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ABSTRACT

We calculate the conversion from non–adiabatic, non–radial oscillations tidally induced by a hot Jupiter on a star to

observable spectroscopic and photometric signals. Models with both frozen convection and an approximation for a

perturbation to the convective flux are discussed. Observables are calculated for some real planetary systems to give

specific predictions. Time–dependent line broadening and the radial velocity signal during transit are both investigated

as methods to provide further insight into the nature of the stellar oscillations. The photometric signal is predicted to

be proportional to the inverse square of the orbital period, P−2, as in the equilibrium tide approximation. However,

the radial velocity signal is predicted to be proportional to P−1, and is therefore much larger at long orbital periods

than the signal corresponding to the equilibrium tide approximation, which is proportional to P−3. The prospects for

detecting these oscillations and the implications for the detection and characterisation of planets are discussed.
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1 INTRODUCTION

Stars have been known to vary for millenia, with both binary
systems (Jetsu & Porceddu 2015) and variable stars (Hoffleit
1997) being observed to periodically change in brightness.
More recently, the Sun was found to exhibit periodic varia-
tion in its surface velocity, with velocity fields being detected
across the solar surface (Leighton et al. 1962). Many other
stars have since been found to exhibit similar oscillations, de-
tected both through radial velocity (RV) measurements (such
as Brown et al. (1991); Kjeldsen et al. (2003)) and photomet-
rically (see Chaplin & Miglio (2013) and Di Mauro (2017)
for reviews), and such oscillations have even been observed
in Jupiter (Markham & Stevenson 2018).

Such oscillations are excited by internal processes, whether
convection in the case of solar–type stars (Kjeldsen & Bed-
ding 1995) or ‘rock storms’ on Jupiter (Markham & Stevenson
2018). In these cases, the information content of the oscilla-
tions is primarily held within their frequencies, which has
been used to great effect in investigating the structure of the
Sun (Deubner & Gough 1984). The presence of an external
perturber can similarly drive oscillations, though the infor-
mation is contained within the amplitude and phase of the
response, as the frequency is determined by the orbit of the
perturber (Burkart et al. 2012).

Tidally excited oscillations have been studied in the context
of orbital evolution (Savonije & Papaloizou (1983); Goldre-
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ich & Nicholson (1989); Smeyers et al. (1998)), which occurs
because energy is dissipated in the stellar interior as the os-
cillations are damped, and angular momentum is transferred
from the perturber’s orbit to the star’s rotation, or vice versa.

Tidal oscillations have also been investigated more directly,
as they lead to the surface of the star varying periodically.
This can result in both photometric and spectroscopic vari-
ations, and has been investigated in the context of stellar
binaries (Quataert et al. 1996) and planetary companions,
for eccentricities both small (Terquem et al. (1998); Arras
et al. (2012)) and large (Burkart et al. (2012); Fuller (2017);
Penoyre & Stone (2019)).

Previous work has set out the framework in which to con-
vert the behaviour of the stellar surface into observable sig-
nals for both RV (Dziembowski (1977); Arras et al. (2012))
and photometric (Dziembowski (1977); Pfahl et al. (2008))
signals. This work will build upon and extend these for-
malisms, particularly in asserting the importance of consid-
ering the non–radial components of the displacement of the
stellar surface, and investigating the full spectroscopic RV
signal in terms of time–dependent line–broadening.

These variations have been observed photometrically
(Welsh et al. (2010); Mazeh & Faigler (2010); Mislis &
Hodgkin (2012)) and spectroscopically (Maciejewski et al.
(2020b)), though it is possible that other tidal RV signals
may have been mistakenly attributed to non–zero orbital ec-
centricities (Arras et al. 2012).

Observations of tidal oscillations could be used to derive
the parameters of the system under investigation. Transiting
planets can have their masses directly inferred, whilst planets
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2 A. Bunting, C. Terquem

discovered using the RV method could have the degeneracy
between the inclination and mass broken; if both transit and
RV data already exist, an independent measurement of the
planetary mass can be made. Providing tighter constraints on
the system parameters can then be used to test our models of
both planetary atmospheres, formation and orbital evolution.

In order for this to be done accurately, the oscillations must
be well modelled. The equilibrium tide approximation, whilst
found to be reasonable throughout the bulk of the star (Pfahl
et al. 2008), breaks down at the stellar surface, where non–
adiabatic effects become prominent (Henyey et al. (1965);
Savonije & Papaloizou (1983); Arras et al. (2012); Houdek
et al. (2017); Fuller (2017)). The fully non–adiabatic stellar
oscillation equations are solved here for the case of a peri-
odic, tidal perturbation, as set out in Bunting et al. (2019),
with particular focus given to modelling the response at the
surface.

Section 2 addresses the procedure for converting the mod-
elled oscillations into an observable signal, for both the ob-
served flux variation (section 2.2) and radial velocity varia-
tion (section 2.3). Some alternative methods for observing the
tidal oscillations are discussed in section 3. The predicted ob-
servable signals are explored for a test case in section 4, begin-
ning with a summary of relevant results from Bunting et al.
(2019) in section 4.1, then addressing behaviour for long peri-
ods (4.2), short periods (4.3), resonances (4.4), general trends
in behaviour (4.5) and variation with stellar mass (4.6). The
observable signals for observed systems are presented in sec-
tion 5, and discussed in section 6, whilst section 7 concludes
this work.

2 METHODS

In this section, the conversion from the calculated behaviour
of the stellar surface into an observable signal is detailed.
Initially, the set-up of the problem and the conventions used
in the calculations are described in section 2.1. The observed
flux variation calculation is addressed in section 2.2, followed
by the signals due to spectroscopic variation in section 2.3.

2.1 Set-up

We follow Bunting et al. (2019) and assume a non–rotating
star with polar coordinates (r,θ∗,φ∗) centred on the star, with
the planetary companion existing in a circular orbit with θ∗ =
π/2. In this frame, the observer is taken to be in the direction
given by (θ0,φ0).

