M relation

More extensions of GSD model have been proposed tak-

ing into account the post-shock flow [13] or transverse
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flow along the shock [24, 25] during the derivation of

the A−M relation. A modification of the treatment of

the wall condition has been studied in [19]. However, all

these modifications seem unable to completely remove

the restriction. More recently, an ad-hoc correction of

the A−M rule (20), designed to systematically remove

the limitation of the model, has been developed in [26].

In 2D, it consists on modelling the interaction between

neighbouring ray tubes by the variation of the Mach

number along the shock:

1
A

∂A

∂α
+
Mλ(M)
M2 − 1

∂M

∂α
+H (κ) f(M)

∣∣∣∣∂M∂s
∣∣∣∣ = 0, (25)

where s is the curvilinear abscissa along the shock. This

modification is only active in expansive regions of the

shock, namely region where the curvature of the shock

curve, κ, is positive:

H(κ) =


0 if κ ≤ 0

1 if κ > 0.

The function f is determined from an empirical law

defined with Skews’ experimental data [18]:

f(M) =
kλ(M)

2
− 2M2

k(M2 − 1)
, k = 0.985. (26)

The reader is referred to [26] for technical details. The

system of geometrical equations (13)-(14)-(15) with the

modified A −M relation (25) is referred as GSDT, T

standing for Transverse variation along the shock, in

the remainder of the article.

Some studies in [26] have proven the ability of this

new model to estimate in a better way the shock front

position compared to GSD. In particular, GSDT model

has a solution up to the wall for the problem of diffrac-

tion over a convex wedge as shown in figure 9.

GSDT model, without restriction for weak shocks

contrary to GSD, is a good candidate to blast waves

propagation extension. This point is developed in sec-

tion 4.

3.4 Radial solutions for GSD and GSDT

For a planar (d = 1), cylindrical (d = 2) or spher-

ical (d = 3) shock wave, the evolution of the shock

position (7) verifies the Ordinary Differential Equation

(ODE):

dr
dα

= M(r). (27)

In this idealized configuration, the local variation of the

area expresses in term of r and there is no transverse

variation along the shock:

A′(r)
A(r)

=
d− 1
r

and
∂

∂s
≡ 0. (28)

Consequently, GSDT model reduces in GSD model. From (20),

the Mach number only depends on r:

M ′(r) = − M2(r)− 1
M(r)λ(M(r))

d− 1
r

. (29)

For a given initial condition M(r0) = M0, where r0

is the initial shock position, the equation (29) can be
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solved with a high-order algorithm. For example, fig-

ure 2 presents the solution obtained with a fourth-order

Runge-Kutta scheme (RK4) with r0 = 0.25 and M0 ≈

10.124.

4 Simple extension of GSDT to blast waves and

numerical integration

GSDT model are quite accurate for sustained shock

propagation problems [26] for which the local changes of

front curvature dominate post-shock effects. For blast

waves, the modelling of post-shock contribution is nec-

essary as seen in figure 2. In this section, a simple ad-hoc

extension of GSDT model to blast waves is proposed for

spherical or hemispherical charges.

4.1 Modelling of blast effects

Considering the post-shock flow in (25), the A−M rule

is expressed as

1
A

∂A

∂α
+
Mλ(M)
M2 − 1

∂M

∂α
+H (κ) f(M)

∣∣∣∣∂M∂s
∣∣∣∣+E = 0, (30)

with

E = h(M)
(∂tp+ ρc∂tv)−

ρ0c30
,

where h is given by (18). We propose here to model

E from an empirical law overpressure/distance at the

source, r, available in free field for spherical or hemi-

spherical charges. This law can be Kinney’s law (1) for

condensed explosives such as TNT, or a gaseous charge

law (2) for a stoichiometric propane-oxygen mixture for

example. Another modelling of the source may be pos-

sible.

Supposing E only depends on α, the shock Mach

number variation in a ray tube results from a compe-

tition between geometrical effects,
1
A

∂A

∂α
, and blast ef-

fects, E(α): For a spherical shock wave (d = 3), the

A−M relation (30) becomes:

M

(
2
r

+
Mλ(M)
M2 − 1

dM
dr

)
+ E (α) = 0, (31)

considering (27) and (28). For the sake of generality,

let us denote r 7→ ζa(r) the law overpressure/distance.

For example, we have ζa(r) = ζK
(
r/W 1/3

)
for Kinney’s

law (1). From (6), the Mach number expressed as

Ma(r) =
√

1 +
γ + 1

2γ
ζa(r). (32)

Injecting (32) into (31), the blast effects term may ex-

pressed as

E (α) = Er(ra(α)), (33)

with

Er(r)
Ma (r)

= −2
r
−
λ
(√

1 + γ+1
2γ ζa(r)

)
2

ζ ′a(r)
ζa(r)

, (34)

where M 7→ λ(M) is defined by (17). The mapping be-

tween α and ra is expressed from the ODE (27), which

results in the following integral form:

ra(α) = r0 +

α∫
α0

Ma(ra(τ))dτ , (35)
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where r0 is the shock position at initial time α0. For

a condensed explosive, the shock position at α0 = 0

corresponds to the charge radius:

r0 = rc =
(

3W
4πρc

)1/3

, (36)

where ρc is the density of the explosive. For instance,

ρc = 1650 kg/m3 for TNT and rc = 0.053 m for W = 1

kg. Finally, blast effects are modeled with relations (32)-

(35) in relation (30).

