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ABSTRACT
We calculate the dynamical tides raised by a close planetary companion on non–
rotating stars of 1 M� and 1.4 M�. Using the Henyey method, we solve the fully non–
adiabatic equations throughout the star. The horizontal Lagrangian displacement is
found to be 10 to 100 times larger than the equilibrium tide value in a thin region near
the surface of the star. This is because non–adiabatic effects dominate in a region that
extends from below the outer edge of the convection zone up to the stellar surface, and
the equilibrium tide approximation is inconsistent with non–adiabaticity. Although
this approximation generally applies in the low frequency limit, it also fails in the parts
of the convection zone where the forcing frequency is small but larger than the Brunt-
Väisälä frequency. We derive analytical estimates which give a good approximation
to the numerical values of the magnitude of the ratio of the horizontal and radial
displacements at the surface. The relative surface flux perturbation is also significant,
on the order of 0.1% for a system modelled on 51 Pegasi b. Observations affected by the
horizontal displacement may therefore be more achievable than previously thought,
and brightness perturbations may be the result of flux perturbations rather than due
to the radial displacement. We discuss the implication of this on the possibility of
detecting such tidally excited oscillations, including the prospect of utilising the large
horizontal motion for observations of systems such as 51 Pegasi.

Key words: planet-star interactions – stars: oscillations – asteroseismology – planets
and satellites: detection

1 INTRODUCTION

It is becoming increasingly apparent that planets are a com-
mon phenomenon, with observations suggesting that they
may be about as common as stars (Borucki et al. 2011).
The first outright exoplanet discovery came in 1995: 51 Pe-
gasi b (Mayor & Queloz 1995), a gas giant orbiting a solar-
type star. Since then, many more exoplanets have been dis-
covered, with many of these being gas giants in close or-
bits (Winn & Fabrycky 2015). Such planets are preferentially
selected for in the two most successful exoplanet detection
techniques: radial velocity and transit detection. The same
characteristics which lead to this preference for hot Jupiters
(planets with a mass on the order of that of Jupiter, and
with a close orbit, with semi-major axis up to ∼ 0.1 au) also

? andrew.bunting@physics.ox.ac.uk
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‡ caroline.terquem@physics.ox.ac.uk

increase the possibility of detecting tidally induced oscilla-
tions.

Both detection methods depend upon variations in the
light from the host star, but in both cases the star is sup-
posed to be unchanged in its own reference frame. The fact
that stars are variable is of course well known, and stellar
modes of oscillation have been measured for the sun (Ul-
rich (1970); Di Mauro (2017)) and many other stars (such
as by Brown et al. (1991) and Kjeldsen et al. (2003)).

In these cases, the driving mechanism for the oscillating
modes is somewhat unclear. The gravitational effect of a hot
Jupiter, however, provides external forcing of the oscillation
through the time–varying tidal potential. Such tidally ex-
cited oscillations have been studied in various regimes, from
stellar binaries (Quataert et al. 1995) to planetary compan-
ions (Terquem et al. 1998), including studies with orbital ec-
centricities both small (Arras et al. 2012) and large (Burkart
et al. (2012); Fuller (2017); Penoyre & Stone (2018)).

Often, the equilibrium tide is used as a simple approxi-
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mation. Focus has largely been upon the radial displacement
induced by the tidal potential, and the horizontal displace-
ment has been somewhat neglected, potentially because it
does not contribute to the disc–integrated luminosity varia-
tions. Conditions very near the surface, which is where we
are able to observe, are difficult to model, and the sim-
ple approximation may break down. Previous works have
suggested that the horizontal displacement may be particu-
larly poorly described by the equilibrium tide in this region
(Savonije & Papaloizou (1983); Arras et al. (2012)).

The work presented in this paper focusses upon the be-
haviour of the perturbation near the surface of the star. The
fully non–adiabatic oscillation equations are solved in order
to attempt to capture the surface behaviour as accurately
as possible. Both cases with frozen convection and convec-
tion adjusting instantaneously to the tidal perturbation are
considered.

The paper is structured as follows: Section 2 discusses
the methods, set–up and governing equations and provides
some analytical comparisons to assess how well the equa-
tions have been solved numerically; Section 3 describes the
response of the star to the tidal perturbation, focussing upon
the surface region, for a system similar to Pegasi 51 b; Sec-
tion 4 discusses these results and their implications; Sec-
tion 5 summarises our conclusions.

2 METHODS

Section 2.1 discusses the treatment of convection used
throughout this work. We detail the set–up of the system and
the equations which are solved in section 2.2. In section 2.4,
we derive analytical estimates that are used to ensure that
the numerical solution is self–consistent.

2.1 Treatment of convection

For low mass stars, convection occurs close to the stellar
surface and is likely to have an impact on the observable
behaviour of the star. Here we adopt a description based
on the local time dependent Mixing Length Theory (MLT)
that has been discussed by many authors (see eg. Unno 1967;
Gough 1977; Salaris & Cassisi 2008; Houdek & Dupret 2015).
According to the MLT, under steady state conditions, or
when it can be assumed to have relaxed to an equilibrium
value, the convective flux is given by an expression of the
form:

Fc =−A∇∇∇s, (1)

where s is the entropy and A depends on the convective ve-
locity, the mixing length and various other parameters (see
appendix B and eq. [B5] for more details).

In this work, we first consider the case when convection
is frozen, i.e. the convective flux is unchanged by the pertur-
bation. This leads to a value of the Lagrangian displacement
at the surface of the star which differs in magnitude from
the standard equilibrium tide value by more than an order
of magnitude. We then calculate the response to forcing al-
lowing for the perturbation of the convective flux. Again,
significant departure from the equilibrium tide is obtained
in that case, although the results are qualitatively different.

Table 1. The parameters of the stellar models used throughout
this work.

Mass Luminosity Radius Age Teff

M� L� R� Gyr K

1.00 1.02 1.01 4.24 5790

1.40 4.66 1.67 1.58 6560

This enables us to assess the effect of convection on the La-
grangian displacement, within the framework of the MLT.

In order to calculate the perturbed convective flux in the
calculations for which the convection has assumed to have
relaxed to quasi-steady conditions, given the uncertainties
in the MLT, we have followed two approaches. In the first,
which we label approach A, we assume that it is dominated
by the perturbation to the entropy gradient displayed on the
right hand side of equation (1). That is to say, its linearised
form is approximated as:

F′c =−A∇∇∇s′, (2)

(see appendix B for more details). We also use the fact that
gradients are dominated by the radial component, so that
the perturbed convective flux is radial with that component
being given by:

F ′c,r =−A
∂ s′

∂ r
. (3)

This is because the variations in the radial direction turn
out to be over a scale λr which is very small compared to
the radius R of the star, and the ratio of radial to horizon-
tal gradients near the surface of the star is on the order of
R/λr� 1.

In the second approach, which we label approach B,
we have allowed for variations in A that incorporate per-
turbations to the state variables and also to the convective
velocity. This also has a dependence on the entropy gradient
(see appendix B). We further remark that the procedures we
have adopted are consistent with those used to calculate the
stellar model we have chosen as our equilibrium background.

2.2 Set–up

The system studied here is that of a Jupiter–mass planet
on a circular orbit around a central star. We shall present
detailed results for an orbital period of 4.23 days, which
corresponds to that of the planet around 51 Peg. The choice
of this period allows comparisons to be made with the results
of Terquem et al. (1998). We shall also scan neighbouring
periods to search for resonances associated with g–modes
that are confined in an interior radiative region. For the
most part, this work focusses on a star of mass M = 1 M�
with parameters close to those of the actual sun, but some
results are shown for a typical main sequence star of mass
M = 1.4 M� for comparison. Some parameters describing the
two stars are given in Table 1.

We adopt spherical coordinates, (r,θ ,φ), centred on the
non–rotating star, with the orbital angular momentum vec-
tor aligned with θ = 0. The associated unit vectors are r̂rr, θ̂θθ

and φ̂φφ , respectively.

MNRAS 000, 1–24 (2018)



Tidally induced oscillations 3

The perturbing tidal potential introduces the only
source of non–radial dependence, which has the form of a
spherical harmonic of degree and order 2 ( i.e., in stan-
dard notation, l = m = 2). More details can be found in ap-
pendix A. Because the equations are linear, the variables
specifying the response that we solve for will therefore also
have this non–radial dependence through a multiplicative
factor.

The following assumptions are adopted in order to de-
rive a set of governing equations for the forced response
problem:

(i) Time independence of the background: the equilib-
rium state of the star changes on a timescale much longer
than the period of the oscillations.

(ii) Spherical symmetry: the equilibrium structure of the
star is spherically symmetric, parametrised only as a func-
tion of radius. This is assumed to apply after horizontal
averaging in convection zones.

(iii) Cowling approximation: the perturbation to the
gravitational potential of the star is neglected, which is jus-
tified in the outer regions of the star which has low density
and in the inner parts of the star where the wavelength of
the oscillatory response is small.

(iv) Small perturbations: the departures from equilibrium
are everywhere small such that the linear regime is a valid
approximation.

To calculate the response, the linear non–adiabatic stel-
lar oscillation equations (derived in, e.g., Unno et al. (1989))
are solved for the case when the star is perturbed by a regu-
lar tidal potential, due to the planet. The variables directly
solved for are: ξr, the radial component of the Lagrangian
displacement; F ′r , the Eulerian perturbation to the radial to-
tal flux, Fr (with contribution from both the radiative and
convective fluxes); p′, the Eulerian perturbation to the pres-
sure, p; and T ′, the Eulerian perturbation to the temper-
ature, T. More details can be found in appendix B. These
equations are:

1
r2

∂

∂ r
(r2

ρ0ξr)+

(
ρ0

χρ p0
− l(l + 1)

m2ω2r2

)
p′

− ρ0

T0

χT

χρ

T ′ =
l(l + 1)

m2ω2r2 ρ0ΦP, (4)

(
iρ0mωcp +

l(l + 1)

r2 K0

)
T ′−

(
imωcp∇adρ0T0

) p′

p0

+ imωρ0T0
ds0

dr
ξr +

1
r2

∂

∂ r
(r2F ′r ) = 0, (5)

F ′r
K0

+
∂T ′

∂ r
− 1

T0

dT0

dr

[
−3 +

κT

κ0
− χT

χρ

(
1 +

κρ

κ0

)]
T ′

− dr
ds0

Fc,r,0
K0

d
dr

(
cp

T ′

T0

)
− dT0

dr
1

p0χρ

(
1 +

κρ

κ0

)
p′

+
dr
ds0

Fc,r,0
K0

d
dr

(
cp∇ad

p′

p0

)
= 0, (6)

−m2
ω

2
ρ0ξr +

(
∂

∂ r
+

ρ0

χρ p0

dΦ0

dr

)
p′

− dΦ0

dr
ρ0

T0

χT

χρ

T ′ =−ρ0
∂ΦP

∂ r
, (7)

which correspond to the linearised continuity, entropy, and
radiative diffusion equations together with the radial compo-
nent of the equation of motion, respectively. The subscript 0
refers to the equilibrium state. Here ρ is the density; ω is the
angular frequency of the planet’s orbit; ΦP =−GmPr2/(4D3)
is the tidal potential after removal of the spherical har-
monic factor (see Appendix A), with mP being the plane-
tary mass, G the gravitational constant and D the orbital
radius; cp is the specific heat capacity at constant pressure;
K is the radiative thermal conductivity; χρ ≡ (∂ ln p/∂ lnρ)T
and χT ≡ (∂ ln p/∂ lnT )

ρ
; κ is the opacity; κρ ≡ (∂κ/∂ lnρ)T

and κT ≡ (∂κ/∂ lnT )
ρ
; s is the specific entropy; Fc,r,0 is

the radial component of the equilibrium convective flux;
∇ad = (∂ lnT0/∂ ln p0)s. The radiative thermal conductivity
is related to the opacity, temperature and density through:
K = 4ac∗T 3/(3κρ); here a = 4σ/c∗ = 7.5657×10−15 erg cm−3

K−4 is the radiation density constant, with σ being the
Stefan–Boltzmann constant and c∗ being the speed of light
(the subscript–asterisk is to differentiate it from the sound
speed).

