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Classification of Sea Temperature Eddy Signatures
with Strong Cloud Coverage

Evangelos Moschos , Alexandre Stegner , Olivier Schwander and Patrick Gallinari

Abstract—Mesoscale oceanic eddies have a visible signature
on Sea Surface Temperature (SST) satellite images, portraying
diverse patterns of coherent vortices, temperature gradients and
swirling filaments. However, learning the regularities of such
signatures defines a challenging pattern recognition task, due to
their complex structure but also to the cloud coverage which can
corrupt a large fraction of the image. We introduce a novel Deep
Learning approach to classify sea temperature eddy signatures,
even if they are corrupted by strong cloud coverage. A large
dataset of SST image patches is automatically retained and used
to train a CNN-based classifier. Classification is performed with
very high accuracy on coherent eddy signatures and is robust to a
high level of cloud coverage, surpassing human expert efficiency
on this task. This methodology can serve to validate and correct
detections on satellite altimetry, the standard method used until
now to track mesoscale eddies.

Index Terms—Mesoscale Eddies, Deep Learning, Oceanogra-
phy, Remote Sensing, Computer Vision, Pattern Recognition

I. INTRODUCTION

A. The prominence of mesoscale eddies

MESOSCALE eddies are oceanic vortices with a typical
radius of the order of 20-80 kilometres which is equal

or larger than the local Rossby deformation radius. They can
be long-lived, with lifetimes of several months or even years.
Significant advances in the resolution of both satellite altime-
try measurements [1] and high resolution oceanic numerical
models [2] have revealed the predominance of eddies in the
global oceanic circulation. These large, coherent structures
can trap and transport heat, salt, pollutants and various bio-
geochemical components from their regions of formation to
remote areas [3]. Their dynamics can impact significantly the
biological productivity at the ocean surface [4], [5], influence
clouds and rainfall within their vicinity [6], modify the mixed
layer [7], amplify locally the vertical motions [8] and even
concentrate and transport microplastics [9]. Eddies have been
demonstrated to play a prominent role in regional circulation
in various areas such as the Southern Ocean [10], the Sargasso
Sea [11], the Indo-Atlantic exchange [12] or the Mediterranean
Sea [13]–[15]. We focus on the latter in this study.
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Université, Paris, France. Patrick Gallinari is also with Criteo AI Lab, Paris
Contact: olivier.schwander // patrick.gallinari@lip6.fr

Evangelos Moschos is a student member of the IEEE and the GRSS.
Manuscript submitted on February 28, 2020

B. Altimetric-based eddy detection and tracking algorithms

In order to detect and follow the trajectories of a very large
number of mesoscale eddies on multi-satellite altimetry maps,
several automatic eddy detection and tracking algorithms have
been developed during the last ten years: The Okubo-Weiss
parameter [16], [17], which quantifies the relative importance
of rotation with respect to deformation, is used in many
studies to detect and track eddies on the geostrophic sur-
face velocities field [18]–[20]. Geometric properties of the
streamlines have been used by other methods [21], [22] to
identify coherent vortices without considering their intensity.
Finally, a physical parameter, the local normalized angular
momentum, introduced by [13] and [23], combines both the
dynamical and the geometrical properties of the signature of
mesoscale eddies on altimetric-based products. In this study,
we follow this approach and use the Angular Momentum Eddy
Detection and Tracking Algorithm (AMEDA) [23] which has
shown to be very effective in locating mesoscale eddies in the
Mediterranean Sea [15], [24], [25].

Despite the potential of these methods, their main draw-
backs stem from the spatio-temporal heterogeneity of altimet-
ric measurements. The creation of a daily gridded product
requires an optimal spatio-temporal interpolation between the
satellite track measurements. This produces low-resolution
fields (1/12� in the Mediterranean Sea) with a limit on the
spatial scales resolved as well as uncertainty in areas which
have not been sampled by satellites. We refer to these products
here on as AVISO/CMEMS altimetry maps, referring to their
provider for the Mediterranean Sea.

These limitations have been quantified by [26]. They have
shown that mesoscale eddies in the North Atlantic Ocean
and the Mediterranean Sea could be overestimated by a 19%
and 8 % respectively. Besides, according to the same study
sub-mesoscale eddies, i.e. those with sizes smaller than the
mesoscale, are undersampled by 94% and 84% respectively
for these two regions due to the coarse resolution of the
AVISO/CMEMS altimetry products.

Real-time eddy tracking on altimetry maps is also con-
strained, as eddies can be ”lost” by the tracking algorithms,
when crossing an area at a time when it is not sampled by any
satellite tracks. Similarly, they could be detected in a position
prior to their real-time one, as a result of the last available
measurement.

C. Why Deep Learning for eddy signature classification?

Eddy signatures are nevertheless also apparent in visible
satellite imagery such as Sea Surface Temperature (SST ),
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Fig. 1. (a) Absolute Dynamic Topography (altimetry) field with superimposed geostrophic velocity vectors and (b) Sea Surface Temperature field (white areas
represent clouds) around Crete on the 24/08/2018. Maximum velocity and outermost contours detected by AMEDA on the velocity field are superimposed
on both figures. In (b) some characteristic SST image patch selections are represented with dashed line RoI boxes: (c) A warm-core anticyclone image (d)
A cold-core cyclone image (e) A cold-core anticyclone image covered by clouds (f) A non-eddy image, with the area of no-contour constrain outlined with
a dashed line.