The simplified model designed for blast waves prop-

agation in presence of obstacles is finally composed of

geometrical equations (13)-(14)-(15) and the ad-hoc A−

M relation (30). This model is referred as Geometrical

Blast Dynamics (GBD) in the remainder of this article.

As discussed in section 3.1 for GSD model, GBD

model naturally makes arise Mach stems for compres-

sive flows. Consequently, GBD model does not taken

into account the Regular Reflection. This point will be

fully studied in section 5.

4.2 Analysis of the blast closure for TNT

In this section, the blast closure is analyzed for a spher-

ical diverging blast wave issue from an explosion of a

TNT charge. A similar analysis may be possible for a

gaseous charge. The blast term, Er(r)/Ma(r), is mod-

eled with Kinney’s law (1). The dimensionless blast con-

tribution (34) then depends only on the scaled distance

Z = r/W 1/3:

Er(r)
Ma (r)

W 1/3Zc = −2Zc

Z
−
λ
(√

1 + γ+1
2γ ζK(Z)

)
2

ζ ′K(Z)
ζK(Z)

Zc,

(37)

where Zc ≈ 0.053 m/kg1/3 is the scaled charge ra-

dius (36). From (1), one obtains:

ζ ′K(Z)
ζK(Z)

=
2

Z
(

1 + (4.5/Z)2
) − 1

Z
(

1 + (0.048/Z)2
)

− 1

Z
(

1 + (0.32/Z)2
) − 1

Z
(

1 + (1.35/Z)2
) . (38)

In free field, the blast wave propagation results from

a competition between the geometrical expansion,

A′(r)
A(r)

W 1/3Zc =
2Zc

Z
,

written as dimensionless, and the blast effects (37). Fig-

ure 10 draws each contribution versus the scaled dis-

tance.

Near field the source, the blast closure values are

negative for Zc ≤ Z ≤ 0.079 m/kg1/3 and the geomet-

rical expansion dominates up to Z = 0.357 m/kg1/3.

This observation results from the significant size of the

explosive in Kinney’s law (1), as ζ ′K(Z)/ζK(Z) ∝ Z.

Indeed, for the ideal case of a point source in the free

field, the non-dimensional overpressure theoretically de-

creases as r−3 in the very near field [33]. This leads to

ζ ′a(r)/ζa(r) ∝ r−1 and blast effects are proportional to

Z−1. Consequently, contributions of geometrical expan-

sion and blast effects may be of the same order.
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Fig. 10 Competition between the geometrical expansion,

A′(r)

A(r)
W 1/3Zc, and the blast effects,

Er(r)

Ma(r)
W 1/3Zc, in GBD

model (31) with Kinney’s closure (1) for free field propagation

up to 1.6 m (a) and 100 m (b) from the source.

For Z ≥ 0.1 m/kg1/3, both contributions are of the

same order, which justifies and imposes to take into

account the blast closure in the A −M relation. The

blast closure reaches a maximum at Z ≈ 0.252 m/kg1/3.

Blast effects then decrease and dominate the geometri-

cal expansion from 0.357 m/kg1/3 to 4.69 m/kg1/3.

The geometrical expansion takes precedent over blast

effects as we go far from the source. At a 100 meters dis-

tance, an one hundred factor gap is observed. Although

this contribution could be neglected at this distance,

the modelling of blast effects appears necessary to keep

the right decay of the shock intensity. For Z � 1, a

Taylor expansion of (38) gives:

ζ ′K(Z)
ζK(Z)

∼ − 1
Z
− C

Z3
,

with C = 4.52−0.0482−0.322−1.352 ≈ 18.32 m2/kg2/3.

As λ ∼ 4 for M ∼ 1, the blast closure is expressed as:

Er(r)
Ma (r)

W 1/3Zc ∼
2CZc

Z3
> 0.

Consequently, blast effects contribution in the model

keeps slowing down the shock front far field.

4.3 Numerical scheme

From the numerical point of view, a two-dimensional

axisymmetrical conservative Lagrangian scheme has been

developed and validated for GSDT model in [26]. The

mean space step is denoted ∆s. In the vicinity of a

shock-shock, the transverse closure in (30) is deacti-

vate for points at a distance dc from the discontinuity

for the sake of stability. The reader is referred to [26]

for technical details.

The extension of the Lagrangian scheme to GBD

model is direct. As proof of the validation for GBD

closed with Kinney’s law (1), the numerical solution in

free field is compared with the analytical solution (1)

in figure 11.
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Fig. 11 Evolution of the peak overpressure in free field for

the explosion of 1 kg of TNT from Kinney’s law (1). The

numerical solution is performed with ∆s = 0.01. Initial data:

r0 = 0.2 and M0 ≈ 11.70.

5 Evaluation of GBD model

GBD model is now compared with semi-empirical mod-

els detailed in section 2, Eulerian simulations and ex-

perimental data on a wide range of configurations. Eu-

lerian simulations are provided by the HERA Compu-

tational Fluid Dynamics software [36] which is a multi-

physics code using adaptive mesh refinement (AMR).

GBD model is first evaluated on elementary config-

urations for a TNT charge: reflection over the ground,

reflection over a concave corner and diffraction over a

convex corner. For these evaluations, Kinney’s law (1)

closes GBD model as described in section 4.1. In the

last subsection, GBD model is evaluated for a gaseous

charge on a more complex problem combining both re-

flection and diffraction over surfaces: it is the interac-

tion with a mound. For this case, GBD model is closed

with the stoichiometric propane-oxygen mixture (2).