All the perturbed quantities are proportional to
Y−2

2 (θ ,φ)e2iωt , where Y−2
2 is a spherical harmonic (see Ap-

pendix A). This factor is taken as read and, following stan-
dard practice, can be removed so that all the perturbation
quantities which appear in equations (4)–(7) depend only
upon r. Note that at this stage these quantities are in gen-
eral complex. Once the solution has been calculated, the
spherical harmonic factors can be restored and the real part
taken to obtain a physical solution.

The boundary conditions are split, two apply at the
centre and two at the surface. At the centre, ξr = 0 and F ′r =
0, which ensure regularity. In our calculations, we assume
that the surface is free, so that ∆p = 0 there, where ∆ denotes
the Lagrangian perturbation. We however also test different
conditions on ∆p to check that our results do not depend on
it. Finally, assuming that the star is a blackbody emitter,
and defining the surface as where the temperature is equal
to the effective temperature, (4∆T/T0−∆Fr/Fr0 ) = 0 there.

The Henyey method (Henyey et al. 1964) is used to solve
these equations, with a stellar model produced by MESA
(Paxton et al. (2011), Paxton et al. (2013), Paxton et al.
(2015), Paxton et al. (2018)) as the equilibrium background
star which we perturb. For a more extended account of the
numerical method see Savonije & Papaloizou (1983), where
it was used to evaluate the tidal response of a massive star.
In order to ensure that the behaviour at the surface is accu-
rately captured, the resolution is smoothly increased using
linear interpolation, leading to a grid cell width, δ r, such
that δ r/r = 3.5×10−6 there.

At the surface of both the 1 M� and 1.4 M� stars, there
is a thin, strongly stably stratified layer. This is illustrated in
Figure 1, which shows N2/(m2ω2) against r/R in the surface
region, where R is the stellar radius and N2 is the square of

MNRAS 000, 1–24 (2018)
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the Brunt–Väisälä frequency, defined through:

N2 =
1
ρ0

d p0

dr

(
1
ρ0

dρ0

dr
− 1

Γ1 p0

d p0

dr

)
, (8)

Here Γ1 = d ln p0/d lnρ0|s is the adiabatic exponent, with the
derivative being taken at constant specific entropy. Negative
values of N2 indicate a convection zone, which extends from
r/R = 0.73 to r/R = 0.9999 for the 1 M� star and from r/R =
0.93 to r/R = 0.9999 for the 1.4 M� star.
Near the surface, N2 transitions suddenly from being large
and negative to being large and positive, reflecting a tran-
sition from a strongly superadiabatic convection region to a
strongly stably stratified region. In this thin, radiative layer,
the local thermal time scale is much shorter than the pe-
riod of the forced oscillations, enabling heat to escape on
a timescale much shorter than this period. Accordingly, we
expect that non–adiabatic effects will be important in this
region. However, the region near the surface in which non–
adiabaticity is important extends below this stably stratified
layer into the outer parts of the convection zone, as we show
in Section 2.3.

2.3 Extent of the non–adiabatic zone below the
stellar surface

We define rna,f and rna,p as the radius of the base of the non–
adiabatic zone when convection is frozen and perturbed, re-
spectively. To evaluate this radius, we start by writing the
perturbed energy equation under the form:

ρT
(

∂ s′

∂ t
+ uuu ···∇∇∇s

)
=−∇∇∇ ···FFF ′, (9)

where uuu is the vector velocity. (Note that although the sub-
script ‘0’ does not appear here as we are only concerned
with estimates, background state variables are used). In
this section, we are interested in the cases where either
the perturbed radiative flux, which we denote FFF ′rad, or the
perturbed convective flux, FFF ′c, dominates. As here we are
only concerned with an estimate of the extent of the non–
adiabatic zone, we approximate FFF ′rad and FFF ′c by assuming
that most of the contributions to these perturbed quantities
come from the radial gradients of temperature and entropy,
respectively. Therefore:

F ′c ∼−A
∂ s′

∂ r
, with A∼ ρvclT, (10)

to within a factor of order unity, where vc is the convective
velocity and l is the mixing length (see eq. [B5], where we re-
mark that we have neglected the cooling term at the denom-
inator). For the radiative flux, we have F ′rad ∼ −K∂T ′/∂ r.
We remark that perturbations to the opacity may also con-
tribute to F ′rad. However, this is not expected to change the
estimates given below significantly when, as in our case,
the non adiabatic layer extends below the very strongly
superadiabatic region into regions where the opacity is no
longer increasing very rapidly with temperature. Using ther-
modynamic relations, changes in entropy can be related
to changes in temperature through T ∇∇∇s = εcp∇∇∇T , where
ε = 1−∇ad/∇ with ∇ = (∂ lnT/∂ r)/(∂ lnP/∂ r). (In the deep
parts of the convection zone, convection is efficient and

|ε| � 1.) Neglecting variations of ε, this relation implies
∂T ′/∂ r = T (∂ s′/∂ r)/(εcp), and therefore:

F ′rad ∼−D
∂ s′

∂ r
, with D∼ KT

εcp
. (11)

So both the convective and radiative fluxes can be viewed as
arising from the diffusion of entropy with different diffusion
coefficients. Noting λr the radial scale on which perturba-
tions vary (near the stellar surface, λr� r) we may then set
∂/∂ r ∼ 1/λr. This yields |∇∇∇ ···FFF ′| ∼ |F ′|/λr, so that:

|∇∇∇ ···FFF ′rad| ∼
Ds′

λ 2
r

and |∇∇∇ ···FFF ′c| ∼
As′

λ 2
r

; (12)

Note that, in the left hand side of equation (9):∣∣∣∣∂ s′

∂ t

∣∣∣∣= mω|s′|= 2π

P
|s′|, (13)

where m = 2 and P = 2π/(mω) is the period of the oscilla-
tions.

We now look at the two cases of frozen and perturbed
convection in turn, and discuss where convection is relaxed.

2.3.1 Frozen convection:

When convection is frozen, FFF ′ = FFF ′rad. In this case, equa-
tion (9) yields:

∣∣∣∣ 1
s′

∂ s′

∂ t
+ uuu ··· ∇

∇∇s
s′

∣∣∣∣∼ D
ρT λ 2

r
∼ KT

εcpT ρλ 2
r
∼

FradHp

εcpT ρλ 2
r

∼ 4πr2Frad
cpT 4πr2ρλr

Hp

ελr
, (14)

where we have used Frad ∼ KT/Hp, where Hp is the pres-
sure scale height. In the numerator, the term 4πr2Frad is
the radiative luminosity Lrad(r). In the denominator, cpT is
approximately the internal energy per unit mass, 4πr2ρλr
is the mass within a spherical shell of radius r and width
λr, and therefore the product is approximately the internal
energy Eint(r) contained within that shell. This relation can
therefore be written as:∣∣∣∣ 1
s′

∂ s′

∂ t
+ uuu ··· ∇

∇∇s
s′

∣∣∣∣∼ Hp

ελr

1
trad

, (15)

where trad = Eint(r)/Lrad(r) is the timescale on which energy
is transported by radiation through a distance λr at radius
r. In the outer parts of the convection zone where convection
is not efficient, ε ∼ 1. We also have λr ∼ Hp there. The per-
turbation is non–adiabatic, and approximately isothermal,
if trad � P, which means that the right hand side of equa-
tion (15) is large compared to |(∂ s′/∂ t)/s′|. In that case,
the balance is between ρT uuu ···∇∇∇s and −∇∇∇ ·FFF ′rad. In the op-
posite regime, in the adiabatic parts of the convective zone,
trad� P and the balance is between ∂ s′/∂ t and uuu ···∇∇∇s (that is
to say, ∇∇∇ ···FFF ′rad ' 0). The transition between the two regimes
is therefore where |(∂ s′/∂ t)/s′| ∼ 1/trad, which means that
the radius rna,f of the base of the non–adiabatic zone is de-
termined by Lrad(rna,f) = mωEint(rna,f).
The internal energy in a spherical shell of width λr ∼ Hp at
rna,f is comparable to that between rna,f and the stellar sur-
face R (since the mass density decreases sharply towards the
surface). Therefore we approximate rna,f by writing that the

MNRAS 000, 1–24 (2018)



Tidally induced oscillations 5

Figure 1. The left panel shows N2/(m2ω2) as a function of r/R, where R is the stellar radius, near the surface, for an orbital period

of 4.23 days. The red dotted line corresponds to a 1 M� star, and the green dashed line corresponds to a 1.4 M� star. The squared,

normalised Brunt-Väisälä frequency (in units of the angular frequency of the oscillations – twice that of the orbit) indicates the structure
of the star: a negative value corresponds to an imaginary frequency and implies convection; a positive value indicates a real frequency

and therefore a stratified, radiative region. The right panel shows |N2/(m2ω2)| in logarithmic scale for the outer 50% of the stellar radius

with the same colour coding. This quantity passes through zero near r/R = 0.73 and 0.94 for the lower and higher mass, respectively,
which correspond to the inner boundaries of their convective envelopes. This behaviour is not fully resolved in the plots. In convection

zones, the quantity |N/(mω)| measures the ratio of the inverse forcing frequency to the convective time scale. It can be seen that this
exceeds unity for the solar mass model for r/R > 0.97 and for r/R > 0.94 for the 1.4 M� star.

internal energy of the material in the region above that ra-
dius is equal to the energy transported by radiation through
that radius during P/(2π):

Lrad

mω
=
∫ R

rna,f

dEint(r) =
∫ R

rna,f

6πkBρTr2 dr
µmH

, (16)

where kB is the Boltzmann constant, µ is the mean molec-
ular weight per gas particle (including both ions and free
electrons), and mH is the mass of a Hydrogen atom. For sim-
plicity, the stellar material is taken to be a monatomic ideal
gas. This gives estimates of rna,f/R = 0.9995 for M = 1 M�
and rna,f/R = 0.9991 for M = 1.4 M�. Figure 1 shows that
rna,f is roughly the inner edge of the super–adiabatic region,

where N2 has large variations.