In the observer’s frame, described by (r,θob,φob), the ob-
server is at θob = 0, with θob < π/2 visible to the observer.
The unit vectors associated with these coordinate systems are
denoted with a hat. The epoch of inferior conjunction is used
to define the origin of the time coordinate and for the orbital
phase.

In the frame of the star, the leading order non–constant
term of the tidal perturbation has the form of a spherical
harmonic with l = m = 2. Therefore the response of the star
will have the form:

q′(r,θ∗,φ∗, t) = ℜ

(
q′(r)3sin2

θ∗e2i(ωt−φ∗)
)
, (1)

where q′(r) varies only with the radial coordinate, r, and ℜ

denotes the taking of the real part. Here, ω is the orbital fre-
quency, and it can be seen from the above expression that the
frequency of the perturbation is twice the orbital frequency.
This form applies to ξr, the radial displacement, F ′r , the per-
turbation to the radial flux, and V , which gives the horizontal
displacement, ξξξ h = ξξξ−ξr r̂rr, through ξξξ h = r∇∇∇hV , with ∇∇∇h being
the non-radial component of the gradient operator.

Here, we are interested in close binary systems for which
the orbital period, and hence the period of the tidal pertur-
bation, is in the range of a fraction of a day to a few days.
Forcing at such frequencies excites gravity modes in the star,
which propagate in the radiative zone and are evanescent in
the convective envelope. Additional inertial modes would be
excited in the convective envelope of the star if it rotated
with an angular velocity (assumed uniform) Ωrot such that
ω ≤ 2Ωrot (see, e.g., Ogilvie & Lin (2004)). These modes are
not be taken into account in this paper, and our results there-
fore only apply to systems in which the star is slowly rotat-
ing, with a period larger than twice the orbital period of the
planet. This assumption is expected to hold for most solar–
type stars hosting planets. However, stellar rotation may have
to be taken into account for more massive stars, as discussed
in Arras et al. (2012). In that case, inertial modes may con-
tribute to signals of the type discussed here, as shown by
Lanza et al. (2019), who considered purely toroidal inertial
modes.

To convert between the frame of the observer and that of
the star, we use the properties of spherical harmonics and Eu-
ler angles, guided by Morrison & Parker (1987) and detailed
in Appendix A. For integrations over the visible disc we need
only keep track of one spherical harmonic (as the integral
over φob will eliminate terms with eiµφob where µ 6= 0). This
allows us to convert the expression of the star’s tidal response
into the coordinates of the observer’s frame, as (eq. [A5]):∫ 2π

0
3sin2

θ∗e2i(ωt−φ∗)dφob

= 3π sin2
θ0(3cos2

θob−1)e2i(ωt−φ0). (2)

To account for ξξξ h we use the fact that the relation ξξξ h =
r∇∇∇hV is true independent of the orientation of the coordinate
system used. This gives the expression for the horizontal dis-
placement as:∫ 2π

0
ξθob (r,θob,φob, t)dφob

=ℜ

[
∂

∂θob

∫ 2π

0
V (r)3sin2

θ∗e2i(ωt−φ∗)dφob

]
,

=ℜ

[
−18πV (r)sin2

θ0 cosθob sinθobe2i(ωt−φ0)
]
, (3)

where we have retained only the component which will be
observed, as the displacement perpendicular to the direction
towards the observer does not contribute since φ̂ob·n̂ob = 0,
where n̂nnob is the unit vector towards the observer.

2.2 Variation of the observed stellar flux

The observed stellar flux is given by

L =
∫ ∫

hF̄n̂ob·n̂dS (4)

where h is the limb-darkening (note that this is wavelength
dependent), F̄ is the emergent flux, equal to FFF ··· n̂nn, n̂nn is the
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Tidal oscillations: predicted observables 3

unit vector normal to the surface, and dS is the surface area
element.

In order to evaluate the first–order change in observed flux,
each of these terms must be evaluated as a function of per-
turbations to the equilibrium state, which will result in first
order changes in observed flux due to limb–darkening, flux,
surface normal, and surface area, corresponding respectively
to ∆Lh, ∆LF , ∆Ln, and ∆LS. Full details of the derivation can
be found in Appendix B.

The equilibrium observed flux is given by

L0 =
∫ 2π

0

∫ π

2

0
h0F̄0r̂ ·n̂obdS0, (5)

where the subscript 0 indicates that it is the equilibrium
value; F̄0 = F 0·r̂ where F 0 is the vector equilibrium radiative
flux at the surface (equal to F0r̂ , where F0 is its magnitude);
r̂ is the radial unit vector, which is the surface normal for the
equilibrium case; dS0 = R2 sinθobdθobdφob, where R is the equi-
librium radius of the star. The integral is calculated in the
observer’s frame, so that r̂ ·n̂ob = cosθob. Using a quadratic
limb darkening law, we have: h0 = c[1− a(1− r̂ ·n̂ob)− b(1−
r̂ ·n̂ob)2], where a and b parametrise the limb darkening and
c normalises it, such that

∫ 1
0 µhdµ = 1, with µ = cosθob. As

found by Arras et al. (2012), the disc-integrated values vary
weakly with the choice of limb darkening law, so for simplicity
Eddington limb-darkening is used here, with c = 5/2, a = 3/5
and b = 0 (Dziembowski 1977), although the full quadratic
limb darkening coefficients are retained in the general form
of the equations.

The explicit expression for the equilibrium observed flux is
then found to be

L0 = 2πR2F0, (6)

where the factor of 2 comes from the definition of the nor-
malisation of the limb darkening.

