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Quantifying nonlocality as a resource for device-independent quantum key distribution

S. Camalet
Sorbonne Université, CNRS, Laboratoire de Physique Théorique de la Matière Condensée, LPTMC, F-75005, Paris, France

We introduce, for any bipartite Bell scenario, a measure that quantifies both the amount of non-
locality and the efficiency in device-independent quantum key distribution of a set of measurement
outcomes probabilities. It is a proper measure of nonlocality as it vanishes when this set is Bell local
and does not increase under the allowed transformations of the nonlocality resource theory. This
device-independent key rate R is defined by optimizing over a class of protocols, to generate the raw
keys, in which each legitimate party does not use just one preselected measurement but randomly
chooses at each round one among all the measurements at its disposal. A common and secret key
can certainly be established when R is positive but not when it is zero. For any continuous proper
measure of nonlocality N , R is tightly lower bounded by a nondecreasing function of N that vanishes
when N does. There can thus be a threshold value for the amount of nonlocality as quantified by N
above which a secret key is surely achievable. A readily computable measure with such a threshold
exists for two two-outcome measurements per legitimate party.

I. INTRODUCTION

Using a secret sequence of characters, termed a key, for
encryption and decryption, allows to transmit a message
in an absolutely confidential way. The aim of quantum
key distribution (QKD) studies is to examine whether
two distant legitimate users, usually named Alice and
Bob, can establish such a key in the presence of an eaves-
dropper, Eve, within the framework of quantum mechan-
ics [1]. To do so, Alice and Bob need at least to be able
to generate, process and exchange random numbers and
each to choose one out of several measurements to per-
form on quantum systems. The communication channel
between them is public. Namely, any message sent over
it becomes known to all parties. Moreover, Alice’s and
Bob’s quantum systems in general share a global state
with systems that Eve can manipulate as she wishes. On
the other hand, Eve does not know which measurements
Alice and Bob actually perform, the outcomes they get
and the results of their classical computations. The first
security analyses of QKD schemes apply only to specific
quantum systems Hilbert spaces and measurement op-
erators on these spaces [1–7]. Consequently, a concrete
implementation must follow the ideal model exactly.

Device-independent QKD (DIQKD) protocols, on the
contrary, do not require that Alice and Bob know any-
thing about the sizes and states of the quantum systems
and about the measurement devices [8, 9]. They can only
estimate the probabilities of the measurement outcomes.
To establish a common and secret key, they first gener-
ate raw keys using measurent outcomes. These keys are
not fully confidential and not completely identical to each
other. Alice and Bob change them into the final key us-
ing random number generators, classical processors and
the public channel. In Refs.[8, 9], only the so-called col-
lective attacks, during the generation of the raw keys, are
considered. Namely, it is assumed that Eve prepares a
tripartite quantum system in the same state several times
and that Alice’s and Bob’s possible measurements are
the same each time. But the measurements may actually

be performed on a global system which is not necessar-
ily in a product state and the measurement devices may
work differently from one round to another [10, 11]. Fur-
thermore, these apparatuses may have internal memories
[12–14]. The security of a DIQKD protocol, for one ex-
ecution, against these most general attacks follows from
that against collective attacks [14].

Device-dependent QKD is closely related to quantum
entanglement. Some proposed protocols rely on entan-
gled Alice’s and Bob’s quantum systems [3, 5]. More-
over, the security of those known as prepare-and-measure
protocols, for which such quantum correlations are ab-
sent, results from that of corresponding entanglement-
based protocols [4, 6, 7]. Entanglement is a useful re-
source for many tasks and different measures of the en-
tanglement of quantum states, appropriate for different
tasks, have been introduced [15]. In more specific terms,
entanglement theory is a resource theory. Entangle-
ment cannot increase under local operations and classi-
cal communication and vanishes for separable states [15–
20]. Consequently, a proper measure of entanglement,
called an entanglement monotone, is nonincreasing under
these allowed transformations and is zero for separable
states. The distillable key rate, defined for a given legit-
imate QKD users’ state, satisfies these requirements and
can be related to more familiar entanglement monotones
[15, 21, 34]. In DIQKD, the necessary resource is not
entanglement but Bell nonlocality [3, 8–14, 23, 24] whose
relation to entanglement is not straightforward [16, 25–
27]. A closely related issue which currently attracts much
attention and in which Bell nonlocality is also essential is
device-independent quantum random-number generation
[14, 28–33].

Bell nonlocality can also be formulated in terms of a
resource theory [34–36]. Proper measures of nonlocal-
ity must not increase under the corresponding allowed
transformations, recalled in detail below, and vanish for
Bell local sets of probabilities. We name these measures
as nonlocality monotones. In this paper, we are inter-
ested in Bell nonlocality as a resource for DIQKD from
this rigorous perspective. We introduce, for any numbers
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of choosable measurements and measurement outcomes,
a measure R which is both a nonlocality monotone and
a DIQKD efficiency quantifier. This device-independent
key rate is defined, under the assumption of collective
attacks, by optimizing over a class of protocols, to gen-
erate the raw keys, which involve generating, processing
and publicly exchanging random numbers and choosing
at each round, for each legitimate user, one among all
the possible measurements. Such a raw key protocol is
a part of a full DIQKD protocol which also contains, for
instance, an error correction part. A confidential key can
surely be established when R is positive but not when
it is zero. The specific raw key protocols considered in
the literature [8–14] belong to the class used here. We
will see that a device-independent key rate defined for
a single protocol can increase under the allowed trans-
formations of the nonlocality resource theory. Since the
rate R is a nonlocality monotone, it does not decrease
in going from a set of measurement outcomes probabili-
ties to a more nonlocal one and vanishes for a Bell local
set. Moreover, we show that, for any continuous non-
locality monotone N , R is tightly lower bounded by a
nondecreasing function of N that vanishes when N does.
Thus, either this bound is trivial and nothing can be in-
ferred from N alone about the achievability of a secret
key, or there is a threshold value for the amount of non-
locality as quantified by N above which Alice and Bob
are certain that such a key can be established, without
needing to evaluate any other quantity.

The outline of the paper is as follows. In Sec.II A, the
allowed transformations of the nonlocality resource the-
ory are recalled and the operations that the legitimate
users can perform are specified, in terms of classical ran-
dom variables. In Sec.III, we introduce the considered
class of raw key protocols, which involve only these op-
erations, and give the expression of the quantum state
shared by the three parties at the end of such a protocol.
In Sec.IV, we define the device-independent key rate R
corresponding to this class of protocols and show that
it is a nonlocality monotone. The case of a single pro-
tocol is also discussed in sec.IV. In Sec.V, we consider
the continuous nonlocality monotones, derive the above
mentioned result, which follows from the fact that R is a
nonlocality monotone, and examine an example. Finally,
in Sec.VI, we summarize our results and mention some
open questions.