For mostly configurations, the error between GBD

results and reference solutions are evaluated as

error =
GBD result− REF result

REF result
× 100. (39)

REF result refers to experimental data or semi-empirical

model solutions.

For all cases, the resolution of GBD model is made

with the Lagrangian scheme presented in section 4.3.

The parameter dc has been chosen after a parametric

study for numerical solution convergence. Unless other-

wise stated, the Lagrangian simulations have been per-

formed with ∆s = 0.005 and dc = 0.05. Computational

time takes a few minutes on a simple processor Intel(R)

Core(TM) i5-8300H CPU @ 2.30GHz.

5.1 Reflection of a spherical blast wave over the

ground

As a first example, we consider the explosion of a TNT

charge at a Height of Burst, HoB, above the ground

as sketched in figure 3. The spherical shock wave is

first reflected over the ground in a regular way (RR:

Regular Reflection): the incident and reflected shock

waves are attached to the floor. From a distance at the

ground R0, the reflection then becomes irregular (MR:

Mach Reflection). A Mach stem appears which joins the
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incident and reflected shock waves at the Triple Point

(TP). Here, Kinney’s law (1) models blast effects in

GBD model.
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Fig. 12 Blast wave reflection over the ground generated by

the explosion of 1 kg of TNT at a height of 1.59 m. Compar-

ison between GSD, GBD with Kinney’s closure, an Eulerian

simulation and experimental data fits from NRDC [30] and

UFC [2]. The Lagrangian simulations have been performed

with ∆s = 0.005 m and dc = 0.05 m.

Figure 12 presents results for the explosion of 1 kg

of TNT at a HoB of 1.59 meters. For this case, the tran-

sition between RR and MR arises around R0 = 1.48 m

at the ground according to (4). The shock positions at

times 5 ms and 10 ms are compared with an Eulerian

simulation. These ones are extracted from the simula-

tion with a marching square algorithm [37] as explained

in [23]. The shock-shock trajectory is compared with

the TP path from experimental laws from literature.

These last ones are taken from UFC [2], defined up to a

distance of 7 meters, and NRDC [30]. In order to show

the contribution of the blast closure, results are com-

pared with GSD model. As expected, GSD model over-

estimates the shock positions as well as the TP path due

to the truncation of post-shock flow. This discrepancy

is drastically reduced with GBD model. One notes the

correct prediction of the shock wave positions in com-

parison with the Eulerian simulation as well as the good

restitution of the TP path with experimental laws.

Figure 13 shows a wider comparison of Triple Point

trajectories between GBD model and experimental data

from [6]. These data are issue from experiments for C4

and they are adapted here for TNT with TNT equiv-

alency Eq = 1.28. Let us recall that SHoB, SD and

SHTP stand for the scaled HoB, the scaled distance at

the ground and the scaled height of burst respectively:

SHoB =
HoB

W 1/3
, SD =

D

W 1/3
, SHTP =

HTP

W 1/3
,

where W is the mass of TNT. For SHoB ≤ 113.6

SHoB 23.6 45.1 68.5 85.0 113.6 132.9 166.2

SR0 15.4 31.3 50.9 66.1 95.0 116.5 157.0

Table 1 Scaled distances of transition between RR and MR,

SR0 (in cm/kg1/3), for several SHoB (in cm/kg1/3) accord-

ing to (4).
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Fig. 13 Blast wave reflection over the ground generated

by the explosion of TNT at a scaled height SHoB =

HoB/W 1/3. Comparison of the TP paths between GBD with

Kinney’s closure and experimental data from [6]. The La-

grangian simulations have been performed with ∆s = 0.005

m and dc = 0.05 m. Dashed lines correspond to FIT (4)-(5)

from [6].

cm/kg1/3, GBD model is in excellent agreement with

experiments. One notes a discrepancy with experimen-

tal data as SHoB increases: the TP paths are overesti-

mated by the model. This observation is a consequence

of GBD to systematically produce a Mach stem for com-

pressive flows as underlined in section 4.1. Actually, the

reflection is regular up to a scaled distance SR0 where

a Mach Reflection arises. The table 1 lists this scaled

distance for several SHoB according to the empirical

law (4). For small height of burst, the MR rapidly ap-

pears which justifies the excellent agreement of GBD

model with experimental data. For larger SHoBs, the

MR arises farther from the source. For example, for

SHoB = 132.9 cm/kg1/3, the reflection is regular up to

around 116.5 cm. At this distance, GBD model provides

a 2 cm high Mach stem, which affects its evolutionary

and accordingly leads to the overestimation of the TP

path.

5.2 Reflection of a spherical blast wave over a concave

corner

Fig. 14 Scheme a spherical blast wave reflection over a con-

cave corner.
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Fig. 15 Reflection of a spherical blast wave over a concave corner of deflection angle θw as sketched in figure 14. The structure

is placed at dist = 2 m from TNT charge. Wall overpressure versus distance from the corner. Errors are calculated at 2 m and

5 m from the corner with relation (39).

Let us consider the reflection of a spherical blast

wave over a concave corner of deflection angle θw > 0

as sketched in figure 14. The blast wave is issue from the

explosion of 1 kg of TNT at the ground. GBD model is

closed with the empirical Kinney’s law (1) for spherical

charges. Consequently, the amplification of the blast

wave over the ground is taking into account at twice

the mass of TNT [1], that is 2 kg of TNT here. As dis-

cussed in section 4.1, GBD model systematically pro-

vides a Mach Reflection in this configuration (compres-

sive flows).