The first order perturbations are calculated by expanding
the four terms in the integrand into their equilibrium and
first order terms, as detailed in Appendix B, resulting in the
following expressions:

∆Lh = ℜ

[
12π

5
RcF0(a +

3b
4

) [V (R)−ξr(R)]sin2
θ0e2i(ωt−φ0)

]
,

(7)

∆LF = ℜ

[
3π

4
R2c

(
1 +

a + 2b
15

)(
F ′r (R)+ ξr(R)

dF0

dr

)
×sin2

θ0e2i(ωt−φ0)
]
, (8)

∆Ln = ℜ

[
9π

2
Rc
(

1− 7a + 4b
15

)
F0 [V (R)−ξr(R)]

×sin2
θ0e2i(ωt−φ0)

]
, (9)

∆LS = ℜ

[
3π

2
Rc
(

1 +
a + 2b

15

)
F0 [ξr(R)−3V (R)]

×sin2
θ0e2i(ωt−φ0)

]
, (10)

where F ′r is the Eulerian perturbation to the flux, as defined
in appendix B3. These can be combined to give the fractional
total change in observed flux as:

∆L
L0

= ℜ

[
3
8

c
(

1 +
a + 2b

15

)(
∆Fr

F0
−4

ξr(R)

R

)
sin2

θ0e2i(ωt−φ0)

]
.

(11)

where:

∆Fr = F ′r (R)+ ξr(R)
dF0

dr
(R). (12)

Whilst the individual effects may involve the horizontal com-
ponents of displacement, as noted by Heynderickx et al.
(1994) they cancel out exactly to first order.

2.3 Radial velocity variation

The periodic change in shape of the star results in a periodic
change in the velocity of any given surface element. Project-
ing this along the observer’s line of sight gives the radial ve-
locity (RV) which is proportional to the shift in wavelength
caused by the motion (for the very non-relativistic motions
considered here). Expressing this formally gives

vRV =−ṙ ·n̂ob, (13)

where r is the vector from the centre of the star to the surface
element in question.

To first order in perturbed quantities, this becomes

vRV =−ξ̇ ·n̂ob = ℜ(−2iωξ ·n̂ob) . (14)

This can be encapsulated by a single curve by integrat-
ing over the disc, weighted by the observed flux, as done by
Dziembowski (1977):

vdisc =

∫∫
hr̂ ·n̂obF̄0vRVdS∫∫

hr̂ ·n̂obF̄0dS
=

1
2πR2

∫ ∫
hr̂ ·n̂obvRVdS, (15)

which can be analytically solved.
Evaluating this integral (see appendix C for details) gives the
final expression for the disc–integrated radial velocity as:

vdisc = ℜ

{
−4

5
iωc
[(

1− a
16

+
b

56

)
ξr(R)+

3
(

1− 3a
8
− 5b

28

)
V (R)

]
sin2

θ0e2i(ωt−φ0)

}
. (16)

It is worth noting the dependencies on the orientation of
the system: sin2

θ0 differs from the sinθ0 dependence in stan-
dard RV detections, and φ0 introduces a phase difference, as
expected, but non–adiabaticity at the surface (exhibited by
non–zero imaginary components of variables) can also lead to
a phase difference.

Alternatively, the full spectrum of the line–broadening can
be computed by numerically integrating over the visible disc
to calculate the observed flux as a function of radial velocity.
This enables the time–dependent line–broadening to be eval-
uated, and a non–trivial signal is present at all orientations of
the system (although, for a system where θ0 = 0, the signal is
time–independent). This is further discussed in appendix D1.

3 ALTERNATIVE METHOD OF OBSERVATION: SIGNAL
DURING TRANSIT

Above, we have described the standard methods used for de-
tecting the tidal signal at the stellar surface. In this section,
we set out an alternative method which would provide oppor-
tunities to deduce further information about the oscillations.
Further details can be found in Appendix D.

MNRAS 000, 1–22 (2020)



4 A. Bunting, C. Terquem

As the planet occludes part of the stellar disc, compar-
ing the signal at a point during transit to the signal during
the secondary eclipse (when the planet is blocked from view
by the star) provides the opportunity to isolate the signal
originating from a given location on the stellar surface. This
enables the horizontal and radial displacements to be disen-
tangled, as the relative contributions to the RV signal from ξr
and V vary differently across the face of the stellar disc, with
V and ξr being more prominent at the edges and towards the
centre, respectively.

As the planet crosses the disc, the RV signal at a particular
radial velocity will be reduced, with the reduction in bright-
ness depending on the limb–darkening and how much of the
rest of the disc is also producing a signal at the same radial
velocity.

During a transit, we can approximate θ0 ≈ π/2 and, by
taking the midpoint of the transit to occur at t = 0, φ0 ≈ 0,
enabling an analytical approximation for the value of vRV as
a function of position on the stellar disc. Approximating the
velocity of the planet as being constant over the course of the
transit then gives an analytical expression for the value of
vRV blocked as a function of time. More details can be found
in Appendix D2.1.

This method could also be applied to the brightness varia-
tion in order to calculate the extra change in brightness due
to blocking that part of the perturbed flux signal, although
this contribution would be a factor of F ′/F0 smaller than the
transit signal, so would be very difficult to detect.

In principle, another method of observation could use the
fact that the differential motion of the stellar surface produces
an inhomogeneous broadening effect (Cunha et al. 2007).
Throughout the oscillation, the shape of the broadening will
change, depending on ξr, V and the inclination.

As a constant line–broadening would be indistinguish-
able from other sources of constant line–broadening (such
as Doppler broadening due to the non–zero temperature at
the stellar surface), we would only expect to be able to dis-
cern a periodically changing line–width, due to the change in
line–shape from the surface motion.

However, a realistic calculation has to take into account
all sources of line broadening, and the observable signal is
a convolution of the broadening kernel due to the tidal mo-
tion of the surface with any other broadening kernels. This
is discussed in more details in Appendix D1. It is not clear
whether the contribution from the tidal motion to line broad-
ening could be detected, as it is likely to be dominated by
thermal broadening.

