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ABSTRACT 9 

Macroalgae live in tight association with bacterial communities, which impact most 10 

aspects of their biology. Clean, ideally axenic, algal starting material is required to 11 

control and study these interactions. Antibiotics are routinely used to generate clean 12 

tissue; however, bacterial resistance to antibiotics is increasingly widespread and 13 

sometimes related to the emergence of potentially pathogenic, multi-resistant strains. 14 

In this study, we explore the suitability of two alternative treatments for use with algal 15 

cultures: essential oils (EOs; thyme, oregano, and eucalyptus) and povidone-iodine. 16 

The impact of these treatments on bacterial communities was assessed by bacterial 17 

cell counts, inhibition diameter experiments, and 16S-metabarcoding. Our data show 18 

that thyme and oregano essential oils (50% solution in DMSO, 15h incubation) 19 

efficiently reduced the bacterial load of algae without introducing compositional biases, 20 

but they did not eliminate all bacteria. Povidone-iodine (2% and 5% solution in artificial 21 

seawater, 10min incubation) both reduced and changed the alga-associated bacterial 22 

community, similar to the antibiotic treatment. The proposed EO- and povidone-iodine 23 

protocols are thus promising alternatives when only a reduction of bacterial abundance 24 

is necessary and where the phenomena of antibiotic resistance are likely to arise. 25 
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INTRODUCTION 28 

The biology of macroalgae can only be fully understood by taking into account 29 

the interactions with their microbiomes, which impact their health, performance and 30 

resistance to stress (Goecke et al. 2010). Together, both components form a singular 31 

functional entity, the holobiont (Margulis 1991). Studying holobiont systems implies 32 

studying the individual components of the holobiont, their diversity, their activities and 33 

the (chemical) interactions between them (Goecke et al. 2010; Wahl et al. 2012; 34 

Hollants et al. 2013; Dittami et al. 2020). Elucidating these interactions requires 35 

controlled algal-bacterial co-cultivation experiments to test hypotheses about the 36 

functions of specific microbes. This, in turn, equally depends on the isolation of 37 

bacterial strains and the availability of aposymbiotic algal starting material, i.e. algae 38 

without the presence of any symbionts. 39 

Antibiotics are routinely used to generate such aposymbiotic cultures, yet 40 

bacterial resistance to antibiotics is increasingly widespread and sometimes related 41 

to the emergence of potentially pathogenic, multi-resistant strains (Fair and Tor 2014). 42 

Spices and essential oils (EOs) are promising alternatives to antibiotics and have been 43 

used as antiseptics since antiquity (McCulloch 1936). However, it was only towards 44 

the end of the 19th century that Chamberland (1887) first systematically evaluated the 45 

antibacterial properties of several EOs. Today, numerous studies assessing the 46 

efficiency of EOs against bacteria are available (e.g. Deans and Ritchie 1987; Burt 47 

2004; Bakkali et al. 2008) including one in marine bacteria (Mousavi et al. 2011), but 48 

none so far targeting algae-associated microbiomes.  49 

A second alternative to antibiotics may be iodine-based treatments. Berkelman 50 

et al. (1982) have shown that diluted solutions of povidone-iodine have antibacterial 51 

effects on Staphylococcus aureus, Klebsiella pneumoniae, Pseudomonas cepacia, 52 

and Streptococcus mitis. Furthermore, povidone-iodine may be active against 53 

anaerobic or sporulated organisms, moulds, protozoans, and viruses (Zamora 1986). 54 

Kerrison et al. (2016) have obtained promising results using potassium iodine 55 

solutions to remove parts of the microbiota of red- and green algae. However, the 56 

effect of povidone-iodine on brown algae and their associated microbiota may be 57 

different as some brown algae are known to naturally accumulate high concentrations 58 

of iodide in their cell wall. The algae use this iodine for defence reactions (Küpper et 59 
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al. 2008; La Barre et al. 2010), and brown algae-associated microbes may have 60 

developed higher tolerance levels for such treatments. 61 

In this study, we examined the suitability of three different EO treatments 62 

(thyme, oregano, peppermint eucalyptus) as well as one povidone-iodine treatment to 63 

reduce and control the microbiome associated with the filamentous brown alga 64 

Ectocarpus siliculosus. E. siliculosus has been established as a genomic model for 65 

the brown algal lineage (Cock et al. 2010), but the genus Ectocarpus has recently also 66 

gained in importance for the study of brown algal-bacterial interactions (Dittami et al. 67 

2016; Tapia et al. 2016; KleinJan et al. 2017; Burgunter-Delamare et al. 2020). Our 68 

data show that all tested EOs efficiently reduced the bacterial load of algae without 69 

introducing compositional biases, but they did not eliminate all bacteria. Povidone-70 

iodine treatments, just as the antibiotics, both reduced and changed the algae-71 

associated bacterial community.  72 

MATERIALS & METHODS 73 

Algal cultures 74 

Ectocarpus siliculosus strain Ec32 (CCAP accession 1310/04, isolated from San 75 

Juan de Marcona, Peru) was cultivated in 90 mm Petri dishes at 13°C under a 12h/12h 76 

day-night cycle and 40 µmol photons m−2.s−1 irradiance provided by daylight-type 77 

fluorescent tubes. The culture medium was composed of autoclaved natural seawater 78 

