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Abstract: The worldwide growing development of PV capacity requires an accurate forecast for a safer
and cheaper PV grid penetration. Solar energy variability mainly depends on cloud cover evolution.
Thus, relationships between weather variables and forecast uncertainties may be quantified to optimize
forecast use. An intraday solar energy forecast algorithm using satellite images is fully described and
validated over three years in the Paris (France) area. For all tested horizons (up to 6 h), the method
shows a positive forecast skill score compared to persistence (up to 15%) and numerical weather
predictions (between 20% and 40%). Different variables, such as the clear-sky index (Kc), solar zenith
angle (SZA), surrounding cloud pattern observed by satellites and northern Atlantic weather regimes
have been tested as predictors for this forecast method. Results highlighted an increasing absolute
error with a decreasing SZA and Kc. Root mean square error (RMSE) is significantly affected by
the mean and the standard deviation of the observed Kc in a 10 km surrounding area. The highest
(respectively, lowest) errors occur at the Atlantic Ridge (respectively, Scandinavian Blocking) regime.
The differences of relative RMSE between these two regimes are from 8% to 10% in summer and
from 18% to 30% depending on the time horizon. These results can help solar energy users to
anticipate—at the forecast start time and up to several days in advance—the uncertainties of the
intraday forecast. The results can be used as inputs for other solar energy forecast methods.

Keywords: solar; PV; satellite; weather regime; cloud; cloud motion vector; forecast

1. Introduction

Since the year 2000, the cost of PV modules generation has significantly decreased, increasing
the competitiveness of PV power against electricity generated from fossil fuels [1]. Concomitantly,
financial incentives for the use of low-carbon energy have been established all over the world by
various institutions. Consequently, the total PV capacity installed in the world has been multiplied
by 14.4, from 40.2 GW in 2010 to 580.2 GW in 2019. During the same period, the total capacity of all
renewable energies doubled from 1226.6 to 2536 GW [2]. The dramatic increase in PV production raises
the issue of its massive penetration into the grid. The injection of any power source in the grid must be
balanced at each instant by an equal consumption to ensure the safe and stable operation of the grid at
a constant frequency.

However, the production of solar energy is essentially driven by the solar irradiance reaching
the Earth’s surface, quantified as global horizontal irradiance (GHI). This physical quantity is highly
variable for two main causes. The first one is astronomic: the irradiance depends deterministically on the
diurnal and seasonal variations of solar elevation above the horizon. The second one is meteorological:
atmospheric components (water vapor, aerosols and mainly clouds) significantly attenuate the solar
radiation passing through the atmosphere and reaching a solar energy production system. In particular,
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cloud cover evolution above a given point is a stochastic process, thus, the derived GHI has a limited
predictability [3].

Oversizing the PV capacity is one way to reduce this variability and the associated grid
unbalancing risks. However, it wastes, through curtailment, a significant amount of produced energy
and results in a limited penetration rate. Electricity storage is an obvious solution to limit this waste
and increase the control of PV electricity injection into the grid. If current storage technologies are
successfully used to control hybrid power supply—including PV—at micro-grid scales [4], it remains
costly to develop sufficient capacity enabling a PV penetration size matched to its current worldwide
production [5]. Forecasting this production in the future minutes, hours or days helps to increase its
penetration into the grid through these examples of application:

• helping dispatch operators to propose the cheapest and safest electric mix according to user’s
consumption and energy availability.

• limiting financial risks for electricity distributor buying (respectively, producer selling) PV power
on the electricity market.

• designing optimal rules for the management of micro-grids including at least a PV system and a
battery storage.

In particular, intraday horizon forecasts (typically up to 6 h) are required more and more for the
grid power reserve management, the increase in intra-day auctions in the electricity market [6] and the
current worldwide development of micro-grids.

Forecasting the surface solar irradiance enables us to forecast PV production using proven models
converting GHI into PV power production [7,8]. It does not require any PV power historical dataset.
It has the advantage of providing an operational forecast even if the PV output measurements cannot
be provided in real-time. GHI forecasts also permit the assessment of the predictability of a future PV
farm not yet built. During the last decade, numerous studies proposed PV production forecast methods.
A large proportion of them have been surveyed by different authors [9–13]. These publications agree
that each forecasting technique is suitable for a particular time horizon range.

At the intraday scale, time series modeling approaches are often used. A wide range of methods
modeling time-series using machine learning techniques have been developed [14]. Such methods are
trained on historical data and offer direct PV power forecasts if long-term historical datasets of this
quantity are available. More advanced methods use hybrid approaches [15] or include a variety of
environmental data to assimilate more information driving PV power variability [16]. Nevertheless,
these approaches depend on the behavior of the training datasets. Applications to other regions or
periods requires retraining based on available historical data [17].

Other appropriate methods for this time scale are based on cloud cover forecasting using images
from the geostationary meteorological satellite. These techniques can be applied at any geographical
site covered by the satellite without using training datasets. Moreover, it enables us to overcome
the underestimation of cloud cover by classical numerical weather prediction models (NWP) [18].
Some studies demonstrated the superior performance of such techniques compared to NWP, over the
USA [19], Germany [20] or Netherlands [21]. Satellite-based forecast is today operational and currently
distributed as a commercial product [22,23].