Ocean Color/Chlorophyll (CHL), or synthetic-aperture radar
(SAR) images. These images have an average resolution ten
times higher than that of altimetry and are not a product of
interpolation. However, they are strongly affected by cloud
coverage which creates missing values in the observation. This
effect is especially prominent during day-time and winter-
month measurements.

Several methods of eddy detection have been developed
on SST images: [27] approach the problem through iso-SST
pattern recognition to detect swirling fronts and gradients. In
[28] the velocity field is derived from the SST field through
the assumption of the thermal wind equation. Finally [29]
conducted an early study training an Artificial Neural Network
with gradient-based methods for eddy detection on the SST
field. However, as the sign of the core surface temperature
anomaly (warm core or cold core), is not always correlated to
the eddy sign (anticyclonic or cyclonic), a robust method for
eddy detection on SST cannot be based on the thermal wind
equation and the temperature gradients.

Deep Learning has been rapidly gaining in popularity and
solving problems in remote sensing [30], climate and the
environment [31]. Machine learning methods have also been
used in previous studies to tackle altimetric eddy detection
and tracking on the SSH field. In [32] and [33] a pixel-wise
segmentation approach is adopted, with the original labeling
of the train set stemming from an Okubo-Weiss (OW) eddy
detection method. Similarly in [34] the OW detection method
is used to label training data derived from the velocity field.
These studies while successfully exploring novel methods
for eddy detection application, stumble upon the inherent
limitation of the gridded altimetric products, on which the
learning dataset is based. The measurement error will therefore
propagate throughout the whole training process. In visible

imagery, Deep Learning has been employed by [35]to classify
eddy signatures on SAR images.

Here, following [36], we employ Convolutional Neural
Networks to build a Sea Surface Temperature eddy signature
classifier, a tool which can serve for validating and correcting
altimetry eddy detections. This study provides contributions
in automatically retaining a large dataset of SST patches with
eddy signatures and constructing a CNN-based classifier of sea
temperature eddy signatures. Our classifier achieves very high
performance on coherent eddy signatures while being robust
to high levels of cloud coverage. Our data is available under
a creative commons licence.

The structure of this study is as follows: In Section II
an automatic method is presented to retain a large dataset
of SST image patches containing eddy signatures based on
altimetry detection region proposal. In Section III the methods
used to train and evaluate CNN-based classifiers are described.
In Section IV the performance of the classifiers is evaluated
on images containing coherent eddy signatures. Subsequently,
in Section V we assess the effect of cloud coverage on the
performance of the classification. Finally, in Section VI main
conclusions on the given task and future prospects of Deep
Learning for eddy detection are discussed.

II. DATASET CREATION AND FEATURES

The task of this study consists in classifying SST images
which can contain either the signature of an Anticyclonic Eddy
(AE), a Cyclonic Eddy (CE) or No Eddy signature (NE).
Anticyclones (cyclones) rotate in the opposite (same) direction
with the earth’s rotation, viz. clockwise (counter-clockwise) in
the Northern Hemisphere. To this end a dataset containing such
SST image patches needs to be extracted from images of larger
domains. In this section a regional proposal method through
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Fig. 2. Samples of images contained in the datasets. The dashed orange line box outlines coherent examples, representative of the EDDIES-EL dataset
(coherent signatures), while the dashed purple line box outlines examples representative of the EDDIES-AUTO dataset (automatic selection). Row values
represent the dataset labels while columns categorize coherent signature characteristics (sign of core temperature anomaly, Cloud Coverage). In the EDDIES-
AUTO set, images retained through the altimetric detection regional proposal might not have a visible eddy signature on the SST, as seen in examples (d),(e)
for AE, (j),(k) for CE. Similarly, images retained and labeled as NE, through the no-contour selection criterion (black dashed line box), can contain an eddy
signature missed by altimetry as seen in examples (p) for an AE signature and (q) for a CE signature. Finally, examples (f),(l) and (r) represent images where
validation of their label is delicate for a human expert, due to strong cloud coverage.

altimetric detection is presented, and the extracted dataset is
presented.

A. Region proposal through altimetric eddy detections

The domain of the dataset of this study is the Mediterranean
Sea on a 3-year time period (2016-2018). Two data sources
are considered:

• SST images are received with a daily resolution from
the Copernicus - Marine environment monitoring service.
These high-resolution (1/120�) images are a product of
supercollation, as described in [37] and stem from merged
multisensor data, representative of nightime SST values.