(NSW) enriched with Provasoli nutrients (PES; Provasoli and Carlucci 1974). 79 

Essential oil treatments 80 

We tested the effect of three EOs known for their antibacterial properties on the 81 

E. siliculosus bacterial microbiome: thyme (Thymus vulgaris), oregano (Origanum 82 

vulgare), peppermint eucalyptus (Eucalyptus dives piperitoniferum) (Nelson 1997; 83 

Dorman and Deans 2000; Burt and Reinders 2003; De Billerbeck 2007; Kaloustian et 84 

al. 2008; Da Silva 2010; Amrouni et al. 2014). The EOs were purchased from 85 

AromaZone (Paris, France), and were rated as 100% pure. 86 

EOs are, however, natural products and as such, their complex chemical 87 

composition is subject to variation. For this reason, the composition of the EOs used 88 

in our experiments was determined by GC/MS analyses based on a protocol adapted 89 
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from Habbadi et al. (2017). Ten μL of each EO was diluted in 990 μL of pure hexane 90 

(Supelco Analytical, Bellefonte, PA, USA) and 1 μL of the solution was injected in an 91 

Agilent GC7890 gas chromatograph (Agilent Technologies, Santa Clara, CA, USA) 92 

equipped with a DB-5MS capillary column (30m × 0.25 mm i.d., film thickness 0.25 μm, 93 

Agilent Technologies) and coupled to a model 5975C mass selective detector (positive 94 

mode). Pure hexane was run as blank. This experiment was carried out in triplicate. 95 

The oven temperature was initially maintained at 50°C and then increased to 300°C at 96 

a rate of 7°C.min-1. The injector temperature was 290°C. The carrier gas was purified 97 

helium, with a flow rate of 1 mL.min-1, and the split ratio was 60:1. Mass spectra were 98 

obtained in EI mode at 70 eV ionisation energy and the mass range was from m/z 35 99 

to 400. For each compound, the Kovats retention index (RI) was calculated relative to 100 

a standard mix of n-alkanes between C7 and C40 (Sigma-Aldrich, St. Louis, MO, USA), 101 

which was analysed under identical conditions. Constituents were identified by 102 

comparing the RI and MS spectra to those reported in the literature (Adams 2007) and 103 

by comparison with the NIST reference database. These analyses were performed at 104 

the Corsaire-Metabomer platform at the Station Biologique de Roscoff. 105 

Algal filaments were treated with EOs by EO diffusion on Zobell plates (tryptone 106 

5 g.L-1, yeast extract 1 g.L-1, sterile seawater 80%, milliQ water 20%, agar 15 g.L-1), 107 

similar to an antibiogram in two rounds: the first round consisted of testing several 108 

dilutions of the separate EOs in DMSO (Sigma-Aldrich, St. Louis, MO, USA) as well as 109 

combinations of different EOs. In the second round, we focussed on the most 110 

promising treatments, and an assessment of the microbial composition was added. 111 

Under a laminar flow hood, sterile filter paper discs (diameter 10 mm, Whatman, GE 112 

Healthcare, Buckinghamshire, UK) were soaked with 15 µL of EO solution and then 113 

placed in the centre of a 90 mm Zobell plate. We included pure DMSO, NSW, and olive 114 

oil as controls. E. siliculosus filaments were placed at 2 cm of the disc limit and plates 115 

were incubated for 15 h at 13°C. Next, we briefly incubated the filaments in 25 mL 116 

NSW to remove traces of the treatment and left them to recover for two weeks in PES 117 

medium at 13°C. All experiments were carried out in triplicate. Treatments were 118 

considered lethal when algal filaments entirely lost their pigmentation and no growth 119 

was observed during the recovery period. 120 

Microbial colonisation of the algal surface was determined both at the start of 121 

the experiment and after the two-week recovery period. Bacterial cell counts were 122 
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performed by phase-contrast microscopy (Olympus BX60 microscope, 1.3-PH3 123 

immersion objective, at 1000X magnification). The total number of bacteria was 124 

determined over a distance of 100 µm and five independent counts were averaged per 125 

biological replicate.  126 

Povidone-iodine treatments 127 

Povidone-iodine treatments were carried out by immersion of E. siliculosus 128 

filaments in povidone-iodine solutions as described by Kerrison et al. (2016). Again, a 129 

first round of experiments was carried out to determine the most efficient 130 

concentrations and incubation times: solutions at 100 mg.mL-1 (Bétadine dermique 131 

10%, Meda Manufacturing, Mérignac, France) and dilutions at 75 mg.mL-1, 10 mg.mL-132 