The overpressure along the wall estimated with GBD

model is compared with reference solutions for distances

from the charge to the structure, dist, ranging from 1 m

to 4 m and for deflection angles, θw, ranging from 15◦

to 90◦. The length of the ramp is equals to 5 meters.
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Results are extracted from simulations at 5 mm

height. Parameters ∆s, dc and the height of extrac-

tion have little influence over results from a distance of

0.2 m from the corner. Reference solutions (wall peak

overpressures) are obtained from Kinney’s law (1) and

the reflection table in figure 4.

Results for dist = 2m. Results for dist = 2 m are pre-

sented in figure 15. Errors at 2 m and 5 m from the

corner are evaluated with relation (39). A good agree-

ment between GBD model and reference solutions can

be observed. For θw ranging from 15◦ to 45◦, the inter-

action of the blast wave with the concave corner theo-

retically results in a Mach Reflection (MR) according

to (3). One observes a relative error lower than 40% for

theses cases. For θw ≥ 60◦, the reflection is first regu-

lar (RR) and then leads to a Mach reflection. The dis-

crepancy between GBD model and reference solutions

increases with the later Mach stem arising. Indeed, for

θw = 60◦, a MR arises around 0.57 m from the corner.

The error at 5 m from the corner is evaluated at 53.7%.

For θw = 90◦, the MR occurs farther from the corner,

around 1.86 m, and the error is 96.2%. As underlined

in the previous subsection, this discrepancy is a con-

sequence of GBD to systematically make arise a Mach

stem for compressive flows.

It should be noted that GBD model correctly de-

scribes the decay of peak overpressure with an increas-

ing error along the wall. Moreover, one notes an over-

estimation of reflected overpressure in comparison with

reference solutions. These observations are similar for

dist = 1 m, dist = 3 m and dist = 4 m. All results are

gathered in table 10 in appendix A.

Error analysis. The relative errors between GBD model

and reference solutions at 2 m and 5 m from the cor-

ner are presented in figure 16. Although GBD model

makes arise a Mach stem, errors do not increase with

the later transition to MR. Indeed, for θw = 75◦ for ex-

ample, the Mach stem arises around 0.57 m at dist = 1

m and around 1.27 m at dist = 2 from (3). Never-

theless, error at 5 m is higher at dist = 1 m than at

dist = 2m: 132% versus 70%. It suggests that the gap

between GBD model and reference solutions for com-

pressive flows do not completely depends on the kind

of reflection. Differences may come from the decoupling

between local shock curvature changes and blast effects

in the model. This point should be addressed in further

investigations.

From error analysis at 2 m, three trends take shape

depending on the kind of reflection:

– The interaction of the blast wave with the concave

corner directly results in a Mach Reflection (MR).
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Fig. 16 Reflection of a spherical blast wave over a concave corner as sketched in figure 14. Relative errors (39) for wall

overpressure between GBD model and reference solutions (Kinney (1)+reflection coefficients, figure 4) at 2 m and 5 m from

the corner. Circle points and triangular points correspond to MR and RR respectively, according to relation (3). Square points

are configurations with a transition between RR and MR. Results are gathered in table 10 in appendix A.

For theses configurations, errors are mostly lower

than 40%. It appears GBD model is in a good agree-

ment with data for configurations where a Mach

stem arises ;

– The reflection is first regular and then leads to a

Mach Reflection (RR → MR). This change of re-

flection regime mostly leads to errors upper than

40% ;

– The reflection is only regular (RR) and errors are

greater than 140%.

RR analysis. The trend of GBD model to produce a

Mach stem for configurations where reflection is reg-

ular clearly leads to a drastic overestimation of blast

wave damages (upper to 40% on wall overpressure). For

example, for dist = 4 m and θw ≥ 75◦ where the re-

flection is regular according to (3), the error at 2 m

from the corner is larger than 200%. Figure 17 shows

the wall overpressure in comparison to the overpressure

extracted just above the shock-shock for RR configura-

tions. This latter can be only evaluated when the Mach

stem is numerically established: at 2 m from the cor-

ner for θw = 75◦ and at 2.7 m from the corner for

θw = 90◦. Results at 5 m and 8 m from the corner are

presented in table 2. The estimation of overpressure is

significantly improved, with errors lower than 6% at 8
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Results at 5 m from the corner Results at 8 m from the corner

θw (◦) ∆Pw ref (bar) ∆Pw GBD (bar) ∆Pc GBD (bar) ∆Pw ref (bar) ∆Pw GBD (bar) ∆Pc GBD (bar)

75 0.611 1.162 0.714 0.384 0.638 0.407

error: 90.2% error: 16.9% error: 60.1% error: 5.99%

90 0.787 1.602 0.980 0.486 0.816 0.513

error: 104% error: 24.5% error: 67.9% error: 5.56%

Table 2 Reflection of a spherical blast wave over a concave corner for dist = 4 m from the charge and with deflection angles

of 75◦ and 90◦. Comparison between wall overpressures, ∆Pw, and overpressures around 0.01 m above the shock-shock, ∆Pc.
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Fig. 17 Reflection of a spherical blast wave over a concave

corner for dist = 4 m from the charge and with deflection

angles θw = 75◦ (a) and θw = 90◦ (b). Comparison between

wall overpressure and overpressure around 0.01 m above the

shock-shock. Free field estimation (1) is drawn as an indica-

tion.

m from the corner. Accordingly, some additional mech-

anisms should be considered in GBD in order to remove

Mach stem for RR configurations.