• Eddy locations and contours are retained by applying
the AMEDA on daily Adjusted Dynamic Topography
and the AVISO/CMEMS surface geostrophic velocity
fields with applied cyclogeostrophic corrections [24]. The
AMEDA [23] detects eddies by identifying minima and
maxima of the Local Normalized Angular Momentum
(LNAM), computed on the surface velocity fields, and
selecting closed streamlines around them. The algorithm
does also dynamically track eddies backward and forward

in time, as well as identifies their merging and splitting
events. Eddy tracks detected by AMEDA, are labeled as
AE or CE based their LNAM sign and are supplied with
other metadata such as:
– The contour of the eddy where the velocity is maxi-

mum (here on ”contour”, shown with a bold blue line
for AE and a bold red line for CE in figures). Its
corresponding values of the radius Rmax of an equal-
area circular contour and of the velocity Vmax along
it.

– The geometrical barycenter of the maximum velocity
contour.

– The outermost contour of the eddy (shown with a
dashed black line in figures).

To extract image patches containing eddy signatures from
daily SST maps the detections of AMEDA on corresponding
daily altimetric maps are used as a regional proposal tool.
Regions of Interest (RoI) are centered on the barycenters of
the altimetric contours, scaled according to the physical eddy
size and then interpolated to a constant pixel size. This process
is illustrated in Figure 1.
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TABLE I
DATASET CHARACTERISTICS

Dataset Name Type Year Image No. AE:CE:NE
EDDIES-EL(16/17) Train 2016-17 3600 1:1:1
EDDIES-AUTO(16/17) Train 2016-17 24000 1:1:2
EDDIES-EL(18) Test 2018 1200 1:1:1
EDDIES-CLOUDY(18) Test 2018 8x10x300 1:1:1

The RoI physical size corresponds to k = �⇤Rmax, where
� = 5. RoI are cropped and interpolated to a constant size
of m = � ⇤ R̄max(km) where R̄max = 42.5km is the mean
maximum velocity radius of all AMEDA contours retained in
this study. This results to retained rectangular image patches
of side m = 230 pixels, labeled as AE or CE following the
corresponding altimetric contour. Examples of AE and CE
selections are shown in Figure 1 (c) and (d).

To extract SST image patches that do not contain an eddy
signature, a box of size m = 230 pixels is slided along the
domain of the Mediterranean Sea, with a stride of m/2 pixels.
This way RoI are retained, on the condition that they do not
contain any contour inside a centered area of side Rmax, and
labeled as NE. A NE selection example can be seen in Figure
1 (f). The no-contour centered area of side Rmax is visualized
in figures through a black dashed line box.

B. Dataset creation and labeling

Examples of images retained through the aforementioned
process are given in Figure 2. These images are used to create
datasets, which are used for training and testing CNN-based
classifiers. The characteristics of the datasets used in this study
are outlined in Table I.

Image labels received by the altimetric region proposal
do not necessarily visually correspond to the SST signature
depicted in them. This can be due to various reasons:

• Uncertainty of the AVISO/CMEMS altimetry maps, due
to interpolation between satellite track measurements.

• Error induced by the AMEDA algorithm.
• Strong cloud coverage of the SST signature.
• Unclear SST eddy signatures due to air-sea interactions.
A large dataset named EDDIES-AUTO, is automatically

created as described above, and contains images with labels
corresponding to 3 classes k 2 AE,CE,NE. To filter out
incorrect proposals stemming from altimetric detection, only
the RoI that correspond to large and intense eddies detected
by altimetry are retained.

Still, the automatically retrieved dataset contains images
whose visual signature does not clearly refer to their assigned
label, due to a combination of the aforementioned reasons.
This set is denoted as D̃ and contains u examples (x, ỹ).
The labels retained by the altimetry region proposal automatic
selection, are denoted as ỹ to refer to the presence of label
noise.

The effect of label noise on the EDDIES-AUTO dataset is
visualized in Figure 2 : As an example, an Anticyclonic (AE)
labeled image contained in this set can, have a visible signature
that corresponds to its label (examples (a),(b),(c)) or one that
does not (examples (d),(e)). Besides, delicate samples as the

Fig. 3. Noise Matrix Nij for the EDDIES-AUTO dataset, received by
manually labeling 400 random samples per class, by different experts. Row
values represent the labels in the EDDIES-AUTO dataset, while column values
the labels assigned by experts. Cell values are normalized by the total number
of sampled images per class.

example (f), could lead experts having ambiguous opinions
on its label. The same follows for the CE and NE labeled
examples of Figure 2.

Expert Labeling consists of a method which, albeit time-
consuming can provide reliant and accurate labels. For the
purposes of our study, oceanographic experts labeled a smaller
dataset named EDDIES-EL, by selecting images with a co-
herent signature corresponding to their label. This set, denoted
as D ⇢ D̃, contains images and accurate labels (x, y). The
probability distribution p(x, y) reflects the true distribution of
the True Labels y between the three classes.

Representative examples of the coherent signatures images
contained in EDDIES-EL can be seen outlined by a orange
dashed line in Figure 2. Their SST signature can be distincted
based on the sign of the eddy core temperature anomaly,
leading to warm (examples (a),(g)) and cold core (examples
(b),(h)) eddies. Both AE/CE have warm and core core exam-
ples in the EDDIES-HL set, in contrast to what is usually
assumed through the thermal wind balance. Furthermore,
images corrupted by clouds are included on this set (examples
(c),(i),(o)), only when their signature is clearly visible to a
human expert.