1, 5 mg.mL-1, 1.33 mg.mL-1 and 0.67 mg.mL-1 were tested with incubation times of 30 133 

sec, 1 min, 2 min, and 10 min (Berkelman et al. 1982; Kerrison et al. 2016). Each algal 134 

filament was placed in a sterile 1.5 ml Eppendorf tube, incubated with 1 ml of iodine 135 

solution for the given duration and washed with NSW before leaving the alga to recover 136 

for two weeks in PES medium. The bacterial abundance on the algal surfaces was 137 

examined by microscopy both at the start of the experiment and after recovery, as 138 

described above. 139 

The second round of experiments was then carried out focusing on one 140 

promising experimental condition (10 min treatment, 1/20 dilution), adding notably an 141 

assessment of the microbial community composition. 142 

Antibiotic treatments 143 

We included a standard antibiotic treatment parallel to the EO- and iodine 144 

treatments (KleinJan et al. 2017) as a comparison to the new alternative methods. For 145 

this treatment, filaments of E. siliculosus were incubated in 90 mm Petri dishes with 25 146 

mL of antibiotic solution (penicillin G 45 µg.mL-1, streptomycin 22.5 µg.mL-1, 147 

chloramphenicol 4.5 µg.mL-1 dissolved in NSW) for four days. The algae were left to 148 

recover for three days in 25 mL of NSW and then re-treated for four days with 25 mL 149 

of antibiotic solution. This was followed by another recovery period of 2 weeks in PES 150 

medium. Bacterial cells on algal surfaces were counted before the experiments and 151 

after recovery, as described above. 152 
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Determination of inhibition diameters  153 

In addition to examining the treatment effect on bacteria in algal cultures, we 154 

determined inhibition diameters as a direct measure of the treatment efficiency. E. 155 

siliculosus filaments cultivated in PES were ground in a mortar with one mL of NSW. 156 

Fifty µl of the obtained suspension was then plated on Zobell plates. Sterile paper filter 157 

discs (10 mm, Whatman) were each soaked with 15 µL of the EO and iodine treatment 158 

solutions described above, and one disc was placed in the centre of each inoculated 159 

plate. Plates were cultivated for one week, which was followed by measurement of 160 

inhibition diameter. Results were separated according to two levels of activities for the 161 

discs soaked with the EO solutions and povidone-iodine solutions: resistant (ID < 12 162 

mm) or susceptible (ID > 24 mm) (adapted from Ponce et al. 2003). Contrary to 163 

classical determinations of inhibition diameters which usually focus on one strain of 164 

bacteria, results from these experiments apply to the entire community of bacteria 165 

associated with E. siliculosus at the time of the experiments. 166 

Impact of treatments on microbial community 167 

We determined the bacterial community composition associated with algal 168 

cultures by 16S metabarcoding analyses before selected treatments (50% EO, 1/20 169 

dilution of povidone-iodine for 10 min) as well as after the recovery period. For each 170 

sample, about 20mg of freeze-dried algae was ground (2x45 sec at 30 Hz) with a 171 

TissueLyser II (Qiagen, Hilden, Germany). DNA was extracted using the DNeasy Plant 172 

Mini Kit (Qiagen) following the manufacturer’s protocol. A mock community, comprising 173 

a mix of DNA from 26 cultivated bacterial strains (Thomas et al. 2019), as well as a 174 

negative control, were run and treated in parallel to the DNA extracts. For all of these 175 

samples we amplified the V3 and V4 regions of the 16S rDNA gene following the 176 

standard Illumina protocol for metabarcoding (Illumina 2013) and using the Q5® High-177 

Fidelity PCR Kit (New England BioLabs, MA, USA), the AMPure XP for PCR 178 

Purification Kit (Beckman Coulter, Brea, CA, USA), and the Nextera XT DNA Library 179 

Preparation Kit (Illumina, San Diego, CA, USA). Libraries were quantified with a Qubit 180 

High-Sensitivity dsDNA Assay (Life Technologies, Carlsbad, CA, USA) and mean 181 

fragment size was determined using a Bioanalyzer 2100 system (Agilent Technologies, 182 

Santa Clara, CA, USA). An equimolar pool of all samples was generated at a 183 

concentration of 4nM, diluted to 5 pM, spiked with 20% PhiX (Illumina) and sequenced 184 
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on an Illumina MiSeq sequencer on the Genomer platform (Station Biologique de 185 

Roscoff) using a MiSeq v3 kit (2x300bp, paired-end).  186 

The obtained reads were cleaned using Trimmomatic version 0.38 (Bolger et al. 187 

2014), assembled using Pandaseq v2.9 (Masella et al. 2012) and then analysed with 188 

Mothur 1.40.3 according to the MiSeq standard operating procedures developed by 189 