2.3.2 Perturbed convection:

In the parts of the convection zone where the perturbed
convective flux dominates, equation (9) yields:

∣∣∣∣ 1
s′

∂ s′

∂ t
+ uuu ··· ∇

∇∇s
s′

∣∣∣∣∼ A
ρT λ 2

r
∼
(

l
λ 2

r

)
vc
l
∼
(

l
λ 2

r

)
1
tc
, (17)

where tc ∼ l/vc is the convective timescale. Within the MLT,
this timescale is also given by tc∼ 1/

√
|N2|. Note that l∼Hp,

and λr ∼Hp in the outer parts of the convection zone. Above
the radius rna,f calculated in the case of frozen convection,
the radiative flux is not negligible so the equation above does
not apply. In the parts of the convection zone below this ra-
dius and where tc� P, which means that the perturbation
is governed by diffusion rather than advection, the balance
is between ρT uuu ···∇∇∇s and −∇∇∇ · FFF ′c. In the opposite regime,

in the parts of the convection zone which are governed by
advection , tc� P and, as in the case of frozen convection,
the balance is between ∂ s′/∂ t and uuu ···∇∇∇s, which again implies
∇∇∇ ···FFF ′c ' 0. Therefore, the transition between the two regimes
is where |(∂ s′/∂ t)/s′| ∼ 1/(tc), the corresponding radius rna,p
is approximately determined by

√
|N2| = mω. In some cir-

cumstances (see below) this can correspond to the base of
the non–adiabatic zone.

The above criterion is for the transition between the ad-
vective and diffusive transport of entropy. If the background
is nearly isentropic on large scales this transition may not
correspond to a transition to non adiabatic behaviour. To
consider this further we consider a transition radius deter-
mined by the condition that the unperturbed convective lu-
minosity can replenish the internal energy of the upper layers
in a time ∼ 1/(mω). This is determined by the condition
mω ∼Fc/(pHp)∼ ρv3

c/(pHp)∼ ρv2
c
√
|N|2/p∼ (v2

c/c2
s )/tc. This

takes a similar form to the criterion given by equation (16),
but with the radiative luminosity replaced by the convec-
tive luminosity. It may be written in the form

√
|N2|= mω fs

where fs = (ρg2)/(|N2|p)∼ c2
s/v2

c greatly exceeds unity in the
deepest regions of the convection zone. The magnitude of fs
relates to the efficiency of the convection. In particular the
parameter 1/ fs measures how superadiabatic the convection
is. The associated thermal time scale is then fstc, as only a
small amount of effective heating can occur in one turn over
time of the almost adiabatic convection when fs is large. The
radius specified by this condition is defined to be rna,p1.

If this is to determine the location of the transition from
adiabatic to non adiabatic behaviour of the perturbations,
the small degree of superadiabaticity must be maintained for
the perturbations as well as the background. This condition
may be approached when the background is approximately
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isentropic over large scales as might be expected in the inner
regions of the convection zone. However, we remark that the
scale over which entropy perturbations diffuse increases from
Hp over the time tc for a transition at r = rna,p to Hp fs over
the time tc fs for a transition at r = rna,p1 increasing the
scale of the required almost isentropic background. If this is
untenable transition to non adiabatic behaviour may occur
below this radius.
Figure 1 shows that, for

√
|N2| = mω, rna,p/R = 0.97 for

M = 1 M� and rna,p/R = 0.94 for M = 1.4 M�, which is sig-
nificantly deeper than in the case of frozen convection. In
addition we find that rna,p1/R = 0.998 for M = 1 M� and
rna,p1/R = 0.995 for M = 1.4 M�. Therefore non–adiabatic
effects are potentially significant in a layer of the convection
zone larger than could have been expected. As will be shown
below, this has important consequences on the response of
the star to the tidal forcing.

2.3.3 Relaxed convection

In both the frozen and perturbed convection cases, the con-
vective timescale is smaller than P/(2π) in the non–adiabatic
surface region (in the case of frozen convection it is even
very small compared to P/(2π)). Accordingly, we assume
that convection relaxes to an equilibrium state in the non–
adiabatic region, whereas below rna,f for frozen convection
and rna,p for perturbed convection, the response is nearly
adiabatic.

2.4 Illustrative estimates of |ξh|/|ξr|

Here, we focus upon the behaviour of the Lagrangian dis-
placement from the equilibrium position, ξξξ . In particular,
we highlight the characteristic dominance of the horizontal
displacement in the non–adiabatic surface layers, which is a
significant departure from the behaviour expected from the
standard equilibrium tide under adiabatic conditions. We
argue that such a departure is expected because the strong
constraint of hydrostatic equilibrium together with zero vari-
ation of the Lagrangian pressure and density perturbations,
that is required to obtain the standard equilibrium tide, can-
not be satisfied when the perturbation is non–adiabatic. The
equilibrium tide approximation only applies for adiabatic
perturbations in regions with N2 6= 0 (see appendix C).

The radial component, ξr, is simply output in the solu-
tion of the oscillation equations (4) - (7). Given this complete
solution, the horizontal displacement, ξξξ h = ξξξ − ξr r̂rr, can be
derived either from the linearised continuity equation or the
linearised horizontal component of the equation of motion.

2.4.1 The radial and horizontal components of the
Lagrangian displacement

The linearised continuity equation, with the angular depen-
dence retained:

∂

∂ t

(
ρ
′+ ∇∇∇ · (ρ0ξξξ )

)
= 0, (18)

with

ρ
′ =

ρ0

χρ p0
p′− ρ0

T0

χT

χρ

T ′, (19)

can be rearranged to give an expression for the divergence
of the horizontal displacement:

∇∇∇ ···ξξξ h =− ρ ′

ρ0
− 1

ρ0r2
∂

∂ r

(
r2

ρ0ξr

)
. (20)

The horizontal components of the equation of motion, with
the angular dependence retained, give:

ξξξ h =
1

m2ω2 ∇∇∇⊥

(
p′

ρ0
+ ΦP

)
, (21)

where ∇∇∇⊥ is the horizontal component of the gradient. As
we have mentioned above, ξr, p′, ρ ′ and ΦP are proportional
to Y−2

2 (θ ,φ). However, equation (21) shows that this is not
the case for ξξξ h. By introducing V such that ξξξ h ≡ r∇∇∇⊥V ,
equation (20) becomes:

V =
r

ρ0l(l + 1)

[
ρ
′+

1
r2

∂

∂ r

(
r2

ρ0ξr

)]
, (22)

and equation (21) becomes:

V =
1

rm2ω2

(
p′

ρ0
+ ΦP

)
. (23)

As V has the same angular dependence as the other quan-
tities with which it is being compared, and is a scalar in-
stead of a vector, it is much easier to use in the analysis
than ξξξ h. We can calculate ξξξ h from V by using V (r,θ ,φ , t) =
V (r)Y−2

2 (θ ,φ)e2iωt , with Y−2
2 (θ ,φ) = 3sin2

θe−2iφ . Then ξξξ h =
r∇∇∇⊥V yields:

ξξξ h(r,θ ,φ , t) = 6V (r)sinθe2i(ωt−φ)
(

cosθθ̂θθ − iφ̂φφ
)
. (24)

This can be combined with the radial displacement to give
the full (complex) vector displacement as:

ξξξ (r,θ ,φ , t) =

3sin(θ)e2i(ωt−φ)
[
ξr(r)sinθ r̂rr + 2V (r)

(
cosθθ̂θθ − iφ̂φφ

)]
, (25)

which shows that, when estimating contributions to the dis-
placement vector, V can be compared with ξr up to a trigono-
metric factor and a factor of 2.

2.4.2 Numerical calculation of the horizontal displacement

As a check of internal consistency, the values of V calculated
from equations (22) and (23) using the numerical solution of
equations (4)–(7) for a Jupiter mass planet with an orbital
period of 4.23 days to determine the right hand sides are
compared in Figure 2 in the region close to the surface, for
both a 1 M� and 1.4 M� stars, for the case of frozen con-
vection. Note that V is not directly specified on the grid by
the numerical solution. In both cases the expressions agree
very well, with the greatest discrepancy arising at the points
where the magnitude of the second derivative is large, due to
the numerical evaluation of the derivative in equation (22).
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Figure 2. Comparison between the values of |V| given by equations (22) and (23) as a function of r/R near the stellar surface for a

Jupiter mass planet in a circular orbit with period 4.23 days, for the case of frozen convection. We note Vcont and Veom the values of V
given by the continuity equation (22) and the equation of motion (23), respectively. The red dotted line is |Veom| and the green dashed

line is |Vcont| for the 1M� case; the dark blue short dash–dot line is |Veom| and the cyan long dash–dot line is|Vcont| for the 1.4M� case.
In both cases, the two expressions agree well, with some small discrepancy at points with significant curvature, due to the numerical

evaluation of derivatives in the continuity equation.

2.4.3 An illustrative analytic estimate of V

An analytical estimate for V can be derived through the
second law of thermodynamics given by equation (B8) (see
appendix B) and the continuity equation (22). The former
can be adapted to read:

∆p− Γ1 p0

ρ0
∆ρ =− i(Γ3−1)

mω
∇∇∇ ·F′. (26)

We shall assume hydrostatic equilibrium for the perturba-
tions but non–adiabatic behaviour. This is enough to in-
dicate significant departures from the standard equilibrium
tide. Thus, making use of equations (C4) and (C5) in ap-
pendix C, we obtain:

(ξr−ξr,eq)

(
d p0

dr
− Γ1 p0

ρ0

dρ0

dr

)
=− i(Γ3−1)

mω
∇∇∇ ·F′, (27)

where ξr,eq = −ΦP/g is the radial component of the La-
grangian displacement for the standard equilibrium tide (see
appendix C). This implies deviation from the equilibrium
tide when the non–adiabatic contributions on the right hand
side of equation (27) become important. Then we find that,
for small ω, ξr scales as |1/ω|. The horizontal component
can be found from the continuity equation (22) which may
be rewritten as:

V =
r

l(l + 1)

(
ρ ′

ρ0
+

ξr

ρ0

dρ0

dr
+

∂ξr

∂ r
+ 2

ξr

r

)
. (28)

In the limit that ξr scales as |1/ω|, V also has that scaling
and ρ ′ may be neglected, assuming a perturbed flux given

by the equilibrium tide. If the perturbed flux is not given by
the equilibrium approximation, the frequency dependence is
likely to be more complex.
As we are interested in the value of V at the surface of the
star, we fix r = R, the radius of the star. Under the assump-
tion that ξr varies on a scale comparable to the density scale
height or larger (due to non-adiabatic behaviour causing de-
viation from the equilibrium tide), we obtain the expression:

V
ξr
≈ R

l(l + 1)

1
ρ0

∂ρ0

∂ r

∣∣∣∣
r=R

. (29)

In order to make estimates we evaluate the scale height at
rna, where here rna stands for either rna,f or rna,p depend-
ing on whether convection is frozen or perturbed. The scale
height actually decreases towards the surface, although by
less than an order of magnitude. Therefore, adopting (29)
with Hρ , being evaluatedj at r = rna is expected to lead to
a lower bound for |V |, while giving an estimate of the right
order of magnitude. Assuming ξr remains the same order of
magnitude as the equilibrium tide radial displacement ξr,eq,
this gives the final relation between V and ξr,eq to the same
level of accuracy as:

V
ξr,eq

&
R

l(l + 1)Hρ |rna
. (30)

This suggests a large ratio ∼ 500 which is approached in our
calculations with frozen convection.