4 RESULTS FOR TEST CASES

In order to understand the implications and limitations of
these tidal oscillations more generally, the test cases used in
Bunting et al. (2019) are explored as examples here. Extreme
cases are used to show where this approach may break down,
and why, and general relationships are also demonstrated.

The basic model used in Bunting et al. (2019) was roughly
modelled on 51 Pegasi b, with a solar mass star, and a Jupiter
mass planet orbiting with a period of 4.23 days, modelled us-
ing both frozen and perturbed convection. This will be the
model to which we are comparing the results discussed in
this section. In the reference model, the Brunt–Väisälä fre-

quency is much greater than the oscillation frequency within
the radiative core, as seen in Figure 1, with a sharp tran-
sition at the bottom of the convection zone to being much
less than the oscillation frequency. By changing the orbital
frequency of the planet, we are able to change the locations
in the star at which the Brunt–Väisälä frequency and the
forcing frequency will be comparable. This is important be-
cause, as shown in Bunting et al. (2019), the equilibrium tide
approximation fails when the forcing frequency is small but
larger than the Brunt–Väisälä frequency.

4.1 Background and brief summary of relevant results from
Bunting et al. (2019)

This work is primarily an exploration and application of the
modelling work as set out in Bunting et al. (2019), where the
non–adiabatic stellar oscillation equations are solved for the
case of a tidal perturbation. The equilibrium tide solution
was found to be approximately valid within the body of the
star, but broke down towards the surface where the equilib-
rium tide is inconsistent with non-adiabaticity. This leads to
behaviour in a thin region at the surface which can deviate
significantly from the equilibrium tide.

The exact response at the surface depends upon the model
used for convection, though some general trends emerge
whether convection is treated as frozen (that is, the convec-
tive flux is assumed to be unchanged by the perturbation)
or allowed to be perturbed. The radial displacement and flux
perturbation were found to scale with the equilibrium tide,
proportional to P−2 (where P is the orbital period), whilst
the horizontal displacement was approximately constant, in-
dependent of P. At long periods, the horizontal displacement
is therefore likely to dominate the stellar response.

Compared to the equilibrium tide at the surface, ξr is de-
creased by an order of magnitude in the frozen convection
case, whereas allowing a perturbation to the convective flux
gives a similar value of ξr. The flux at the surface is found to
be different from the equilibrium value in both cases, with the
perturbed convection case giving a greatly amplified value.

The different models of convection present different obsta-
cles, but together show the dependence of the response on the
choice of model for convection, as well as highlighting which
features persist independent of that choice. When convection
is frozen, non–adiabatic behaviour within the convection zone
is artificially suppressed, and it is found that the stellar re-
sponse exhibits large changes over a short scale in and around
the radiative skin of the star. Modelling the perturbation to
the convective flux is motivated by the desire to accurately
model the non–adiabatic effects towards the surface of the
star, and to avoid these problems.

The model used to perturb the convective flux sets:

F ′conv = A
∂ s′

∂ r
, (17)

where F ′conv is the perturbation to the convective flux, s′ is
the perturbation to the entropy, and A is the coefficient of
proportionality. This assumes that perturbation to the con-
vective flux is dominated by the perturbation to the entropy
gradient, so that A is kept constant, and that the gradient is
dominated by the radial component. Note that results for the
case where perturbation of A is taken into account have also

MNRAS 000, 1–22 (2020)



Tidal oscillations: predicted observables 5

Figure 1. This figure shows the absolute value of N2/(m2ω2) as a function of r/R, where R is the stellar radius, ω is the orbital frequency

and m = 2. Here the orbital period is 4.23 days. Only the outer 50% of the stellar radius is shown. The red dotted line corresponds to a
1 M� star, and the green dashed line corresponds to a 1.4 M� star. The quantity N2/(m2ω2) indicates the structure of the star: a negative

value corresponds to an imaginary frequency and implies convection; a positive value indicates a real frequency and therefore a stratified,
radiative region. This quantity passes through zero near r/R = 0.73 and 0.94 for the lower and higher mass, respectively, which correspond

to the inner boundaries of their convective envelopes. This behaviour is not fully resolved in the plots.

been presented in Bunting et al. (2019). Deep within the con-
vection zone, A is large and ∂ s0/∂ r (the background entropy
gradient) is small, so a very small perturbation to the entropy
gradient can produce a large perturbation to the flux. This
approximation may then give rise to anomalously large per-
turbations to the convective flux in this region. Towards the
surface, and particularly within the superadiabatic zone, A
becomes small, as convection becomes inefficient, and ∂ s0/∂ r
is large. Therefore, in this region, the approximation will hold
better as errors are less likely to have a significant impact,
and the non–adiabatic behaviour of the displacement can be
calculated more reliably. Overall, this model may produce
anomalous values in the surface flux due to inaccuracies in
modelling convection deep within the convection zone, whilst
being able to model the displacement within the superadia-
batic zone and towards the surface reasonably well.

Further details can be found throughout Bunting et al.
(2019), particularly in their section 3.

4.2 Long period behaviour

4.2.1 Perturbed convection

As the period of the orbit increases, the proportion of the con-
vection zone in which |N|2� (mω)2 decreases, and the tran-
sition into the super–adiabatic region occurs deeper in the
star (see Figure 1). This gives rise to increasingly large devi-
ations in ξr from the equilibrium tide displacement within the
convection zone, but does not produce a significant change in
the response of the displacement at the very surface – that is,
ξr ≈ ξr,eq ∝ P−2 and V remains approximately constant there.
This holds up to very long periods of ∼ 100 days.

The perturbation to the flux depends on the forcing fre-

quency, with the magnitude of the response, both within the
convection zone and at the very surface, proportional to P−2.
This holds from periods of a couple of days up to periods of
hundreds of days.