Kozich et al. (2013). Briefly, we aligned the sequences with the Silva_SEED database 190 

version 132 and removed non-aligning sequences, chimeric sequences (identified by 191 

vsearch), organellar sequences (identified by RDP classifier) and sequences that were 192 

represented only once in the dataset (singletons). The remaining sequences were then 193 

clustered into operational taxonomic units (OTUs) at a 97% identity level. OTUs that 194 

were more abundant in the blank samples compared to all other samples as well as 195 

rare OTUs (<5 reads in all samples taken together) were removed from the dataset. 196 

Finally, the OTU matrix was sub-sampled to avoid biases in the subsequent analyses. 197 

Statistical tests 198 

We compared bacterial counts and inhibition diameters across conditions using 199 

an ANOVA test followed by a Tukey HSD test using the Multcomp package of the R 200 

software (version 1.0.44) and a p-value cutoff of 0.05. The normality of the input data 201 

was verified with a Shapiro-Wilk test, but slight deviations from a normal distribution 202 

were tolerated (Underwood 1981).  203 

Principal component analyses (PCAs) were carried out on the bacterial 204 

sequence abundance data using the DESeq2 package (Love et al. 2014). This 205 

package was also used to determine OTUs that differed significantly in relative 206 

abundance between treatments allowing for a false discovery rate of 5%. Binomial 207 

tests followed by a Benjamini and Hochberg correction (Benjamini and Hochberg 1995) 208 

were carried out to determine the overrepresented families among the impacted OTUs. 209 

RESULTS 210 

Essential oil composition 211 

GC-MS analyses of the thyme, oregano, and eucalyptus EOs led to the 212 

identification of 34 different chemical compounds (Table 1), mainly phenols, 213 

monoterpenols, and monoterpenes. The EO of Thymus vulgaris was mainly composed 214 

of thymol (57.44%), γ-terpinene (20.88%), p-cymene (5.41%), and carvacrol (4.64%). 215 
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The major constituents of Eucalyptus dives piperitoniferum EO were piperitone 216 

(63.74%), α-phellandrene (12.9%), and terpinen-4-ol (4.45 %). The EO of Origanum 217 

vulgare was mainly composed of carvacrol (78.01%), p-cymene (7.82%), γ-terpinene 218 

(4.31%), and thymol (4%). These chemical compositions are consistent with the 219 

literature (Gilles et al. 2010; Amrouni et al. 2014; Habbadi et al. 2017). 220 

Antimicrobial effects of EOs and povidone-iodine in cultures 221 

The number of bacteria on the algal surface at the start of the experiments 222 

compared to the number of bacteria on the algal surface after the treatments and the 223 

2-week recovery are shown in Table 2. For the EO treatments, the olive oil and DMSO 224 

control showed no antibacterial effect. All combinations of different EOs were lethal for 225 

the algae at the concentrations tested. The remaining individual EOs exhibited various 226 

levels of antimicrobial activity with the 50% solutions being the most efficient. 227 

Concordant results were also obtained in the second round of experiments (Table 3), 228 

although the effect of eucalyptus was no longer statistically significant. The inhibition 229 

experiments with ground cultures revealed that only the thyme and oregano EOs 230 

resulted in inhibition diameters (IDs) > 25 mm (Table 4). For the eucalyptus treatments, 231 

IDs were below the defined threshold for at least one of the bacteria present in the 232 

alga-associated microbiota. 233 

The stock solution of povidone-iodine was lethal for the algae, but the 1/20 and 234 

1/50 diluted solutions, combined with a treatment time of 10 minutes, proved to be 235 

efficient in both experiments (Table 2, Table 3). In the inhibition diameter experiments, 236 

only the 75 mg.mL-1 solution of povidone-iodine resulted in an inhibition diameter > 25 237 

mm (Table 4). For the other treatments, including the antibiotic treatment, inhibition 238 

diameters were below the defined threshold for at least one of the bacteria present in 239 

the alga-associated microbiota. 240 

In algal cultures, unlike in the inhibition diameter experiments, the efficiency of 241 

all EO and povidone-iodine treatments was low compared to that of the treatment with 242 

antibiotic-solution, which generally resulted in two- to ten-fold lower bacterial loads 243 

after recovery (Table 2, Table 3). 244 
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Effect of treatments on bacterial community composition 245 

16S metabarcoding analyses were carried out for all control samples as well as 246 

for those treated with the 20-fold dilution of povidone-iodine, the 50% EO solutions or 247 

the antibiotics. The sequences obtained corresponded predominantly to 248 

Alphaproteobacteria (59% of reads), followed by Bacteroidetes (28.3% of reads), 249 

Gammaproteobacteria (4.6% of reads), and Actinobacteria (2.2% of the reads across 250 

all experiments; Fig. 1). A total of 9 818 OTUs were identified in the dataset. 251 

For the EO treatments, DESeq2 analyses revealed no significant effect on the 252 

microbial community composition as confirmed by the PCA plots (Fig. 2a). For the 253 

povidone-iodine treatments, the PCA showed a clear separation of controls kept in 254 