We remark that as an alternative to the above consid-
erations we might have ∇∇∇ ·F′ = 0 in equation (27). However,
that in general would imply forms for p′ and ρ ′ such that
the equilibrium tide would not apply. For further discussion
of these aspects see appendix D.
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3 RESULTS

The response of a star to the perturbation of a Jupiter–
mass planet on a 4.23 day orbit is presented here, primar-
ily for a 1 M� star, but some results are also shown for
the case of a star of mass 1.4 M�. The results are focussed
on the behaviour near the surface of the star, where non–
adiabatic effects become important. Throughout this section
the perturbed quantities refer to their radial parts, that is,
T ′ stands for T ′(r). As pointed out in Section 2.2, for any
solved–for perturbed quantity, q′(r), which is in general com-
plex, we can form a real quantity that can be written as

q′(r,θ ,φ , t) = ℜ

[
q′(r)Y−2

2 (θ ,φ)e2iωt
]
.

This section has been split into two parts: section 3.1
shows the calculation for frozen convection, i.e. under the as-
sumption that it does not change from its background value
and section 3.2 shows the results for perturbed convection,
i.e. it is assumed that the time scale is short enough for it
to relax to a quasi–steady state obtained from MLT. Simi-
lar figures have been produced in each case, but the ranges
displayed have been adjusted to make the results as clear as
possible.

3.1 Frozen convection

The magnitudes of the perturbed variables are shown for the
full extent of the star in Figure 3. Within the body of the
star, the response to the tidal potential agrees with previ-
ous work and oscillations are seen throughout the radiative
core, becoming evanescent in the convection zone. Despite
the high spatial frequency of the oscillations at the centre
of the star, the peaks are still well resolved, as shown in
Figure 4.

Figure 5 shows the real parts of mωξr (radial perturbed
velocity) and mωV , which were plotted by Terquem et al.
(1998) and therefore allow a comparison to be made. The
radial and horizontal displacements are both of similar mag-
nitude to the equilibrium radial displacement ξr,eq away from
the surface (which we expect, as Veq≈ ξr,eq outside the stellar
core). The results shown in Figure 5 are in good agreement
with those of Terquem et al. (1998), other than the fact that
in our case V continues to increase in the convection zone,
more closely matching the equilibrium tide approximation
(see appendix C).

However, the surface behaviour is very different to both
the equilibrium tide approximation and to the results of
Terquem et al. (1998), which did not fully incorporate non–
adiabatic effects. Within a thin region at the surface (of a
similar width to the strongly superadiabatic convection re-
gion together with the overlying radiative zone near the sur-
face of the star) the magnitude of the perturbations varies
by orders of magnitude, as shown in Figure 6, where the
same quantities as illustrated in Figure 3 are plotted over
the radial range 0.998 < r/R < 1. This is consistent with the
estimated radius rna,f = 0.9995R above which the perturba-
tion is non–adiabatic.

In Figure 7, we highlight the behaviour of the radial
and horizontal displacements in the surface region in units
of the radial displacement predicted by the equilibrium tide
approximation, ξr,eq, for both the 1 M� and the 1.4 M� star
(more details about the equilibrium tide can be found in
appendix C). At the surface, the radial displacement is sup-

pressed by a factor of ∼ 10 relative to the adiabatic case, and
the horizontal displacement is amplified by a factor of ∼ 100,
which is similar to the estimates provided in Section 2.4.3
and appendix D. In order to investigate the effect of changing
the surface boundary condition, we have rerun both the 1 M�
case and the 1.4 M� case, replacing the condition ∆p = 0 by
the boundary condition given by Pfahl et al. (2008). Results
are very similar, apart from |ξr| attaining even smaller val-
ues at the surface. In the non–adiabatic zone, the horizontal
displacement is therefore larger than the radial displacement
by a factor of ∼ 1000 or more. The results displayed in Fig-
ure 7 are consistent with departure from the equilibrium tide
arising as a result of non–adiabaticity above ∼ rna,f.

To illustrate the relationship between the radial and
horizontal displacements, taking the angular dependence
into account, Figure 8 displays the horizontal displacements
as vectors, and the radial displacement shown through the
colour. The plot displays the surface of one side of the star,
covering latitudes from −90◦ to 90◦, and longitudes from
−90◦ to 90◦ with (0,0) as the sub–planetary point.

The perturbation to the flux in the surface region is
shown in Figure 9 for both the 1 M� and the 1.4 M� cases.
Throughout this region, the perturbation to the flux grows
rapidly, and the phase of the perturbation changes on a small
scale, highlighting the non–adiabatic nature of this response.
At the surface, the imaginary component is dominant, but
the real part remains non–negligible, resulting in a phase lag
behind the planet of ∼ 40◦.

3.2 Perturbed convection

We present below the results corresponding to the case when
the convective flux is perturbed, for both approaches A
and B described in Section 2.1.

3.2.1 Perturbed convection following approach A

The response throughout the whole star for the 1 M� star,
in the case of perturbed convection following approach A, is
shown in Figure 10. Within the radiative core, the behaviour
is oscillatory, transitioning to evanescent behaviour in the
convection zone. Despite the high spatial frequency towards
the centre of the star, just as in the case of frozen convection
described above, the oscillations remain well resolved.

The radial and horizontal displacements are displayed
in Figure 11, which can be compared with the model shown
in Terquem et al. (1998). The horizontal displacement has
greater amplitude oscillations within the core, but both the
radial and horizontal displacements are centred on the equi-
librium tide, except at the very surface of the star.

To highlight the surface behaviour, the variables which
are directly solved for are shown over a narrow radial range
(0.95 < r/R < 1) at the surface in Figure 12. Over this range,
the response is fairly smooth, apart from the small shifts in
ξr and T ′ in the region of the radiative skin. In particular,
F ′r is approximately constant, which is expected from the
condition that ∇∇∇ ·F∼ 0 in the upper non–adiabatic layers.

The radial and horizontal displacements in the surface
region are shown in Figure 13 for a narrow radial range
(0.998< r/R< 1), for both the 1 and 1.4 solar mass stars. The
radial displacements remain close to the equilibrium tide
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Figure 3. This shows, for the case of frozen convection, the magnitude of the four variables which are directly output from the code

versus r/R, for the case M = 1 M�: ξr, the radial displacement (red dotted line); F ′r , the perturbation to the radial radiative flux (green
dashed line); p′, the perturbation to the pressure (dark blue short dash-dot line); and T ′, the perturbation to the temperature (cyan long

dash-dot line). The transition in behaviour at r/R∼ 0.73 is due to the onset of convection. Behaviour near the surface is examined more
closely in Fig. 6. Except for a thin surface layer, where non–adiabatic effects are important, the imaginary part is much smaller than the

real part for all of these quantities. Note that as the magnitude of quantities is shown on a logarithmic scale, unresolved minima may

be smaller than indicated.

Figure 4. The quantities illustrated in Fig. 3 are plotted over a narrow radial range, 0 < r/R < 0.1, for the 1 M� star, for the case of

frozen convection, in order to focus on the stellar core. Shown are the magnitudes of ξr, the radial displacement (red dotted line); F ′r , the

perturbation to the radial radiative flux (green dashed line); p′, the perturbation to the pressure (dark blue short dash–dot line); and T ′,
the perturbation to the temperature (cyan long dash–dot line). The high–frequency spatial oscillations are resolved well even in the core.
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Figure 5. This figure shows, for the 1 M� case with frozen convection, the real parts of mωξr and mωV in units of [mp/(mp + M)] m s−1

for 0.1 < r/R < 0.998, thereby excluding the thin surface region where non–adiabatic effects are prominent. The red dotted line shows
mωξr, and the green dashed line shows mωV . The behaviour here is very similar to that shown in Terquem et al. (1998), except for the

fact that in our case V continues to increase within the convection region, for r/R > 0.73.

Figure 6. The quantities illustrated in Fig. 3 are plotted over a narrow radial range, 0.998 < r/R < 1, for the 1 M� star, with frozen

convection, in order to focus on the surface region. Note the change in the range of the y–axis. Shown are the magnitudes of ξr, the
radial displacement (red dotted line); F ′r , the perturbation to the radial radiative flux (green dashed line); p′, the perturbation to the

pressure (dark blue short dash–dot line); and T ′, the perturbation to the temperature (cyan long dash–dot line). The amplitude of the
oscillations in the uppermost 0.2% of the star changes rapidly on a small scale. In this region, the imaginary parts of the variables cannot
be neglected. This is consistent with the perturbation being non–adiabatic above rna,f = 0.9995R.
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Figure 7. The radial and horizontal displacements in the case of frozen convection, scaled by the equilibrium tide radial displacement,

ξr,eq, (given by equation C10) versus r/R near the stellar surface. For the 1 M� case, the red dotted line indicates ξr/ξr,eq and the green
dashed line V/ξr,eq; for the 1.4 M� case, the dark blue short dash–dot line is ξr/ξr,eq, and the cyan long dash–dot line is V/ξr,eq. The

radial displacement is suppressed compared to the equilibrium tide by a factor of ∼ 10, whereas the horizontal displacement is greater
than the equilibrium tide by a factor of ∼ 100. Whilst the exact amount of suppression or enhancement is different for the two stellar

models, both exhibit the same qualitative behaviour. This figure is consistent with departure from the equilibrium tide arising as a result

of non–adiabaticity near the surface, although the plots indicate that non–adiabatic effects start to manifest themselves somewhat below
rna,f, which is 0.9995R for the 1 M� star and 0.9991R for the 1.4 M� star.

Figure 8. This plot illustrates the displacement vector at the surface of the star as a function of latitude and longitude for the 1M�
star under the assumption of frozen convection. The vectors represent the horizontal components of the displacement, and the colour

denotes the radial component of the displacement. The longitude range is −90◦ to 90◦, and the sub–planetary point is at (0,0), so the
plot shows the visible disc of the star, as seen from the planet. Due to the non–adiabatic conditions at the surface, the tidal potential,

radial displacement and horizontal displacement are all out of phase with each other.

values, with small dips at the very surface. These features
in ξr at the surface correspond to much larger changes in V .

Compared to the equilibrium tide, ξr at the surface is
changed by ∼ 10% for the 1 M� star, and by a factor of 2 for
the 1.4 M� star. The horizontal displacement at the surface
is a factor of ∼ 30 greater than the equilibrium tide value for
the 1 M� star, and a factor of ∼ 100 greater for the 1.4 M�
star. These values are smaller than in the case of frozen
convection.

