N
N

N

HAL

open science

Unlabelled ordered DAGs and labelled DAGs:

constructive enumeration and uniform random sampling

Antoine Genitrini, Martin Pépin, Alfredo Viola

» To cite this version:

Antoine Genitrini, Martin Pépin, Alfredo Viola.
constructive enumeration and uniform random sampling.
gorithms, Graphs and Optimization Symposium, May 2021, Sao Paulo, Brazil.
10.1016/j.procs.2021.11.057 . hal-03029381v2

HAL Id: hal-03029381
https://hal.sorbonne-universite.fr /hal-03029381v2
Submitted on 4 Dec 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Unlabelled ordered DAGs and labelled DAGs:
The XI Latin and American Al-
pp.468-477,

https://hal.sorbonne-universite.fr/hal-03029381v2
https://hal.archives-ouvertes.fr

Unlabelled ordered DAGs and labelled DAGs:

constructive enumeration and uniform random sampling

Antoine Genitrini Martin Pépin Alfredo Viola

December 4, 2020

Abstract

Directed Acyclic Graphs (DAGs) are directed graphs in which there is no path from a vertex to itself.

DAGs are an omnipresent data structure in computer science and the problem of counting the DAGs
of given number of vertices has been solved in the 70’s by Robinson. In many applications one needs
to construct connected DAGs and to control their number of edges, but the adaptation of Robinson’s
enumeration to take this into account led to counting formulas based on the inclusion-exclusion principle,
inducing a high computational cost for the uniform random sampling of DAGs based on this formula.
In the present paper we propose two contributions. First we enumerate a new class of DAGs, enriched
with an independent ordering of the children of each vertex, according to their numbers of vertices and
edges. We obtain a constructive recursive counting formula for them (i.e. without using the inclusion-
exclusion principle) using a new decomposition scheme. Then we show the applicability of our method by
proposing a constructive enumeration of Robinson’s labelled DAGs, by vertices and edges, based on the
same decomposition. As a consequence we are able to derive efficient uniform random samplers for both
models.

1 Introduction

Directed Acyclic Graphs (DAGs) are directed graphs in which there is no path (sequence of incident edges)
from a vertex to itself. They are an omnipresent data structure in computer science. They appear naturally
in scheduling problems as an encoding of partial orders [2] [I], in persistent data structures with sharing as
the memory layout of the structures [3, [I2] or in collaborative version control systems, like in Git [9, p. 17],
to represent the history of a file.

Usually, two kinds of DAGs are considered: labelled DAGs and unlabelled DAGs. In the labelled setup,
one has a set V' of distinguishable vertices — often [1;n] — connected by a set of edges E C V' x V whereas
in the unlabelled model DAGs are considered up to an edge-preserving permutation of the vertices so that
only the structure of the graph is retained but not the actual value of the vertices. These two types of objects
serve a different purpose, the former represents relations over a given set whereas the latter represents purely
structural objects.

From a combinatorial point of view, a crucial difference between the two models is that one has to deal
with symmetries when enumerating unlabelled DAGs which makes the counting process significantly more
involved. In fact the problem of counting the DAGs of given number of vertices has been solved in the 70’s
by Robinson for both models using different techniques. In [I8] he gives a recurrence formula for the number
of labelled DAGs with n vertices and k sources which leads to a straightforward random sampling algorithm
(the algorithm has been studied in [I3] but was acknowledged earlier in [I4]). In [I7], Robinson solves the
unlabelled case starting from the same ideas but using Burnside’s lemma and the inclusion-exclusion principle
to account for the symmetries. Unfortunately, this second approach does not lead to an efficient random
sampler because of the subtractions occurring in the formula. This subtractions combinatorially correspond
to set differences, which can be implemented in a random sampling procedure using rejection: to sample an
element from A\ B uniformly at random, sample a uniform element x € A, then if x € B discard z and try
again, otherwise return x. But this method comes at a high computational cost which makes this approach
unpractical.

In the present paper, we propose an alternative model of unlabelled DAGs which we call Directed Ordered
Acyclic Graphs (DOAGS) that are similar to regular unlabelled DAGs with additional structure on the edges:
the set of outgoing edges of each vertex is totally ordered. This “local” ordering of the edges captures a
structure that is naturally present in other DAG-related mathematical objects such as compressed logical
formulas, where the order of the arguments of a function is relevant, or plane tree-like data structures with
sharing [3, 12]. This ordering also has the advantage of breaking the symmetries of the graph so that we

manage to exhibit a constructiveﬂ recursive counting formula with a clear combinatorial interpretation from
which we derive an efficient uniform random sampler.

Our counting formula is based on a “vertex-by-vertex” decomposition of the graph (remove one source of
the graph, chosen deterministically, and see what is left of the graph) whereas Robinson used a “layer-by-
layer” scheme (remove all the sources at once). An interesting aspect of our decomposition is that it allows
to easily account for the number of edges of the graph. We are able to count exactly the number of DOAGs
with n vertices and m edges for any pair (n,m) and as a consequence our random sampler allows to choose
the number of edges of the graph to be generated. As a consequence it is possible to control the distribution
of the number of edges in the sampled graphs, for instance by sampling uniformly among DOAGs of bounded
density m/ (g) or among DOAGs of bounded average degree m/n, without resorting to rejection. Another
possible application of our approach is to control the maximum out-degree of the graph: given a constant d, it
is possible to count the DOAGs such that each vertex has at most d outgoing edges and to sample uniformly
at random among them. This is achieved by a trivial change in the counting formula and the random sampler.