NSW and treated samples for the iodine treatment (Fig. 2b). A total of 252 OTUs were 255 

found to differ significantly (adjusted p<0.05) in relative abundance between the treated 256 

and non-treated samples (69 OTUs decreased and 183 increased in treated samples; 257 

Supplementary data Table S1). The taxonomic affiliation of those OTUs is shown in 258 

Table 5. Among the OTUs that were negatively impacted by the povidone-iodine 259 

treatment and that were significantly overrepresented (adjusted p<0.05) are: an 260 

unclassified family of Acidiicrobiia, an unclassified family of Microtrichales, an 261 

unclassified family of Actinobacteria, as well as the Saprospiraceae and 262 

Rhodobacteraceae families. Among the OTUs that increased in relative abundance in 263 

response to the povidone-iodine treatments and that were significantly 264 

overrepresented (adjusted p<0.05) are: the Cyclobacteriaceae, Hyphomonadaceae, 265 

Sphingomonadaceae, Alteromonadaceaea, Halieaceae, and Pseudohongiellaceae 266 

families. 267 

For the antibiotic treatments, due to their high efficiency, no visible bands were 268 

obtained during PCR amplification for metabarcoding. Library preparation was 269 

nevertheless carried out, but only 10 reads remained after cleaning. These reads were 270 

associated with the class of Alphaproteobacteria, notably the Rhizobiaceae and 271 

Rhodobacteraceae families and the Marinobacter genus. 272 
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DISCUSSION  273 

Antibiotic treatments are commonly used to obtain clean algal cultures, yet 274 

bacterial resistance to antibiotics is increasingly widespread. Sometimes it is related to 275 

the emergence of pathogenic, multi-resistant bacterial strains. Thus, especially after 276 

long treatments, resistant strains may proliferate without control from the remaining 277 

microbiome, sometimes by far exceeding bacterial concentrations found in a healthy 278 

microbiome (personal data). Ethanol has been proposed as one alternative treatment 279 

to clean kelp species, e.g. in Ecklonia radiata, where a short bath in a 70% ethanol 280 

solution followed by sterile deionised water showed promising results (Lawlor et al. 281 

1991). In much the same way, the surfaces of the wrack Fucus serratus and the red 282 

alga Palmaria palmata surfaces can be cleaned efficiently with a mixture of ethanol 283 

(40–50%) and sodium hypochlorite (1%) (Kientz et al. 2011). Unfortunately, such 284 

surface sterilisation methods are not suitable for small filamentous algae such as 285 

Ectocarpus. When Ectocarpus filaments come in to contact with 70% ethanol or 286 

bleach, even for less than a second, this results in immediate loss of pigmentation and 287 

cell death. Therefore, we sought to test two other alternative treatments, EOs and 288 

povidone-iodine, to reduce the microbiota associated with the brown alga E. 289 

siliculosus, and compared the results with the standard antibiotic treatment routinely 290 

used in our laboratory. Moreover, unlike in previous studies that focused exclusively 291 

on the direct impact of treatments on the number of bacteria on algal surfaces, our 292 

study also examined the taxonomic composition of the microbiome after recovery.  293 

Essential oils inhibit the growth of the complete spectrum of Ectocarpus-associated 294 

bacteria 295 

Our data show that the tested EO treatments significantly reduce the number of 296 

bacteria associated with E. siliculosus even after two weeks of recovery. This is in line 297 

with data published by Mousavi et al. (2011), who observed a strong impact of a 298 

combination of four EOs on several bacterial isolates, both marine and terrestrial. A 299 

key point that has not been previously demonstrated is that this reduction occurred 300 

without significant change in the relative bacterial community composition. Indeed, 301 

EOs contain several molecules such as p-cymene, β-phellandrene, terpinolene, 302 

terpinen-4-ol, piperitone, carvacrol, and thymol, which have been shown to have an 303 

antibacterial effect on a wide range of bacteria (Lambert et al. 2001; Carson et al. 2002, 304 
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2006; Eftekhar et al. 2005; Bakkali et al. 2008; Mora et al. 2011; Marchese et al. 2016, 305 

2017). The fact that thyme and oregano were more efficient than eucalyptus in our 306 

experiments could be due to their higher concentration of linalool. This compound has 307 

been shown to have a synergic effect when combined with thymol and carvacrol 308 

molecules (the principal components of thyme and oregano EOs) (Bassolé et al. 2010; 309 

Herman et al. 2016). Both thymol and carvacrol target the bacterial cell membrane. 310 