By defining the label-noise distribution p(ỹ|y, x) we can
specify the level of discrepancy between the expert labeling
and the noisy labels obtained by the automatic altimetry region
proposal. This distribution for the EDDIES-AUTO dataset can
be inferred by manually labeling a random sample of � images,
with �/u ⌧ 1. We receive thus the 3 by 3 sized noise matrix
of probabilities:

Nij = p(ỹ = j|y = i) (1)
The noise matrix of the EDDIES-AUTO dataset, sampled by
different experts on 400 examples of each class is shown in
Figure 3. On average, 42 % of AE and 30 % of CE images are
confirmed to have a humanly visible signature corresponding
to their label. The rest of the images with these labels, but
no humanly visible eddy signature, are allocated to the NE
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Fig. 4. Distribution of Cloud Coverage Percentages in: The EDDIES-EL
dataset (Orange Line), the EDDIES-AUTO dataset (Purple Line) and all the
available RoI in the sampled domain, before applying thresholds on image
retainment (Black Line).

class. Likewise, out of the sampled NE-labeled images, an
average 5% allocated to each of the AE and CE classes. This
reflects the percentage of eddies missed by altimetric detection,
corresponding to examples (p) and (q) of Figure 2. Overall,
the noise matrix evaluation shows that less than half of the
eddy labeled (AE,CE) images in the EDDIES-AUTO dataset
have a humanly visible signature corresponding to their labels.
Additionally, a small fraction of the NE labeled images contain
missed eddy signatures. This discrepancy between visible
signatures and labels portrays the effect of noisy labeling on
this dataset, and is tackled through a transfer learning approach
in the next sections.

C. Cloud Coverage

Cloud coverage has a direct impact on SST images and
on the learning process, as it creates missing values in the
sampled images, and often corrupts the signature apparent in
the image. Cloud coverage is also related with p(ỹ|y, x): the
ability to infer the True Label y of a cloud-covered signature
depends on both the location and the density of the cloud
pattern.

To quantify the presence of clouds in the datasets used in
this study, a cloud coverage percentage (CCP) is calculated
for every Region of Interest as:

CCP = nNaN/m2 (2)
where nNaN is the number of missing value pixels in each
image, excluding the ones that represent the coast and m =
230 is the RoI side in pixels.

The distribution of CCP values is quantified in Figure 4.
With a black line, the histogram of CCP values is plotted for all
the available RoI to be retained through the regional proposal
methodology. Out of them, only images under a threshold
of 80% of Cloud Coverage are retained on the EDDIES-
AUTO dataset (Figure 4, Purple Line). Thus images with a
large degree of cloud coverage (last two black line bins of
Figure 4) which completely corrupts the temperature signature

are avoided. Finally, the EDDIES-EL dataset, has distribution
with much lower values of CCP, due to the expert selection
process: more than 80% of images in the EDDIES-HL have
only 0� 10% of cloud-coverage (Orange Line, Figure 4).

III. DEEP LEARNING ARCHITECTURE AND TRAINING

Convolutional Neural Networks [38] have been successfully
used in numerous computer vision applications, including ones
of remote sensing. In this section we describe the architecture
of a CNN-based classifier and the methods used in the training
process. We also introduce a transfer learning scheme as well
as indices of evaluation of the classification performance.

A. CNN Architecture

Due to the large size of the dataset and the complexity of
the image features, a deep CNN architecture is used build
a classifier. Residual networks [39] utilize skip connection
between layers in order to build efficient deep architectures.
Here, a ResNet18 architecture, with 18 fully-connected layers
and skip connections, is used through the torchvision package
of the Pytorch library.

The input layer of the network is modified so that a
two channel input image can be received: The first channel
represents the normalized temperature values and the second
channel a semantic mask representing missing data locations.
The final layer of the network is also adapted to a three-class
output, normalized through the soft max equation. Training
and weight update is performed through a cross-entropy loss
and stochastic gradient descent with momentum.

B. Training methods and transfer learning

Random orthogonal rotation is performed on input images
during the training process, in order to achieve rotational in-
variant model training. Rotational data augmentation provides
both a different geometric perspective as well as potential
alternative instants of image that depict physically rotating
structures.

A 5-fold cross-validation is performed in all model training
runs. A different 20% of the train set, serves each time for
validating the performance after every training epoch. To avoid
overfitting, regularization is performed in the training process.
An early stopping scheme is adopted based on the loss of the
validation set.

Transfer learning aids CNN training aids by extracting
features from a large dataset of images and utilizing the
learned features for a more specific task. Here, we do this
by pretraining CNNs on datasets of images larger than the
specific task. We perform a non-zero weight initialization in
our CNN training by pretraining in two different ways:

• All the ResNets trained for the purposes of this study are
already pretrained on Imagenet, a large dataset of more
than 14 million images. This way, weight initialization is
performed with the shallower layers being able to detect
common image features such as edges or gradients.