An unexpected outcome of this work is that the “vertex-by-vertex” approach we developped to enumerate
DOAG:S is also applicable to other models, in particular to a class of edge-labelled DAGs and more importantly
to the vertez-labelled DAGs from [I8]. As a result, we obtain a constructive recursive formula enumerating
vertex-labelled DAGs with one sink and one source, counted by number of vertices and edges. Obviously, by
summing over the number of edges, we also obtain a constructive formula for the vertex-labelled DAGs (again,
with one sink and one source) enumerated by their number of vertices only. Although the restriction to one
sink and one source may seem limiting, it ensures the weak connectivity of the graph which is desirable in
many applications. To our knowledge this is the first constructive formula for these objects.

In Section [2] we present the class of Directed Ordered Acyclic Graphs and their recursive enumeration. We
provide a complexity analysis of a the algorithm implementing this enumeration. In Section [3} we describe
and analyse an efficient uniform random sampler of DOAGs of given number of edges and vertices based of
the counting information. Finally in Section [we show how our approach can be applied to other models by
establishing a link with the class of labelled DAGs and providing a constructive counting formula for them.
An implementation of all the algorithms presented in this paper at https://github.com/Kerl13/randdag.

Related work Following the work of Robinson in [I8] [I7], a series of advances have been made in the field of
labelled DAGs enumeration. Several enhanced recurrence formulas were discovered, taking additional parame-
ters into account such as the number of edges [19], sources and sinks [11] or initially connected components [10].
Except for [I0], the above articles all rely on the layer-by-layer decomposition of Robinson. Interestingly, the
latter article presents a decomposition based on removing a source but no constructive counting formula is
acknowledged.

The wuniform random generation of DAGs was studied later and yielded mostly two types of algorithms:
Markov-chain-based algorithms and recursive samplers. Our algorithm belongs to the second category. The
Markov-chain approach was first used for DAGs in [I4] and was refined in [I3]. Some control over the number
of edges of the produced graphs is possible to a limited extent by forbidding DAGs with too many edges
from the Markov chain, but this can have an impact on performance and it does not allow to target a specific
number of edges. A recursive algorithm based on Robinson’s formula for labelled DAGs was also acknowledged
in [T14] and later studied in [I3]. Finally, a class of automata that is similar in structure to our new model
of DAGs has been studied in [4], also using a layer-by-layer decomposition in the style of Robinson. It is
constructive too, but rely only on the number of vertices.

All the recursive algorithms described here, including ours, use a technique called “the recursive method”.
It is based on an inductive specification of the objects and is split in two phases: a costly, though usually
polynomial, preprocessing which only needs to be done once and the random generation itself. This technique
is due to [15] and has been systematised in [8] for the structures that can be specified using only “admissible
operators” of analytic combinatorics as described in [7, Ch. 1]. Unfortunately, DAGs are not specifiable in
this sense and thus we cannot benefit from the results of [g].

To the best of our knowledge, the efficient uniform generation of unlabelled DAGs is still an open problem.

2 Directed Ordered Acyclic Graphs

We introduce a model of directed acyclic graphs called “Directed Ordered Acyclic Graphs” (or DOAGS)
which is similar to the classical model of unlabelled DAGs but where, in addition, we have a total order on
the outgoing edges of each vertex. We describe a recursive decomposition of these objects which leads to a
recursive counting formula that can be implemented in polynomial time and is amenable to efficient uniform
random sampling.

IHere “constructive” means without using the inclusion-exclusion principle.

https://github.com/Kerl13/randdag

2.1 Description of the model

We first define directed ordered graphs as unlabelled directed graphs equipped with a total order on the set
of outgoing edges of each vertex.

Definition 1. A Directed Ordered Graph (DOG) is a triple (V, E, <) where V is a set of vertices, E CV xV
is a set of edges and < C {((u,v), (u,w)) | (u,v) € E A (u,w) € E} is a partial order on E, such that two
edges are comparable if and only if they have the same source. Two such graphs are considered equal if there
exists a bijection between their respective sets of vertices that preserves the edges and the partial order relation.

A path in a directed (ordered) graph is a sequence of edges (u1,vy), (uz,v2),..., (un,v,) such that for
all i € [1;n — 1] we have u; 1 = v;. If in addition, we have v,, = uy, we call this path a cycle.

Definition 2. A Directed Ordered Acyclic Graph is a DOG without cycles and with exactly one source and
one sink, that is one vertex with in-degree 0 and one vertex with out-degree 0.

The restriction we put on the numbers of sources and sinks is a way to ensure the weak connectivity of
the graph, which we believe is important for many applications. As an example, all the DOAGs with up to 4
edges are pictured in Fig.

0 edge 1 edge 2 edges 3 edges 4 edges

Figure 1: All DOAGs with up to 4 edges. All edges are implicitly oriented from top to bottom.

2.2 DOAG decomposition

We describe a canonical way to recursively decompose a DOAG into smaller structures. The idea is to remove
vertices one by one in a deterministic order, starting from the source. The issue with this decomposition is
that it yields graphs with more than one source, so we must express it in a more general class of graphs:
multi-sources DOAGs.

Definition 3. A multi-source DOAG is a DOG without cycles, with 1 sink, any number of sources and
equipped with a total order on its set of sources.

These objects are defined separately from the DOAGs of Definition [2] because of the ordering they have
on their sources. Though this ordering would not be natural in the general class it arises naturally from the
recursive decomposition: removing the source of a DOAG leads to a structure with several sources, but they
are distinguishable thanks to the ordering of the outgoing edges of the initial source. Definition [3| reflects this
structure on the intermediate structures of the decomposition.

Formally, we define a decomposition step as a bijection between multi-source DOAGs with n > 1 vertices
and a multi-source DOAGs with n — 1 vertices given with some extra information. Let D be a multi-source
DOAG with at least 2 vertices and consider the new graph D’ obtained from D by removing its smallest
source v (with respect to the ordering of the sources). For D’ to be a multi-source DOAG, we have to specify
the ordering of its sources: we consider the ordering where the new sources of D’ (those that were uncovered
by removing v) are considered larger than the pre-existing ones. The additional information necessary to
reconstruct D from D’ is the following:

1. the number ¢ of sources of D’ which were uncovered by removing v;
2. the set S of internal (non-sources) vertices of D’ that were pointed at by v;

3. the function f : S — [1; ¢+ | S]] identifying the positions, in the list of outgoing edges of v, of the edges
pointing to an element of S.