The location at which V deviates from the equilibrium
tide differs in the two mass cases, with the 1.4 M� star show-
ing deviations deeper in the convection zone than the 1 M�
star, as seen in Figure 14. For the 1 M� star, these devia-
tions originate from around r = 0.99R which is intermediate
between rna,p = 0.97R and rna,p1 = 0.998R and therefore are
most likely due to non–adiabaticity ( see discussion in Sec-
tion 2.3.2) . For the 1.4 M� star, rna,p = 0.94R, and the inner
edge of the convection zone is at 0.93R. There is therefore
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Figure 9. The perturbation to the radiative flux in the surface region, in units of the equilibrium flux at the surface, showing both the

real and imaginary parts for both the 1 M� and the 1.4 M� stars, with frozen convection. For the 1 M� case, the red dotted line shows
the real part, and the green dashed line the imaginary part. For the 1.4 M� case, the dark blue short dash–dot line shows the real part,

and the cyan long dash–dot line shows the imaginary part. The imaginary parts grow rapidly in this surface layer, and dominate the
perturbation to the flux at the surface, such that the peak flux will lag the planet by ∼ 40◦. The details of this behaviour differ for the

two stellar masses, but both show the same qualitative behaviour and demonstrate the importance of non-adiabatic effects.

Figure 10. This shows, for the case of perturbed convection following approach A, for a star with M = 1 M�, the magnitude of the four

variables which are directly output from the code versus r/R: ξr, the radial displacement (red dotted line); F ′r , the perturbation to the
radial energy flux (green dashed line); p′, the perturbation to the pressure (dark blue short dash-dot line); and T ′, the perturbation to

the temperature (cyan long dash-dot line). The transition in behaviour at r/R ∼ 0.73 is due to the onset of convection. Behaviour near
the surface is examined more closely in Fig. 12.
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Figure 11. This figure shows, for the case of perturbed convection following approach A, for a star with mass M = 1 M�, the real parts

of mωξr and mωV in units of [mp/(mp + M)] m s−1 for 0.1 < r/R < 0.998, thereby excluding the thin surface region where non–adiabatic
effects are most prominent. The red dotted line shows mωξr, and the green dashed line shows mωV . The behaviour here is similar to that

shown in Terquem et al. (1998), except for the fact that in our case V continues to increase within the convection region, for r/R > 0.73.

Figure 12. The quantities illustrated in Fig. 10 are plotted over a narrow radial range, 0.998 < r/R < 1, for the 1 M� star with perturbed

convection following approach A, in order to focus on the surface region. Note the change in the range of the y–axis. Shown are the
magnitudes of ξr, the radial displacement (red dotted line); F ′r , the perturbation to the radial energy flux (green dashed line); p′, the

perturbation to the pressure (dark blue short dash–dot line); and T ′, the perturbation to the temperature (cyan long dash–dot line).

only a narrow layer at the the bottom of the convection
zone where the perturbation is adiabatic if rna,p defines the
transition. However, for 0.9R < r < 0.94R there is a region
where |N2| is small and comparable to m2ω2 (as shown in
Fig. 1). In appendix C2 it is argued that the standard equi-
librium tide does not apply in this limit although it can be

argued from C18 that when both these quantities are zero,
fractional deviations of ξr from the equilibrium tide are of
order Hp/r, which are relatively small here. Note also that if
m2ω2 6= 0, but N2 = 0, there are also fractional corrections of
order m2ω2r/g, which is also small. It may be that the de-
parture from equilibrium tide observed for the 1.4 M� star
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Figure 13. The radial and horizontal displacements, scaled by the equilibrium tide radial displacement ξr,eq, (given by eq. [C10]) versus

r/R near the stellar surface, assuming perturbed convection following approach A. For the case of M = 1 M�, the red dotted line indicates
ξr/ξr,eq and the green dashed line V/ξr,eq; for the 1.4 M� case, the dark blue short dash–dot line is ξr/ξr,eq, and the cyan long dash–dot

line is V/ξr,eq. The radial displacements remain close to the equilibrium tide values, whereas the horizontal displacements are greater
than the equilibrium tide values by a factor of ∼ 30−100. Whilst the exact behaviour is different for the two stellar models, both exhibit

the same qualitative behaviour.

is due to a combination of these effects and non–adiabatic
effects.

The phase relations of the displacement components are
indicated in Figure 15 for the 1 M� case, showing that the
phase difference between both the radial and horizontal com-
ponents with respect to the planet’s orbit is small.

The perturbation to the radial component of the energy
flux is displayed in Figure 16, showing the growth in F ′ to-
wards the surface for both stellar masses. In both cases, the
imaginary components are of similar size to the real com-
ponents and cannot be neglected, which shows that non–
adiabatic effects are important in this region and result in
the phase changing rapidly. In both cases, the plots are
consistent with significant perturbations arising in the non–
adiabatic regions above rna,p.

Whether convection is perturbed using approach A
or B, it is found that the radial convective flux pertur-
bation attains an almost constant magnitude in the outer
parts of the non–adiabatic zone where the perturbed radia-
tive flux is still negligible. The magnitude of this constant
can be estimated by assuming that it can be determined
from the perturbed convective flux for r below but not far
from rna,p, where it can be assumed that the equilibrium
tide applies. To illustrate this we compare the perturbed
flux in the convective zone to an estimate for the pertur-
bation to the convective flux which would arise in the case
that the behaviour is non-adiabatic, and that the radial dis-
placement is given by the equilibrium tide. We evaluate the
perturbation to the flux using approach A, in the case that
∆s = 0 and ξr = ξr,eq. Combining this with equation 3 gives

F ′c,eq =−A ∂

∂ r

(
−ξr,eq

∂ s0
∂ r

)
.

These are shown in Figure 17, where we plot both
the ratio of the magnitude of the radial component of
the energy flux perturbation to the surface background
value, |F ′/F0|r=R|, evaluated using approach A for the per-
turbed convective flux, and the ratio of the magnitude of
the perturbed convective flux, evaluated assuming the equi-
librium tide, to the background surface value of the flux,
|F ′c,eq/F0|r=R|, for the 1 M� star. The left hand panel shows
the interval 0.75 < r/R < 0.9998. A plot comparing these
quantities in the non–adiabatic region very close to the sur-
face is shown in the right hand panel. We expect the ra-
diative flux to become significant at the radius rna,f calcu-
lated assuming frozen convection, which is 0.9995R for the
1 M� star (below rna,f, convection is the dominant mode
of transport of energy, whether convection is frozen or per-
turbed). Therefore, the perturbed radiative flux is negligible
throughout the range plotted (except very close to the outer
edge), so that F ′ ' F ′c. As can be seen from the left hand
panel, the perturbed convective flux constructed from the
equilibrium tide does indeed track the perturbed total flux
throughout the range plotted. We do not expect the match
to be perfect, even below r/R = 0.97 where the perturba-
tions are adiabatic, because in this region |N2| < m2ω2 and
therefore there is departure from the equilibrium tide (see
appendix C2). Above r/R∼ 0.98 or so, we have |N2| �m2ω2

and therefore the convective timescale, over which flux per-
turbations are smoothed out, is much shorter than the pe-
riod of the oscillations. In this regime, the perturbed con-
vective flux is approximately constant, as seen in the right
hand panel. Although this flux is not strictly constant all
the way down to the base of the non–adiabatic region , we
see from the the right hand panel that the variations are
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Figure 14. Same as Figure 13 but over a greater radial extent of the star, showing the departure from the equilibrium tide value. For
both stellar masses, the horizontal displacement departs from the equilibrium tide value deeper than the radial displacement. Departure

from equilibrium tide for V is due to non–adiabaticity above r ∼ 0.99R for the 1 M� star and 0.94R for the 1.4 M� star. In the higher

mass case, there may be an additional contribution from below rna,p, where the perturbation is adiabatic, due to m2ω2 being, although
small, larger than |N2| (see appendix C2).

Figure 15. This plot illustrates the displacement vector at the surface of the star as a function of latitude and longitude for the 1M�
star, for the case of perturbed convection following approach A. The vectors represent the horizontal components of the displacement,

and the colour denotes the radial component of the displacement. The longitude range is −90◦ to 90◦, and the sub–planetary point is
at (0,0), so the plot shows the visible disc of the star, as seen from the planet. As the real parts of the displacements dominate at the

surface, the radial and horizontal displacements are in phase with each other, and the planet.

within a factor 2 only. Just below rna,p, the perturbations
are adiabatic and therefore the equilibrium tide gives a rea-
sonable estimate, within a factor 5 or so, as can be seen
from the figure. Therefore, making the crude approximation
that the equilibrium tide approximation holds at rna,p and
that the perturbed convective flux is constant above this
value of r, we can get an estimate of the magnitude of this
constant which is correct to within an order of magnitude.
This indicates that the magnitude of the perturbed flux may
be understood in a simplified way without reference to the
actual components of the Lagrangian displacement, and en-

ables us to check that the numerical values of the convective
flux we obtain are correct.

3.2.2 Perturbed convection following approach B

Above we have described results for perturbed convection
following approach A, for which A in equation (1) is un-
perturbed. We have also performed calculations following
approach B in which variations of A are included. These
variations include perturbations to the state variables and
the convective velocity but not the ad hoc parameters in

MNRAS 000, 1–24 (2018)



16 A. Bunting, J. C. B. Papaloizou, C. Terquem

Figure 16. The perturbation to the radial component of the energy flux in the outer region of the star, in units of the equilibrium flux

at the surface, showing both the real and imaginary parts for both the 1 M� and the 1.4 M� stars, with perturbed convection following
approach A. For the 1 M� case, the red dotted line shows the real part, and the green dashed line the imaginary part: significant

perturbations occur well before the radiative skin of the star reaching a roughly constant value around r/R∼ 0.99. For the 1.4 M� case,
the dark blue short dash–dot line shows the real part, and the cyan long dash–dot line shows the imaginary part. The details of this

behaviour differ for the two stellar masses, but both demonstrate the importance of non–adiabatic effects through the behaviour of the

complex phase.

Figure 17. The ratio of the magnitude of the radial component of the energy flux perturbation to the surface background value,
|F ′/F0|r=R| , evaluated using approach A for the perturbed convective flux (dotted red line) and the ratio of the magnitude of the radial
component of the perturbed convective flux, evaluated assuming the equilibrium tide, to the surface background value of the flux,∣∣F ′c,eq/F,0|r=R

∣∣ (dashed green line), for the 1 M� star. The left hand panel shows these quantities for 0.75 < r/R < 0.9998, and the right

hand panel shows them for 0.995 < r/R < 0.9998 where radiation becomes the dominant energy transport method in the background
model.
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the MLT (Salaris & Cassisi 2008). The results we obtain
are similar to those found following procedure A, although
details vary. To illustrate this, we show the behaviour of
|F ′/F0|r=R| for the two calculations in the left hand panel of
Figure 18 in the range 0.9 < r/R < 1 for the 1 M� star. In
addition, we show |V |/ξr,eq for the same region in the right
hand panel. The results are seen to be qualitatively similar
with differences of about a factor of two at r = R.

3.3 Resonance Survey

As indicated in appendix C2, g–modes that are confined
to the radiative core are expected to be excited and, being
restricted to the region where they are to a good approxima-
tion adiabatic and relatively free from dissipation, we expect
resonances to be prominent. In order to illustrate these, we
perform a resonance survey by calculating the response of a
1 M� star over a fine grid of orbital frequencies spanning
the interval [0.984ω0,1.016ω0] where 2π/ω0 corresponds to
the orbital period of 4.23 days for which the calculations pre-
sented above were performed. The calculations presented in
this section are done for the perturbed convection case using
approach A. The kinetic energy of the oscillation is plotted
as a function of frequency in Figure 19. Resonance spikes in
which this quantity increases by up to five orders of mag-
nitude, indicating a high quality factor, are clearly visible.
The frequency separation is uniform, as expected for high
order g–modes, with an interval δω0/ω0 ∼ 0.005, indicating
an order ∼ 200.