The performance of such methods is very sensitive to the cloud cover state and evolution.
For instance, methods based on the temporal extrapolation of cloud motion present better
results for passing cloud events than for sudden cloud appearance or disappearance [24]. Then,
reliability predictors for such algorithms could be identified among various observable and predictable
weather data. Synoptic situation, defined by a weather regime and the surrounding cloud cover
distribution, may influence the GHI forecast accuracy. So far, most of the published studies focus on the
benefits for end-users to prefer satellite-based methods rather than NWP forecasts at the intra-day scale.
Nevertheless, relationships between atmospheric state and forecast performance have been identified
for day-ahead NWP-based forecasts. This showed, for instance, that the highest forecast errors occur
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for the highest solar elevation angle and intermediate cloud coverage states [25]. However, such studies
have never been undertaken for algorithms forecasting solar irradiance using satellite-based cloud
observations as the main input. Knowledge of the relationship between satellite-based forecast accuracy
and weather predictors could be used to announce a magnitude of order of intraday PV forecast errors
for day or week-ahead weather forecasts. This information would help grid managers to prepare the
sizing of storage capacity or ancillary electricity resource, considering the announced error range.

Firstly, this paper presents and assesses the performance of a GHI intraday forecast method based
on the extrapolation of cloud cover observed by the Spinning Enhanced Visible and Infrared Imager
(SEVIRI) on board of the geostationary satellite Meteosat Second Generation (MSG). A cloud motion
vector field (CMV) originally designed to determine wind field from MSG data has been applied.
The algorithm has been tested for over 3 years (from July 2017 to June 2020), a period length exceeding
the length of most validation processes of similar state-of-the-art methods. Performance has been
assessed using ground measurements at the Baseline Surface Radiation Network (BSRN) site of
Palaiseau (France) [26] on the Site Instrumental de Recherche par Télédétection Atmosphérique (SIRTA)
atmospheric observatory [27] and compared with a persistence algorithm as well as with GHI
outputs of the Météo-France Action de Recherche Petite Echelle Grande Echelle (ARPEGE) NWP model.
Secondly, score results have been analyzed according to the different weather regimes occurring in the
northern Atlantic and known to impact the meteorological situation over the Paris area [28], as well
as surrounding cloud patterns observed from SEVIRI images. In this paper, Section 2 describes our
forecast algorithm, the data used and the assessment methodology. Section 3 presents the selected
weather predictors and their known influence on actual surface solar irradiance. Section 4 shows the
forecast accuracy results and discusses them according to the selected predictors. Section 5 concludes
this work.

2. Forecasting Using Geostationary Satellite Images

2.1. Preliminaries: Using Satellite Data to Assess GHI

Since the late 1970s [29], images from the geostationary meteorological satellite have been used to
map the solar energy yield by assessing the GHI at ground level. Even today, such imagery (Figure 1)
offers the best compromise of cloudiness distribution mapping and monitoring in terms of wide
coverage (almost one third of the Earth’s surface), spatial resolution (<4 km) and time sampling
(5–15 min).

Numerous works continued this activity, following technical enhancement of space borne sensors.
The so-called Heliosat method [30–34] proposed common principles to numerous algorithms estimating
surface solar radiation from satellite images.

The fundamental principle of Heliosat consists of quantifying the cloudiness of a given pixel
by computing a cloud index n (also called “cloud albedo” [34]), which is based on the normalized
difference between the reflectance observed by the broadband visible channel of the satellite with the
one simulated if the atmosphere were free of cloud at the same time for the same pixel. n has a value
ranging theoretically between zero (clear sky) and one (overcast sky). A clear-sky index Kc is deduced
from n through a quasi-linear relationship, varying according to Heliosat method version (1). Kc can
be considered as an attenuation factor of surface solar radiation only due to cloud presence.

Kc ≈ 1− n, (1)

Using a clear-sky model assessing the GHI under clear-sky (GHIcs), the GHI at ground level is
computed as:

Kc =
GHI

GHIcs
(2)
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Figure 1. Image acquired the 30 June 2020–12:00 UTC, from broadband visible channel of the satellite
Meteosat-11 (i.e., MSG-4) (credit: EUMETSAT).

The use of satellite images to map the GHI is advantageous because it enables to obtain a solar
energy yield estimation with a constant and satisfactory accuracy for various parts of the globe.
It avoids the costly installation and maintenance of meteorological instruments in every site of interest.

2.2. Overview of Satellite-Based Intraday Forecast Methods

The cloud index derived from a satellite image has been initially designed to assess the GHI from
a satellite image. However, it has been considered as a fundamental input for a forecast algorithm.
Indeed, cloud index temporal variation contains almost the totality of the stochastic component of GHI
temporal evolution. Hammer et al. [35] proposed a GHI forecast scheme by predicting statistically,
the evolution of the cloud index map. Lorenz et al. [36] set up a forecasting algorithm by deriving
cloud motion vectors (CMV) from two subsequent cloud index maps; the obtained CMV field is then
used to extrapolate the cloud index map at the time when the forecast is initiated. The extrapolated
value of cloud index is then converted into the forecast GHI using (1) and (2). The GHIcs is assumed
to be easily predictable as it depends on the solar position—precisely calculated with astronomical
equations—and atmospheric optical depth, assumed to be constant at the intraday scale. Cloud motion
vector derivation from geostationary meteorological satellite images is used, and has been applied
for decades, to derive large-scale wind fields for operational weather forecasts [37]. So far, [36] have
been widely cited as the reference work using CMV to forecast solar radiation from satellite data.
In this field, many studies were published using this generic principle (described in Figure 2) through
different versions.