The reconstruction is straightforward: create a new source v with ¢ 4 |S| outgoing edges such that the i-th
of these edges is connected to f~!(i) when i € f(S) and is connected to one of the g largest sources of D’
otherwise. The ¢ largest sources of D’ must be connected to the new source exactly once and in the same
order as they appear in the list of sources of D’. Note that the order in which the vertices are removed when
iterating this process corresponds to a BFS-based topological sort of the graph. Fig. [2| pictures the first 3
decomposition steps of an example DOAG.

WY

Figure 2: Recursive decomposition of a DOAG by removing sources one by one in a BFS fashion. The edges
are implicitly oriented from top to bottom and the outgoing edges of each vertex are implicitly ordered from
left to right. The integer labels at each stage indicate the ordering of the sources.

In fact, this decomposition describes a bijection between multi-source DOAGs with at least 2 vertices
and quadruples (D’,q, S, f) where D’ is a multi-source DOAG, S is a subset of its internal vertices, ¢ is a
non-negative integer, ¢ + |S| > 0 and f : S — [1;¢ + |S|] is an injective function. It can therefore be used to
establish a recursive formula for counting multi-source DOAGs, the formula is given below. Let D,, ,,, denote
the number of multi-source DOAGs with n vertices, m edges and k sources, then we have:

D1k = Lim=0 A k=1}
Dy =0 when k£ <0

1)

n—k—q\[/s+q .

Dypmp = Z Dn_1,m_s—q,k—1+q(s) < 5 >s! otherwise,
0<s+g<min(n—k,m+2—n)

where the term ("7]:7‘1) accounts for the choice of the set S and the term (SJS“])S! accounts for the number of
injections f : S — [1;s + ¢]. The bounds on s + ¢ in the sum is justified by two combinatorial arguments.
First, recall that s + ¢ is the out-degree of the smallest source, so it cannot be zero and it is upper bounded
by the number of vertices it might point at, that is the number of non-source vertices i.e. n — k. The second
upper bound is obtained by observing that all vertices but the sink have at least one outgoing edge, hence the

total number of edges m is at least s+ ¢+ (n —2) - 1.

Remark 1. Since s + q is the out-degree of the removed source, the sequence Dﬁdznﬁk counting the DOAGSs of
mazimum out-degree bounded by a given constant d can easily be obtained by replacing the bound over s + q
by min(n — k,m + 2 —n,d).

2.3 Computational aspects of the enumeration

We consider the problem of computing Dy, ,, » for all n,m and k up to a given bound. This can be achieved
easily using Equation and a dynamic programming approach. For the sake of conciseness we do not give the
algorithm here but it can be found in Appendix[C] In this section we give some details on the algorithm. First,
in Lemma we characterize the indices n, m, k such that D, ,,, , > 0. This can be used to avoid unnecessary
recursive calls and to choose a memory-efficient data-structure for storing the results. Then in Theorem [1| we
give the complexity of the counting procedure in terms of bit operations.

Lemma 1. Forn > 1, we have Dy, pp 1, # 0 if and only if 1 <k <nandn—1<m < (Z) — (g)

The key-idea for the bounds on m are linked to the fact that the DOAGs must be connect and that there
is no edge between sources. The complete proof is given in Appendix [B]

In Theorem [l we get a straightforward upper bound on the number of arithmetic operations necessary to
compute all the D,, ,, 1, up to certain bounds. As it is usual in combinatorial enumeration, there is a hidden
cost factor in the size of the numbers at stake: the more they grow the more costly arithmetic operations
become. To account for this cost we also give an upper bound on the bit-size of all numbers being multiplied.

Theorem 1. Let N, M > 0 be two integers. Computing Dy, y i for alln < N, m < M and all possible k can
be done with O(N*M) multiplications of integers of size at most O(M In M).

In fact, the bit-complexityﬂ M(z) of the multiplication of two integers with at most z bits is conjectured
to be O(zInx), but in practice a variety of algorithms are used (depending on the value of z) ranging from the
naive algorithm (of complexity O(2?)) to the Schonhage-Strassen algorithm (of complexity O(zInzInlnx)).
The first part of Theorem [1] is straightforward but we need a bound on the value of D,, ;, ;. for the second
part, which is the purpose of Lemma

2The bit complexity corresponds to the complexity in terms of binary operations.

Lemma 2. For all n,m,k Dy, pm i < ((;)7;(3)) -(m—n+2)L

This upper bound is based on two simple combinatorial arguments: the number of ways to choose the m
vertices of a multi-source DOAG is bounded by the given binomial coefficient and the number of ways to order
the outgoing edges of all vertices is bounded by the factorial. The complete proof is presented in Appendix
This bound on the number of multi-source DOAGs is rough but it is precise enough to get an estimation of
the bit-size of these numbers.

Corollary 1. There exists a constant ¢ > 0 such that for all n,m,k we have logy(Dy, m k) < c-m -log, m.

We now have enough information to prove Theorem

Proof of Theorem [l Since Dy, . = 0 for k > n, we need to compute O(N?M) numbers. Moreover, comput-
ing each D,, 1 Tequires to compute a sum of at most n? terms, each of which is the product of a number
of bit-length O(mInm) with a coefficient of the form C(i,q,s) = (i) (77°)s! (for some i,q,s < n) of bit-
length O(nlnn). Overall this accounts for O(N*M) multiplications of bit-complexity M (M In M).