• Pretraining is also performed on the larger EDDIES-
AUTO dataset, providing weight initialization for fine-
tuning on the EDDIES-EL dataset. The model trained
this way is referenced as AUTO/EL.
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(a) Classifier-EL (b) Classifier-AUTO (c) Classifier-AUTO/EL

Fig. 5. Confusion Matrices on the EDDIES-EL(18) test set. Two models, trained on different datasets through a 5-fold cross-validation, are evaluated. Cell
values represent the mean ± the standard deviation of the Cpre

ij of the classifiers trained on 5 different folds of the corresponding dataset.

C. Trained Classifiers and evaluation indices

We train three different classifiers, through the 5-fold cross-
validation scheme:

• Classifier-EL is trained on the EDDIES-EL(16/17)
dataset, that is on a relatively small amount of coherent
signature images, with weak cloud coverage, whose labels
can be directly validated by an expert.

• Classifier-AUTO is trained on the EDDIES-
AUTO(16/17) dataset, that is on a more diverse
set of images, with strong cloud coverage and presence
of label noise.

• Classifier-AUTO/EL is first pretrained on the EDDIES-
AUTO(16/17) dataset, and then finetuned on the
EDDIES-EL(16/17) dataset. Finetuning is performed on
all layers of the CNN. This way features from the
more diverse in signatures and cloud-coverage EDDIES-
AUTO dataset can be extracted, while finetuning on the
EDDIES-EL dataset of coherent signatures.

Evaluation of the classifiers is performed on test sets in the
form of precision normalized confusion matrices. Each cell
(i, j) of the 3 by 3 sized matrix represents the precision defined
as the probability of an image predicted by the classifier
(ypred) in class j to be labeled in the dataset (ytrue) as class
i:

Cpre
ij = p(ypred = j|ytrue = i) (3)

Values of equation 3, where i = j, i.e. at the diagonal of
the confusion matrix, are referred to as the Class Precision.
In order for the CNN-classifier to be confident in the eddy
signature classification task, high values of class precision are
required for the AE and CE classes.

The overall evaluation of a classifier can also be performed
through the Classification Accuracy, a metric robust for class-
balanced test sets. The classification accuracy is defined as the
percentage of images predicted correctly in the test set used
for evaluation:

A = p(ypred = ytrue) (4)

By performing a 5-fold cross-validation training, precision and
accuracy values are provided in a mean ± standard deviation
form, between the evaluation of the different training folds.

IV. CLASSIFICATION OF COHERENT SIGNATURES

The classification performance is firstly evaluated on images
containing coherent signature with a small or no amount of
corruption due to cloud coverage. To this end, the EDDIES-
EL(18) test set is used in order to evaluate classifier perfor-
mance. The three trained classifiers (EL,AUTO,AUTO/EL) are
inter-compared based on the precision normalized confusion
matrices. The confusion matrices of Figure 5 show the preci-
sions Cpre

ij for each of the given cells.
All classifiers show a robust performance on the EDDIES-

EL test set, with mean classification accuracies of 91.8±1.9%
(Classifier-AUTO), 96.1 ± 1.1% (Classifier-EL) and 97.5 ±
0.3%. (Classifier-AUTO/EL). The high classification accuracy
achieved by the Classifier-EL shows that by training on a
small dataset of coherent signature images, as is the EDDIES-
EL(16/17) train set, a classifier with robust performance on
these type of examples can be constructed.

The effect of noisy labeling of the EDDIES-AUTO(16/17)
set in the training process can also be seen here: The Classifier-
AUTO achieves the lowest classification accuracy between the
three classifiers, when evaluating on a dataset of coherent
signature images (Figure 5b). However, by finetuning it on
the EDDIES-EL dataset, the received Classifier-AUTO/EL
achieves the best performance between the three by increasing
the mean and reducing the standard deviation of the classifi-
cation accuracy (Figure 5c).

Nevertheless, the experiment presented here is evaluated on
a dataset containing signatures which are much more clear
that the ones existing in the whole domain of application.
The robustness of classification on examples with strong cloud
coverage corrupting the SST signature, is evaluated on the next
section.
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(a) Anticyclonic Eddy Example

(b) Cyclonic Eddy Example

Fig. 6. Examples of Cloud Data Augmentation of an AE (top line) and a CE (bottom line) from the EDDIES-CLOUDY set. The original image from
the EDDIES-HL(18) test set, along with multiple examples with different levels of cloud coverage percentages are visualized. The corruption is performed
by superimposing random cloudy masks from an auxiliary EDDIES-AUTO(18) set. All of the examples in this figure were correctly predicted as AE/CE
correspondigly by the Classifier AUTO/EL. Colour range is on the 5th � 95th percentiles of the non-missing pixels.

V. CLASSIFICATION OF CLOUD-COVERED SIGNATURES

Cloud coverage is present in automatically sampled images
from the domain of application. Strong cloud coverage can
partially or completely corrupt the SST signature apparent in
the sampled image, rendering the classification task delicate
even when manually performed by an oceanographic expert.
In this section, the robustness of a CNN-based classification
on images corrupted by different degrees of cloud coverage
is examined, providing an assessment on its performance on
samples encountered in the real domain of application.