5.3 Diffraction of a spherical blast wave over a convex

corner

Fig. 18 Scheme a spherical blast wave diffraction over a con-

vex corner.

Results are extracted from simulations at 5 mm

height. The parameter dc is not necessary in this con-
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Fig. 19 Diffraction of a spherical blast wave over a convex corner of deflection angle θw as sketched in figure 18. The structure

is placed at dist = 2 m from TNT charge. Wall overpressure versus distance from the corner. Errors are calculated at 1 m and

2 m from the corner with relation (39).

figuration as no shock-shocks appear (expansive flows).

∆s and the height of extraction have little influence over

results from a distance of 0.2 m from the corner. Ref-

erence solutions (wall peak overpressures) are obtained

from Kinney’s law (1) and diffraction coefficients table

in figure 5(b).

Let us consider the diffraction of a spherical blast

wave over a convex corner of deflection angle θw < 0 as

sketched in figure 18. The blast wave is issue from the

explosion of 1 kg of TNT at the ground. GBD model is

closed with the empirical Kinney’s law (1) for spherical

charges. Consequently, the amplification of the blast

wave over the ground is taking into account at twice

the mass of TNT [1], that is 2 kg of TNT here.

The overpressure along the wall estimated with GBD

model is compared with reference solutions for distances
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Fig. 20 Diffraction of a spherical blast wave over a convex corner as sketched in figure 18. Relative errors (39) for wall

overpressure between GBD model and reference solutions (Kinney (1)+diffraction coefficients, figure 5(b)) at 1 m and 2 m

from the corner. Results are gathered in table 11 in appendix A.

from the charge to the structure, dist, ranging from 1

m to 4 m and for deflection angles, θw, ranging from

−15◦ to −90◦. The length of the ramp is equals to 3

meters.

Results for dist = 2m. Results for dist = 2 m are pre-

sented in figure 19. Errors at 1 m and 2 m from the

corner are calculated with relation (39). A good agree-

ment between GBD model and reference solutions is

observed with an overestimation of the wall overpres-

sure up to 45%. The decay of peak overpressure along

the wall is correctly describes by GBD model, but with

an increasing error along the wall. This observation is

similar for dist = 1 m, dist = 3 m and dist = 4 m. All

results are gathered in table 11 in appendix A.

Error analysis. The relative error between GBD and

reference solutions at 1 m and 2 m from the corner are

presented in figure 20. For θw ≤ 45◦, errors increase

with the distance from the charge, dist. The trend is

reversed for θw ≥ 60◦ with an underestimation of wall

overpressure in comparison with data for θw ≥ 75◦ and

dist = 4 m. For dist = 1 m, GBD model drastically

overestimates the wall overpressure up to twice that

estimated by the reference solutions. From dist = 2 m,

errors are limited by 60%.
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dist (m) 1 2 3 4

M0 3.86 2.00 1.47 1.27

Table 3 Incident Mach number at the corner according

to (1) and (6) for W = 1.0 kg of TNT at the ground, i.e.

W = 2.0 kg.

The gap between GBD results and reference values

may come from the discrepancy between GSDT and ex-

periments as observed in figure 9. Indeed, for θw = −75◦

for example, the gap between GSDT model and exper-

iments is more important for M0 = 4 than for M0 = 2.

Incident Mach number, M0, decreases when the charge

is farther from the structure as seen in table 3. For

θw = −75◦, the gap between GBD model and reference

solutions are larger for dist = 1 m where M0 = 3.86

than for dist = 2 m where M0 = 2, as underlined for

GSDT.

5.4 Interaction of a spherical blast wave with a mound

As a last example, let us consider the interaction of

an hemispherical blast wave generated by a gaseous

charge (stoichiometric propane-oxygen mixture) with

a protective barrier, also called a mound. This study

comes from [3, 38] in which small-scale experiments are

carried out (scale 1/15). Figure 21 shows the schematic

representation of the experimental bench. The r0 ra-

dius charge is placed at the distance d from the mound

and it releases an energy E. The mound is character-

ized by its height, h, the top thickness, e, the front side

inclination angle, α1, and the back side inclination an-

gle, α2. In [38], captors are located on each face of the

barrier (numbered from Gi1 to Gi5 or Gi6) and behind

the mound (GH1 to GH7) which record the peak over-

pressure. This experimental results are compared with

2D-axisymmetrical Eulerian simulations. These latter

ones required 256 processors on the TERA100 super-

computer during 12 hours [3].

We propose here to compare the history of the wall

peak overpressure between GBD model, the Eulerian

results and the experimental data. The features for each

case treated in this section are gathered in table 4. Two

charges are considered, referred as C3 and C6 with a

radius of 3 cm and 6 cm respectively. Two kinds of

mound are treated so-called 1A and 1B as shown in fig-

ure 21. Both mounds differ in the top thickness, e, and

the back side inclination angle, α2. The different faces

of the mound and the ground behind it are numbered

from 1 to 4 as shown in figure 23(a). The detonation of

the charge generates a blast wave in the air which in-

teracts with the mound. The shock interaction with the

obstacle results in four successive reflection or diffrac-

tion : reflection on the faces 1 and 4 and diffraction on

the faces 2 and 3.

GBD model is closed with the stoichiometric propane-

oxygen gas law (2). For Lagrangian simulations, we sug-
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Case r0 (m) E (MJ) d (m) α1 (◦) α2 (◦) e (m) h (m)

1AC3d8,5 0.03 1.72× 10−3 0.085 45 45 0.03 0.19

1AC6d7 0.06 13.75× 10−3 0.070 45 45 0.03 0.19

1BC6d7 0.06 13.75× 10−3 0.070 45 90 0.19 0.19

1BC6d14 0.06 13.75× 10−3 0.140 45 90 0.19 0.19

Table 4 Features for cases from [38] as seen in figure 21. Cases are called as the original ones for consistency.