II. PRELIMINARIES

A. Alice and Bob’s possible operations

The following situation is considered throughout the
paper. Alice, Bob and Eve initially share a quantum
system in the state ρ. Alice (Bob) can choose one of
m (n) measurements to perform on her (his) subsystem
with Hilbert space HA (HB) which can always be as-
sumed to be infinite-dimensional. The legitimate users
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FIG. 1: Raw key protocol steps used in the proof of Proposi-
tion 1. The value k is produced by a random generator. Eve
eavesdrops k sent by Alice over the public channel. The ran-
dom numbers x′ and y′ are produced during classical steps,
shown as dots, which can use the public channel and gener-
ate other random numbers, not shown. Classical computa-
tions, shown as ellipses, result in x = z(x′, k), y = t(y′, k),
u′ = Fx′,k(u) and v′ = Gy′,k(v) with the functions given by
the Lemma. The measurements performed by Alice and Bob
on their quantum systems, shown as boxes, give the outputs
u and v as functions of the inputs x and y, respectively, ac-
cording to the distributions (1).

know nothing about the quantum system, its state and
the measurement devices. In more precise terms, Alice
(Bob) can observe one of m (n) classical random vari-
ables Ax (By). Alice and Bob can only get information
on the probability mass functions PAx,By

, denoted Px,y
in the following. The indices x and y are usually termed
as inputs and the outcomes of the random variables Ax
and By as outputs. Without loss of generality, it can
be assumed that all variables Ax (By) have the same set
A (B) of outputs by adding zero probability outcomes.
These sets are referred to as alphabets. Obviously, m,
n, A and B are known to Alice and Bob. The random
variable Ax (By) corresponds to a set of positive oper-
ators Mx,a (Ny,b) such that

∑
a∈AMx,a (

∑
b∈BNy,b) is

the identity operator on HA (HB) and

Px,y(a, b) = tr(ρMx,a ⊗Ny,b ⊗ IE), (1)

where IE is the identity operator on Eve’s Hilbert space
HE . A distribution tuple P = (Px,y(a, b))x,y,a,b is said
to be quantum if it can be written in this form with
appropriate state and measurement operators.

In addition to the Ax and By, the legitimate users can
create random variables uncorrelated to the Ax and By
and available at first only to one of them. Each can also
compute new random variables from preexisting ones and
use a classical public communication channel. Any mes-
sage sent over this channel becomes known to the three
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parties and it is the only way to get a random variable
from another party. It is not necessary to introduce ex-
plicitly additional variables for Eve since they can be
taken into account by considering suitable system, state
ρ and measurements on her subsystem. Let us be more
specific about how the Ax, that Alice cannot observe si-
multaneously, are employed. At some stage, and only at
this stage, Alice uses one of the random variables at her
disposal, say X, with alphabet in {1, . . . ,m}, to choose
which Ax to observe. More precisely, she generates U
according to U = Ax when X = x. Bob uses the By
and Y with alphabet in {1, . . . , n} in a similar way to
produce the random variable V , see Fig.1. We remark
that the distribution tuble P is necessarily Bell local for
simultaneously observable random variables Ax and By
[26, 37].

B. Nonlocality resource theory

We recall here the allowed transformations of the non-
locality resource theory [34–36]. They can be performed
using shared randomness and local probability transfor-
mations. More precisely, consider two distribution tuples
P and P ′ made up of no-signaling probabilities with the
same output alphabets and numbers of inputs. The for-
mer is not less nonlocal than the latter if and only if

P ′ = p0L +
∑
k≥1

pkTk(P ), (2)

where the probabilities pk obey
∑
k≥0 pk = 1, L is a Bell

local distribution tuple and Tk are compositions of input
and output relabelings, output coarse grainings and input
substitutions [36]. The nonlocality order is partial, i.e.,
some distribution tuples are not related by eq.(2). We
remark that a similar order can be defined for quantum
states [38].

An input substitution acts on any distribution tuple
P as follows. For some given x and x′, every component
Px′,y(a, b) is replaced by Px,y(a, b) and the other ones
remain unchanged, and similarly for given inputs y and
y′. An input relabeling consists in a permutation of the
inputs x or of the inputs y. It can be decomposed into
input transpositions, i.e., transformations that swap ev-
ery pair of components Px,y(a, b) and Px′,y(a, b) for some
given x and x′ and leave the other ones unchanged, and
similarly for given inputs y and y′. The output trans-
formations change only the probabilities Px,y(a, b) for a
given x or y. Under an output relabeling for x, every
component Px,y(a, b) is replaced by Px,y(π(a), b) where
π is a permutation on A. An output coarse graining is
characterized by an input, a subset of the corresponding
output alphabet and an element of this subset, say x,
A′ and a′, respectively. Such a transformation changes
every component Px,y(a, b) as follows. This probability
becomes

∑
a′′∈A′ Px,y(a′′, b) for a = a′, is set to zero for

a ∈ A′ \ {a′} and remains the same for a /∈ A′.

A nonlocality monotone N vanishes for Bell local dis-
tribution tuples and preserves the nonlocality order, i.e.,
N(P ′) ≤ N(P ) for P and P ′ related by eq.(2). As a
simple example, we consider, in the case of numbers of
inputs m = n = 2 and alphabets A and B consisting
of two outputs, that can always be assumed to be −1
and 1, the Clauser-Horne-Shimony-Holt inequality [39]
violation

Ñ(P ) = max
{

0,max
ν

∣∣ 2∑
x,y=1

ν(x, y)〈AxBy〉
∣∣− 2

}
. (3)

In this expression, the maximum is taken over all the
maps ν : {1, 2}2 → {−1, 1} assuming the value −1 only
once and 〈C〉 denotes the expectation of the random vari-
able C. The measure (3) vanishes for Bell local distribu-
tion tuples and only for them [26]. To see that it preserves
the nonlocality order, first note that it is a convex func-
tion of its argument. Moreover, the right side of eq.(3)
is not modified by an input relabeling. An output re-
labeling is equivalent to changing the sign of one of the
random variables in eq.(3), and so also does not alter the

value of Ñ . An input substitution is the same as setting
A1 = A2 or B1 = B2 in eq.(3) which gives Ñ = 0. An
output coarse graining is equivalent to replacing one of
the random variables in eq.(3) by 1 which also leads to

Ñ = 0.