Like [36], the algorithms developed by [21,39–43] include a CMV field computed from the
satellite data, whereas those from [44,45] import a wind vector field from a NWP model. Both approaches
extrapolate a cloud index image from their CMV fields. More recent works based on machine-learning
techniques use the CMV field as an input among others for bi-dimensional time-series modeling of
cloud index maps [46,47]. All of these studies could demonstrate the pertinence of their algorithm
by comparing their accuracy against NWP or persistence algorithms. However, these three different
approaches have not been yet compared over the same measurement points, during the same period
and using identical error metrics [43].
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Figure 2. Schematic representation of satellite-based forecast principles (example taken from [38]).
GHI: global horizontal irradiance; MSG: Meteosat Second Generation.

In this present work, we implement a forecasting method based on the principle of [36] using a
specific method CMV computation method built from Meteosat images and originally dedicated to
derive synoptic wind for operational weather forecast. The process follows the diagram presented in
Figure 2 with several differences detailed in Section 2.3.

2.3. Material and Methods

2.3.1. Validation Data

Forecast results have been assessed using surface solar radiation measurements from the BSRN
station of Palaiseau located at the SIRTA observatory (France, ‘48.713◦ N; 2.208◦ E’, 157 m above
average sea level). The GHI measured at 1 min temporal resolution by a pyranometer (Kipp and
Zonen CM22) is used in this present study.

2.3.2. Satellite Data

SEVIRI is a 12-channel imager on the MSG geostationary satellites operated by EUMETSAT.
In this work, we used the observations acquired from 01 July 2017 to 30 June 2020 mainly from
MSG-3 and MSG-4 and punctually from MSG-1 when MSG-4 has been in maintenance. These data
are delivered in real-time by the SATMOS service from Météo-France under the form of NetCDF files
containing calibrated radiance. Images are continuously archived at Institut Pierre-Simon Laplace (IPSL)
in Palaiseau.

The computation of CMV and the forecast algorithm uses the high-resolution visible channel
(HRV) observing the Earth through a broadband from 0.4 to 1.1 µm. The spatial resolution of HRV data
is 1 km at nadir, corresponding approximately to a pixel of 2 × 1.2 km2 over Palaiseau (respectively,
3 km at nadir and 4 × 6 km2 for infrared channels). The temporal resolution is 15 min for both channels.

MSG images are time stamped every 00, 15, 30 and 45 min of the hour. SEVIRI starts to
scan the whole Earth disk at each time stamped instant. The scan duration is approximately of
12.5 min. Observation time of the pixel surrounding SIRTA observatory takes place 11 min after time
stamped instant. Thus, cloud index can be derived at each 11, 26, 41 and 56 min of an hour.

2.3.3. ARPEGE Outputs

The NWP model ARPEGE is one of the operational forecast model used at Météo-France [48].
We use the output “surface solar radiation downwards” of ARPEGE, as a reference model to assess
the satellite-based forecast. This model is operational as a global forecast system with a horizontal
resolution of about 7.5 km over mainland France. Its initial conditions are determined by a 4D-Var
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data assimilation of observations. ARPEGE is a spectral hydrostatic model with a presentation in finite
elements on the vertical direction. It presents 105 vertical levels from 10 m. to 75 km above sea level.

For each day, we selected the run initialized at 12:00 UTC for 0–24 h ahead with an hourly
time resolution. Outputs have been linearly interpolated to coincide with MSG timestamps.
Spatial resolution of this global model is 5 km over Europe.

2.3.4. Cloud Index Computation

The conversion of HRV radiance into cloud index is made with an in-house version of the Heliosat
method. This version is defined by the way to compute the different terms of the cloud index n defined
in [33] and [31] by (3):

n =
ρ− ρg

ρc − ρg
(3)

ρ is the reflectance derived from the calibrated radiance L observed by the sensor through the
following equation:

ρ =
πLd2

I0 cosθ
(4)

where L is the calibrated radiance observed by the sensor, d is the Earth–Sun distance in AU temporally
corrected by the Earth orbit eccentricity, I0 is the total solar irradiance for the HRV channel and θ is the
solar zenith angle (SZA) above the given pixel. ρc is the maximum observable reflectance assuming
that it is due to the brightest cloud. According to [34], we determine ρc by the 95th percentile of all
reflection values at local noon in the target region. We set this value to 78% for the whole studied
period. Sensor change between MSG-1, -3 and -4 did not impact significantly this 95th percentile value.
ρg is the ground albedo, typically the albedo of a pixel if the sky is cloud free. This is usually the
relative minimum of the reflections during a certain time span (e.g., a month) derived for each pixel of
the satellite image. In order to prepare our algorithm for operational application, we undertook an
internal study, using almost 5 years of data, leading to the best GHI retrieval results with minimal
operational constraints. Then, ρg was computed as the 4th percentile of all reflection values at a given
time slot for a given month during the two years preceding a given month. The 4th percentile value
has been selected as a good compromise to obtain ρg minimum values, avoiding secondary minimums
and outliers. For example, for a GHI estimation from an MSG image acquired on any day of September
2020 at 12:00 UTC, ρg is the 4th percentile for all ρ values observed at 12:00 UTC during September
2018 and 2019. The retrievals are limited to θ less than 78◦.

2.3.5. Cloud Motion Vector Field Computation

The algorithm computing cloud motion vector is detailed in [49]. It has been originally conceived
to extract atmospheric motion vectors used as inputs of operational weather forecast models. Instead of
using cloud index images as shown in Figure 2, this CMV computation method uses radiances.
The process includes two main steps:

• In the first step, a CMV field is produced with a block-matching method based on the minimization
of the sum of squared differences (SSD, or Euclidean distance) of pixel values (radiances).
For each vector, if the forecast is initiated at time T0, a square of 36 × 36 pixels—called target
window—is selected on the image acquired at T0-15 min (image 1). A square of 96 × 96
pixels—the search window—is then selected in the image acquired at T0 (image 2) with the same
center as the target window of image 1. The target window of image 1 is displaced pixel-by-pixel in
all directions, over all possible positions allowed inside the search window of image 2. The relative
position of the two windows presenting the minimal SSD is marked as the motion vector tip,
and thus defines the CMV. In practice this process is applied to all the predefined positions of a
regular grid and produces a CMV vector field between T0-15 min and T0. In this study we do not
take into account the height (or level) of the tracked clouds. The resulting CMV fields may be
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composed of vectors at different levels. When clouds are present in different, overlapping layers,
the satellite generally “sees” the clouds of the uppermost layer in the visible channel.