There remains to measure the cost of computing the coefficients C(i,j,s). They can be obtained at a
small amortized cost using the relation C(i,q,s) = C(i,q,s — 1) - j(_STt_ql) (holding for all 1 < s < i) to get
the value of the coefficient at s from its value at s — 1 when summing the terms of for increasing values
of s. Clearly, the cost of multiplying numbers of bit-length nlnn and Inn is bounded by M(nlnn) and

therefore M(M In M). O

3 Random sampling

In this section we describe a uniform random sampler of DOAGs based on the recursive decomposition given
in the previous section. Our algorithm is based on the so-called “recursive method” from [I5] in the way we
select the parameters of the sub-structures but unlike what we would expect in the systematised framework
from [§], the substructures are not independent. Once the sub-DOAG D’ accounted for by Dy—1 m—p k—14p—s
has been selected, the set S and injection f : S — [1;]S| + ¢] accounted for by (”_k;p+s) (g)s! cannot be
sampled independently from D’.

Our random sampler is given in Algorithm|[I] We first give a high-level description of the algorithm here for
the sake of readability. Implementation considerations are discussed below, and in particular in Algorithm
we give a fast algorithm for the generation of the outgoing edges of the new source at each step of the global
random sampling procedure.

Algorithm 1 Recursive uniform sampler of multi-source DOAGs

Input: Three integers (n,m, k) such that D,, , > 0
Output: A random multi-source DOAG with n vertices (including k sources), and m edges
1: function SAMPLE(n,m, k)
2: if n < 2 then generate the (unique) DOAG with n vertices
3: else
4: pick (s,q) with probability Dy—1 m—s—q,k—1+¢ <n I; q) <q :’; S) s/ Dy i
D'+ sAMPLE(n —1,m —s—q,k—1+¢q)
S < a uniform subset of size s of the inner vertices of D’
S’ < a uniform permutation of S
E < a uniform shuffling of S’ with the ¢ largest sources of D’
return the DOAG obtained by adding a new source to D’ with E as its list of outgoing edges

The pick instruction at line [] implements the “recursive method” scheme: pick the parameters
of the sub-structures using the pre-computed counting information. One possible way to implement
this is to draw a random variable r ~ UNIF([0; Dy mx — 1]) and to compute the partial sum of the
terms Dy_1,m—s—q k—1+q (”757‘1) (q;rs)s! (in any order independent of) until the sum is greater than r. The
indices s and ¢ of the last term of the sum are the ones to pick. Independently of the summation order, this
procedure has complexity O(n?) in the worst case in terms of multiplications of big integers. An interesting
order of summation is the one where (s + ¢, s) are taken in lexicographic order. In this case the complexity of
the pick function can be expressed as O((s + q)2) which is more informative about the cost of sampling the
whole DOAG since s + ¢ is the out-degree of the new source. We consider that this order is used in all the
following.

Then, once we have sampled the sub-DOAG D', sampling S is straightforward and the injection f is
obtained as a permutation of S (thus deciding of the order of the elements of S as children of the new vertex)

shuffled with the largest g sources of D’. The correctness and complexity of this procedure in terms of integer
multiplications are stated in Theorem

Theorem 2. Algorithm [1] computes a uniform random DOAG of given parameters (n,m,k) by perform-
ing O (Zv d%) multiplications where v ranges over the vertices of the graph and d,, is the out-degree of v.

Proof. The complexity result is a straightforward consequence of the above discussion. Uniformity is proven
by induction. Let D be a DOAG of parameters (n,m, k) and let (D', ¢, S, f) denote the result of one decompo-
sition step of D. Then the probability that D is returned by SAMPLE(n, m, k) is P[(s, q)] - P[D’|s, ¢] - P[S|D’, 5] -

]P)[f‘sv q] where]P[(S7 q)] = anlﬁmfs*q,kflJrq ("—5—‘1> (ql_S)S!/Dmmwk’ IP)[DI|S7 q] = Dgil,m—s—q,k—l-i-q by induc-
tion, P[S]s, D] = ("~17%) " and B[|S,q] = (1S/(S5) =

Note that the sum Y., d? is of the order of m? in the worst case but can be significantly smaller if the
out-degrees of the vertices are evenly distributed. In the best case we have d, ~ 7> for most of the vertices
and as a consequence y_ d2 ~ m?/n.

We have decomposed the generation of the new source into several steps in Algorithm [1] (lines [5] to
to make the role of each term in the counting formula apparent, and help stating the uniformity. However
there is a faster way to implement this part of the Algorithm by sampling S and its ordering together using
a variant of the well-known Fisher-Yates algorithm (see [6]) using the property that the first s terms of a
uniform permutation form a uniform ordered subset of size s its elements. This is described in Algorithm
which can substitute lines [5] to [§ in Algorithm [I]in a practical implementation.

Algorithm 2 Optimised uniform sampler of new sources with given parameters

Input: Two non-negative integers s and ¢, a, array @) of length g > ¢ vertices playing the role of sources
and an array T of length {1 > s vertices playing the role of internal vertices.

Output: An array v of s 4 ¢ vertices, representing a new vertex with g out-edges to the ¢ last elements of @
(appearing in the same order as in Q) and s edges to elements of T, chosen uniformly at random.

1: 8/ < s, ¢ + q, v < new array of length s + ¢ 8: if BERNOULLI(s'/(s" + ¢')) then

2: 9: v +¢ —1] + T[s' — 1]

3: fori=0to s—1do 10: s+ -1

4: r < UNIF([é; £r — 1]) 11: else

5: T[i] <> T[r] 12: v[s"+¢ — 1]+ Qg —q+q¢ —1]
6: 13: ¢ +~q+1

7. while s’ +¢' > 0 do

UNIF(a, b) returns a uniformly sampled integer in [a;b]; BERNOULLI(z) returns True with probability x and False
otherwise.

The first loop of Algorithm [2] at line [3] implements the Fisher-Yates algorithm with an early exit after s
iterations rather than ¢7. After this, the first s elements of T" represent the set .S and their ordering is uniform.
The second loop implements the shuffling of S with the last g elements of (). We populate the array v in
reverse order so as to ensure that the elements coming from) remain sorted.