A. Cloud Data Augmentation

The EDDIES-AUTO dataset has a distribution with higher
cloud coverage values than the EDDIES-EL dataset (Figure
4), and is therefore more depictive of the application domain,
albeit being limited by the 80% threshold on CCP. Neverthe-
less, the noisy labeling of the EDDIES-AUTO dataset creates
a discrepancy between visible signatures and image labels.
Therefore, using this dataset to test the CNN-based classifier,
does not allow for a confident evaluation of their robustness to
cloud coverage. To tackle this issue, a test set representative
of cloud values is constructed based on the coherent signature
images contained in EDDIES-EL(18) test set, whose labels
have been validated by experts.

The produced augmented test set, named EDDIES-
CLOUDY here on, is created by randomly adding to the
images contained in the EDDIES-EL test set, cloud masks
which are retrieved from the EDDIES-AUTO dataset. This
way a test set of images with expert-validated labels is
produced, which is also corrupted by realistic cloud patterns,
effectively simulating samples from the domain of application
of the classifier. The cloud masks are extracted from images
corresponding to the year 2018, so that the same cloud patterns

Algorithm 1: Cloud Data Augmentation
Input: Datasets: EL{Contains 300 uncorrupted

images}, AUTO {Contains cloud masks}
Output: CLOUDY {80 sets of 300 images}
initialization;
for cbin = 10-20 to 70-80% {Loop over CCP bins} do

for rep = 1 to 10 {Repeat different masks} do
for img = 1 to 300 {Repeat for img in EL} do

Get uncorrupted img from EL;
Compute CCP of img;
while CCP outside of cbin do

Get random mask from AUTO;
Apply random mask on uncor. img;
Compute CCP of corrupted img;

end
Save corrupted img to CLOUDY;

end
end

end

appearing in the images used for training the classifiers,
corresponding to years 2016/2017, are not repeated in the
EDDIES-CLOUDY test sets.

Masks are randomly added to each of 300 images selected
from the EDDIES-EL test set, in order to create corrupted
images falling in 8 different bins of cloud percentages (0 �
10% to 70�80%). 10 random corruption realizations for each
original uncorrupted image are performed for each of the 8
cloud range bins, creating 80 class-balanced test sets of 300,
for a total of 24000 images (see Table I) Algorithm 1 describes
the iterative process followed for the test data augmentation.

An example from the EDDIES-CLOUDY dataset is given
in Figure 6. An AE (Fig. 6a) and a CE (Fig 6b) example from
the EDDIES-EL(18) test set are corrupted with different levels
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(a) Class Precision: Classifier-EL (b) Class Precision: Classifier-AUTO (c) Class Precision: Classifer-AUTO/EL

(d) Prediction Rate: Classifier-EL (e) Prediction Rate: Classifier-AUTO (f) Prediction Rate: Classifier-AUTO/EL

Fig. 7. Classifier performance the EDDIES-CLOUDY dataset. The y-axis of figures on the top line represents the Class Precision Cpre
i=j and on the bottom

line the number of predicted images per class. Bold lines and envelopes represent respectively the mean and standard deviation of experiment runs (5-fold
training and 10 test sets per CCP bin). Colours represent the performance over the three different classes (black for NE, blue for AE, red for CE). The
x-axis represents the mean Cloud Coverage Percentage (CCP) range of the test set (0-10% to 70-80%). Figures in different columns show the performance
of different classifiers.

of cloud coverage, here shown for the 10-20%, 30-40%, 50-
60% and 70-80% bins. All of the visualized image samples
were correctly predicted by the best performing classifier. The
level of corruption caused by the cloud coverage on the eddy
signature, is not only affected by the percentage of the missing
values but also by their positioning on the image. In all of the
examples, a part of the information important for the correct
classification of the image (core anomaly signature, swirling
filaments) is still visible, despite the image corruption, and
exploited by the CNN to achieve correct classification.

B. Experimental results

The CNN-based classifiers, previously evaluated on the
EDDIES-EL test set, are now assesed on their ability to
correctly predict the label of cloud-corrupted images contained
in the EDDIES-CLOUDY test sets. This is evaluated by com-
puting the Class Precision Cpre

i=j (i.e. the values corresponding
to the diagonal of the normalized confusion matrices) for each
of the three classes. For each of the 8 cloud range bins, the
values of Cpre

i=j are calculated by running the 5-fold corss-
validated models on each of the 10 test set repetitions. A
mean and a standard deviation of the 50 (5x10) received class
precision values is thus received, and plotted in the top-line
of Figure 7 as the thick line and the envelope respectively,
for each of the three classes. A high mean precision on
eddy-signature images means that a high fraction of images
predicted as AE or CE will have a signature corresponding to
their predicted label. A thinner envelope shows convergence
between different test realizations.

On the bottom line of Figure 7 the number of predicted
images per class is plotted on the y-axis. As before, the thick
line and the envelope, represents respectively the mean and
standard deviation of experiment runs. As each test set of
300 images is class balanced, 100 images per class suggest
a balanced prediction, although that doesn’t directly imply
that these images were correctly predicted. To assess the
performance of each classifier the information of Precision
is combined with that of the Predicted numbers.