• A second CMV field has to be calculated over the same grid with the previously described
procedure between the image acquired at T0-30 min (image 0) and the image acquired at T0-15 min
(image 1), in order to detect unrealistic temporal evolution of the tracked cloud or structure during
the half-hour period before T0, the forecast time, by comparing both vector fields. In practice,
this second CMV field is extracted before the one derived between T0-15 min and T0).

Particularly in a heterogeneous cloud field, this process can lead to spatial incoherence between
neighboring vectors or unrealistic directions or speed variations for some vectors. Thus, a series of
quality tests is applied as a second step with the following criteria:

• Suppression of null vectors (corresponding often to cloud free areas).
• Suppression of vectors with a norm exceeding a realistic wind speed.
• Temporal consistency test: each vector calculated between T0-15 min and T0 is compared to its

predecessor computed at the same location in the images acquired at T0-30 min and T0-15 min.
If the difference in vector direction or the ratio of magnitude (proportional to the wind speed)
of both vectors, exceed fixed thresholds, the vector is suppressed.

• Spatial consistency test: each vector is compared with its nearest neighbors. Similarly, if the
difference in direction or the magnitude ratio exceeds fixed thresholds, the vector is suppressed.

In practice, the trackable clouds almost always stay at the same level over 1/4 h, the period
between two consecutive satellite images used for CMV calculation. This may not be the case in the
following situations:

• When clouds appear or dissipate (inside the area covered by the target window), they are only
present on one image of a pair.

• Sometimes two clouds or cloud groups (or more) can be present at different levels inside a
target window and can move at a different speeds or in different directions. The derived CMV
may correspond to the motion of one of the clouds (generally the largest one, or in some cases
the thickest cloud when semi-transparent clouds (cirrus) are also present. Or the CMV may
correspond to some “mixture” of the motion of both clouds.

In both situations the resulting vector generally shows important differences in speed and/or
direction with its neighbors, and/or with its collocated predecessor or successor, and therefore will be
suppressed by quality tests, mainly by temporal and spatial consistency tests.

In the current implementation, a CMV is computed over an area of 513 × 513 pixels centered
on Palaiseau. A vector is computed every 36 pixels. Figure 3 shows an example of computed CMV
before and after the consistency tests. It can be seen that the consistency tests suppressed two very
long vectors near the south-west corner of the image.

2.3.6. Cloud Index Image Extrapolation and Post-Processing

At a forecast initiation time T0, once the cloud index and the CMV have been computed, the latter
is applied on the cloud index derived from the satellite image acquired at T0 for its extrapolation.
Every pixel included in the 36 × 36 pixels block containing a vector is shifted according to its norm
and direction. Thus, the cloud index values stay the same, while their position can change.

The extrapolation is made for every time horizon h from 15 to 360 min with a 15 min time step.
The extrapolation is made “step-by-step”: the cloud index map forecast at time horizon h is the result of
the extrapolation applied on the forecast result of h-15 min. This allows taking into account a smoother
cloud motion, in particular for a rotating motion. Indeed, a “direct” extrapolation of the image T0 to
every time horizon steps lead to a homothetic shape of the original image, ignoring the curved motions.
This process enables us to obtain, at time T0, a time-series of 24 extrapolated images up to h = 6 h.
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Figure 3. Motion vectors without (a) and with (b) consistency tests (image acquired the 6 April 2020 at
12:00 UTC). The red spot cross locates the SIRTA site.

Numerous authors, including [36], apply a smoothing filter on extrapolated images. This permits
a reduction in forecast errors by eliminating small randomly varying structures that can become
unrealistic after the extrapolation process. However, if it reduces the errors in term of hourly
energy sums, the results lead to a reduction in GHI variability [39]. If a low error rate in the hourly
energy sum is better for applications such as electricity trading, forecasting the actual variability can be
useful for micro-grid applications, where forecasting the ramp-rates accurately is more fruitful than
forecasting the PV power magnitude. In the present study, we applied a rectangular low-pass filter
with size increasing with time-horizon.

2.3.7. Forecast GHI Computation

The last step of the forecast algorithm is the conversion of the target pixels into GHI values.
We extracted the pixel including the site of Palaiseau and computed the clear-sky index Kc from the cloud
index value, following the relationship given by [34]. Thus, the generic simplified Equation (1) became:

Kc =


1.2 for n 6 −0.2

1− n for − 0.2 <n 6 0.8
1.661− 17. 781 n+0.73n2 for 0.8<n 6 1.05

0.09 for n>1.05

 (5)

For computing GHIcs, we selected the clear-sky model called SOLIS [50,51] available through
the pvlib library [52]. To simplify the implementation of our forecast algorithm, we use the monthly
climatological means of aerosol optical depth proposed in this library and assigned a constant value
for water vapor concentration. SOLIS has been widely used and tested as a robust model with a
stable accuracy even with climatological data such as aerosols inputs [53]. The forecast values of
Kc = Kc (T0 + h) are finally converted into GHI (T0 + h) using (2).