This algorithm achieves linear complexity in (s 4 ¢) in terms of memory accesses and calls to the random
number generator, but it works in place in T'. Since T represent the internal vertices of a DOAG, this means
that we must choose a data structure for DOAGs that is not sensitive to the order of its internal vertices.

The idea is to represent a multi-source DOAG with n vertices and k sources as an array of vertices where
the first k£ elements are the sources, sorted in increasing order, and the other n — k elements are the internal
nodes stored in an unspecified order. Vertices are represented as pointers to arrays of vertices, the order of
the elements encodes the order of the edges.

One can then allocate a single array of size n before the first call to the sampler and populate it from
right to left in the recursive calls. The invariant is that after a recursive call to SAMPLE(n',m/, k") the n’ last
elements of the array represent the resulting multi-source DOAG D’ of size n’. Algorithm 2| is then used by
using the n’ — k' last elements of the array as T and the &’ elements preceding them as @, without making any
copy. Finally the newly generated source is stored at index n — n/, just before the n’ vertices representing D’.
The advantage of this memory layout is that after this point, the ¢ former sources that have been turned into
internal nodes are already at the right place.

Remark 2. If the sequence Dr(z(?n i from Remark is used in place of Dy m . in the algorithm, and without
any further change, we obtain a uniform random sampler of DOAGSs of mazimum out-degree bounded by d.

4 Adaptation to edge-labelled and vertex-labelled DAGs

In this last section we demonstrate the applicability of our method by counting two other models of DAGs by
number of vertices, edges and sources: edge-labelled DAGs, which are a natural extension of DOAGs and the
classical model of vertex-labelled DAGs.

For the second model, this corresponds to a sequence obtained by Gessel in [I1] using generating functions.
The difference here is that our formula is constructive and thus amenable to effective random sampling. To
our knowledge, this is the first such formula for labelled DAGs.

4.1 Constructive enumeration of edge-labelled DAGs

The total order on the outgoing edges of each vertex in DOAGs can as well be expressed as a labelling of
these edges from 1 to the out-degree of the vertex. A natural operation on these local labellings is to shuffle
them to get a global labelling of all the edges of the graph from 1 to its number of edges m. This suggests to
consider the class of edge-labelled DAGs defined as the set of Directed Acyclic Graphs (V, E) equipped with
a labelling of their edges \ : E = [1;|E|] and where two graphs are considered equal if they are isomorphic
as graphs and in a label-preserving way. Again, we restrict our attention to graphs with one source and one
sink.

These objects have a common property with DOAGs: the labels of the outgoing edges of each vertex
induces an ordering of these edges. Hence the decomposition described in Section [2] remains applicable and
we can obtain a recurrence relation on the number E, ,, i of edge-labelled DAGs with n vertices (including &
ordered sources and one sink) and m labelled edges. Due to a lack of space, the counting formula is presented
in the Appendix [D] as well as some more details on this class and its relation with DOAGs.

4.2 Constructive enumeration of vertex-labelled DAGs

More interestingly vertex-labelled DAGs with a unique sink can be enumerated directly using our vertex-by-
vertex decomposition too. We could be tempted to do the decomposition by removing the smallest source at
each step but this makes the recurrence difficult to express. Instead we count vertex-labelled DAGs with a
distinguished source this time (this operation is called pointing).

Let V, m.k denote the number of vertex-labelled DAGs with n vertices (including k sources and the sink)
and m edges. The number of such DAGs with a distinguished (or pointed) source is given by & - Vi, k-
Removing the distinguished source yields a regular vertex-labelled DAG with n — 1 vertices. Moreover the
three pieces of information that are necessary to reconstruct the source are the label of the source (n choices)
and the set of s internal vertices (resp. of ¢ sources) of the sub-graph which were connected to the source.
This leads to the following recursive formula:

Vl,m,k’ = n{m:O A k=1}
Vimie =0 when k£ <0

n n—qg—=~k\/k—1+ .
Vam g = T Z Vn_l,m_s_q,k_1+q< a4 > < q> otherwise.

' S q
0<s+g<min(n,m)

(2)

Computing the first terms, we get back that values from |[DEIS A165950| related to the papers [10] [11] where
the sequence is obtained via a generating function enumeration related to the Tutte polynomial.

Remark 3. For the purpose of random sampling, the fact that we have to divide by k is not an issue. The
idea is that we sample a uniform source-pointed DAG of parameters k and then forget about the pointed source.
Since all sources have the same probability to be pointed, this procedure is actually uniform.

Remark 4. Since both edge-labelled DAGs and wvertex-labelled DAGs have no symmetries, we obtain
that n'Ey 1 = mlV, ;1 by observing that both sides of this equality count the same thing: DAGs with
an edge-labelling and vertez-labelling independent from each other.

5 Conclusion and future work

We studied a new class of connected unlabelled DAGs enriched with an ordering of the outgoing edges of each
vertex (DOAGs). We obtained a constructive inductive formula counting its elements by number of vertices
and edges using a vertex-by-vertex decomposition, from which we derived an efficient uniform random sampler.
The method used for the decomposition proved applicable to other models of DAGs and we managed to get a

https://oeis.org/A165950

counting formula for the number of labelled DAGs with n vertices (including k sources and one sink) and m
edges.

An interesting topic that is left uncovered here is the study of the asymptotic behaviour of D,, ,, . Having

this type of information has been proved useful for the design of more efficient samplers as showed for instance
in [4] and [13] (though at the cost of a slight bias in this second example).

Finally, another question we wish to investigate is the possibility to drop the constraint on the numbers of

sources and sinks while retaining the weak connectivity of the graph.