(a) (b)

Fig. 21 Schematic representation of test bench of small-scale experiments from [38] for mound 1A (a) and mound 1B (b).

Case/∆s (m) 10.0× 10−4 5.0× 10−4 2.5× 10−4

1AC3d8,5 / 1 min 10 s 4 min 45 s

tf = 2.031 ms

1AC6d7 2 min 25 9 min 40 s /

tf = 6.100 ms

1B6d7 1 min 50 s 8 min 00 s /

tf = 5.420 ms

1B6d14 1 min 40 s 7 min 45 s /

tf = 5.420 ms

Table 5 Computational time to solve GBD model with

the Lagrangian algorithm. Simulation made on Intel(R)

Core(TM) i5-8300H CPU @ 2.30GHz. tf is the simulated

time.

gest to discretize the initial hemispherical shock wave

with one point per degree, that is a space step, ∆s,

equals to 5.0 × 10−4 m for charge C3 and 10.0 × 10−4

m for charge C6. This point will be discussed hereafter.

The Lagrangian simulations have been performed with

dc = 0.02 and results are extracted from simulations at

2∆s height. We recall that shock wave reflection with

GBD results in a TP arising.

Computational time for each case are given in ta-

ble 5 for several space steps, ∆s. One points out that

only a few minutes are necessary to solve the problem,

while Eulerian simulations requires 12 hours.

Case 1AC3d8,5. Results on the faces 1 to 3 are drawn

in figure 22. GBD model slightly overestimates wall

overpressure in comparison with experimental data and

Eulerian simulations. The table 6 gathered peak over-
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Fig. 22 Case 1AC3d8,5. Wall peak overpressure on the front

side (a), the top side (b) and the back side (c) of the barrier.

Eulerian and experimental data are taken from [38]. The free

field estimation comes from (2). The Lagrangian simulation

has been performed with ∆s = 2.5× 10−4 m.

pressure at the captors. In light of the results, ∆s =

5.0× 10−4 m is enough to achieve nearly-converged re-

sults. Errors for GBD increase as the blast wave trav-

els on the face 1, from 22.4% to 42.5%. The error is

low after the diffraction over the top side, with only

18.8% at the captor Gi4. At the captor Gi5, after the

second diffraction, GBD model overestimates the wall

overpressure up to twice that recorded by the captor.

Nevertheless, one can notice that results are good in

comparison with a free field estimation (2), as well as in

view of the computational time: around 1 minute with

GBD model versus 12 hours with an Eulerian simula-

tion.

Case 1AC6d7. The successive shock positions calcu-

lated with the Lagrangian scheme are drawn in fig-

ure 23(a). Two shock-shock trajectories (Triple Points)

can be observed: the first one when the shock reflects

over the front side of the barrier (face 1) and the sec-

ond one when it interacts with the ground (face 4).

Results for wall peak overpressure from the faces 1 to

4 are drawn in figure 23(b)-(e). For the faces 1 to 3,

GBD model slightly overestimates wall overpressure in

comparison with experimental data and Eulerian simu-

lations. A large overestimation occurs behind the bar-

rier (face 4). This discrepancy is a consequence of GBD

to systematically produce a Mach stem for compressive
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Fig. 23 Case 1AC6d7. Successive shock front positions (a) (red dashed lines correspond to TP paths) and wall peak overpres-

sure on each face of the barrier (b)-(e). Eulerian and experimental data are taken from [38]. The free field estimation comes

from (2). The Lagrangian simulation has been performed with ∆s = 5.0× 10−4 m.
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∆Pw GBD (bar) Error for

Face Captors ∆Pw exp. (bar) ∆s = 5.0× 10−4 m ∆s = 2.5× 10−4 m ∆s = 5.0× 10−4

1 Gi1 1.520 1.860 1.870 22.4%

Gi2 0.703 0.952 0.957 35.4%

Gi3 0.433 0.617 0.614 42.5%

2 Gi4 0.170 0.202 0.193 18.8%

3 Gi5 0.031 0.061 0.061 96.8%

Table 6 Case 1AC3d8,5. Peak overpressure at the captors (seen figure 21(a) for captors positions). Errors are calculated with

relation (39).

∆Pw/∆Pc GBD (bar) Error for

Face Captors ∆Pw exp. (bar) ∆s = 10.0× 10−4 m ∆s = 5.0× 10−4 m ∆s = 10.0× 10−4

1 Gi1 6.360 6.85 6.99 7.70%

Gi2 2.280 3.07 3.10 34.6%

Gi3 1.340 1.81 1.81 35.1%

2 Gi4 0.508 0.604 0.549 18.9%

3 Gi5 0.120 0.142 0.145 18.3%

4 GH1 0.102 0.096 / −5.9%

GH2 0.094 0.086 / −8.5%

GH3 0.077 0.079 / −2.5%

GH4 0.061 0.070 / 14.8%

GH5 0.054 0.061 / 13.0%

GH6 0.045 0.056 / 24.4%

GH7 0.039 0.052 / 33.3%

Table 7 Case 1AC6d7. Peak overpressure at the captors (seen figure 21(a) for captors positions). Results at the face 4

correspond to overpressure around 2∆s above the shock-shock and they are similar for ∆s = 5.0 × 10−4 m. Errors are

calculated with relation (39).

flows, while the reflection is regular in this configura-

tion. However, the overpressure extracted around 2∆s

above the shock-shock is in excellent agreement with

data.