3. Forecast Predictors

Solar irradiance variability is driven by its two mains components:

• The deterministic variability only dependent on the course of the Sun, directly and entirely
quantified by the solar zenith angle θ.
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• The stochastic variability of cloud cover, depending on the weather situation at multiple
spatio-temporal scales. Thus, its quantification can be made through various parameters
influencing cloudiness at the intra-day scale.

For cloud cover variability, we limited the study to three potential predictors: the observed clear
sky index on the punctual site, the clear sky index map surrounding the SIRTA site and the weather
regimes occurring in the northern Atlantic and western Europe. These parameters are likely to present
links with the intraday irradiance variability at the kilometric scale. Moreover, their observation and
forecast are available even for operational conditions. Thus, they can be used to predict the expected
uncertainty of operational forecasts.

3.1. Predictor Solar Zenith Angle

The SZA variation describes the daily and seasonal course of the Sun. It determines the maximum
possible irradiance for a given instant and also influences the magnitudes of forecast errors. Moreover,
GHI retrieval from satellite images at high SZA values (when the Sun appears close to the horizon)
induces higher error rates, mainly due to possible misalignment of cloud and its shadow viewed from
the satellite, as well as an overestimation of reflectance computed in (4) leading to false cloud detection
(overestimation of cloud index). SZA values are computed through the Solar Position Algorithm
(SPA) [54] also available in pvlib [52].

3.2. “Observed” Clear-Sky Index

What is denoted here by “observed” clear sky index is the value of Kc_obs, computed with the
measured GHIobs from pyranometer:

Kc_obs =
GHIobs
GHIcs

(6)

GHIobs and GHIcs are both available at forecast initialized time if the site is equipped with
a pyranometer. Values of Kc_obs at this instant assume to represent the possible state of the sky.
For extreme values, the sky is overcast or cloud free meaning a relative stability at least in the first tens
of minutes. For intermediate values, the sky is often covered by a heterogeneous cloud field that can
change quickly.

3.3. Spatial Pattern of Surrounding Clear-Sky Indices Assessed from Satellite

Kc_obs is observable only from the punctual target site, delivering information on surrounding
situation only through assumptions. As computation of cloud indices of the whole studied area of the
satellite image is a necessary step for the extrapolation process (see Section 2.3.5), the clear-sky indices
over the surrounding area of the target site are easy to obtain.

We consider the clear indices map of 7 × 7 MSG-HRV pixels, representing approximately a
rectangle of 8 × 14 km2 surrounding Palaiseau. From this map at each forecast initialization instant,
we computed the arithmetic mean of the 49 clear-sky indices assessed from satellite image and their
standard deviation. These two parameters enable us to quantify the magnitude of the cloudiness and
its spatial distribution inside this surrounding area.

3.4. Weather Regimes of North Atlantic-Europe Domain

Cloudiness patterns and their spatiotemporal evolution originate from weather characteristics at
larger synoptic scales (pressure and temperature fields). For the northern Atlantic area, four situations
per season have been identified as distinct weather regimes [55,56]. The impacts of each weather
regime on the meteorological situation in Paris area have been studied by [28,57], who investigated the
influence of these same weather regimes on solar and wind energy production.
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Weather regimes are distinguished by clustering the daily maps of anomalous 500 hPa geopotential
height in the north Atlantic–European region. The classification of Cassou [58] presents four
different cases:

• An anticyclone over northern Canada and Greenland and a zonal circulation towards Europe:
this regime corresponds to the negative value of the Northern Atlantic Oscillation (NAO) and it is
therefore called NAO−.

• An anticyclone in the middle of the Atlantic. This regime is called the Atlantic Ridge.
• An anticyclone over the North Sea: Scandinavian Blocking.
• A depression over Iceland in winter and a pronounced zonal circulation toward Europe in summer.

This regime corresponds to the positive phase of the NAO (or NAO+). It is called the Atlantic Low
in winter and Zonal in summer.

Van Der Wiel et al. [57] focused on winter situations, whereas [28] studied summer situations only.
From these two works we deduced the expected consequences on the cloud cover evolution over the
Paris area. For both summer and winter, cold and wet circulation are more often brought by NAO−
and the Atlantic Ridge, whereas dry and warm fluxes are rather caused by Scandinavian Blocking and
NAO+ regimes.

To verify these assumptions, we computed average hourly GHI measurements, observed by
pyranometers for various regimes. We obtained the regime daily classification from [59], which does not
guarantee the results for spring and autumn. Therefore, in the rest of this present paper, all presented
results according to weather regimes will concern only summer defined by June, July and August and
winter (December, January, and February). Results are summarized in Table 1. We remark that this
assumption is verified in summer but with small differences. Scandinavian Blocking and zonal regimes
show higher GHI values. In winter, significantly low occurrences of the NAO− regime affect the
statistical quality of the results. However, Scandinavian Blocking presents a net superiority in averaged
irradiance in winter compared to the other regimes.

Table 1. Average ground measurements (Baseline Surface Radiation Network—BSRN Palaiseau) of
GHI from July 2017 to June 2020 distinctly for summer (DJF) and winter (JJA). Measurements when
solar zenith angle (SZA) is superior to 78◦ have been excluded. NAO: Northern Atlantic Oscillation.