At long periods, the wavelength of the spatial oscillations
in the stellar core becomes very small. As a result of this,
resolving the oscillations computationally becomes difficult.
The presence of a thick convection zone may reduce the im-
pact that these unresolved oscillations have on the surface
response, which is suggested by the fact that the surface re-
sponse remains consistent with the expected behaviour even
once the core is very poorly resolved. Resolution issues be-
come apparent in the centre of the star in this model for
orbital periods above ∼ 20 days, and become apparent at
r = 0.5R for periods above ∼ 100 days.

4.2.2 Frozen convection

In this case, the behaviour within the body of the star is fairly
similar to that obtained when convection is perturbed, but
the surface response is very different. The frozen convection
case displays much larger changes over a thin surface region
of the star, resulting in |ξr| being suppressed by around a
factor of 10 compared to ξr,eq. On the other hand, |V | is still
constant, but at a much larger value than in the perturbed
convection case. This value agrees well with the prediction
for the low–frequency limit in the non–adiabatic case which
is |V/R|= mp/(4m2M), where M is the stellar mass, mp is the
planet’s mass and m = 2 (Bunting et al. 2019).

The surface value of the perturbation of the flux is reduced
by an order of magnitude by freezing convection, compared to
the perturbed convection case. Within the convection zone,
the assumption of frozen convection causes the perturbation

MNRAS 000, 1–22 (2020)



6 A. Bunting, C. Terquem

Figure 2. The magnitudes of the surface values of the radial displacement |ξr|/R (long dashed–dotted black curve), horizontal displacement

|V |/R (dashed red curve), equilibrium tide radial displacement
∣∣ξr,eq

∣∣/R (short dashed–dotted green curve), and flux perturbation |F ′r |/F0
(dotted blue curve), as a function of the orbital periods P in days, in logarithmic scale. The left panel shows the results for a star with

perturbed convection, and the right panel shows the results for the case of assuming frozen convection. Both cases show a constant |V |
outside of the region where resonances are prevalent. In the perturbed convection case, |F ′r | and |ξr|, like ξr,eq, are proportional to P−2. In

the frozen convection case and for periods less than 10 days, ξr and F ′r are roughly proportional to P−3. For periods of less than a day,

resonances become prominent, and the background scaling is somewhat obscured. There are some differences between the two cases – the
perturbed convection value of ξr closely matches the equilibrium tide, whereas the frozen convection ξr is suppressed by about an order

of magnitude; the frozen convection F ′r is approximately an order of magnitude smaller than for the perturbed convection case; and V
attains a constant value which is an order of magnitude larger in the frozen convection case than in the perturbed convection case.

of the flux to be greatly suppressed before growing over a very
small scale when approaching the thin radiative skin, as op-
posed to growing over a large scale throughout the convection
zone as in the perturbed convection case.

The results for both perturbed and frozen convection are
illustrated in Figure 2.

4.3 Short period behaviour

At very short periods, the Brunt–Väisälä frequency in the
radiative core can become comparable to the oscillation fre-
quency. When this occurs, the behaviour of ξr in the core
can deviate significantly from the equilibrium tide as op-
posed to oscillating around it as in the reference case with P =
4.23 days. This deviation then persists throughout the con-
vection zone and produces surface behaviour which doesn’t
resemble the equilibrium tide prediction, as seen in Figure 2.
This would have an impact on the behaviour of this system
at periods of ∼ 0.3 day or less.

At such short periods, the assumption of small perturba-
tions can break down. In the very centre of the star, F ′ can
become large such that it is no longer negligible compared to
the background flux when considering the stellar structure.
This can occur in this model for periods up to ∼ 0.8 day.
Whilst this is primarily a consideration at the centre of the
star, large deviations can occur in the radiative skin at the
surface for orbital periods up to ∼ 0.3 day.

4.4 Resonances

Whilst resonances do have a significant effect on the response
of the stellar interior (such that the assumption of small per-
turbations may no longer be valid when very close to reso-
nance), the response at the surface is much less pronounced.
When going through a resonance, the RV signals for orbital
periods of a couple of days change by ∼ 10%, whilst the pho-
tometric signals change by around ∼ 1%. Resonances for this
system are therefore not likely to greatly impact the observed
signals, in the unlikely event that an on–resonance system is
found.

For periods in the range 1–10 days, the resonances are very
narrow, with a quality factor ∼ 105 around P ≈ 4 days. As
the period decreases, the resonances become less sharp, and
have a more prominent impact for periods less than a day,
and particularly once ξr ∼V , as seen in Figure 2.

The choice of model for the convective flux does not af-
fect the location or quality factor of resonances, as it is the
radiative zone which acts as the resonant cavity. The effect
at the surface is changed, however, as the extent to which
this resonant cavity is isolated from the surface depends on
how the response within the convective zone is modelled. By
freezing convection, any deviation from equilibrium present
at the base of the convection zone is maintained throughout
the convection zone and is able to produce greater deviations
from equilibrium in the thin radiative skin at the surface. By
contrast, including a perturbation to the convective flux al-
lows the non–equilibrium behaviour of the radiative zone to
be attenuated before reaching the surface.
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4.5 General trends

The calculation of the response of the star is expected to
be valid within the limits stated above. For orbital periods
between 1 and 20 days, the system is well modelled, with
the results likely to hold for longer periods up to 100 days.
The change in the amplitude and phase of the response when
the orbital period is varied yields a change in the observable
signals. Here we describe some general behaviours.

Figures 3 and 4 show the disc–integrated radial velocity,
vdisc, calculated using equation (16). As can be seen on these
figures, |vdisc| ∝ P−1, which is a result of the signal being
dominated by V , which remains fairly constant. The phase
shift of the response is similarly constant, and does not change
as the period increases further.

At short periods |ξr| ∼ |V | is approached, and V is no longer
dominant. At this point, V starts to deviate from the expected
constant value, and scales roughly as P−2, just as the radial
displacement does. This change in scaling is reflected in the
scaling of the RV signal, which goes as |vdisc|∝ P−3. However,
at these very short periods, the presence of wider resonances
somewhat obscures the background scaling relation.