References

[1]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

L.-C. Canon, M. El Sayah, and P.-C. Héam. A comparison of random task graph generation methods for
scheduling problems. In Euro-Par 2019, volume 11725 of LNCS, pages 61-73. Springer, 2019.

D. Cordeiro, G. Mounié, S. Perarnau, D. Trystram, J.-M. Vincent, and F. Wagner. Random graph
generation for scheduling simulations. ICST, 2010.

A. P. Ershov. On programming of arithmetic operations. Commun. ACM, 1(8):3-6, August 1958.

S. De Felice and C. Nicaud. Random generation of deterministic acyclic automata using the recursive
method. In 8th International Computer Science Symposium in Russia, CSR’13, volume 7913 of LNCS,
pages 88-99. Springer, 2013.

M. A. Fiol, J. L. A. Yebra, and I. Alegre. Line digraph iterations and the (d, k) digraph problem. IEEE
Transactions on Computers, C-33(5):400-403, 1984.

R. A. Fisher and F. Yates. Statistical tables for biological, agricultural and medical research. Oliver and
Boyd, London, 1948.

P. Flajolet and R. Sedgewick. Analytic Combinatorics. Cambridge University Press, Cambridge, 2009.

P. Flajolet, P. Zimmermann, and B. Van Cutsem. A calculus for the random generation of labelled
combinatorial structures. Theor. Comput. Sci., 132(2):1-35, 1994.

K. Geisshirt, E. Zattin, A. Olsson, and R. Voss. Git Version Control Cookbook: Leverage Version Control
to Transform Your Development Workflow and Boost Productivity, 2nd Edition. Packt Publishing, 2018.

I. M. Gessel. Enumerative applications of a decomposition for graphs and digraphs. Disc. Math.,
139(1):257 — 271, 1995.

1. M. Gessel. Counting acyclic digraphs by sources and sinks. Discrete Mathematics, 160(1):253 — 258,
1996.

E. Goto. Monocopy and associative algorithms in an extended lisp. Technical report, University of Tokyo,
1974.

J. Kuipers and G. Moffa. Uniform random generation of large acyclic digraphs. Stat. and Computing,
25(2):227-242, 2015.

G. Melangon, I. Dutour, and M. Bousquet-Mélou. Random generation of directed acyclic graphs. Electron.
Notes Discret. Math., 10:202-207, 2001.

A. Nijenhuis and H. Wilf. Combinatorial Algorithms: For Computers and Hard Calculators. Academic
Press, Inc., USA, 2nd edition, 1978.

S. Porta, P. Crucitti, and V. Latora. The network analysis of urban streets: A dual approach. Physica
A: Statistical Mechanics and its Applications, 369(2):853 — 866, 2006.

R. W. Robinson. Counting unlabeled acyclic digraphs. In Combinatorial Mathematics V, Lecture Notes
in Mathematics, pages 28-43. Springer, 1977.

R.W. Robinson. Counting labeled acyclic digraphs. New Directions in the Theory of Graphs, pages
239-273, 1973.

V.I. Rodionov. On the number of labeled acyclic digraphs. Discrete Mathematics, 105(1):319 — 321, 1992.

A Examples of a random DAGs

— —|

TmNiie

ol
i
T

4

Figure 3: A random DOAG sampled uniformly at random among all DOAGs with m = 1500 edges and with
maximum out-degree bounded by 2, that is such that all vertices have at most 2 outgoing edges. This DOAG
contains 787 vertices.

i

Figure 4: A random DOAG sampled uniformly at random among all DOAGs with m = 1000 edges and with
maximum out-degree bounded by 10, that is such that all vertices have at most 10 outgoing edges. This
DOAG contains 272 vertices. The colors of the vertices represent the degrees and have been picked according
to the following color map (lowest degree on the left and highest degree on the right).

10

B Technical proofs

We present here the ranges for the integers n, m and k such that there exist DOAGs with these parameters.

Proof of Lemma[ll The bounds on k are straightforward: there must be at least one source and the sink
cannot be a source. Now, consider given a k € [1;n — 1]. The upper bound on m is obtained by observing
that there may be an edge between any two vertices in the graph (there are (}) of them) except between two
sources (there are (g) of them). So (g‘) — (g) is an upper bound on the number of edges and it can be realised
by numbering the n vertices from 1 to n and putting an edge from ¢ to j if and only if ¢ < j and j > k. Finally,

any number of edges m can be obtained from this extreme case by removing edges until m = n — 1 which is

the minimum number of edges of a weakly connected DAG. O
m
N 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
2 1
3 1 2
4 1 7 17 12
5 1 16 104 356 666 672 288
6 1 30 377 2745 13011 42290 96838 155728 169272 112608 34560

Figure 5: DOAGs with n vertices and m edges (1 source and 1 sink)

Knowing the parameters such that the number of related DOAGs is positive, we can exhibit an upper
bound of this number, allowing then to know how many digits are necessary to store the number.

Proof of Lemma[3 Assign to each vertex of a multi-source DOAG an integer in [1;n] identifying its position
in the traversal of the graph used for the decomposition. Note that there may be an edge from vertex i to
vertex j only if ¢ < j and j > k. There are ((721);1(’5)) ways to choose m pairs of integers (i,7) € [1;n]?
satisfying this condition (but not all of them yield weakly connected graphs).

Moreover, the number of DOAGs sharing the same set of edges (but ordered differently) can be bounded
above by di!ds!---d,! where d; denotes the out-degree of vertex i. This corresponds to all the possible ways
to permute the out-edges of each vertex. Note that some permutations are not “legal” as they would induce a
relabelling of the vertices. Finally, note that d,, = 0, that for all ¢ < n, d; > 0 and that). d; is the number m
of edges of the graph. The above product of factorials is maximal when d; = 1 for all ¢ < n but one, in which

case is the only d; > 1 is equal to m — (n — 2). Hence D, 1 < ((g);(g))(m —n+2)L O
We now can deduce the size in idigits of the big integers we deal with.