Season Weather Regime GHI Mean (Wm−2) Number of Observations

Summer All regimes 455 12,837

NAO− 454 3139

Atlantic Ridge 421 3642

Scandinavian Blocking 490 2985

Zonal (NAO+) 467 3071

Winter All regimes 176 5988

NAO− 183 455

Atlantic Ridge 135 1635

Scandinavian Blocking 215 1555

Atlantic low (NAO+) 178 2343

For a deeper vision of weather regimes’ impact on cloud cover observed by satellites, we manually
visualized the MSG images of the same periods classified in these four regimes. We deduced some
trends showing that NAO+ and NAO− present, most of the time, a uniform advection of the cloud
field in the considered area. Atlantic Ridge presented a majority of convection cases and Scandinavian
Blocking showed large cloud free areas. Figure 4 shows representative images of Atlantic Ridge and
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Scandinavian Blocking corresponding to our first assumptions. We assumed that these trends and the
image representativeness are based on our subjective considerations.

Figure 4. Examples of satellite image. (a) has been acquired the 13 June 2018 at 1200 UTC during
the Atlantic Ridge regime. It presents a heterogeneous convective cloud field. (b) has been acquired
the 25 December 2018 at 1200 UTC during the Scandinavian Blocking regime. A clearer and stable
situation is shown. One can remark fog along the Seine river at the north-west of Palaiseau (the red
spot locates Palaiseau).

4. Results

4.1. Evaluation Protocol

The GHI forecasts for the single pixel colocated at Palaiseau are compared with the GHI measured
by the BSRN station. In order to compare instant pixelwise value from satellites with local ground
measurements, we converted both satellite and ground data irradiation sums to 15 min time steps
irradiation sums. Then, for a given satellite acquisition time (e.g., 12.11 UTC), we compared both
irradiations summed over the last 15 min from 11.57 UTC to 12.11 UTC. Minute resolution ground data
have been simply summed over these 15 min. For satellite data, we first computed a GHI forecast value
at each minute between the two acquisitions using a temporal linear interpolation between 11.57 and
12.11 UTC of predicted clear-sky index. Then we computed the GHI every minute, given that the clear
sky model is able to provide GHIcs value at 1 min steps. Then forecast data have been summed over
these 15 min. This protocol follows the recommendations of [60] who advise to take into account the
Sun position at each minute to synthesize the 15 min information gap due to satellite sensor resolution.

We performed the forecast using all HRV images available at IPSL from 1 July 2017 to 30 June 2020.
We only used images sufficiently illuminated by the Sun to compute CMV and cloud index maps.
We rejected all data computed with an SZA above 78◦. In practice, the first and last daily observations
used in July were time stamped at 5.26 and 18.26 UTC. In January, forecasts started at 9.41 and ended
at 14.11 UTC.

4.2. General Results

We computed errors between all forecast (GHIfor) and observation (GHIfor) values by classifying
them in time horizon from 0 to 360 min with 15 min time step. We use the mean bias error (MBE),
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mean absolute error, RMSE and correlation coefficient or Pearson coefficient (R), respectively, defined by
(7), (8), (9) and (10).

MBE =
1
N

N∑
i=1

(
GHI f or,i − GHIobs,i

)
(7)

MAE =
1
N

N∑
i=1

∣∣∣GHI f or,i − GHIobs,i
∣∣∣ (8)

RMSE =
1
N

N∑
i=1

√(
GHI f or,i − GHIobs,i

)2
(9)

R =
Cov

(
GHI f or, GHIobs

)
σGHI f or∗ σGHIobs

(10)

where Cov (GHIfor,GHIobs) is the covariance between forecast and observation values ; σGHIfor and
σGHIobs are standard deviations of, respectively, forecast and observation values.

Table 2 shows the results of several metrics for selected typical time horizons. Relative value
corresponds to the absolute value divided by mean of GHI ground measurements. Results at time
horizon of 0 min evaluate our algorithm of GHI estimation from satellite. Results are similar to the
state-of-the-art for Palaiseau station. In particular, [60] published very close results in terms of relative
RMSE (25.5% and 24.8% for the GHI database HelioClim-3 version 4 and version 5, respectively).
The high value of the correlation coefficient ensures consistent results.

Table 2. Statistics of GHI satellite-based forecast at Palaiseau from 1 July 2017 to 30 June 2020.

Forecast
Horizon

(min)

Observation
Mean Wm−2

Mean Bias
Error Wm−2

(%)

Mean Absolute
Error Wm−2 (%)

Root Mean
Square

Error Wm−2

(%)

Correlation
Coefficient

Observation
Number

0 364 −17 (−5) 57 (16) 85 (23) 0.94 36,541

15 364 −16 (−4) 58 (16) 86 (24) 0.94 36,327

60 382 −16 (−4) 70 (18) 105 (27) 0.91 33,473

120 408 −18 (−4) 87 (21) 126 (31) 0.87 29,131

180 425 −18 (−4) 99 (23) 141 (33) 0.84 25,043

240 431 −17 (−4) 107 (25) 152 (35) 0.83 25,043

360 420 −11 (−2) 115 (27) 163 (39) 0.78 14,067

Error metrics increase with time horizon except for bias error. However, results are satisfactory
in the magnitude of order from similar works using ground truth data in the Netherlands [21] and
Germany [43] at different periods. Figure 5a shows the RMSE results compared with those of ARPEGE
model and persistence algorithm as reference algorithms. The persistence algorithm generally used in
the intraday algorithm consists in considering that clear-sky index Kc value is constant from forecast
initialization time T0 to time horizon h (9). In other words, this naive algorithm takes into account the
course of the Sun but assumes that cloud cover did not change at all during the forecast.

Kc(T0 + h) = Kc(T0) (11)
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Figure 5. (a) Relative Root mean square error (RMSE) (%) as a function of time horizon for satellite-based
forecast, persistence and ARPEGE. (b) Forecast skill (%) of satellite-based forecast against persistence
and ARPEGE.