III. RAW KEY PROTOCOLS

To generate their raw keys, using the Ax and By, Al-
ice and Bob proceed as follows. First, they create some
random variables and send some of them over the public
channel. Then, they calculate new ones and subsequently
produce the U and V as explained above. Finally, they
generate A and B from all the available random vari-
ables. Alice’s (Bob’s) raw key is a sequence of indepen-
dent realizations of A (B). All the just mentioned clas-
sical random variables but U , V , A and B are quantum-
mechanically described by the state

ρ̃ =
∑
x,y,e

PX,Y ,E(x,y, e)ΠAlice
x,e ⊗ΠBob

y,e ⊗ΠEve
e , (4)

where E is a tuple made up of the public ones and X (Y )
is made up of Alice’s (Bob’s) private ones. The choice
random variable X (Y ) is a component of X (Y ) or of
E. From their definitions, X and Y are conditionally
independent given E, i.e., PX,Y ,E = PX|EPY |EPE . The

ΠAlice
x,e (ΠBob

y,e , ΠEve
e ) are rank-one projectors whose sum

is the identity operator on a Hilbert space H′A (H′B , H′E).
At the end of the raw key protocol, the three parties share
the state

ρrk =
∑
a,b

Πa ⊗Πb ⊗ trHAB
(ρ′Ma ⊗Nb ⊗ I ′E), (5)

where ρ′ = ρ̃⊗ρ, I ′E is the identity operator on H′E⊗HE ,
Πa (Πb) denotes mutually orthogonal rank-one projectors
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and trHAB
the partial trace over the Hilbert spaceHAB =

H′A⊗HA⊗H′B⊗HB , see Appendix A. ObservingA andB
means performing the measurement with operators Πa⊗
Πb ⊗ I ′E on ρrk. The positive operator Ma reads

Ma =
∑
x,e,u

PA|U,X,E(a|u,x, e)ΠAlice
x,e ⊗Mx,u, (6)

where x corresponds to X and the conditional probability
mass function PA|U,X,E is determined by the protocol.
The operators Nb are given by similar expressions.

Equation (5) shows that the correlations between Al-
ice, Bob and Eve at the end of the raw key protocol are
formally identical to those obtained by performing the
measurement with operators Ma ⊗ Nb ⊗ I ′E on ρ′. The
simple protocol in which Alice and Bob each just perform
a given measurement, corresponding to the inputs, say ξ
and ζ, is obviously one of those considered here. In this
case, there is no public random variables, PX(x) = δx,ξ,
PY (y) = δy,ζ , A = U and B = V and so the last term of
eq.(5) simplifies to trHA⊗HB

(ρMξ,a⊗Nζ,b⊗IE). Strictly
speaking, the above is only valid when Eve merely col-
lects the public information in the course of the raw key
protocol. However, any Eve’s measurement during it can
equivalently be taken into account as a measurement on
ρrk, see Appendix A. Thus, it can be considered as being
performed amid the protocol generating the private key.

IV. DEVICE-INDEPENDENT KEY RATE

Let ω be a state of the form of eq.(5), l(ω⊗L) the length
of the longest secret key that Alice and Bob can achieve
when they share ω⊗L with Eve and R′(ω) the large L
limit of l(ω⊗L)/L [34, 40]. We define, for any quantum
distribution tuple P , the device-independent key rate

R(P ) = inf
ρ,(Mx,a)a,(Ny,b)b

sup
rkp

R′(ρrk), (7)

where the supremum is taken over all the raw key proto-
cols described above, the infimum is taken over all the ρ,
(Mx,a)a and (Ny,b)b satisfying eq.(1) with P and ρrk is
given by eqs.(4)-(6) with the probability mass functions
of the protocol rkp. The rate R is nonnegative by con-
struction. Whenever Alice’s and Bob’s random variables
are described by the distributions Px,y, they can estab-
lish, in the limit of large L, a secret key of length at least
equal to LR(P ) from raw keys of L characters generated
using an appropriate raw key protocol. In particular, a
private key can surely be generated as soon as R(P ) > 0.
If R(P ) = 0, there are states and measurement opera-
tors fulfilling eq.(1) with P for which a confidential key
cannot be achieved.

A. Rate for a single raw key protocol

Let us first discuss the usual approach that considers
only one specific protocol to generate the raw keys. The

corresponding device-independent key rate is

R0(P ) = inf
ρ,(Mx,a)a,(Ny,b)b

R′(ρrk), (8)

where the infimum is taken over all the ρ, (Mx,a)a and
(Ny,b)b satisfying eq.(1) with P and ρrk is given by
eqs.(4)-(6) with the distributions of the particular pro-
tocol employed. As an example, assume that m = 3,
n = 2, A = B = {−1, 1}, A = EA3 and B = EB1

where E is an equally distributed public random vari-
able with alphabet A [8]. The rate R′(ρrk) is not larger
than the mutual information I between A and B [40]
which can be expressed in terms of P3,1 with PA,B(a, b) =
(P3,1(a, b) + P3,1(−a,−b))/2. Provided that the Bell ex-

pression S =
∑2
x,y=1(−1)(x−1)(y−1)〈AxBy〉 is larger than

its Bell local maximum of 2, R′(ρrk) is not lower than

I −h(1/2 +
√
S2/4− 1/2) where h is the binary entropy

function [8]. Since these two bounds depend only on P ,
they are also bounds for R0(P ) given by eq.(8).

Let P and P′ be the distribution tuples defined by
P1,1(a, b) = P2,1(a, b) = (1 + ab cos θ)/4, P1,2(a, b) =
(1 + ab sin θ)/4, P2,2(a, b) = (1 − ab sin θ)/4, P3,1 =
P3,2 = 1/4 and P ′x,y = Pz(x),y where θ is any real num-
ber, z(1) = z(3) = 1 and z(2) = 2. They are quantum
since P (P ′) can, for instance, be written as Px,y(a, b) =
〈ψ|ΠA

x,a ⊗ ΠB
y,b|ψ〉 with the two-qubit maximally entan-

gled state |ψ〉 = (|+〉 ⊗ |+〉 + |−〉 ⊗ |−〉)/
√

2 where |±〉
are orthonormal states of the Hilbert space H2 of dimen-
sion 2 and the projective measurement operators ΠA

x,1 =

|x〉AA〈x| (ΠA
x,1 = |z(x)〉AA〈z(x)|), ΠB

y,1 = |y〉BB〈y|,
ΠB
x,−1 = I2 − Πx,1 and Πy,−1 = I2 − Πy,1 where I2 is

the identity operator on H2, |1〉A = cosφ|+〉 + sinφ|−〉,
|2〉A = cosφ|+〉 − sinφ|−〉, |3〉A = (|+〉 + i|−〉)/

√
2,

|1〉B = |+〉 and |2〉B = (|+〉 + |−〉)/
√

2 with φ = θ/2.