The Classifier-EL, trained on coherent signature samples,
while performing a high precision on test sets with small
amounts of CCP, proves incapable of correctly predicting eddy
signatures corrupted with strong levels of cloud coverage. This
is depicted in Figures 7a in which the initial high precision
on AE images in the bin 0 � 10% of cloud coverage, drops
rapidly for increasing values of CCP. The high precision on
CE images for high values of CCP is caused by the large
drop in the amount of images predicted as CE (Fig 7d). This
is also visualized by the large spread of the envelope in the
CE precision. However, the EDDIES-EL train set used here,
contains images with CCP up to 40% (Figure 4). Nevertheless,
the AE class scores an above-random precision (ranging
from 70% to 55%) for images with CCP of 40-80%. This
demonstrates the ability of the classifier to generalize learning
on treating missing values, as it has not encountered images
with more than 40% of CCP during the training process.

The Classifier-AUTO, trained on a wider variety of samples
with up to 80% of cloud coverage, shows a more robust
performance on the EDDIES-CLOUDY test sets. Starting from
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(a) Accuracy (b) Precision of Eddy Detection

Fig. 8. Intercomparison of classifier performance on the EDDIES-CLOUDY test sets: Classifier-EL (organge), Classifier-AUTO (purple), Classifier-AUTO/EL
(green). The classifiers are compared based on their (a) Classification Accuracy (ratio of correctly predicted images in the EDDIES-CLOUDY test sets) and
(b) Precision of Eddy Detection (mean of AE and CE precision). The best performing Classifier AUTO/EL shows very high accuracy and precision (> 0.90)
for images with up to 50% of CCP while also being robust to images with even higher amounts of cloud coverage.

the same point of high precisions for the 0 � 10% cloud
coverage bin, this classifier sustains high values of precisions
for increasing values of CCP (Figure 7b), while prediction
numbers remain almost class balanced (100 images per class),
up until the 40 � 50% cloud coverage bin (Figure 7e). For
higher values of CCP, the balance of predicted CE rates drops
in favour of more NE predictions.

Precision on the EDDIES-CLOUDY test sets is furtherly
augmented by Classifier-AUTO/EL (Figure 7c), which consists
of the previous classifier finetuned on EDDIES-EL. When
compared to the precisions of Classifier-AUTO, Classifier-
AUTO/EL shows a common behaviour on the test set, with
yet an increased mean precision of 0.05 on the eddy-classes
(AE and CE), and a thinner envelope for the NE class, up until
the 40 � 50% cloud coverage bin. The balance of predicted
image numbers (Figure 7f) is also stable (80-120 images per
class) up until the 40�50% bin, above which there is likewise
a drop in CE and a gain in NE predictions.

The inter-comparison of the three classifiers is more pre-
cisely depicted in Figure 8: The precision of eddy detection,
that is the mean between the precisions of the red and
blue lines in the top line of Figure 7 is shown in Figure
8b. The higher robustness of Classifier-AUTO to Classifier-
EL is depicted here. The first has a higher mean and a
lower standard deviation of eddy detection precision as values
of CCP increase. A further difference in precision of eddy
detection of 0.05 is obtained by the Classifier-AUTO/EL up
until the 40� 50% cloud coverage bin, after which it narrows
down to zero.

An inter-model comparison of the classification accuracies
(Eq. 4) for increasing CCP ranges on Figure 8a shows es-
sentially the same behaviour: training on the EDDIES-AUTO
dataset proves more robust to cloud coverage than training
on the EDDIES-EL dataset, while pretraining on EDDIES-
AUTO and finetuning on EDDIES-EL, furtherly improves
classification accuracy on clear signature images.

Overall, the best performing Classifier-AUTO/EL, achieves

a considerable precision of more than 90% for the AE and CE
classes and more than 80% for the NE class, for images with
up to 50% of cloud coverage. It still shows robust performance
for images with up to 80% of cloud coverage, although with
a lower precision, with a minimum of 70% mean precision of
eddy detection. Robustness on classification of cloud covered
eddy signature images is higher for Anticyclonic than Cyclonic
signatures, shown by the stable number of AE predictions
(Figure 7f). This depicts the fact that cyclones have a more
complex, and difficult to classify, signature on the SST.

The pretraining methodology followed here, allows for
feature extraction from a large, automatically retained dataset
with a high variety of signatures, corrupted by missing values
and with presence of label noise.. By finetuning a classifier
trained on such images on a smaller subset of coherent sig-
natures with accurate labels, we show that coherent signature,
uncorrupted cases can be classified with almost no error, while
maintaining a robust performance on images corrupted by
missing values.

The Deep Learning approach also achieves a performance
which exceeds that of an oceanographic human expert in
classifying eddy signatures with strong cloud coverage: the
Classifier AUTO/EL proves able to correctly classify eddy
signatures with up to 80% of cloud coverage with an in-
creasing amount of error as CCP increases. However, when
asked to perform the same task, human experts only selected
images with up to 40% of CCP (Figure 4) to assign them as
coherent eddy signatures. Such an approach can therefore aid
not only in automating a time-costly task but also in achieving
a superior performance.