Figure 5b presents the same results under the form of the forecast skill (FS), which compares the
RMSE of the forecast algorithm (RMSEfor) to the one of a reference model (RMSEref) which is either the
persistence (grey curve) and ARPEGE (magenta curve) computed with Formula (12). A positive value
of FS means that RMSEfor is lower than RMSEref.

FS =

(
1−

RMSE f or

RMSEre f

)
(12)

It highlights the evidence that satellite-based forecast present smaller errors than an NWP at these
time horizons. Moreover, the persistence algorithm presents larger errors. The difference of errors
between forecast and persistence increases with the time horizon.

Figure 6 shows the forecast skills according to the four seasons defined as trimesters with complete
months. The skill scores have similar layouts except for wintertime mainly due to shorter daytime
and thus, are less statistically representative. For all seasons, the satellite forecast gives better results
than the NWP forecast and persistence. The overall results show a satisfactory consistence regarding
the state-of-the-art and enable to investigate forecast uncertainty sensitivity to the selected predictors.

4.3. Results against Punctual Predictors

Local predictors, namely the SZA and the observed clear-sky, have their values defined at forecast
target point and at forecast initialization time T0. For commodity, we present the RMSE results as a
function of both predictors. Figure 7 shows so-called “heatmaps” of the absolute (a) and relative RMSE
(b) of the forecast for all seasons at a time horizon of 60 min.

Such figures show that the Sun at its highest position with an intermediate state of cloud cover
clearly affects the absolute RMSE. When the magnitude of GHI is higher with a lower SZA value,
the absolute error increases. As mentioned previously in Section 3.2, intermediate values of Kc obs occur
when the cloud cover is not homogeneous and when it can evolve rapidly. The relative RMSE is more
regularly sensitive to the Kc obs and is impacted by the lowest Sun elevations. As this metric is weighted
with the mean of the observation values, the Sun position effect is strongly attenuated and the errors
appear larger for low GHI values. Heatmaps from other time horizons (not shown) present similar
patterns. Similar results have been highlighted for the NWP-based forecast in [25]. Such information is
relevant at least for network managers dealing with large PV farms. A variation of absolute errors can
induce a large difference in terms of PV electricity resource for grid dispatching.
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Figure 6. Forecast skills for the four seasons defines by the following trimesters (top-left: March,
April and May; top-right: June, July and August: bottom-left: September, October and November;
bottom-right: December, January and February.

Figure 7. Heatmaps representing the RMSE (a) and relative RMSE (b) in function of Kc_obs classes
(unitless) and SZA classes (express in degrees) for all forecast from 1 July 2017 to 30 June 2020 with
SZA inferior to 78◦.

4.4. Results against Neighboring Clear-Sky Index Pattern Observed by Satellite

Figure 8 shows the relative RMSE as a function of the mean and the standard deviation of
surrounding Kc as described in Section 4.3. It shows a clear evolution of error pattern according to
the time horizon. At T0 + 0 min, we can notice that for any classes of Kc, the error increases with the
standard deviation. This is more pronounced for extreme values of the means of Kc. Indeed, cases of
overcast or clear sky induce large errors if spatial heterogeneity increases.
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Figure 8. Heatmaps representing the relative RMSE (%) expressed as a function of the mean and the
standard deviation of Kc in a 7 × 7 MSG-HRV pixels area centered on Palaiseau from 1 July 2017 to 30
June 2020 with SZA inferior to 78◦. Each heatmap represents a specific time horizon. (a) T0 + 0 min;
(b) T0 + 30 min;(c) T0 + 90 min; (d) T0 + 180 min.

For later time horizons, the relative RMSE becomes larger for lowest values of Kc but the increase
with standard deviation is less pronounced. The errors for the clear-sky situation are more stable and
quite low. Whatever the time horizon, the maps show an increasing variation of the errors with the
spatial heterogeneity of the area.

These distinct signals, which are a function of time horizon, can be useful to predict the forecast
error magnitude as a function of the current cloud cover neighboring pattern. Further studies could be
done by choosing different sizes of the neighboring area in order to refine this error prediction.

4.5. Results against Synoptic Weather Regimes

We plotted the relative RMSE of the satellite-based forecast according to the four weather regimes
presented in Section 3.4. Figure 9 shows the curve as a function of the time horizon. The blue
curve labeled “All regimes” gathers all the forecast whatever the weather regime and is plotted
here as a reference. The other curves show the RMSE of forecast occurring during the considered
weather regimes. A weather regime occurrence is attributed on a daily basis. Therefore, any forecast
starts and ends within the same weather regime. The results show a clear distinction of the error
according to each weather regime, even between the two considered seasons.
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Figure 9. Relative RMSE (%) of satellite-based forecast for the different weather regimes during
(a) summer period (JJA) and (b) winter period (DJF) from 1 July 2017 to 30 June 2020.

In summer, the relative RMSE according to regime presents a constant ranking for all time horizons.
The Atlantic Ridge presents the largest errors. Relative RMSE increases from 4% to 6% compared to
all situations. Scandinavian Blocking shows a significantly lower error (−5% to −4%) than the other
regimes. NAO+ and Zonal (NAO−) remain close to the general score of the forecast. However,
NAO−shows a relative RMSE up to 5% larger than NAO+.

In winter, relative RMSE is significantly higher than in summer. Colder temperatures and
humidity lead to more frequent cloudy situations where this type of forecast is less accurate
as mentioned, for example, by [21]. Moreover, shorter daytime duration decreases the observation
number compared to summer, which increases the relative RMSE. Winter results show an inverted
ranking concerning weather regimes defined by the NAO. NAO+ appears much less accurate than
all regimes, whereas Atlantic Low (NAO−) shows a smaller error. However, the divergent results of
NAO− in winter is also explained by the weak number of occurrences of this regime as noticed in
Table 1. Scandinavian Blocking decreases the relative RMSE from 11% to 14% when the Atlantic Ridge
increases it from 7% to 16%.