For P and P′, S = 2
√

2 cos(θ − π/4) increases from
its Bell local maximum of 2 to its quantum maximum
of 2
√

2 as θ varies from 0 to π/4. Using the bounds
mentioned above, one finds R0(P ) = 0 for any value
of θ, as A and B are uncorrelated for P , and R0(P ′) ≥
1−h(1/2+cos θ/2)−h(1/2+

√
sin(2θ)/2) for θ ∈ [0, π/2],

and hence R0(P ′) > R0(P ) for θ ∈ (0, 1.032]. On the
other hand, P is not less nonlocal than P ′ since it can
be transformed into P ′ by an input substitution. Conse-
quently, R0 is not a nonlocality monotone.

In device-independent quantum random-number gen-
eration, a raw string is first generated following a given
procedure. The corresponding appropriate rate can be
lower bounded in terms of one or several Bell expressions
[28–33], which shows a clear influence of nonlocality al-
ready for a single raw string protocol. In DIQKD, similar
bounds on Eve’s information on Alice’s or Bob’s raw key
can be derived for a given raw key protocol [8–11, 13, 14].
But, in order to establish a common secret key, correla-
tions between the two raw keys are also essential. In the
example discussed above, for instance, the mutual infor-
mation between the outcomes of A (or B) and of any

Eve’s measurement is lower than h(1/2 +
√
S2/4− 1/2)
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which is zero at S = 2
√

2 [8]. However, this does not
ensure a nonzero rate R0 since, for any value of S in
[2, 2
√

2], there are distributions tuples P for which A and
B are uncorrelated and hence R0(P) vanishes.

B. Main result

It can be proved that the rate (7) preserves the Bell
nonlocality order using the Lemma below.

Lemma. Let P and P ′ be two distribution tuples with
output alphabets A and B and numbers m and n of in-
puts such that P is not less nonlocal than P ′ and Ax
and By be random variables such that PAx,By

= Px,y.

There are a random integer K and tuples Ã = (Ãx)mx=1

and B̃ = (B̃y)ny=1 with a joint probability mass function

of the form PKPÃ,B̃, where Ãx and B̃y have alphabets A
and B, respectively, self-maps Fx,k and Gy,k and inputs
z(x, k) and t(y, k) such that the distributions of

(A′x, B
′
y) = (Ãx, B̃y) if K = 0

=
(
Fx,k(Az(x,k)), Gy,k(Bt(y,k))

)
if K = k ≥ 1, (9)

are given by PA′x,B′y = P ′x,y.

If P is quantum then also is P ′.

The proof of the Lemma is given in Appendix B. This
Lemma ensures that, from given Ax and By with distri-
butions Px,y, the legitimate users have effectively access
to random variables characterized by any distribution tu-
ple P ′ not more nonlocal than P , by proceeding as fol-
lows. Alice creates the corresponding K, Ãx and B̃y and

sends K and the B̃y to Bob. Then, Alice and Bob per-
form any classical operations they want, possibly using
the public channel, that produce some random variables,
including X ′ and Y ′ with alphabets in {1, . . . ,m} and
{1, . . . , n}, respectively. After these classical steps, Alice
generates, in sequence, the random variables X which is
X ′ if K = 0 and z(X ′, k) if K = k ≥ 1, U according

to U = Ax when X = x and, finally, U ′ which is Ãx′ if
(K,X ′) = (0, x′) and Fx′,k(U) if (K,X ′) = (k, x′) with
k ≥ 1. Bob does similar operations using Y ′, K, the
By and the B̃y, see Fig.1. In this Figure, it is assumed,
to simplify, that K ≥ 1. The above produces the same
U ′ and V ′ as U ′ = A′x′ when X ′ = x′ and V ′ = B′y′
when Y ′ = y′ where A′x′ and B′y′ are given by eq.(9).

Note that Eve gets K and the B̃y which are sent over the
public channel.

Using the above Lemma, the following can be shown,
see Appendix C.

Proposition 1. The function R given by eq.(7) has the
properties:

(i) R preserves the nonlocality order.

(ii) R vanishes for Bell local distribution tuples.

A function fulfilling these two requirements is a non-
locality monotone, i.e., a proper measure of Bell non-
locality [36]. The above Proposition implies that the
device-independent key rate (7) is a nonlocality mono-
tone. Property (ii) can be seen as a consequence of the
fact that a secret key cannot always be established and
of (i) as follows. Any distribution tuple is not less non-
local than any Bell local one. Thus, due to property
(i), R assumes its minimum value for Bell local distribu-
tion tuples. If this minimum were nonzero then a secret
key could be produced in any case. Proposition 1 shows
that a private key can surely be generated for any dis-
tribution tuple not less nonlocal than a given one for
which this is possible. Besides, a confidential key can be
established with certainty only for nonlocal distribution
tuples. Proposition 1 does not ensure that the converse
holds. There may be nonlocal distribution tuples P such
that a private key cannot be achieved for some states and
measurement operators fulfilling eq.(1) with P .

V. CONTINUOUS NONLOCALITY
MONOTONES

According to the above Proposition and definition (7),
the device-independent key rate R quantifies both the ef-
ficiency in secret key generation and the amount of Bell
nonlocality of a distribution tuple. However, it is not
straightforward to evaluate. Moreover, one may prefer
a measure that provably vanishes only for Bell local dis-
tribution tuples. It is then of interest to consider other
nonlocality monotones. For that purpose, we use the fol-
lowing result, shown in Appendix D. We remark that
the set of quantum distribution tuples depends on the
dimensions of the considered Hilbert spaces [41].

Proposition 2. Let Q and L be, respectively, the sets of
quantum and Bell local distribution tuples with given
output alphabets and numbers of inputs, for given
Hilbert spaces dimensions.

For any nonlocality monotone M on Q and nonnega-
tive continuous function N on Q which vanishes on L,
there is a nondecreasing function f on J = [0, Nsup),
where Nsup is the supremum of N on Q, such that
f(0) = 0, f ◦N ≤M and, for any s ∈ J and ε > 0, there
is P ∈ Q for which N(P ) = s and M(P ) < f(s) + ε.