At P = 1 day both the equilibrium tide and the perturbed
convection model predict an amplitude of ∼ 100 cm s−1,
whilst the frozen convection model predicts an amplitude of
∼ 1400 cm s−1. The phase for the equilibrium tide and per-
turbed convection models are however significantly different,
with the signals being almost in anti–phase with each other.
At P = 2 days, the equilibrium tide prediction is reduced to
∼ 15 cm s−1, whilst the responses including convection are
both reduced by a factor of two, at ∼ 60 cm s−1 for perturbed
convection and ∼ 760 cm s−1 for frozen convection.

As the orbital period increases further, the disparity be-
tween the equilibrium tide prediction and those including
convection widens further, with the amplitude of the equi-
librium tide prediction at P = 8 days being less than 1 cm
s−1, compared to ∼ 16 cm s−1 for the perturbed convection
case, and 190 cm s−1 for the frozen convection case.

As changing the model used for convection does not affect
the scaling of the response with orbital period, the frozen
convection case consistently predicts an amplitude which is
larger by an order of magnitude than the prediction from the
perturbed convection case.

Figure 5 shows the fractional change in observed flux,
∆L/L0, calculated using equation (11). In the perturbed con-
vection case, the photometric signal scales with the pertur-
bation, and so is proportional to P−2, as can be seen on the
figures. For the frozen convection case, and for periods under
10 days, the scaling with P is steeper than this, being closer
to P−3.

At very short periods, both models with perturbed or
frozen convection predict unreasonably large values of ∆L/L0.
The assumption of small perturbations is clearly no longer
valid there, and the calculation of F ′ in this regime may not
be reliable, as mentioned in section 4.3. To test the effect of
the perturbed flux on the photometric signal, we compare, in
Figure 6, ∆L/L0 obtained from equation (11) with this quan-
tity calculated by setting F ′r = 0 and keeping only the contri-
bution from ξr. If the perturbed flux were overestimated in
our model, the realistic value of the change in observed flux
would probably be bracketed by these two estimates. As can
be seen from the figure, the perturbed flux F ′r totally domi-

nates the change in observed flux, which is larger by a factor
of a few hundred when F ′r is taken into account compared to
the case where only ξr contributes.

In the perturbed convection case, the amplitude of the
brightness variation is proportional to P−2 in both the calcu-
lations with and without F ′r . For the frozen convection case
and for periods under 10 days, the scaling of the amplitude
is closer to ∝ P−3, although the calculation only including ξr
is slightly shallower than the full calculation.

The transit depth of a planet of similar radius to Jupiter
would be ∼ 1 per cent, which is a similar order of magnitude
to the amplitude of the signal for P = 1 day for the perturbed
convection model (including F ′r in the brightness calculation).
At P = 4 days, the amplitude of the tidal signal is a factor of
∼ 25 smaller than the transit depth, at ∼ 400 ppm. The frozen
convection model predicts an amplitude of ∼ 0.1 per cent at
P = 1 day, and ∼ 20 ppm at P = 4 days. This order of magni-
tude difference between the two models of convection is main-
tained as the orbital period changes. This is due to the fact
that, within the convection zone, the assumption of frozen
convection causes the flux to be greatly suppressed before
growing over a very small scale when approaching the thin
radiative skin. By contrast, in the perturbed convection case,
the flux grows over a large scale throughout the convection
zone.

This difference in the change in observed flux between the
frozen and perturbed convection models is still present when
only ξr contributes to ∆L/L0, as can be seen in Figure 6,
although it is smaller than when F ′r contributes. When only
ξr contributes, the signal at P = 1 day has an amplitude of
∼ 10 ppm in the perturbed convection model, and ∼ 3 ppm in
the frozen convection model. At P = 4 days, these are reduced
to 0.6 and 0.1 ppm respectively, where the frozen convection
model has slightly deviated from the P−2 scaling.

The phase of the brightness variations does not vary hugely
with orbital period, with the perturbed convection model pre-
dicting that the real component of the observed flux variation
will dominate at all orbital periods. The frozen convection
case differs from this, with the imaginary component domi-
nating at long period orbits for the signal from F ′r , with the
signal from ξr gradually changing in phase as the orbital pe-
riod changes.

4.6 The effect of stellar mass

A more massive star of 1.4 M� was also investigated, as the
stellar structure changes non–linearly with mass, leading to
changes in the behaviour of the oscillations both throughout
the star and at the surface. Structurally, the primary differ-
ence is the distribution of convective regions – there is a small
convective region at the centre of the star, and the outer con-
vective region is significantly thinner than in the 1 M� case
(its base is at r = 0.94R compared to r = 0.73R in the lower
mass star), as shown in Figure 1.

Computationally, the presence of the small convective core
gives rise to resolution issues at the inner boundary of the ra-
diative zone, which leads to an unphysically large response at
that point in the star for short period orbits. However, since
the very centre of the star is convective, short–wavelength
spatial oscillations are eliminated in that region, contrary to
the lower stellar mass case.

The star’s response to a resonance is also affected. Chang-
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Figure 3. The disc–integrated radial velocity vdisc (in units of cm s−1) is shown against orbital phase ωt/π, the origin of which is given by

the epoch of inferior conjunction, for a range of orbital periods for the case of perturbed convection (on the left) and frozen convection (on
the right). From the largest to the smallest amplitude, the different curves correspond to P=1, 2, 4, 8, 16 and 32 days. In both cases, the

amplitude scales as P−1, which is different than the scaling corresponding to the equilibrium tide prediction. This is due to V dominating

the signal, as it is much larger than ξr, and being constant. This will lead to RV signals which are larger than predicted by the equilibrium
tide, particularly at longer orbital periods. As the orbital period changes, the phase of the RV signal remains fairly constant. At short

periods however, ξr becomes comparable to V and the phase is no longer constant. Comparing the two convection models shows that the
frozen model produces a signal which is an order of magnitude larger than predicted by the perturbed convection model. This follows

directly from the constant value of V being an order of magnitude larger in the frozen convection case.