Carvacrol changes membrane permeability for essential cations like H+ and K+, leading 311 

to leakage and cell death (Ultee et al. 1999), and thymol inserts itself in the lipid 312 

membrane, changing its morphology and disrupting the surface elasticity (Ferreira et 313 

al. 2016).  314 

Furthermore, EOs contain several other potentially antimicrobial molecules. 315 

Due to this complex composition, the overall antibacterial activity of EOs is likely 316 

caused by a broad spectrum of mechanisms of action (Burt 2004; Bakkali et al. 2008), 317 

contrary to antibiotics. For this reason, it is expected that bacteria might rarely develop 318 

resistance mechanism for EOs. On the downside, host tolerance of high 319 

concentrations of EOs may also be limited, as illustrated by the lethal effect on algal 320 

hosts observed for the EO mixtures described herein. 321 

Povidone-iodine treatments induce microbial community shifts 322 

Povidone-iodine at low concentrations was also an efficient inhibitor of overall 323 

bacterial growth. The active compound in povidone-iodine is ‘free’ iodine (McDonnell 324 

and Russell 1999). Povidone-iodine is an iodophor, a complex of iodine and a 325 

solubilising carrier (poly-vinyl-pyrrolidone, PVP), which acts as a reservoir of free 326 

iodine. The free iodine levels are dependent on the concentration of the povidone-327 

iodine solution. The content of non-complexed free iodine increases as the dilution 328 

increases, reaching a maximum value at about 0.1% final concentration (i.e. a 1/100 329 

dilution), but then decreases again with further dilution (Rackur 1985). The PVP 330 

component increases the antimicrobial efficiency of iodine by delivering the iodine 331 

directly to the bacterial cell surface as a result of its affinity to cell membranes (Zamora 332 

1986).  333 

Bacterial resistance to povidone-iodine is rare in a medical context (Houang et 334 

al. 1976), probably because its principle of action, the rapid oxidation of amino acids 335 

and nucleic acids in biological structures (Kanagalingam et al. 2015), is hard to 336 
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counteract. However, iodine is also known to accumulate naturally in brown algae, 337 

which emit volatile short-lived organo-iodines and molecular iodine as part of their 338 

molecular defence repertoire (Leblanc et al. 2006; Küpper et al. 2008). It is therefore 339 

likely that microbes in long-lasting associations with brown algae have at least a basic 340 

level of resistance against iodine-based defences. In fact, some marine bacteria 341 

associated with algae even have their own iodine metabolism or iodine uptake 342 

mechanisms (Amachi et al. 2007; Fournier et al. 2014; Barbeyron et al. 2016). For 343 

instance, Zobellia galactanivorans (Flavobacteria) efficiently degrades brown algal cell 344 

walls and has been suggested to cope with reactive oxygen species and the massive 345 

amounts of liberated iodine via the activity of a vanadium-dependent iodoperoxidase 346 

(Fournier et al. 2014; Barbeyron et al. 2016). The presence of such iodine-specialised 347 

marine bacteria may explain why, unlike EOs, iodine treatments resulted in a specific 348 

shift in microbial community composition after application. 349 

Among the 69 OTUs significantly reduced by the povidone-iodine treatment, 350 

several belonged to the Actinobacteria, which are known to be affected by this 351 

molecule (Lachapelle et al. 2013). Furthermore, Actinobacteria, Chitininophagales and 352 

Rhodobacteraceae were found only among the negatively impacted OTUs. On the 353 

other hand, Cytophagales, Hyphomonadaceae, Alteromonadaceae, Halieaceae, and 354 

Oceanospirillales comprised many OTUs that increased in relative abundance in 355 

response to the povidone-iodine treatments. An increase in relative abundance does 356 

not necessarily indicate an increase in absolute abundance as global bacterial cell 357 

counts decreased in response to the treatments; however, these taxa are likely to have 358 

more widespread resistance mechanisms to iodine and may benefit from the creation 359 

of a new niche as other bacteria in the community decline. A key question for the future 360 

is to understand how these bacteria tolerate iodine and if this tolerance correlates in 361 

any way with the iodine metabolism of the algal host. 362 

CONCLUSION AND OUTLOOK 363 

While antibiotic treatments are currently the most efficient way of eliminating 364 

algal-associated microbiota and cannot be replaced by any of the tested alternative 365 

treatments in the near future, both EOs and povidone-iodine offer promising 366 

alternatives when only a reduction of bacterial abundance is sought and where the 367 
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phenomena of antibiotic resistance are likely to become an issue. Notably, this is the 368 

case in aquaculture, the use of antibiotics may disrupt the equilibrium between bacteria 369 

and lead to the proliferation of resistant bacterial strains, including opportunistic 370 

pathogens (Watts et al. 2017). In seaweed aquaculture, the notion of controlling or 371 

manipulating the microbiome is not yet widespread, but it is known that microbiota 372 

impact algal fitness (Goecke et al. 2010; Wahl et al. 2012) and even the chemical 373 

properties of the algae (Burgunter-Delamare et al. 2020). In the hatchery (closed) 374 

stages of seaweed aquaculture, both EOs and iodine treatments could potentially be 375 

used as one way of modifying the microbiome, possibly in combination with probiotics 376 

(Suvega and Arunkumar 2019). The protocols proposed here may prove useful in this 377 

context as they are more likely to be tolerated - even by small and filamentous algae. 378 

Moreover, knowledge on the compositional biases introduced by the treatments may 379 

help orient potential users towards either one of the proposed treatments depending 380 

on their aims.     381 
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FIGURES AND TABLES 609 

Table 1 - Chemical composition of Origanum vulgaris, Thymus vulgaris, and Eucalyptus dives 

piperitoniferum essential oils. Compounds that represent more than 1% of the total peak area are 

indicated in italic. RI = retention index. 