Whenever Alice’s and Bob’s random variables are de-
scribed by the distributions Px,y, they can generate a
secret key with a rate not lower than f ◦N(P ) where N
is any continuous nonlocality monotone and f is given
by the above Proposition with N and M = R. This re-
mains valid if f is replaced by other nondecreasing func-
tions but f is the greatest one. If f ◦ N(P ) = 0, there
exists, for any ε > 0, a quantum distribution tuple P ′

such that N(P ′) = N(P ) and R(P ′) < ε. So, in this
case, nothing can be inferred from the value N(P ) re-
garding the possibility of establishing a confidential key.
On the contrary, f ◦ N(P ) > 0 ensures that a private
key can be generated. This condition can be rewritten
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as N(P ) > N∗ where N∗ = sup{s ∈ J : f(s) = 0} is set
only by the measure N . By definition, N∗ is not larger
than Nsup. If N∗ = Nsup, f ◦ N = 0 and it cannot be
determined whether a secret key can be established by
evaluating only N . By contrast, for a measure N such
that N∗ < Nsup, N∗ is a threshold value above which
a private key can be achieved with certainty. Proposi-
tion 2 does not require that N is a nonlocality monotone
but only that it is continuous and vanishes for Bell local
tuples. For instance, N can be defined from a Bell in-
equality. Proposition 2 applies to such measures though
they are not nonlocality monotones in general [36].

As an example, assume that m = n = 2 and A = B =
{−1, 1}. In this case, the measure Ñ , given by eq.(3),
is a nonlocality monotone. As is well known, the set of
the possible values of Ñ is the interval [0, 2(

√
2−1)] [42].

A nondecreasing function g such that R ≥ g ◦ Ñ can
be found, see Appendix E. It results from its expression
that there is a threshold value Ñ∗ ≤ 0.652 < 2(

√
2 − 1)

for the nonlocality monotone (3) above which a private

key can surely be generated. The existence of Ñ∗ can be
seen as follows. For any P such that Ñ(P ) > 0, there are
inputs ξ and ζ for which |〈AξBζ〉| > 0. Consider a raw
key protocol generating A = EAξ and B = EBζ where
E is an equally distributed public random variable with
alphabet A. The resulting rate R′(ρrk) in eq.(7), and

hence R(P ), is not lower than I − r ◦ Ñ(P ) where r is a

continuous nonincreasing function with r(2
√

2 − 2) = 0,
given by r(s) = h(1/2 + (s + s2/4)1/2/2), and I = 1 −
h(1/2 + |〈AB〉|/2) is the mutual information between A
and B that depends only on |〈AB〉| = |〈AξBζ〉| and is

hence strictly positive for Ñ(P ) > 0 [8]. The function g
can be obtained by noting that there are ξ and ζ such
that |〈AB〉| ≥ 1/2 + Ñ(P )/4. Other raw key protocols
are used in Appendix E.

VI. SUMMARY AND OPEN QUESTIONS

In summary, a device-independent key rate has been
defined by optimizing over a class of raw key protocols
and shown to be a nonlocality monotone. Moreover, it
has been proved that there are only two possibilities for
any continuous nonlocality monotone. Either it can never
be decided whether a secret key can be established by
evaluating only this measure, or there is a threshold value
for it above which this is surely achievable. A readily
computable nonlocality monotone with such a threshold
exists for two two-outcome measurements per legitimate
user. The defined device-independent key rate may van-
ish for some nonlocal sets of probabilities. Were this not
to be the case, Bell nonlocality would be a necessary and
sufficient condition for DIQKD with raw key protocols.
This may be correct only for some numbers of choos-
able measurements and measurement outcomes. Related
to this issue, it would be interesting to improve the up-
per bound on the threshold value of the aforementioned

particular nonlocality monotone. Since this measure van-
ishes only for Bell local sets of probabilities, a threshold
value of zero would prove the above mentioned equiva-
lence in this case. The answers to these open questions
may depend on the considered class of raw key protocols.
It can be further enlarged, for instance, by dropping the
assumption made here that no information is exchanged
after the measurements.

APPENDIX A: DERIVATION OF EQUATION 5

To simplify, the random variables transmitted over the
public channel at the same stage of the raw key proto-
col are here grouped into one. After receiving the value
e1 of the first one E1, Eve performs a measurement on
her subsystem. This generates a random variable E′1 and
ρ is changed into Λe1,e′1(ρ)/pe1,e′1 when E′1 = e′1 where
pe1,e′1 = tr Λe1,e′1(ρ). The Kraus operators of the quan-
tum operation Λe1,e′1 are of the form IA ⊗ IB ⊗Ke1,e′1,i

where IA (IB) is the identity operator on HA (HB). The
probabilities pe1,e′1 satisfy

∑
e′1
pe1,e′1 = 1. A determinis-

tic operation, e.g, the identity operation, is a measure-
ment with a single outcome e′1. Moreover, sequential
measurements can be considered as a single one with a
properly defined E′1. The set of the values e′1 may de-
pend on e1. However, it can be assumed, without loss
of generality, that it does not, by adding zero probabil-
ity outcomes, and hence that there is a unique E′1 with
PE′1|E1

(e′1|e1) = pe1,e′1 . Repeating these arguments for all

components of E leads to the random tuple E′, condi-
tional distribution PE′|E and quantum operations Λe,e′

with Kraus operators IA ⊗ IB ⊗Ke,e′,i.
The probability mass function of X, Y , E, E′, U and

V is PX,Y ,EPE′|EPU,V |X,Y ,E,E′ where the last condi-
tional distribution is given by

P (u, v|x,y, e, e′) = tr(Λe,e′(ρ)Mx,u⊗Ny,v⊗I ′′E)/P (e′|e),

with the appropriate identity operator I ′′E , and omitting
the subscripts for the distributions. For given values of
these random variables, Eve’s state is proportionnal to
Λ′e,e′(trHA⊗HB

(ρMx,u ⊗ Ny,v ⊗ IE)) where Λ′e,e′ is the
quantum operation with Kraus operators Ke,e′,i. The
marginal distribution PA,B,E,E′ directly follows with the
conditional distributions PA|U,X,E and PB|V,Y ,E of the
protocol. Using PX,Y ,U,V |A,B,E,E′ , one finds that Eve’s

state for A = a, B = b, E = e and E′ = e′ is

ωa,b,e,e′ = Λe′

(
ΠEve

e ⊗
∑

x,y,u,v

P (a|u,x, e)P (b|v,y, e)

×P (x,y, e) trHA⊗HB
(ρMx,u⊗Ny,v⊗IE)

)
/P (a, b, e, e′),

where ΠEve
e = |e〉〈e| and Λe′ is the quantum operation

with Kraus operators 〈e| ⊗Ke,e′,i. Performing the mea-
surement with operators Πa ⊗Πb ⊗ΠEve

e ⊗ IE and then
that characterized by the Λe′ on the state given by eq.(5)
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leads to the same distribution PA,B,E,E′ and Eve’s states
ωa,b,e,e′ .