Proof of Corollary[1l Let L = (%). We have ((3);(5))(771 —n+2)! < (i)m' =L(L-1)(L—-2)---(L—m+1).

Hence logy Dy m i < mlog, L and since m > n — 1 ~ /2L, we have logy Dy, 1 = O(mlogy m). O

11

C Counting algorithm

Algorithm [3| allows to compute the value of D, , i in a recursive fashion using dynamic programming.

Algorithm 3 Counting algorithm for DOAGs.

D + dictionary structure mapping triples of integers to big integers
function counT(n,m, k)
if (k<0)V(k=n)V(im<n-2)V(m>(3) - (’;)) then return 0
else if n < 2 then
if m=n—1Ak =1 then return 1 else return 0
else if (n,m, k) is bound in D then return D(n,m, k)

else
<0
for p =1 to min(n — k,m+2 —n) do
C<+1

for s =0 to p do
r<r+COUNT(n—1,m—pk—1+p—3s)-C
C+~C-(n—k—p+s+1)-(p—s)/(s+1)
D(n,m,k) < r
return r

12

D Appendix: Labelled models

D.1 Edge-labelled DAGs

Edge-labelled directed acyclic graphs are DAGs equipped with a labelling of the edges, that is a function
mapping each edge to a distinct integer in [1;m] where m is the number of edges of the DAG. It differs from
the usual notion of “labelled DAG” in that here the edges are labelled whereas usually labelled vertices are
considered.

Informally going from DOAGs to edge-labelled DAGs is possible since in DOAGs, the out-going edges
each vertex are distinguishable and the vertices are also distinguishable as shown by the decomposition of
the DOAG. Thus we get a way to traverse without ambiguity all the edges, and it is possible to associate a
permutation to the edges, i.e. a label for each of them. Hence, a DOAG can also be seen as the equivalence
class of labelled DAGs that are identical up to a relabelling of the edges that preserves the order of the outgoing
edges.

From a modelling point of view these two kinds of objects serve a different purpose. Edge-labelled DAGs
offer an edge-centric model for setups were the edges are all distinguishable and are the objects of interest (by
opposition to vertices). This approach seems important in specific graph-problems related to complex systems
like in [I6] for example. It is directly linked to line graphs where the focus is laid on the duality between edges
and vertices [5]. On the other hand, DOAGs offer a more local distinction between edges by only comparing
sibling edges.

The decomposition of a DOAG presents a canonical traversal of the edges of the DOAG related to the
order for outgoing edges and the total order for the sources during the decomposition of the (multi-sources)
DOAG. This property allows us to define an edge-labelling as a permutation of the edges of a DOAG and to
establish a one-to-one correspondence with edge-labelled DAGs.

Definition 4. Let A be a DOAG. An edge-labelling for A is a bijection from the set of edges of A into the
integers [1;m] such that for any two edges e; and es such that ey < es (thus going out of the same vertex),
the label of ey is smaller that the one of es.
For a given DOAG A we denote L 4 its set of labellings and L = U Ly
A€DOAG

Obviously most of the time there are several labellings for a given DOAG inducing each one a different
edge-labelled DAG. Or put differently, there are several possible labellings of a DOAG that are compatible
with the orders on the outgoing edges of its vertices.

Theorem 3. The structures from {(A,L4) | A € DOAG} are in one-to-one correspondence with edge-labelled
DAGS.

Proof. To prove the injection we remark that a given labelled DAG induced by two DOAGs A and B and their
respective labellings £4 and Lp are such that A = B because there is a single way for each vertex to order
its outgoing edges that is compatible with the edge labelling. But then obviously £4 = Lp. The surjection
is exhibited by noting that each edge-labelled DAG can be decomposed as a DOAG and a labelling of its
edges. O

Proposition [1| counts the possible labellings of a DOAG. This formula will help use bridge the gap between
counting edge-labelled DAGs and counting DOAGs.

Proposition 1. For a given DOAG A with m edges, the cardinality of L, or equivalently, the number of
labelled DAGSs sharing the same underlying given DOAG structure is given by HL;‘ where v ranges over all

the vertices of the DOAG and d,, denotes the out-degree of v, that is its number of outgoing edges.

Proof. The labellings of a given DOAG are characterised by the set of labels used at each vertex: once the
labels for the outgoing edges of v are chosen, there is only one way to assign them to each edge. The number
of ways to assign d, labels to each vertex v is counted by the multinomial coefficient given above. O

Relying on the last proposition we introduce the numbers £, ,, ;. as the numbers of edge-labelled DAGs
with n vertices, m edges and k (ordered) sources among the vertices. Then adapting Equation by using
Proposition [I] we obtain:

Eyvmk = Lim=0 A k=1}
Eymr=0 when k£ <0

(3)
m n—k— s+ .
Bk = Z B 1m—s—qk—14q (s + q) (s q) (< q) s!' otherwise.

0<s+g<min(n—k,m+2—n)

13

The only difference between this recurrence formula and Equation is the presence of the binomial coeffi-
cient (qu) accounting for the number of ways to choose the labels of the s 4+ g outgoing edges of the smallest
source among [1;m].

Theorem 4. The number of edge-labelled DAGs containing n vertices (with a single source and a single sink)
and m edges is given by Ey, 1.

2

3

4 6 84 420 720

5 24 960 15960 147000 806400 2540160 3628800

Figure 6: Edge-labelled DAGs with n vertices (including one source and one sink) and m labelled edges

D.2 Vertex-labelled DAGs

The historical enumeration of vertex labelled DAGs has been exhibited by Robinson in the 70’s [Ig]. His goal
was to obtain the sequence A,, of the number of DAGs with n labelled vertices. In order to reach this, he
introduced an intermediate sequence A,, that counts the number of DAGs with n vertices including exactly
k source, and he first gives a constructive recursive formula on this sequence. Then by using some inclusion-
exclusion principle he relates the two-indices sequence A, ; the single-index sequence A,,, thus obtaining a
recursive formula involving only the terms of the A, sequence. The fact that the latter recurrence relies
on the inclusion-exclusion principle implies that it is not constructive, and thus cannot be directly used to
construct DAGs without a rejection sub-procedure. However the first formula based on A,, ; can be turned
into a recursive random sampler, which was mentioned by [I4] and later analysed in detail in [13].