RI Compounds 

% peak area 

Origanum vulgare 
Thymus 

vulgaris 

Eucalyptus dives 

piperitoniferum 

927 α-thujene 0.22 _ 1.28 

935 α-pinene 0.59 0.16 _ 

952 Camphene 0.11 0.26 _ 

980 β-pinene 0.18 _ _ 

989 β-myrcene 0.50 0.16 0.55 

1008 α-phellandrene _ _ 12.90 

1019 α-terpinene 0.51 0.24 0.84 

1026 p-cymene 7.82 5.41 4.05 

1033 β-phellandrene _ _ 1.76 

1035 Eucalyptol 0.06 0.80 _ 

1046 3-carene _ _ 0.25 

1060 γ-terpinene 4.31 20.88 0.60 

1087 Terpinolene _ _ 1.73 

1100 Linalool 1.29 1.53 0.58 

1127 Menth-2-en-l-ol <cis-p-> _ _ 0.22 

1139 Trans-verbenol 0.23 _ _ 

1151 Camphor _ 1.43 _ 

1176 Borneol _ 1.41 _ 

1184 Terpinen-4-ol _ 0.67 4.45 

1186 Thujone _ _ 0.28 

1197 α-terpineol _ 0.24 1.12 

1239 Thymol methyl ether _ 0.39 _ 

1257 Piperitone _ _ 63.74 

1291 Thymol 4.00 57.44 _ 

1300 Carvacrol 78.01 4.64 _ 

1372 4,6-di-tert-butylresorcinol _ 0.18 _ 

1427 β-caryophyllene 1.61 2.11 0.77 

1467 Naphthalene _ 0.36 0.46 

1497 Viridiflorene _ _ 0.74 

1502 Elixene _ _ 2.87 

1591 Caryophyllene oxide 0.50 1.45 _ 

 610 
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Table 2 - Ratio after treatment / before treatment of the number of bacteria on the algal surface. (± standard deviation, n=3). NSW: natural sea water, ATB: antibiotics, 
_: not tested, +++: bacterial proliferation. *: Significant results in comparison with the control (p-value<0.05). 

  Stock 
solution 

Dilution 3/4 Dilution 1/2 
Dilution 

1/10 
Dilution 

1/20 
Dilution 

1/50 
Dilution 

1/100 
NSW 

Essential 
oil 

DMSO 1.12 ± 0.28 _ _ _ _ _ _ _ 

Olive oil +++ _ +++ +++ _ _ _ _ 

Eucalyptus 0.38 ± 0.15 * _ 0.30 ± 0.12 * _ _ 3.41 _ _ 

Oregano 0.49 ± 0.10 * _ 0.35 ± 0.10 * _ _ 0.79 ± 0.24 _ _ 

Thyme 1.10 ± 0.17 _ 0.35 ± 0.12 * _ _ 0.44 ± 0.29 * _ _ 

Thyme + oregano algal death _ algal death algal death _ _ _ _ 

Thyme + eucalyptus algal death _ algal death algal death _ _ _ _ 

Eucalyptus + oregano algal death _ algal death algal death _ _ _ _ 

Eucalyptus + oregano + thyme algal death _ algal death algal death _ _ _ _ 

Antibiotics 
NSW _ _ _ _ _ _ _ 0.60 ± 0.22 

ATB 0.06 ± 0.05 * _ _ _ _ _ _ _ 

Iodine 

NSW _ _ _ _ _ _ _ 0.60 ± 0.22 

30sec dead 0.55 ± 0.06 _ _ _ 0.33 ± 0.01 * 0.62 ± 0.15 0.54 ± 0.14 

1min dead 0.46 ± 0.02 * _ _ _ 0.43 ± 0.11 * 0.87 ± 0.02 1.35 ± 0.21 

2min dead 0.89 ± 0.09 _ _ _ 0.29 ± 0.16 * 1.01 ± 0.03 17.27 ± 0.12 

10min _ _ _ 0.51 ± 0.11 0.34 ± 0.15 * 0.17 ± 0.08 * _ 0.86 ± 0.08 
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Table 3 – Average number of bacteria after the treatments and 2 weeks of recovery. 
(± standard deviation, n=3). *: Significant results compared to controls (DMSO/NSW). 
NSW: natural sea water. 