Figure 4. The magnitude (left panel) and phase (right panel) of the disc–integrated radial velocity vdisc is shown against orbital period for a

Jupiter–mass planet orbiting a solar–mass star, comparing three models: frozen convection (dashed red line), perturbed convection (dashed
dotted black line), and the equilibrium tide (dotted blue line). For periods greater than ∼ 1 day, the frozen and perturbed convection

models both scale as P−1, whereas the equilibrium tide scales as P−3. This leads to large deviation in the predicted signal amplitude for long

period orbits: at P = 10 days the equilibrium tide prediction is |vdisc|= 0.1 cm s−1, whereas the perturbed convection and frozen convection
models are larger than this by a factor 102 and 103, respectively. At short periods, once |ξr| ∼ |V |, resonances become significant, and the

scaling of vdisc changes to follow the equilibrium tide scaling (as ξr scales as ξr,eq). The phase of the signals remains fairly consistent for

orbital periods greater than 1 day, with resonances clearly present below that value. The perturbed and frozen convection models are π

out of phase with the equilibrium tide prediction.
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Figure 5. The photometric signal as a fraction of total observed flux, ∆L/L0, is shown against orbital phase, the origin of which is given

by the epoch of inferior conjunction, for a range of orbital periods for both the perturbed convection model (left panel) and the frozen
convection model (right panel), for a Jupiter–mass planet orbiting a solar–mass star. The Eddington limb-darkening is used here, with

c = 5/2, a = 3/5 and b = 0. From the largest to the smallest amplitude, the different curves correspond to P=1, 2, 4, 8, 16 and 32 days.
In both models, the phase remains fairly constant over this range of periods. In the perturbed convection case, the amplitude scales as

P−2, whereas in the frozen convection case the amplitude scaling is closer to P−3. The perturbed convection model produces a prediction

which is a factor of ∼ 5 greater than the frozen convection model and, at very short periods, has a large peak–to–peak amplitude, being
∼ 1 per cent at P = 1 day, which is comparable to the transit depth of a planet of similar size to Jupiter. Because of the scaling with P,

this quickly drops to a very small signal for long period orbits, being ∼ 100 ppm at P = 8 days.

ing the resonant cavity affects the location and spacing of
the resonances, though they still have a similarly high qual-
ity factor. The response at the surface is much more sensitive
to the presence of a resonance in the 1.4 M� case, as the thin-
ner outer convective region means that the surface is much
less insulated from the resonating radiative zone. In this case,
a resonance can give an order of magnitude increase in both
the RV and photometric signals.

In general, for a given period, the photometric response is a
factor of 3 smaller than in the 1 M� case, whilst the RV signal
is approximately an order of magnitude greater. The change
in observed flux ∆L still scales with the perturbation, and is
proportional to P−2 in the perturbed convection case. Other
than for very short periods, V is constant, and dominates the
RV signal, so that vdisc ∝ P−1, as in the 1 M� case.

4.7 The effect of planetary mass

In order to use observations to constrain the planetary mass,
we must address how the observable signals are impacted by
a change in the mass of the planet, mp. The stellar response
is found to scale linearly with the planetary mass, just as the
tidal perturbation itself does. This linear scaling is found to
hold well at the stellar surface even if the planetary mass is
changed by up to an order of magnitude.

For a change in mp with a constant orbital separation, the
orbital frequency will also be changed. The fractional change
in frequency will be smaller than the fractional change in
planetary mass by a factor of mp/M. The change in frequency
will therefore be very small, though this can have an impact

on the response of the stellar interior if the oscillation fre-
quency is near a resonance. However, as addressed in sec-
tion 4.4, the surface response is likely to be much less suscep-
tible to these changes.

5 APPLICATION TO OBSERVED SYSTEMS

We now model some specific systems in order to produce spe-
cific predictions. Table 1 lists the key parameters of the sys-
tems, which have been approximately recreated in the model.
These cases were chosen in order to show the behaviour of
observable signals over a range of system parameters. Since
the eccentricity of these systems is negligible, the semi–major
axis a is equal to what has been called the separation D in
this paper. The systems modelled here are WASP-19 (Hebb
et al. 2010), WASP-18 (Hellier et al. 2009), WASP-12 (Hebb
et al. 2009), Qatar 5 (Alsubai et al. 2017), and CoRoT-17
(Csizmadia et al. 2011).

Each of the systems exhibits a rotational period which is
at least a factor of 4 larger than the orbital period, such that
the approximation of a non–rotating star is not unreasonable,
and inertial modes are not excited.

The details of the response are given in Table 2, which
gives the surface behaviour, and how it converts into disc–
integrated observables assuming a perfectly edge–on orbit
(which is approximately true, as all five systems were dis-
covered by transit). The results displayed in this section have
been obtained assuming an Eddington limb-darkening with
c = 5/2, a = 3/5 and b = 0.
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Figure 6. The magnitude (left panel) and phase (right panel) of the photometric signal ∆L/L0 is shown against orbital period for a Jupiter–

mass planet orbiting a solar–mass star. The Eddington limb-darkening is used here, with c = 5/2, a = 3/5 and b = 0. The four different
curves correspond to the full photometric signal and perturbed convection (dashed dotted black lines) or frozen convection (small dashed

red lines) and to the signal arising from ξr only and perturbed convection (dotted blue lines) or frozen convection (long dashed green lines).
In the perturbed convection case, the magnitude is proportional to P−2, whereas for the frozen convection case, and for periods under 10

days, the scaling with P is steeper than this, being closer to P−3. For periods under 1 day, resonances are seen to have a significant effect.