The table 7 gathered peak overpressure at the cap-

tors. In light of the results, ∆s = 10.0 × 10−4 m is

enough to achieve nearly-converged results. Errors for

GBD increase as the blast wave travels on the face 1,

from 7.70% to 35.1%. The error is low after the diffrac-



30 J. Ridoux et al.

Case Face Captors ∆Pw exp. (bar) ∆Pw GBD (bar) Error

1BC6d7 2 Gi3 0.370 0.430 16.2%

Gi4 0.281 0.342 21.7%

3 Gi5 0.053 0.065 22.6%

Gi6 0.040 0.055 37.5%

1BC6d14 2 Gi3 0.321 0.388 20.5%

Gi4 0.242 0.316 30.6%

3 Gi5 0.048 0.058 20.9%

Gi6 0.038 0.050 31.6%

Table 8 Cases 1BC6d7 and 1BC6d14. Peak overpressure at the captors (seen figure 21(b) for captors positions). The La-

grangian simulation has been performed with ∆s = 10.0× 10−4 m. Errors are calculated with relation (39).

tion over the top side and the back side: 18.9% at the

captor Gi4 and 18.3% at the captor Gi4. Behind the

barrier, the overpressure extracted above the shock-

shock is in good agreement with data, with errors from

−8.5% to 33.3%. Accordingly, some additional mecha-

nisms should be considered in GBD in order to account

for the regular reflection, especially for weak shocks.

In the light of the results and the computational time

(around 2 minutes with GBD model versus 12 hours

with an Eulerian simulation), wall overpressures are

correctly predicted by GBD model.

Cases 1BC6d7 and 1BC6d14. Configuration of the mound

1B is shown in figure 21(b). This configuration implies

a more important blast wave mitigation on the faces

2 and 3 than the precedent one (mound 1A). Results

for wall peak overpressure at the faces 2 and 3 are

presented in table 8. ∆s = 10.0 × 10−4 m is enough

to achieve nearly-converged results. Once again, GBD

model overestimates the wall overpressure in compari-

son with experimental data. For both cases, errors for

GBD increase as the blast wave travels on the face 2 and

on the face 3. Errors do not exceed 38%. In the light

of the results and the computational time (less than

2 minutes with GBD model versus 12 hours with an

Eulerian simulation), GBD model is in excellent with

experimental data.

6 Conclusion and perspectives

In this paper, a simplified model aiming at simulat-

ing blast waves propagation at low computational cost

has been presented. This new approach is based on a

simple extension of GSDT model (Geometrical Shock

Dynamics with extended to transverse flow) to blast

waves through an ad-hoc closure. It consists in mod-
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elling the post-shock flow with an empirical law for

spherical charges, instead of neglecting it as in the orig-

inal model. The new model, named Geometrical Blast

Dynamics (GBD), takes into account simply any type

of source and interactions with obstacles.

GBD model has been evaluated on a wide range of

problems from simple configurations, such that reflec-

tion or diffraction over a corner, to more complex ge-

ometries such that interaction with mounds. The analy-

sis of the results in comparison with experimental data,

semi-empirical models from the literature and Eulerian

simulations shows the ability of GBD to estimate cor-

rectly blast waves propagation interacting with obsta-

cles. Moreover, the computational time is drastically

reduced: a few minutes with one processor, while Eule-

rian simulations requires hours on several processors.

GBD model overestimates overpressure, which is bet-

ter worth in a pyrotechnic hazard context. This trend

is reinforced in compressive flows as GBD makes arise

a Mach stem even for regular reflection. This default is

corrected if overpressure is extracted above the Mach

stem. This means that some additional mechanisms should

be implemented in GBD in order to account for the reg-

ular reflection, especially for weak shocks.

In the future, GBD model should be extended to

regular reflection and experienced on more complex con-

figurations. Moreover, GBD model only gives the peak

overpressure. A simple modelling of the positive phase

may be studied. At last, a three-dimensional extension

could be envisaged. These issues could be addressed in

further investigations.
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A Results for blast wave reflection over a

concave corner and blast wave diffraction over

a convex corner

Numerical results for reflection of a spherical blast wave over

a concave corner, as explained in section 5.2, are gathered

in tables 10. 2D-axisymmetrical Lagrangian simulations have

been performed with ∆s = 0.005 m and dc = 0.05 m. For

dist = 1 m and θw = 90◦, the shock-shock reflects over the

axis of symmetry and perturbs results at 5 meters from the

corner.

Numerical results for diffraction of a spherical blast wave

over a convex corner, as explained in section 5.3, are gathered

in tables 11. 2D-axisymmetrical Lagrangian simulations have

been performed with ∆s = 0.005 m and dc = 0.05 m.