Snapshots of the response obtained during the reso-
nance search are presented in Figure 20. The function V
is shown as a function of r, both in the region containing
the radiative core and in the non adiabatic surface layers,
for the forcing frequency 2ω0, which corresponds to the or-
bital period of 4.23 days, and a close by forcing frequency
of 1.99965ω0, which corresponds to the centre of the nearest
resonance. In the latter case, the resonantly excited g–mode
that is confined to the radiative core can be clearly seen.
However, the behaviour of V close to the surface is hardly
affected by this, indicating that for the most part the re-
sponse outside of the radiative core is robust and unaffected
by internal resonances.

4 DISCUSSION

The behaviour throughout the body of the star (shown in
Figures 3 and 10) largely agrees with previous work, in that
the response is oscillatory in the radiative core and evanes-
cent in the convection envelope. In the interior, away from
a g–mode resonance, the radial displacement follows the ex-
pectation from the equilibrium tide approximation well, os-
cillating around the equilibrium tide value. It may be reason-
able to use the equilibrium tide approximation if the average
response of the stellar interior is of interest.

Bearing in mind the considerable uncertainties involved
in modeling convection, we considered two extreme treat-
ments Following a MLT approach, we considered the case
when the convection was unresponsive and frozen during
perturbation and the opposite limit when it was assumed
to respond on a time scale short compared to the inverse
forcing frequency and so attain a relaxed state. In this last

situation, we considered two approaches. In the first, only
the entropy gradient was perturbed while the state variables
and convective velocity were held fixed. In the second ap-
proach, these were allowed to vary. For all of the treatments
of convection, the behaviour in the surface region diverges
from the expectation from the equilibrium tide approxima-
tion. The horizontal displacement greatly increases, being
coupled with a change in the perturbed energy flux.

This is the consequence of the importance of non–
adiabatic effects, which are not consistent with the require-
ments for the standard equilibrium tide to be valid. This
is because hydrostatic equilibrium implies zero Lagrangian
perturbations to the density and pressure, which cannot be
achieved when the perturbation is non–adiabatic. As a re-
sult, there is a large amplification of the horizontal displace-
ment.

Changing the exact treatment of convection used does
produce quantitatively different results, with a factor of ∼ 10
difference between the values of the horizontal displacement,
and between the flux perturbations at the surface. Another
significant difference is in the extent of the region over which
the perturbations diverge from the equilibrium tide values.
In the case of frozen convection the perturbations do not
have much scope to grow in the convection zone as the flux
cannot be perturbed there, by assumption, and the pertur-
bations are shown to change rapidly over a length scale of a
few times the depth of the surface radiative layer once the
flux can be perturbed once again. This essentially restricts
the depth of the non adiabatic layer.

Adopting a more plausible approximation of perturbed
convection smooths out the changes compared to those
found using the assumption of frozen convection, as they
occur over a greater radial extent of the star instead of be-
ing confined to the radiative skin of the star. This results
from the fact that the convective flux can be perturbed,
and departures from the equilibrium tide become evident
once the timescale |1/N| exceeds the timescale of the oscilla-
tion (around r/R∼ 0.97 for M = 1 M�). Nonetheless, in this
case, the radial displacement remains close to the equilib-
rium value, with a sudden, but much less pronounced, peak
just below the surface, and a phase shift of only around 1 de-
gree at the surface, suggesting that non–adiabatic effects are
only weakly evident in the radial displacement. Note that
our resonance survey indicated resonant forcing frequencies
for which there were large spikes in the kinetic energy of
the oscillation, associated with high order g–modes confined
to the core. However, these were found to have little effect
on the solution near the surface. Also, in the absence of
special conditions leading to resonance locking, non linear
effects and increased dissipation are expected to lead to a
low probability of being found in resonance.

The horizontal displacement still significantly deviates
from the equilibrium approximation, with a surface magni-
tude which is greater than the equilibrium approximation
by a factor of ∼ 30 when procedure A was followed for con-
vection. This could be reduced by a factor of three if proce-
dure B was followed instead. On the other hand, we remark
that a test carried out where we returned to procedure A
but simply increased the convective flux perturbation by a
factor of 1.5 showed that surface horizontal displacement in-
creased by a factor of three. The phase shift at the surface is
also more significant, of ∼ 10 degrees. These are both poten-
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Figure 18. |F ′/F0|r=R| (left hand panel) and |V |/ξr,eq (right hand panel) versus r/R in the range 0.9 < r/R < 1 for the calculations with

perturbed convection for both approach A (red dotted curves) and approach B (green dashed curves) for the 1 M� star.

Figure 19. This shows the kinetic energy of the oscillation di-

vided by the value corresponding to the equilibrium tide as a

function of orbital frequency for a narrow band of frequencies in
the neighbourhood of ω0, with 2π/ω0 corresponding to an orbital

period of 4.23 days. The forcing frequency is twice the orbital fre-
quency. Prominent resonant spikes are clearly visible. This is for

a 1 M� star.

tially testable predictions for observations, as the horizontal
displacement could be detected through spectroscopy. This
could be done by utilising a disc–averaged effect, such as a
periodic shift in the peak of the observed wavelength, such as
in Dziembowski (1977). Another potential method of detec-
tion could be to examine the Doppler broadening due to the
different motions of different sections of the stellar surface.
This would lead to a time–dependent broadening signal, and
its magnitude and shape would depend upon the size of the
oscillations, as well as the viewing angle.

The form of the horizontal displacement given in equa-
tion 23 shows that V ∝ 1/ω2. As the tidal perturbation goes

as D−3, the effect on V from the change in ω will be coun-
teracted by the change in the tidal perturbation, and we
expect that the horizontal displacement will be constant for
a given planetary mass, independent of the orbital distance.
This has been found to be the case in our numerical solu-
tions. The associated radial velocity signal would therefore
be proportional to ω.

The perturbation to the flux at the surface is also signif-
icantly different between the approximations of frozen and
perturbed convection. Both show significantly non–adiabatic
behaviour towards the surface, with large magnitudes and
non–negligible imaginary parts, although the detailed form
does depend strongly upon the treatment of convection.
Nonetheless, in the case of perturbed convection, the mag-
nitude of the perturbed energy flux can be estimated in a
simple way by evaluating the flux using the equilibrium tide
near the base of the non–adiabatic layer (see Fig.17).

Whilst the magnitude of the radial displacement is not
likely to result in a large change in the observed brightness
of the star, the perturbation to the flux would result in an
oscillating signal which could potentially be detectable. Note
that this scales with the mass of the orbiting planet. Such
a detection would necessarily have to be disc–integrated,
and therefore V could not be utilised, as its effect cancels
out when averaged over the whole disc (Dziembowski 1977).
Non–transiting planets could possibly be detected photo-
metrically using this method, as the signal scales as sin2 i,
where i is the inclination of the orbital plane relative to the
observer. Therefore, a planet which narrowly misses out on
transiting its star would have a signal only a few percent
smaller than a directly edge–on observation.

Such a detection of tidally induced oscillations would
lead to a more precise determination of the parameters of
known planetary systems. It also would make it possible to
calculate the planetary mass: in the case of a transit detec-
tion this would be a direct inference, but in the case of a
radial velocity detection this would be through breaking the
degeneracy between mass and inclination. The effects of the
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Figure 20. This shows snapshots of the response obtained during the resonance search for a 1 M� star, with perturbed convection
following approach A. The real and imaginary components of the function V are plotted as a function of r/R for the range 0.1 < r/R < 1 in

the left hand panels and for the range 0.99 < r/R < 1 in right hand panels. The upper panels correspond to the forcing frequency 2ω0, and

the lower panels to a forcing frequency of 1.99965ω0, which corresponds to the centre of the closest resonance, with the forcing frequency
being twice the orbital frequency. By comparing the upper and lower right hand panels It can be seen that the behaviour of V close to

the surface is almost unaffected by the resonant excitation below.

oscillations on observables will be the subject of a future
paper.

For a system in which a known hot Jupiter is already
well constrained, this modelling of the response of the star
to the tidal potential of the planet would be important if we
were to look for additional planets in the system. By filtering
out the photometric and spectroscopic variations associated
with the tidal oscillations, we can unambiguously associate
additional variations with other planets in the system.

This approach could also be applied to stellar binaries,
rather than to a planetary companion, which could give rise
to larger signals. This could be used to investigate the the-
ory itself, and possibly differentiate between the different
approaches to perturbing the convective flux.

Whilst these results may involve fewer assumptions
than some previous work, there remain potentially signifi-
cant areas for improvement. The inclusion of rotation and

its effects on the frequencies of the response, as well as on
the form of the observational signal could be important, and
therefore this paper is mostly aimed at slowly rotating stars.
Also, as the perturbation to convection has been shown to
have a significant effect on the calculation, further investi-
gation into how best to model the perturbation to the con-
vective flux, or the limitations of this approach, would be
beneficial. In addition, the effect of the surface boundary
conditions should be further investigated.

5 CONCLUSIONS

In this paper, the non–adiabatic response of a star to a tidal
perturbation due to a Jupiter–mass planet on a 4.23 day or-
bit was calculated. We considered both a 1 M� and a 1.4 M�
star, under the assumptions of frozen convection, and con-
vection that responded to the perturbation instantaneously.
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In all cases the behaviour in the interior of the star was
found to be similar to the adiabatic response and roughly
followed the equilibrium tide approximation.

However, at the surface, non–adiabatic effects were
found to be very important, causing the horizontal displace-
ment to be amplified by a factor of ∼ 10−100 compared to
the equilibrium tide. This behaviour is due to non–adiabatic
effects causing the perturbations to fail to be consistent
with the hydrostatic equilibrium assumption and/or the zero
Lagrangian pressure and density perturbation assumption
(which are the basis of the standard equilibrium tide theory).
When convection is frozen, these non–adiabatic effects are
important in the thin superadiabatic convection region and
the strongly stratified radiative region at the surface of the
star. In the more realistic case that convection is perturbed,
non–adiabaticity extends further down, and the departure
from the equilibrium tide is significant, though less than in
the case of frozen convection. This departure from the equi-
librium tide has major implications for the observation of
tidally induced oscillations.

These oscillations may be observable through both pho-
tometric and spectroscopic techniques. Both the magnitude
and the phase of the observed signal could be used to con-
strain and characterise the system. For known systems this
could lead to a better constraint on the mass of the planet,
and it could also help to unambiguously detect additional
planets where other methods have shortcomings (such as
the requirement for a transit limiting the range of detectable
inclinations).

Whilst this work has limitations, the fact that non–
adiabatic effects have to be taken into account when cal-
culating the response of the star at its surface is a robust
result. The photometric and spectroscopic signals resulting
from the oscillations of the stellar surface will be the subject
of a forthcoming paper.
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APPENDIX A: TIDAL POTENTIAL

The tidal potential considered here is the lowest order time–
varying potential which is not constant across the star. To
find this we evaluate the potential in the frame of the star,
accounting for the force acting at the stellar centre of mass
(the indirect term) in that frame, as

ΦP = Φ +
Gmp

D3 D ···r , (A1)

where ΦP is the tidal potential, Φ is the gravitational po-
tential due to the perturber, G is the gravitational constant,
mp is the mass of the perturbing body, D is the vector from
the centre of the star to the perturber, approximated as a
point mass, and r is the position vector from the centre of
the star to the point at which the potential is calculated.