For both seasons, the performances under the Atlantic Ridge and Scandinavian Blocking regimes
follow the magnitude of the GHI estimation presented in Table 1. It provides a loss of 4% to 5% in
relative RMSE. The Atlantic Ridge increases the RMSE by 4%–6%. In winter, these respective variations
are 11%–14% and 7%–16%.

Thus, this forecast error ranking can be explained by the relative warmer and drier situation in
Europe due to the proximity of anticyclonic situations during the Scandinavian Blocking regime. The cold
and humid conditions of the Atlantic Ridge induced more depressions and unstable cloudy situations,
which affected the forecast accuracy. These results for these two regimes are consistent with the satellite
image example presented in Figure 4.

Such a clear ranking is a useful result because weather regime occurrences can be forecast
accurately several days in advance through NWP models and therefore predict the magnitude of
intraday error forecast.

Figure 10 shows the forecast skill of satellite-based forecast against those of ARPEGE. We can
remark that the performances according to weather regime do not show the same ranking as for
relative RMSE. In summer, the Atlantic Ridge and Scandinavian Blocking regimes have the highest skill
scores up 250 min of time horizon. We can deduce that during the Atlantic Ridge regime, the forecast
is less accurate even for ARPEGE. The NAO+ and NAO−regimes present the worst forecast skill
score meaning that even if satellite forecasts present better results than NWP at these time horizons,
forecasting GHI during the two NAO phases seems to give better results for ARPEGE compared to
other weather regimes.
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Figure 10. Forecast skills (%) of satellite-based forecast against ARPEGE outputs for the different
weather regimes during (a) summer period (JJA) and (b) winter period (DJF) from 1 July 2017 to 30
June 2020.

In winter, unsurprisingly, the Scandinavian Blocking regime shows the best score. NAO+ presents
the worst score, confirming the better skill for ARPEGE to forecast GHI during such regime. However,
this result does not concern NAO−, certainly due to its lack of occurrence.

5. Conclusions

This work is aimed at identifying relationships between the accuracy of an intraday surface
solar irradiance forecast method and meteorological variables that can be easily observed or forecast.
Firstly, we proposed an irradiance forecast method using satellite images, based on general principles
already known from the recent state-of-the-art. Similar methods have been used on operational and
commercial bases for several years. We tested herein the implementation of a proven cloud motion
vector computation method, routinely used to extract wind vectors in operational conditions. Secondly,
we proposed a long-term validation over three complete years using ground measurements and a
comparison with an NWP model (ARPEGE). The results showed forecast errors varying with time
horizon from 24% at 15 min to 39% at 6 h in relative RMSE (corresponding, respectively, to 86 and
163 Wm−2 in RMSE). Whatever the forecast horizon, the method shows a positive forecast skill score
compared to persistence (up to 15%) and ARPEGE model (between 20% and 40%). The bias is almost
constant about–17 Wm−2 (5% in relative value) whatever the time horizon. Even if this validation is
restricted to one location, the good results regarding the state-of-the-art methods enable further studies
on the uncertainties.

Finally, we evaluate the accuracy sensitivity with respect to meteorological conditions quantified
by the Sun’s elevation, the cloud cover pattern surrounding the target site and the synoptic
weather regimes. We showed, for example that, according to clear-sky index spatial distribution at
forecast initialization time, the relative RMSE at 90 min may vary from less than 15% for a clear-sky
condition to more than 50% for heterogeneous cloudy skies. A weather regime occurrence can be
known several days in advance. It is found that the summer Scandinavian Blocking regime is related to
the lowest relative RMSE, whereas the Atlantic Ridge regime shows the highest errors. The difference of
relative RMSE between these two regimes is from 8% to 10% in summer according to time horizon.
In winter, this difference is much higher, from 18% at the earliest time horizon steps to 30% after 5 h.
These results confirm the lower accuracy of this forecast method in the case of heterogeneous cloud
cover as observed using clear-sky index spatial distribution heatmaps. Such a situation often occurs
often during the Atlantic Ridge regime. The extrapolation of a cloud cover using only a CMV constant in
time during the forecast induces larger errors when the cloud cover strongly varies in space and time.

Our results permit to propose these predictors to solar energy forecast users. These predictors
can be either known when the forecast starts or several days in advance (which is the case of weather
regimes). This enables us to anticipate the reliability of an intraday forecast using a CMV-type technique.
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It can be particularly useful for micro-grid applications where the energy management methods to
optimize PV electricity consumption with forecast are part of a growing experimental field over the
world [61].

These predictors have been selected for their known influence of the uncertainty of solar irradiance
estimation using satellite data. However, this predictor list is certainly not exhaustive and further
parameters can be tested, in particular, if the latter are easy and cheap to obtain in operational conditions.
A key result of our work is the highlighted dependence between forecast accuracy and weather regimes
occurring in the Paris area. Such work can be of course tested on different areas influenced by identified
weather regimes. Moreover, deeper studies on synoptic barometric fields may provide additional
predictors derivable from available meteorological observations.

Finally, this methodology can also be undertaken for other types of solar irradiance forecast
algorithms because weather regime occurrence has direct influence on cloud cover behavior. More and
more developing forecast methods include a machine-learning approach. Identified predictors could
be used as pertinent inputs to improve their results.
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