Incident overpressures and incident Mach numbers are

given in table 9 as an indication.

dist (m) 1 2 3 4

∆Pi (bar) 16.43 3.562 1.387 0.727

Mi 3.86 2.00 1.47 1.27

Table 9 Interaction of a spherical shock wave over a convex

or a concave corner. Incident overpressures (1), ∆Pi, and in-

cident Mach numbers (6), Mi, at the corner for W = 1.0 kg

of TNT at the ground, i.e. W = 2.0 kg.
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Transition RR→MR Results at 2 m from the corner Results at 5 m from the corner

dist θw R0 ∆Pi βi ∆Pw GBD ∆Pw ref Error ∆Pw GBD ∆Pw ref Error Regime

(m) (◦) (m) (bar) (◦) (bar) (bar) (%) (bar) (bar) (%) of reflection

1 15 0.00 16.43 75.0 1.813 1.549 17.0 0.406 0.354 14.7 MR

30 0.00 16.43 60.0 2.000 1.767 13.2 0.523 0.396 34.3 MR

45 0.00 16.43 45.0 3.180 2.004 58.9 0.664 0.433 53.3 MR

60 0.24 12.47 40.7 4.330 2.434 77.9 0.864 0.476 81.5 RR then MR

75 0.57 9.830 40.8 6.140 3.043 102.0 1.256 0.541 132.0 RR then MR

90 0.86 9.100 40.8 11.49 6.036 90.4 AXI. EFFECTS RR then MR

2 15 0.00 3.562 75.0 0.992 0.875 13.4 0.326 0.287 13.6 MR

30 0.00 3.562 60.0 1.370 1.080 27.6 0.444 0.344 29.1 MR

45 0.00 3.562 45.0 1.907 1.410 35.2 0.588 0.422 39.3 MR

60 0.57 2.476 42.2 2.784 1.912 45.6 0.793 0.516 53.7 RR then MR

75 1.27 1.879 42.8 4.180 2.796 49.5 1.071 0.630 70.0 RR then MR

90 1.86 1.719 43.0 6.503 4.650 39.8 1.501 0.765 96.2 RR then MR

3 15 0.00 1.387 75.0 0.657 0.587 11.9 0.278 0.242 14.9 MR

30 0.00 1.387 60.0 0.952 0.812 17.2 0.399 0.316 26.3 MR

45 0.00 1.387 45.0 1.408 1.115 26.3 0.552 0.418 32.1 MR

60 1.14 0.861 45.5 2.188 1.620 35.1 0.768 0.553 38.9 RR then MR

75 2.35 0.633 47.2 3.796 2.034 86.6 1.090 0.717 52.0 RR then MR

90 3.32 0.572 47.9 6.614 2.403 175.0 1.467 0.907 61.7 RR then MR

4 15 0.00 0.727 75.0 0.493 0.444 11.0 0.251 0.212 18.4 MR

30 0.00 0.727 60.0 0.750 0.651 15.2 0.370 0.294 25.9 MR

45 0.18 0.679 46.8 1.200 0.950 26.3 0.545 0.415 31.3 RR then MR

60 2.50 0.356 52.3 2.000 1.106 80.8 0.796 0.572 39.2 RR then MR

75 - - - 3.790 1.094 246.0 1.162 0.611 90.2 RR

90 - - - 6.032 1.375 339.0 1.602 0.787 104.0 RR

Table 10 Spherical blast wave reflection over a concave corner as sketched in figure 14. Wall overpressure values, ∆Pw, are

extracted from simulations at 5 mm height. Reference solutions are calculated from Kinney’s law (1) and empirical reflection

coefficients from UFC [2] (see figure 4). R0: distance from the corner where a Mach stem arises, ∆Pi: incident overpressure

(calculated with (1)), βi: angle of incidence. The regime of reflection (RR: Regular Reflection, MR: Mach Reflection) are

evaluated with (3). Errors are calculated with (39).



36 J. Ridoux et al.

Results at 1 m from the corner Results at 2 m from the corner

dist θw ∆Pw GBD ∆Pw ref Error ∆Pw GBD ∆Pw ref Error

(m) (◦) (bar) (bar) (%) (bar) (bar) (%)

1 -15 2.690 2.039 31.9 1.070 0.790 35.4

-30 2.049 1.608 27.4 0.829 0.626 32.4

-45 1.569 1.134 38.4 0.654 0.441 48.3

-60 1.218 0.729 67.1 0.523 0.284 84.2

-75 0.963 0.502 91.8 0.431 0.196 120.0

-90 0.787 0.571 37.8 0.374 0.222 68.5

2 -15 1.074 0.800 34.3 0.572 0.419 36.5

-30 0.830 0.647 28.3 0.454 0.339 33.9

-45 0.643 0.506 27.1 0.359 0.265 35.5

-60 0.505 0.387 30.5 0.287 0.203 41.4

-75 0.401 0.306 31.0 0.234 0.161 45.3

-90 0.322 0.275 17.1 0.194 0.144 34.7

3 -15 0.571 0.374 52.7 0.368 0.235 56.6

-30 0.446 0.315 41.6 0.292 0.195 49.7

-45 0.350 0.259 35.1 0.232 0.162 43.2

-60 0.276 0.213 29.6 0.187 0.134 39.6

-75 0.218 0.186 17.2 0.149 0.117 27.4

-90 0.183 0.195 -6.15 0.123 0.116 6.03

4 -15 0.361 0.233 56.3 0.260 0.163 59.5

-30 0.286 0.201 42.3 0.207 0.141 46.8

-45 0.221 0.176 25.6 0.164 0.124 32.3

-60 0.174 0.157 10.8 0.131 0.111 18.0

-75 0.139 0.145 -4.14 0.105 0.102 2.94

-90 0.111 0.140 -20.7 0.0859 0.0987 -13.0

Table 11 Spherical blast wave diffraction over a convex corner as sketched in figure 18. Wall overpressure values, ∆Pw, are

extracted from simulations at 5 mm height. Reference solutions are calculated from Kinney’s law (1) and diffraction coefficients

from [3] (see figure 5(b)). Errors are calculated with (39).