This can be expanded in terms of r/D, with D = |D|,
which is a small quantity, to give

ΦP =−
Gmp

D

[
1 +
( r

D

)2
(

3
2

(D̂ · r̂)2− 1
2

)]
+O

(
r3

D3

)
(A2)

where the hats denote unit vectors. Using the fact that D̂ ···
r̂ = [cos(ωt)x̂ + sin(ωt)ŷ ] ··· [sin(θ)cos(φ)x̂ + sin(θ)sin(φ)ŷ +
cos(θ)ẑ ], where we adopt Cartesian coordinates with ori-
gin at the stellar centre of mass and (x,y) plane coinciding
with that of the orbit. The unit vectors in the coordinate
directions are x̂ , ŷ , ẑ . Removing terms with non–zero time
average (and therefore keeping only the oscillatory terms),
we arrive at the expression

ΦP '−
Gmp

4D

[( r
D

)2
3sin2(θ)cos [2(ωt−φ)]

]
. (A3)
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As 3sin2(θ) = P|2|2 (cosθ) (the associated Legendre polyno-
mial), ΦP can be written as

ΦP 'ℜ

(
−

GMp

4D3 r2Y−2
2 (θ ,φ)e2iωt

)
(A4)

where Y−2
2 (θ ,φ) = P|2|2 (cos(θ))e−2iφ is a spherical harmonic.

Because this is the only source of time and angular depen-
dence (as the equilibrium model is taken to be spherically
symmetric and static) in the system of linear equations, any
perturbed quantity in equations (4) to (7), q′, can be ex-
pressed in the form

q′ (r,θ ,φ , t) = ℜ

(
q′(r)3sin2

θe2i(ωt−φ)
)

(A5)

where q′(r) may itself be complex.

APPENDIX B: DERIVATION OF
OSCILLATION EQUATIONS

Here we set out the skeleton for the derivation of the stel-
lar oscillation equations used in this work, including stating
the approximations used along the way. We start from the
continuity, momentum, and energy equations together with
the expression we used for the heat flux in the form

∂ ρ

∂ t
+ ∇∇∇ · (ρ uuu) = 0, (B1)

ρ

(
∂

∂ t
+ uuu ·∇∇∇

)
uuu =−∇∇∇p−ρ∇∇∇Φ (B2)

ρT
(

∂

∂ t
+ uuu ·∇∇∇

)
s =−∇∇∇ ·FFF (B3)

FFF =−K∇∇∇T + FFFc (B4)

where ρ is the density, uuu is the vector velocity, p is the pres-
sure, Φ is the gravitational potential, T is the temperature, s
is the specific entropy, FFF is the total flux, FFFc is the convective
flux and κ is the opacity.

In this work, we assume that the local convection time
scale is much less than the inverse oscillation frequency so
that the convective flux can relax to an equilibrium value
in regions where we need to take it into account. Assum-
ing a standard form derived from mixing length theory, the
expression for the convective flux we adopt is given by:

FFFc =−n̂nn
bρT vcl

1 + cσT 3(ρ2cplvcκ)−1 n̂nn ···~∇∇∇s (B5)

where σ is the Stefan-Boltzmann constant, vc is the convec-
tive velocity, n̂nn is the unit vector in the direction opposite to
that of gravity, cp ≡ T (∂ s/∂T )p is the specific heat capacity
at constant pressure, l is the mixing length, and b and c are
numerical factors which depend on the model of convection
being used (see Salaris & Cassisi 2008, for more details and
discussion). Note that in the steady unperturbed state n̂nn = r̂rr,
with the latter pointing in the radial direction.

Equations (B1) - (B5) are linearised, and only first or-
der terms are retained. As the background state is in equi-
librium, we set uuu = ∂ξξξ/∂ t where ξξξ is the Lagrangian dis-
placement. This gives us the set of linearised equations:

∂

∂ t

(
ρ
′+ ∇∇∇ ··· (ρ0ξξξ )

)
= 0, (B6)

ρ0
∂ 2ξξξ

∂ t2 =−∇∇∇p′−ρ0∇∇∇ΦP−ρ
′
∇∇∇Φ0, (B7)

ρ0T0
∂

∂ t

(
s′+ ξξξ ···∇∇∇s0

)
=−∇∇∇ ···FFF ′, (B8)

FFF ′ =−K′∇∇∇T0−K0∇∇∇T ′+ FFF ′′′c, (B9)

K′

K0
= 3

T ′

T0
− κ ′

κ0
− ρ ′

ρ0
, (B10)

κ
′ = κρ

ρ ′

ρ0
+ κT

T ′

T0
, (B11)

s′ = cp

(
T ′

T0
−∇ad

p′

p0

)
, (B12)

ρ ′

ρ0
=

1
χρ

(
p′

p0
−χT

T ′

T0

)
, (B13)

where q′ denotes the Eulerian perturbation to the vari-
able q. We have introduced ∇ad ≡ (∂ lnT/∂ ln p)s, the adi-
abatic gradient; κρ ≡ (∂κ/∂ lnρ)T ; κT ≡ (∂κ/∂ lnT )

ρ
; χρ ≡

(∂ ln p/∂ lnρ)T and χT ≡ (∂ ln p/∂ lnT )
ρ
.

To find the perturbation to the convective flux we take
the unperturbed form to be

FFFc =−r̂rrAr̂rr ···~∇∇∇s, (B14)

where comparison with (B5) defines A. We expect that the
contribution of FFF ′′′c is small when the response is essentially
adiabatic, and only becomes important in a thin layer to-
wards the surface. Therefore we make the approximation
that FFF ′′′c is dominated by the gradient term. This leads to a
perturbed convective flux of the form

FFF ′′′c =−r̂rrAr̂rr ···~∇∇∇s′−∆∆∆n̂nnAr̂rr ···~∇∇∇s (B15)

where −∆∆∆n̂nn is the change in the direction of free-fall, which is
perpendicular to the radial direction. The assumption that
A is taken to be unchanged by the perturbation rests on the
assumed dominance of the gradient term which might be
expected for small scale perturbations in a thin layer. We
remark that, as discussed above, we have investigated cases
where A is allowed to vary, also incorporating the dependence
of the convective velocity on the entropy gradient, and do
not find qualitative changes of behaviour.
Following these procedures we obtain a set of 15 equations,
with the associated 15 variables being: p′,T ′,ξξξ ,FFF ′,ρ ′,s′,K′,κ
and FFF ′′′c. We eliminate eleven of these with the aim of obtain-
ing four equations for the four variables which we desire to
remain, namely p′,T ′,ξr and F ′r , where the subscripted r de-
notes the radial component of the vector quantity.
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The equations are all linear and have time–independent co-
efficients, so we can separate the time dependence from the
spatial dependence. As the perturbing potential is propor-
tional to Y−m

l (θ ,φ)eimωt , with l = m = 2, we look for solu-
tions with the same angular and time dependence. There-
fore, with q′ representing one of the variables we solve
for, we have ∂q′/∂ t = imωq′, ∂q′/∂φ = −imq′ and ∇2

⊥q′ =

−(l(l + 1)/r2)q′, where ∇∇∇⊥ = ∇∇∇− r̂rr∂/∂ r, so that ∇2
⊥ = ∇2−

(1/r2)∂/∂ r
(
r2∂/∂ r

)
. Note that the equilibrium variables are

purely radial, so ∇∇∇⊥q0 = 0.
In order to make use of the properties of spherical har-

monics, the equations must be formed in such a way as to
ensure that ∇∇∇⊥ only appears as ∇2

⊥. To do this, the vector
equations must be split into their radial and tangential com-
ponents, and the divergence terms must also be split into the
radial and tangential parts. By eliminating the unwanted un-
knowns, we are left with the oscillations equations, given in
equations ( 4) to (7).

For solving these equations numerically, we convert to
dimensionless variables ξ̃r = ξr/R, F̃r = F ′r /FrBC , p̃ = p′/p0
and T̃ = T ′/T0, where FrBC = Fr0 |r=R. The equations are also
converted to a dimensionless form, whilst avoiding any po-
tential singularities, giving

1
ρ0R

∂

∂ r
(r2

ρ0ξ̃r)+

(
r2

χρ R2 −
l(l + 1)p0

m2ω2R2ρ0

)
p̃

− χT

χρ

r2

R2 T̃ =
l(l + 1)

m2ω2R2 ΦP (B16)

i
1
cp

r2

R
ds0

dr
ξ̃r +

FrBC

mωρ0T0cpR2
∂

∂ r

(
r2F̃r

)
− i∇ad

r2

R2 p̃ +

(
i

r2

R2 +
l(l + 1)K0

ρ0mωcpR2

)
T̃ = 0 (B17)

− dr
dT0

FrBC

K0
F̃r−

dr
dT0

T0
∂ T̃
∂ r

+

[
−4 +

κT

κ0
− χT

χρ

(
1 +

κρ

κ0

)]
T̃

+
dr

dT0

dr
ds0

Fc,r,0
K0

d
dr

(cpT̃ )+
1

χρ

(
1 +

κρ

κ0

)
p̃

− dr
dT0

dr
ds0

Fc,r,0
K0

d
dr

(cp∇ad p̃) = 0 (B18)

− ξ̃r +
1

m2ω2R

(
1
ρ0

∂ (p0 p̃)

∂ r
+

dΦ0

dr
p̃

χρ

)
− dΦ0

dr
1

m2ω2R
χT

χρ

T̃ =− 1
m2ω2R

∂ΦP

∂ r
(B19)

where equations B16 to B19 correspond to equations (4)
to (7), multiplied by r2/(ρ0R2), r2/(mωρ0T0cpR2), −dr/dT0,
and 1/(m2ω2ρ0R) respectively.

APPENDIX C: THE EQUILIBRIUM TIDE AND
THE LOW FREQUENCY LIMIT IN THE
ADIABATIC REGION

This section briefly covers the equilibrium tide and its pre-
diction for the radial and horizontal displacements, so that
the equilibrium tide and the non–adiabatic dynamical tide
can be compared.

C1 The situation when N2 is non–zero

The equilibrium tide is calculated in the low–frequency limit,
such that ω ≈ 0, in which the equation of motion reduces
to the condition for hydrostatic equilibrium, which, when
linearised, takes the form:

0 =−∇∇∇p′−ρ0∇∇∇ΦP−ρ
′
∇∇∇Φ0, (C1)

where ΦP(r) =−GmPr2/(4D3) is the radial part of the tidal
potential obtained after factoring out the angular dependent
factor Y−2

2 (θ ,φ)e2iωt (see Appendix A). The same factor is
also removed from the perturbation response.