We recall Robinson’s formula for the enumeration of A,, ;. Note that the DAGs enumerated by this formula
are not necessarily connected.

n—k
An,k = Z (Z) (2k — 1)82k(n_k_s)An_k7s. (4)

s=1

The justification of the latter formula is relatively direct from a combinatorial point of view. To build a DAG
over n labelled vertices with k of them being sources, one takes a smaller DAG with n — k vertices containing
s sources. One adds k new nodes that must be the new sources. Thus the previous s sources become internal
vertices which means that at least one edge from a new source must point to it. There are 2¢ — 1 possibilities
for the set of incoming edges of each old source (for each new source either an edge is defined or not; but at
least one edge must exists). Moreover for all other n — k — s vertices one may construct an edge starting at
each new source or not. Robinson’s approach is a layer-by-layer construction.

The above formula is constructive. But by adapting directly the result of Robinson to enumerate DAGs
with a single sink (for a single source it is sufficient to take k = 1) we rely on the inclusion-exclusion principle.
Then, partitioning the set of DAGs (with a single source and a single sink), with n labelled vertices and m
edges, either we obtain a very inefficient formula (from a computational point of view) — see Equation (5]) —
or we use a second time the inclusion-exclusion principle. We thus obtain the number V,, ., , of DAGs with n
labelled vertices (k of them being sources and 1 being a sink) and m unlabelled edges:

Vi = z_f (Z) gvn_m_m z’“:o 1y (l:) tzj: ((k: _ r)é?i k- s)) 2) 1y <z> ((k: - r)u) o)

This extension of Robinson’s formula is also relying on some layer-by-layer approach. At each step we replace
the existing source by k& new sources and be add a given number of edges. As we remark directly, due to the
composed exclusion-inclusion principles any direct translation to a sampler of DAGs is impossible without
rejection.

Proof of the extension of Robinson’s counting Formula . Starting from Equation , we extend it into the
sequence A, ; whose term is the number of DAGs with n vertices (including k sources) and a single sink. To
reach this goal using the layer-by-layer approach of Robinson, it is sufficient, once n > 1 that each new source

14

is not a sink. Saying differently each new source gets at least one out-going edge related to the previous nodes.
Using the inclusion-exclusion principle we get

n—k k
R S AL SIS () R EEE

s=1 r=0

Now we partition the set of DAGs of size n with k sources and 1 single sink according to their number m
of edges. We denote by V,, ,,, 1 these numbers. In the latter formula, the edge distribution is given by the
factor (2’“” — 1)82(k_r)("_k_s). We extract from this quantity the case where we add ¢ new edges:

k—r k—r k—r k—r
L(n, k,r,s,0) = Z < /)(/)(!) (g/)
Gy ls>1 ! s 1 n—k—s

, >0
Ze > =t

We thus obtain, for V;, , 1 the number of DAGs of size n (with k& sources) with m edges and 1 single sink:

k

Vi = Z()ZVn o ESZ(1)T<]:)L(n7k,r,s,£).

s=1

But the value L(n, k, 7, s, £) can be simplified. The easiest simplification is related to the sum over the indices ¢'.

In fact,
¢
k—r k—r k—r k—r
soersn=2 ¥ () (0 2 (000
t=s 01,..,0.>1 ! s o0 >0 1 n—k=s
seeeats 1y n—k—s—
2=t S l=t—t

22 GG)
S b=t

A similar simplification can be used for the first sum but an inclusion-exclusion principle is needed since here
the indices . are greater that 0.

L(n, k,r,s,0) ZZ (S_u).(Uﬂ_r)t(S—U)),<(/€—r)§n_—tk—s)>

t=s u=0
_éi(_l)s_u s (k—r)u (k—r)n—k—23s)
= u t 0—t '
Putting everything altogether, we get

S

Vnym,k_z<)ZVn . “Z(1)r<f>z((k—r)én_—tk—s)>Z(_l)su(z) ((k—tr)u)

s=1 u=0

that corresponds to the stated value. O
By using our approach, we get

Vi = Lim=o0 A k=1}
Vimike =0 when k£ <0

—qg—k\ (k-1
Vomk = % Z Vi—1,m—s—q,k—1+q <n I > < M q> otherwise.

! 8 q
0<s+g<min(n,m)

(6)

By summing the values of each line we compute the number of DAGs of size n with a single source and a
single sink. We then obtain the first terms,

(Z Vn,m71> = (0,1,2,12, 216, 10600, 1306620, 384471444, 261548825328, 402632012394000 . . .) .
neN

that are the values from |OEIS A165950 related to the paper [I1]: there the sequence is obtain through a
generating function enumeration.

15

https://oeis.org/A165950

24 84 84 24
120 960 2660 3500 2400 840 120
720 10800 59280 170250 296010 334680 253920 129300 42660 8280 720

Figure 7: DAGs with n labelled vertices (including one source and one sink) and m unlabelled edges

16

	Introduction
	Directed Ordered Acyclic Graphs
	Description of the model
	DOAG decomposition
	Computational aspects of the enumeration

	Random sampling
	Adaptation to edge-labelled and vertex-labelled DAGs
	Constructive enumeration of edge-labelled DAGs
	Constructive enumeration of vertex-labelled DAGs

	Conclusion and future work
	Examples of a random DAGs
	Technical proofs
	Counting algorithm
	Appendix: Labelled models
	Edge-labelled DAGs
	Vertex-labelled DAGs