TREATMENT Average number of bacteria 

Essential Oils 

Before treatment 83.7±9.2 

Thyme 50% 29.2±10.1 * 

Eucalyptus 50% 46.1±17.8 

Oregano 50% 39.5±5 * 

NSW 66.7±30.7 

DMSO 284.9±15.4 

Iodine 

Before treatment 70.6±11.1 

3/4 dilution dead 

1/10 dilution 35.7±7.5 

1/20 dilution 23.9±10.5 * 

1/50 dilution 11.7±5.8 * 

NSW 60.6±6 

Antibiotics 

Before treatment 61.3±30.3 

After treatment 3.8±3.2 * 

NSW 36.5±3.2 

 

 

Table 4 - Inhibition zone diameter of the different treatments. (± standard deviation, 
n=3). *: Sensitive diameters. NSW: natural sea water. 

TREATMENT Inhibition Diameter (mm) 

Control 
NSW No inhibition 

DMSO No inhibition 

Essential Oils 

Thyme 50% 41.3±4.6 * 

Eucalyptus 50% 18±6.1 

Oregano 50% 44.7±9.2 * 

Iodine 

3/4 dilution 22.5±4.7 * 

1/10 dilution 14.8±3.1 

1/20 dilution 12.3±3.1 

1/50 dilution No inhibition 

Antibiotics No inhibition 
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Table 5 Taxonomic affiliations of the OTUs impacted by the iodine treatment, compared to their occurrence in the entire iodine dataset. 
* indicates significant p-values after Benjamini-Hochberg correction (* p < 0.05, ** p < 0.01, *** p < 0.001). 

Taxa 

OTUs decreased by iodine treatment OTUs increased by iodine treatment Entire dataset 

Number of 
impacted OTUs 

ratio p-value 
Number of 

impacted OTUs 
ratio p-value 

Number of  
OTUs 

ratio 

Acidimicrobiia_unclassified 3 0.04348 0.00003 *** 0 0.00000 0.36363 13 0,00247 

Microtrichales_unclassified 2 0.02899 0.00001 *** 0 0.00000 0.09896 3 0.00057 

Actinobacteria_unclassified 5 0.07246 0.00001 *** 0 0.00000 0.69409 34 0.00645 

Bacteria_unclassified 3 0.04348 0.98989 17 0.09290 0.95748 728 0.13814 

Bacteroidetes_unclassified 0 0.00000 0.18926 1 0.00546 0.10729 16 0.00304 

Bacteroidia_unclassified 11 0.15942 0.00813 * 27 0.14754 0.00070 *** 421 0.07989 

Saprospiraceae 6 0.08696 <0.00001 *** 0 0.00000 0.81904 49 0.00930 

Cyclobacteriaceae 0 0.00000 0.50868 20 0.10929 <0.00001 *** 54 0.01025 

Cytophagales_unclassified 0 0.00000 0.18926 2 0.01093 0.01876 16 0.00304 

Flavobacteriaceae 5 0.07246 0.13318 4 0.02186 0.95541 265 0.05028 

Flavobacteriales_unclassified 0 0.00000 0.62309 1 0.00546 0.72888 74 0.01404 

Oxyphotobacteria_unclassified 1 0.01449 0.09288 3 0.01639 0.04805 39 0.00740 

Pirellulaceae 0 0.00000 0.73690 1 0.00546 0.86741 101 0.01917 

Alphaproteobacteria_unclassified 10 0.14493 0.97775 30 0.16393 0.99743 1334 0.25313 

Hyphomonadaceae 0 0.00000 0.58088 14 0.07650 <0.00001 *** 66 0.01252 

Rhizobiaceae 3 0.04348 0.71437 11 0.06011 0.62325 366 0.06945 

Rhodobacteraceae 13 0.18841 0.00039 *** 4 0.02186 0.99767 383 0.07268 

Sphingomonadaceae 7 0.08696 0.08099 24 0.13661 0.00041 *** 345 0.06546 

Alteromonadaceae 0 0.00000 0.35172 9 0.04918 <0.00001 *** 33 0.00626 

Marinobacteraceae 0 0.00000 0.36020 1 0.00546 0.33058 34 0.00645 

Halieaceae 0 0.00000 0.68711 11 0.06011 0.00007 *** 88 0.01670 

Pseudohongiellaceae 0 0.00000 0.01301 * 1 0.00546 0.00059 *** 2 0.00038 

Proteobacteria_unclassified 0 0.00000 0.86364 2 0.01093 0.89527 150 0.02846 

TOTAL 69   183   5270  
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Fig. 1 Distribution of bacterial OTUs per phylum in the different samples and 
experiments 
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Fig. 2 PCA plot of microbiome composition two weeks after the different treatments (a) 

Essential oils treatment (b) Povidone-iodine treatment. NSW: Natural Sea Water 
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SUPPLEMENTARY MATERIAL 
 

Table S1. List of the 252 OTUs significantly different in relative abundance between the treated 

and non-treated samples (in green are the OTUs that decreased and in red are the OTUs that 

increased in treated samples). Numbers in parentheses correspond to the confidence of taxonomic 

affiliations as reported by RDP classifier. 
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