Here Φ0 is the equilibrium gravitational potential, p′

is the perturbation to the pressure, ρ0 is the equilibrium
density, and ρ ′ is the perturbation to the density.
We assume that the background star is at hydrostatic equi-
librium, giving:

d p0

dr
=−gρ0 (C2)

where g ≡ dΦ0/dr is the magnitude of the gravitational ac-
celeration.
The horizontal component of equation (C1) yields:

p′ =−ρ0ΦP, (C3)

which can be substituted into the radial component of equa-
tion (C1) giving an expression for ρ ′ as:

ρ
′ =

dρ0

dr
ΦP

g
. (C4)

Similarly (C3) can be written as:

p′ =
d p0

dr
ΦP

g
. (C5)

Then from (C4 ) and (C5) we obtain:

∆p− Γ1 p0

ρ0
∆ρ =

(
ξr +

ΦP

g

)(
d p0

dr
− Γ1 p0

ρ0

dρ0

dr

)
. (C6)

From this we can conclude that for adiabatic perturbations
at a location for which N2 6= 0, we have:

ξr =−ΦP

g
, (C7)

where ξr is the radial displacement from the equilibrium po-
sition. This is the standard form of the radial displacement
for the equilibrium tide. We remark that taken together with
equations (C4) and (C5), this implies that the Lagrangian
perturbations to the pressure and density, ∆P and ∆ρ, are
both zero. This is consistent with these quantities being re-
lated by a condition for adiabatic change. But note that
other relations between these quantities, such as may occur
in a non adiabatic zone, may lead to an inconsistency, with
the consequence that hydrostatic equilibrium may not be
assumed and the standard equilibrium tide discussed above
will not be applicable.
Expressing the horizontal displacement as ξξξ⊥ = r∇∇∇⊥V ,
where V has the same dependences upon θ and φ as the
other variables under consideration (see section 2.4), gives
the continuity equation as:

ρ
′+

1
r2

∂

∂ r

(
r2

ρ0ξr

)
−ρ0

l (l + 1)V
r

= 0, (C8)
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where we have used the fact that V ∝ Y−m
l (θ ,φ) such that

∇2
⊥V =−l (l + 1)V/r2.

Using ∆ρ = 0, this can be rearranged and simplified to give

V =
r

l (l + 1)

(
2

ξr

r
+

∂ξr

∂ r

)
. (C9)

To examine the behaviour towards the surface, we use the
approximation that g = GM/r2, where G is the gravitational
constant, and M is the stellar mass. This approximation is
increasingly valid as we approach the surface due to the
low density of surface material. Combining this with the
expression for ΦP gives the radial displacement as:

ξr =
mPr4

4MD3 . (C10)

This then gives the horizontal displacement function as:

V ≈ 3mPr4

2l (l + 1)MD3 , (C11)

which, combined with the fact that l = 2, gives the result
that V = ξr towards the surface. Importantly, the scale of
variation of these quantities is of the order of the radius.
As mentioned already, this was derived under the as-
sumptions of hydrostatic equilibrium, applying in the limit
mω → 0, and that either the perturbations are adiabatic
or the Lagrangian variation of the density and pressure are
zero with N2 6= 0. However, a different situation arises when
both m2ω2 and N2 are small and tend to zero simultaneously.
This is potentially significant in convection zones in which
the convective heat transport is efficient as in the inner solar
convective envelope. This we now explore.

C2 The situation when m2ω2 is small and N2 is
either smaller or of the same orders

We begin with equation (23) which reads:

V =
1

rm2ω2

(
p′

ρ0
+ ΦP

)
, (C12)

and rewrite it in the form:

V =
1

rρ0m2ω2 W F , (C13)

which defines W , and where F is defined through the rela-
tion:

dF/dr
F

=
d p0/dr
Γ1 p0

. (C14)

Using the adiabatic relation ∆p = (Γ1 p0/ρ0)∆ρ together with
the radial component of the linearised equation of motion
gives:(

m2
ω

2−N2
)

ξr =
F

ρ0

dW

dr
+

ΦPN2

g
(C15)

From equations (B1) and (B3) under the adiabatic assump-
tion (i.e. ∇ ·F set to zero), we find that:

p′ =−Γ1 p0

F
∇ · (ξF ). (C16)

Making use of equations (C12), (C13), (C15), and (C16),
we obtain to within corrections of order m4ω4 on the right

hand side:(
m2

ω
2−N2

)
ξr−

Fm2ω2

ρ0

d
dr

(
ρ0

l(l + 1)F 2
d(r2Fξr)

dr

)
=

ΦPN2

g
− F

ρ0

d
dr

(
ΦPρ2

0 r2m2ω2

F l(l + 1)Γ1 p0

)
(C17)

From the above, we see that if m2ω2→ 0 with N2 remaining
finite, we recover the equilibrium tide solution ξr =−ΦP/g,
as expected.

However, if they remain of the same order, equation
(C17) must be considered in its entirety and the equilib-
rium tide cannot be assumed. In the limit N2→ 0, with ω2

remaining finite or tending to zero more slowly, equation
(C17) becomes:

F

ρ0

d
dr

(
ρ0

l(l + 1)F 2
d(r2Fξr)

dr

)
−ξr =

F

ρ0

d
dr

(
ΦPρ2

0 r2

F l(l + 1)Γ1 p0

)
.

(C18)

This corresponds to the isentropic limit. It was discussed in
section 2.2 of Terquem et al. (1998) who consider an equiv-
alent situation when a barotropic equation of state applies.
In our case we expect it to apply in the deeper layers of the
convective envelope which are extensive in the 1 M� case
but much less so in the 1.4 M� case (see Fig. 1).

More generally, equation (C17) takes the form of a
forced oscillator with gravity waves that can be excited and
propagate in the region where N2 ≥m2ω2. These can be con-
fined in an inner radiative cavity decaying exponentially into
the convection zone forming standing waves that can be res-
onantly excited as seen in the calculations. We should not
expect the equilibrium tide to hold then.

APPENDIX D: LOW FREQUENCY LIMIT
WHEN THE STANDARD EQUILIBRIUM TIDE
DOES NOT APPLY AND PERTURBATIONS
ARE NOT ADIABATIC

We now investigate situations where the standard equilib-
rium tide does not apply in the low frequency limit in
the non adiabatic layer close to the surface. The reason
for this is that the density and temperature perturbations
do not even approximately satisfy the adiabatic condition
∆p = (Γ1 p0)/ρ0∆ρ, which is required for hydrostatic equilib-
rium and the standard equilibrium tide to hold (see equa-
tions (C6) and (C7) and the discussion immediately below).

To begin, we note that equation (23), derived from the
horizontal components of the linearised equation of motion,
can be written in the form:

m2
ω

2
ρ0V r = p′+ h

d p0

dr
, (D1)

where the quantity h = −ΦP/g is equal to the radial dis-
placement component of the standard equilibrium tide. The
radial component of the equation of motion (7) can, with
the help of equation (D1), be written in the form:

m2
ω

2
(

ρ0ξr−
∂ (ρ0V r)

∂ r

)
=

(
ρ
′+ h

dρ0

dr

)
g, (D2)

For adiabatic perturbations expected in the deep interior we
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may write:

p′− Γ1 p0

ρ0
ρ
′+ ξr

Γ1N2 p0

g
= 0 (D3)

In order to investigate more general relations between
the density and pressure perturbations that may not be con-
sistent with hydrostatic equilibrium as may occur in the non
adiabatic zone near the surface in a simplified manner, we
modify (D3) by introducing parameters β1 and β2 so that it
reads:

p′− Γ1 p0

ρ0
ρ
′+ξr

Γ1N2 p0

g
+β1

(
β2(Γ1−1)p0

ρ0
ρ
′−ξr

Γ1N2 p0

g

)
= 0.

(D4)

From the second law of thermodynamics we have:

β1

(
β2(Γ1−1)p0

ρ0
ρ
′−ξr

Γ1N2 p0

g

)
=− i(Γ3−1)∇ ·F′

mω
(D5)

which implies that β1 and/or β2 may be complex. In addi-
tion we note that, when β1 = 0, we have the usual adiabatic
condition (D3), and for β1 = 1, with β2 = 1, we have, assum-
ing an ideal gas, the isothermal condition p′ = p0ρ ′/ρ0. In
addition when β1 = 1, with β2 = 0 we have the condition for
zero entropy perturbation that p′/p0 = Γ1ρ ′/ρ.

Although the introduction of the parameters β1 and β2
is used to simplify matters by allowing one to ignore the de-
tails of radiation transport, this approach is able to indicate
how the significant departures from predictions made from
consideration of the adiabatic equilibrium tide, that we see
in the surface layers, can come about. Using equations (D1)
and (D2) to eliminate p′ and ρ ′ in equation (D4), we obtain
a consistency condition connecting the standard equilibrium
tide radial displacement and the actual displacement com-
ponents in the form:

(1−β1)(ξr−h)
N2Γ1 p0

g
−β1h

(
d p0

dr
− β3 p0

ρ0

dρ0

dr

)
=

−m2
ω

2
ρ0V r +

β4 p0

ρ0

m2ω2

g

(
ρ0ξr−

∂ (ρ0V r)

∂ r

)
, (D6)

where β3 = (β2 + Γ1(1−β2)) and
β4 = (β2(β1 + (1−β1)Γ1) + Γ1(1−β2)). Let us suppose now
that we can take the limit ω→ 0 and recover the equilibrium
tide prediction for the radial displacement that ξr = h. Equa-
tion (D6) then implies that, if β1 6= 0 and V is non–singular,
we must have d p0/dr = (β3 p0/ρ0)dρ0/dr, corresponding to
a specific relation between p0 and ρ0. Thus the standard
equilibrium tide description cannot be recovered in general.

Writing equation (D6) in terms of the pressure scale
height Hp� r, we obtain:

(1−β1)(ξr−h)
g
r

(
Γ1 p0

ρ0

dρ0

d p0
−1
)

+ β1h
g
r

(
1− β3 p0

ρ0

dρ0

d p0

)
=

m2
ω

2
(

β4

[
V

p0

ρ0

dρ0

d p0
+

Hp

r

(
ξr−

∂ (V r)

∂ r

)]
−V

)
. (D7)

We remark that equation (D7) implies significant departures
from the standard equilibrium tide when the conditions for
it to apply are not satisfied (see appendix C above).

When ξr does not exceed V in characteristic magnitude
and we assume that V changes on a scale significantly ex-
ceeding Hp, as occurs for the equilibrium tide, then the term

proportional to Hp is negligible. If ξr = h, the standard equi-
librium tide value, and there are significant departures from
adiabatic behaviour, with |β1| of order unity, we would con-
clude that |V/h|= g/(m2ω2r)� 1. This large increase in |V |
in comparison to h, a factor ∼ 400 for our solar mass model,
would have to occur in the thin non–adiabatic surface layer.
Accordingly, the characteristic scale of increase would be
the scale height there or less. Rearranging the expression
|V/h| = g/(m2ω2r) at the surface, and using GM = D3ω2,
from the properties of the orbit, we get |V/R|= mp/(4m2M).
This is independent of the orbital distance, and depends only
on the mass ratio between the planet and the star.

An alternative possibility from equation (D7) that
would avoid large values of |V | occurs if the left hand side is
zero. However, this implies significant departures of ξr from
the equilibrium tide occurring in the thin non adiabatic zone.

This paper has been typeset from a TEX/LATEX file prepared by
the author.
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