APPENDIX B: PROOF OF THE LEMMA

The tuples P and P ′ are related by equation (2).
The Bell local distribution tuple L can be written as
L =

∑
a,b qa,bDa,b where the sum runs over all the

a = (ax)x ∈ An and b = (by)y ∈ Bm, the probabilities
qa,b sum to unity and the only nonvanishing components
of Da,b, for the inputs x and y, are those corresponding
to the outputs a = ax and b = by [26]. Consider ran-

dom tuples Ã = (Ãx)mx=1 and B̃ = (B̃y)ny=1 where Ãx

and B̃y have alphabets A and B, respectively, such that
PÃ,B̃(a, b) = qa,b. The components of L are equal to

the marginal probabilities PÃx,B̃y
(a, b).

We denote an input substitution for x and x′ as I(x,x′)
and an input transposition for x and x′, described in the
main text, as I{x,x′}, and similarly for given inputs y and
y′. The input transformations satisfy I{y,y′} ◦ I{x,x′} =
I{x,x′} ◦ I{y,y′} and similar commutation relations with
one or both transformations replaced by an input substi-
tution. We denote the output transformations as Ox and
Oy. They obey Oy ◦Ox = Ox◦Oy. We have also I(x,x′)◦
Oz = Oz ◦ I(x,x′) for z 6= x, x′, I(x,x′) ◦ Ox′ = I(x,x′),
I(x,x′)◦Ox = Ox◦Ox′ ◦I(x,x′), I{x,x′}◦Oz = Oz ◦I{x,x′}
for z 6= x, x′, I{x,x′} ◦ Ox = Ox′ ◦ I{x,x′} and similar re-
lations with the inputs x and x′ replaced by inputs y
and y′. Consequently, any transformation Tk appearing
in eq.(2) can be written as Tk = OAk ◦OBk ◦IAk ◦IBk where
OAk (OBk ) consists of output transformations for given in-
puts x (y) and IAk (IBk ) of transformations on the inputs
x (y). Moreover, the component of IAk ◦ IBk (P ) for the
inputs x and y and outputs a and b can be expressed as
PAz(x,k),Bt(y,k)

(a, b) with z(x, k) and t(y, k) determined by

IAk and IBk , respectively.

Let P̂ be any distribution tuple with alphabets A
and B and Cx and Dy random variables such that

PCx,Dy
= P̂x,y. An output relabeling for x acts on

P̂ as follows. Every component P̂x,y(a, b) is replaced

by P̂x,y(π(a), b) = Pπ−1(Cx),Dy
(a, b) where π is a per-

mutation on A and π−1 is its inverse and the other
ones remain unchanged, and similarly for a given input
y. Under an output coarse graining characterized by x,
A′ ⊂ A and a′ ∈ A′, every component P̂x,y(a, b) becomes∑
a′′∈A′ P̂x,y(a′′, b) for a = a′, vanishes for a ∈ A′ \ {a′},

and does not change for a /∈ A′ and the other ones remain
the same, and similarly for given y, B′ ⊂ B and b′ ∈ B′.
The components for x of the resulting distribution tuple
can be written as PF (Cx),Dy

(a, b) where the self-map F
on A is given by F (a) = a for a /∈ A′ and F (a) = a′ for
a ∈ A′. Consequently, the component for the inputs x
and y and outputs a and b of Tk(P ) in eq.(2) can be ex-
pressed as PFx,k(Az(x,k)),Gy,k(Bt(y,k))(a, b) with self-maps
Fx,k and Gy,k on A and B, respectively, determined by

OAk and OBk , respectively.

The above shows that

P ′x,y = p0PÃx,B̃y
+
∑
k≥1

pkPFx,k(Az(x,k)),Gy,k(Bt(y,k)).

It remains to introduce a random non-negative integer K
with distribution PK(k) = pk and the random variables
A′x and B′y given in the Lemma. The probability mass
function of K, A′x and B′y is PKPA′x,B′y|K with

PA′x,B′y|K(a, b|k) = PÃx,B̃y
(a, b) for k = 0,

= PFx,k(Az(x,k)),Gx,k(Bt(y,k))(a, b) for k ≥ 1.

Summing over k gives the marginal distribution PA′x,B′y =

P ′x,y.

For a quantum P , the distributions of the Ax and By
can be written as

PAx,By
(a, b) = tr(ρluMx,a ⊗Ny,b), (B1)

where ρlu is a density operator on HA ⊗ HB and Mx,a

(Ny,b) are positive operators such that
∑
a∈AMx,a = IA

(
∑
b∈BNy,b = IB). For any self-maps F on A and G on

B, one has

PF (Ax),G(By)(a, b) =
∑

a′∈F−1({a})
b′∈G−1({b})

PAx,By
(a′, b′).

This expression can be recast into the form of eq.(B1)
with Mx,a and Ny,b replaced, respectively, by the oper-
ators MF,x,a =

∑
a′∈F−1({a})Mx,a′ and NG,y,b defined

similarly and so

PFx,k(Az(x,k)),Gy,k(Bt(y,k))(a, b)

= tr(ρluMFx,k,z(x,k),a ⊗NGy,k,t(y,k),b).

The Bell local distribution tuple L is also given by
eq.(B1) with ρlu, Mx,a and Ny,b replaced by

ρ̃′lu =
∑
k,a,b

PK(k)PÃ,B̃(a, b)ΠAlice
k,a,b ⊗ΠBob

k,a,b, (B2)

∑
k,a,b δax,aΠAlice

k,a,b and
∑
k,a,b δby,bΠ

Bob
k,a,b, respectively,

where the ΠAlice
k,a,b (ΠBob

k,a,b) are mutually orthogonal rank-

one projectors. Finally, equation (B1) with ρlu, Mx,a and
Ny,b replaced by ρ̃′lu ⊗ ρlu,

M ′x,a =
∑
k,a,b

ΠAlice
k,a,b⊗

[
δk,0δax,aIA+(1−δk,0)MFx,k,z(x,k),a

]
,

(B3)
and N ′y,b defined similarly, leads to P ′, which is hence
quantum.
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APPENDIX C: PROOF OF PROPOSITION 1

(i) Let P and P ′ be two quantum distribution tuples
with numbers m and n of inputs such that the former is
not less nonlocal than the latter. For these tuples, the
Lemma gives the random variables K, Ãx and B̃y, the
self-maps Fx,k and Gy,k and the input maps z and t. At
some stage of any raw key protocol rkp, a random vari-
able U (V ) is produced according to U = Ax (V = By)
when X = x (Y = y) where the Ax (By) are the ran-
dom variables among which Alice (Bob) can choose and
X (Y ) is a random variable with alphabet in {1, . . . ,m}
({1, . . . , n}). We name rkp1 the part of rkp before the
generation of U and V and rkp2 that after it.