VI. CONCLUSION

In this study a novel Deep Learning approach is presented
to validate the detection of mesoscale eddies from standard
altimetry products, using Sea Surface Temperature images. An
SST image CNN-based classifier is trained, showing potential
to detect eddy signatures, even if the images are corrupted by
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a high level of cloud coverage. Such a classifier can be used
as a tool to validate or correct standard eddy detections based
on altimetry products, which are often uncertain due the to
interpolation between satellite track measurements.

A methodology to automatically retain a large dataset of
SST image samples, based on altimetric detection region
proposal, is first presented. However, a dataset retrieved this
way contains a large number of noisy labels, due to complex
eddy signatures or to a significant amount cloud coverage. On
the other hand, a smaller subset of coherent signature images is
labeled by oceanographic expert, in order to extract a reference
dataset with coherent eddy signature images.

The best performing SST eddy signature classifier is con-
structed by pretraining a ResNet18 CNN on a large dataset
of automatically retained images, and then fine tuning it on a
smaller subset of coherent signature, expert labeled ones. A
mean classification accuracy of 97.5% is achieved on a test
set containing coherent eddy signatures.

Our classifier achieves significant performance on cloud-
covered eddy-signature images, with a precision larger than
90% on Anticyclonic and Cyclonic signature predictions for
images having up to 50% of cloud coverage. Furthermore
it shows robust performance on images with 80% of cloud
coverage, reaching a minimum mean precision of 70% on eddy
detection.

It is demonstrated thus that a CNN-based classifier can
successfully exploit the high-resolution information available
on visible imagery such as the SST, while being robust to
strong cloud coverage. From an oceanographic point of view,
our classifier can provide an automatic validation of altimetric
eddy detections by processing the information in SST images.
Moreover, the Deep Learning approach followed here, exceeds
the performance of human experts on correctly classifying
such images when they are corrupted by a large amount
of cloud coverage. Besides, the classification tool can also
be exploited to furtherly characterize the complex surface
temperature signatures of oceanic eddies.

From a machine learning point of view, a task is presented
where pretraining on a large set of complex and corrupted
images and finetuning on a set of coherent signature ones,
provides a robust training strategy. The ability of a CNN-based
classifier to generalize the treatment of missing data is also
assessed by corrupting coherent signature images with masks
of existing missing value patterns.

The advantages of utilizing high-resolution visible satellite
imagery for eddy-signature classification can be extended by
using a multi-modal image input. The pattern information
contained in all visible satellite imagery such as SST, CHL and
SAR can thus be combined. Eventually, object detection and
tracking CNN-based methods such as RCNN [40] or YOLO
[41] can be employed to construct an independent Deep Learn-
ing eddy detection and tracking algorithm on satellite imagery.
Besides, future advances in satellite altimetry and imagery,
will provide with increasing information of mesoscale and
submesoscale eddy signatures.
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[26] Angel Amores, Gabriel Jordà, Thomas Arsouze, and Julien Le Sommer,
“Up to what extent can we characterize ocean eddies using present-
day gridded altimetric products?,” Journal of Geophysical Research:

Oceans, vol. 123, no. 10, pp. 7220–7236, 2018.
[27] Davide D’Alimonte, “Detection of mesoscale eddy-related structures

through iso-sst patterns,” IEEE Geoscience and Remote Sensing Letters,
vol. 6, no. 2, pp. 189–193, 2009.

[28] Changming Dong, Francesco Nencioli, Yu Liu, and James C
McWilliams, “An automated approach to detect oceanic eddies from
satellite remotely sensed sea surface temperature data,” IEEE Geoscience

and Remote Sensing Letters, vol. 8, no. 6, pp. 1055–1059, 2011.
[29] M Castellani, “Identification of eddies from sea surface temperature

maps with neural networks,” International journal of remote sensing,
vol. 27, no. 8, pp. 1601–1618, 2006.

[30] Liangpei Zhang, Lefei Zhang, and Bo Du, “Deep learning for remote
sensing data: A technical tutorial on the state of the art,” IEEE

Geoscience and Remote Sensing Magazine, vol. 4, no. 2, pp. 22–40,
2016.

[31] David Rolnick, Priya L Donti, Lynn H Kaack, Kelly Kochanski, Alexan-
dre Lacoste, Kris Sankaran, Andrew Slavin Ross, Nikola Milojevic-
Dupont, Natasha Jaques, Anna Waldman-Brown, et al., “Tackling cli-
mate change with machine learning,” arXiv preprint arXiv:1906.05433,
2019.

[32] Redouane Lguensat, Miao Sun, Ronan Fablet, Pierre Tandeo, Evan
Mason, and Ge Chen, “Eddynet: A deep neural network for pixel-
wise classification of oceanic eddies,” in IGARSS 2018-2018 IEEE

International Geoscience and Remote Sensing Symposium. IEEE, 2018,
pp. 1764–1767.

[33] Katharina Franz, Ribana Roscher, Andres Milioto, Susanne Wenzel, and
Jürgen Kusche, “Ocean eddy identification and tracking using neural
networks,” in IGARSS 2018-2018 IEEE International Geoscience and

Remote Sensing Symposium. IEEE, 2018, pp. 6887–6890.
[34] Mohammad D Ashkezari, Christopher N Hill, Christopher N Follett,
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