From any rkp, we define the protocol rkp′ as follows.
First, Alice creates K, the Ãx and B̃y and sends all of
them over the public channel. Then, Alice and Bob exe-
cute rkp1 and, instead of producing U and V as explained
above, they proceed as follows. Alice generates, in se-
quence, X ′ which is X if K = 0 and z(X, k) if K = k ≥ 1,
U ′ according to U ′ = Ax′ when X ′ = x′ and U which is
Ãx if (K,X) = (0, x) and Fx,k(U ′) if (K,X) = (k, x) with
k ≥ 1. Similarly, Bob generates Y ′ which is Y if K = 0
and t(Y, k) if K = k ≥ 1, V ′ according to V ′ = By′

when Y ′ = y′ and V which is B̃y if (K,Y ) = (0, y) and
Gy,k(V ′) if (K,Y ) = (k, y) with k ≥ 1. Finally, Alice

and Bob discard X ′, U ′, Y ′, V ′, K, the Ãx and the B̃y
which do not play any role in rkp2 and complete rkp2.
One has S ≤ R(P ) where S is defined similarly as R(P )
but taking the supremum only over the raw key protocols
of the particular form just described.

Consider any such protocol rkp′, initial tripartite state
ρ and measurement operators Mx,a and Ny,b on HA and
HB , respectively, and assume that Alice and Bob perform
rkp′. After the creation and transmission of K, the Ãx
and the B̃y and the execution of rkp1, Alice, Bob and
Eve share the state ρ̃′ ⊗ ρ̃⊗ ρ where ρ̃ is given by eq.(4)
with the distribution PX,Y ,E of rkp1 and

ρ̃′ =
∑
k,a,b

PK(k)PÃ,B̃(a, b)ΠAlice
k,a,b⊗ΠBob

k,a,b⊗ΠEve
k,a,b, (C1)

with the same notations as in eq.(B2). The sum of the
projectors ΠAlice

k,a,b (ΠBob
k,a,b, ΠEve

k,a,b) is the identity operator

on a Hilbert space H′′A (H′′B , H′′E). Alice and Bob then
generate U and V according to rkp′ and discard X ′, U ′,
Y ′, V ′, K, the Ãx and the B̃y, which leads to

ω =
∑

a,b,x,y

PÃ,B̃(a, b)Ox,y⊗
[
p0ΠU,V

ax,by
⊗ΠEve

0,a,b⊗ trH ρ

+
∑

k≥1,u′,v′
pkΠU,V

Fx,k(u′),Gy,k(v′)
⊗ΠEve

k,a,b

⊗ trH(ρMz(x,k),u′ ⊗Nt(y,k),v′ ⊗ IE)
]
,

where x and y correspond to X and Y , respectively, ΠU,V
u,v

denotes mutually orthogonal rank-one projectors and the

notations Ox,y =
∑

e PX,Y ,E(x,y, e)ΠAlice
x,e ⊗ ΠBob

y,e ⊗
ΠEve

e , pk = PK(k) and H = HA ⊗ HB are used. The
state ω can be rewritten as

ω =
∑

x,y,u,v

Ox,y⊗ΠU,V
u,v ⊗trH′((ρ̃

′⊗ρ)(M ′x,u⊗N ′y,v⊗I ′′E)),

(C2)
where M ′x,u is given by eq.(B3), N ′y,v by a similar ex-
pression, I ′′E is the identity operator on HE ⊗ H′′E and
H′ = HA ⊗H′′A ⊗HB ⊗H′′B .

As soon as tr(ρMx,a⊗Ny,b⊗IE) = Px,y(a, b), the state
ρ̃′⊗ρ, the operators M ′x,a and N ′y,b given by eq.(B3) and

the distributions P ′x,y are related in the same way, see the

proof of the Lemma. Thus, one has R(P ′) ≤ S′ where S′

is defined similarly as R(P ′) but taking the infimum only
over such particular states and measurement operators.
When the state initially shared by the three parties is ρ̃′⊗
ρ and Alice’s and Bob’s measurements are characterized
by the operators M ′x,a and N ′y,b, respectively, performing
rkp1 and generating U and V according to rkp gives the
state (C2), see the derivation of equation (5). So, in
this case, the tripartite state obtained at the end of rkp
is identical to that resulting from the execution of the
protocol rkp′ with ρ, Mx,a and Ny,b. Consequently, S
and S′ are equal to each other, which finishes the proof
of property (i).

(ii) Any Bell local distribution tuple can be written
in quantum form with the state given by eq.(C1) with-
out K and measurement operators

∑
a,b δax,aΠAlice

a,b and∑
a,b δby,bΠ

Bob
a,b , see the proof of the Lemma. Performing

any raw key protocol with this initial state and Alice’s
and Bob’s measurements described by these operators
leads to the state

ρrk =
∑

a,b,x,y,
e,a,b

PA|U,X,E(a|ax,x, e)PB|V,Y ,E(b|by,y, e)

× PX,Y ,E(x,y, e)PÃ,B̃(a, b)Πa ⊗Πb ⊗Πe,a,b,

where x (y) corresponds to X (Y ) and Πe,a,b = ΠEve
e ⊗

ΠEve
a,b . Assume that Eve simply makes the measure-

ment of operators Πe,a,b on ρrk. The three parties are
left with classical random variables. Since PX,Y ,E =
PX|EPY |EPE , the probability mass function of A, B

and the random variables available to Eve, i.e., Ã, B̃
and E, is PA|Ã,EPB|B̃,EPÃ,B̃PE and hence A and B are

conditionally independent given Eve’s variables. Conse-
quently, Alice and Bob cannot generate a secret key [40].

APPENDIX D: PROOF OF PROPOSITION 2

For any P ∈ Q, we define the family of distribution
tuples P p = pP + (1 − p)L where L is any Bell local
distribution tuple and p varies from 0 to 1. They belong
to Q since L ⊂ Q and Q is convex [26]. Clearly, P p

is continuous with respect to p, P 1 = P and P 0 = L.
Moreover, P is not less nonlocal than P p for any p ∈ [0, 1]
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[36]. We denote by Qs the set of all P ∈ Q such that
N(P ) = s and define the function f , on the set J ′ of the
values of N , by f(s) = infP∈Qs M(P ). By construction,
f ◦ N ≤ M on Q and there is, for any s ∈ J ′, P ∈ Qs
such that M(P ) and f(s) are as close to each other as
we wish. Since M and N vanish on L, there is a set Q0

containing L and f(0) = 0.
As N ≥ 0, the supremum Nsup = sup J ′ is nonnega-

tive. Define J = [0, Nsup) and consider any s ∈ J . There

is P̂ ∈ Q such that N(P̂ ) > s. Define P̂ p as described

above. Owing to the continuity properties of N and P̂ p,

N(P̂ p) is a continuous function of p. It is equal to 0 for

p = 0 and to N(P̂ ) for p = 1. Thus, due to the inter-

mediate value theorem, for any s′ ∈ [0, N(P̂ )], there is

q such that N(P̂ q) = s′, i.e., s′ ∈ J ′. In particular, s
belongs to J ′. As s is any element of J , J is a subset of
J ′.

For any P ∈ Qs, N(P p) is a continuous function of
p which is equal to 0 for p = 0 and to s for p = 1.
So, for any s′ ∈ [0, s], there is q such that P q ∈ Qs′ .
Moreover, since P is not less nonlocal than P q andM is a
nonlocality monotone, one has M(P ) ≥M(P q) ≥ f(s′).
Thus, for any s and s′ in J ′ such that s′ ≤ s, f(s′)
is a lower bound of M on Qs, which implies that f is
nondecreasing.

APPENDIX E: UPPER BOUND ON THE
THRESHOLD Ñ∗

The rate R′(ρrk) in eq.(7) is lowerbounded by the
Devetak-Winter rate [34], i.e.,

R′(ρrk) ≥ I(A : B) +
∑

a
PA(a)S(ωa)− S(ω),

where I(A : B) is the mutual information between A and
B, S denotes the von Neumann entropy, ω = trHAB

ρ′

and ωa = trHAB
(ρ′Ma ⊗ I ′B ⊗ I ′E)/PA(a) with I ′B the

identity operator on HB ⊗H′B . We consider m = n = 2,
random variables Ax and By with values in {−1, 1} and
a raw key protocol in which Alice creates three equally
distributed random variables, X, Y and E and sends Y
and E over the public channel, A = ν(X,Y )EU where
ν is a map from {1, 2}2 to {−1, 1} such that ν(x, y) =
−1 for only one pair (x, y) and B = EV . The values
of E are −1 and 1, X and Y are the choice random
variables for Alice and Bob, respectively, with alphabet
{1, 2}. Consequently, PA = PB = 1/2 and the above
Eve’s states are given by ω =

∑
y,e Πy,e ⊗ trHA⊗HB

ρ/4
and

ωa =
∑
x,y,e

Πy,e ⊗ trHA⊗HB
(ρMx,eν(x,y)a ⊗ IB ⊗ IE)/4,

omitting the superscript for the projectors.
Since m = n = 2 and A = B = {−1, 1}, these states

can be rewritten as ω =
∑
y,e,λ pλΠy,e ⊗ trH2

2
ρλ/4 and

ωa =
∑
x,y,e,λ

pλ
8

Πy,e ⊗ trH2
2
(ρλ(I2 + eνaΣAx,λ)⊗ I2 ⊗ IE),

omitting the arguments of ν, where pλ denotes probabili-
ties summing to unity, H2 the Hilbert space of dimension
2, ρλ density operators on H2

2 ⊗HE , and I2 the identity
operator on H2. In some basis of H2, depending on λ,
the diagonal elements of the operators ΣAx,λ can be ex-
pressed as ± cos θx,λ and the nondiagonal ones as sin θx,λ
[9]. In terms of the states ρλ, the distributions Px,y read
as

Px,y(a, b) =
∑
λ

pλ
4

tr(ρλ(I2 +aΣAx,λ)⊗ (I2 +bΣBy,λ)⊗IE),

where the operators ΣBy,λ are similar to the ΣAx,λ.
The above Eve’s states can be further simplified into

ω =
∑
λ pλ trH2

2
ρ′λ and

ωa =
∑
x,λ

pλ
2

trH2
2
(ρ′λ(I2 + aΣAx,λ)⊗ I2 ⊗ I ′E).

The states ρ′λ are given by ρ′λ =
∑
y,e Πy,e⊗ρλ,eν/4 where

ρλ,1 = ρλ and ρλ,−1 = σAλ ⊗σBλ ⊗IEρλσAλ ⊗σBλ ⊗IE with
σAλ = (0−ii 0) in the basis in which the ΣAx,λ are real and

similarly for σBλ . The above expression for ωa results
from σAλ ΣAx,λσ

A
λ = −ΣAx,λ. The reduced density operator

on H2
2 of ρ′λ is trHE

(ρλ,1 + ρλ,−1)/2 which can always be
taken to be a Bell diagonal state and hence

S(ωλ)−
∑
a

S(ωλ,x,a)/2 ≤ h([1 + (Nλ +N2
λ/4)1/2]/2),

where ωλ = trH2
2
ρ′λ, ωλ,x,a = trH2

2
(ρ′λ(I+aΣAx,λ)⊗I⊗I ′E),

h is the binary entropy function and Nλ is the max-
imum violation of the Clauser-Horne-Shimony-Holt in-
equality [39] for the state trHE

(ρλ,1 + ρλ,−1)/2 [9]. As∑
a,b abPx,y(a, b) =

∑
a,b abPx,y(−a,−b), the value of

〈AxBy〉 remains the same when ρλ is replaced by (ρλ,1 +

ρλ,−1)/2 and so Ñ(P) ≤
∑
λ pλNλ where Ñ is defined by

eq.(3). Thus, due to the properties of the Holevo quan-
tity and of h, the above inequality is valid with ωλ, ωλ,x,a
and Nλ replaced, respectively, by ω, ωa and Ñ(P).

Since PA = PB = 1/2, one has I(A : B) = 1− h(1/2 +
|〈AB〉|/2) where

〈AB〉 = 〈ν(X,Y )UV 〉 =
1

4

∑
x,y

ν(x, y)〈AxBy〉,

and thus maxν I(A : B) ≥ 1 − h(3/4 + Ñ(P)/8). The

above results show that R ≥ g′ ◦ Ñ where g′ is given by

g′(s) = 1− h
(

3

4
+
s

8

)
− h

(
1

2
+

1

2

√
s+

s2

4

)
.

As R is nonnegative, the right side of the above inequality
can be replaced by zero when it is negative and hence
R ≥ g ◦ Ñ with g(s) = max{0, g′(s)}. The value g′(s) is

positive for s ≥ 0.652. So, the nonlocality monotone Ñ
has a threshold value Ñ∗ ≤ 0.652.
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