Outside of this region, the full signal from the frozen model is an order of magnitude smaller than that from the perturbed convection
model. At very short periods, both models predict unreasonably large values, and the assumption of small perturbations is clearly no

longer valid there. The signals arising only as a result of ξr show a similar relationship, but are smaller than the full signal by a factor of

102−103 (with the magnitude of the full signal being ∼ 10−2 and that of the signal due only to ξr being ∼ 10−5 at P = 1 day). The phase
of the signals arising from the perturbed convection model remain constant outside of the resonances. By contrast, the frozen convection

model does exhibit some change in phase as both the real and imaginary components are of roughly similar size, with some variation as

the orbital period changes.

Table 1. The parameters of the modelled systems, as derived from observations. Listed are the name of the system, the stellar mass M

in solar mass, the planet’s mass mp in Jupiter masses, the stellar radius R in solar radius, the age of the system in Gyr, the orbital
semi–major axis a in au, the orbital period P and the rotational period Prot of the star in days. Other than the rotational periods, the

data were taken from Arras et al. (2012). Rotational periods came from Brown et al. (2011) (WASP-19 and WASP-18), Alsubai et al.

(2017) (Qatar 5), Csizmadia et al. (2011) (CoRoT-17, although this number is uncertain it was found to be “typical of a main-sequence
slow–rotating star”). For WASP-12, we use the projected spectroscopic rotational velocity vrot sin i = 3.4 km s−1 (Torres et al. 2012) and

stellar radius R? = 1.14×106 km (Maciejewski et al. 2011), and assume sin i = 1 to calculate Prot = 2πR?/vrot.

System M mp R age a P Prot

(M�) (MJ) (R�) (Gyr) (au) (d) (d)

WASP-19 0.97 1.17 0.99 11.5 0.016 0.79 10.5

WASP-18 1.24 10.11 1.36 0.63 0.020 0.94 5.6
WASP-12 1.4 1.47 1.66 1.7 0.023 1.09 24.3

Qatar 5 1.13 4.32 1.08 0.53 0.041 2.88 12.1
CoRoT-17 1.04 2.43 1.59 10.7 0.046 3.77 20

5.1 WASP–19

Results for this system are displayed in Figure 7. This sys-
tem has a very short period orbit, such that ξr,eq ∼ |V | for the
perturbed convection model. The predicted RV signal for this
case is a factor of two smaller than the equilibrium tide pre-
diction, and is almost in anti–phase with it as a result of the
fact that V ≈−Veq. Therefore, the radial and tangential com-
ponents of the displacement counteract each other, reducing
the disc–integrated signal.

The frozen convection case is dominated by a large value
of V , and is approximately an order of magnitude greater
than the equilibrium tide prediction. The phase matches the
perturbed convection prediction, and is therefore also in anti–
phase with the equilibrium tide prediction.

The variation in observed flux predicted is very large, with
an amplitude of ∼ 1 per cent for both the perturbed and
frozen convection cases, which is the order of magnitude of the
transit depth for a Jupiter analogue. Calculating the bright-
ness variation arising only from ξr, that is to say neglect-
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Table 2. The results of the model applied to the real systems, for both the perturbed convection and frozen convection cases. The columns,
from left to right, give the system in question, the radial equilibrium displacement ξr,eq at the surface, the radial displacement ξr at the

surface, the tangential displacement V at the surface, the orbital radial–velocity (RV) semi–amplitude Korb, the disc–integrated RV velocity
vdisc,eq in the equilibrium tide case, the disc–integrated RV velocity vdisc for the full solution, and the fractional change in disc–integrated

observed flux ∆L/L0, respectively.

System 10−3×ξr,eq 10−3×ξr 10−3×V 10−3×Korb vdisc,eq vdisc 105×∆L/L0
(cm) (cm) (cm) (cm s−1) (cm s−1) (cm s−1)

WASP-19, perturbed 440 (400−9i) −(460 + 103i) 26 −270i −46 + 125i (−1400 + 25i)
WASP-19, frozen 440 −(70 + 190i) −(5770 + 2170i) 26 −270i −970 + 2490i (−40 + 500i)

WASP-18, perturbed 5800 (5460−190i) −(1700 + 1580i) 180 −2900i −590 + 10i (−13000 + 400i)
WASP-18, frozen 5800 −(820 + 1950i) −(52400 + 15600i) 180 −2900i −5900 + 19000i (−50 + 3530i)

WASP-12, perturbed 910 (1200−360i) (2100−2700i) 23 −400i −890−800i (−2050 + 600i)
WASP-12, frozen 910 −(62 + 93i) −(7400 + 700i) 23 −400i −230 + 2300i (12 + 110i)

Qatar 5, perturbed 120 (109−3i) −(1170 + 440i) 57 −20i −52 + 132i (−350 + 9i)
Qatar 5, frozen 120 −(9 + 10i) −(18100 + 1400i) 57 −20i −160 + 2130i (4 + 18i)

CoRoT-17, perturbed 230 (220 + 9i) −(840 + 607i) 32 −32i −58 + 71i (−330 + 13i)
CoRoT-17, frozen 230 −(20 + 26i) −(16300 + 1700i) 32 −32i −160 + 1560i (4 + 25i)

Figure 7. WASP-19: the left panel shows the RV signal in units of cm s−1 for the cases of perturbed convection (black dot-dash line),
frozen convection (red dash line), and the equilibrium tide (green long dash line); the right panels show the observed flux variation. These
quantities are plotted against the orbital phase, the origin of which is given by the epoch of inferior conjunction. The top right panel
shows the observed flux variation resulting only from the change in ξr for the perturbed convection case (red dash line) and the frozen

convection case (blue dot-dash line). The bottom right panel shows the complete observed flux variation, including the flux perturbation,

for the perturbed convection case (black dot-dash line) and the frozen convection case (green dash line).

ing the contribution from F ′r , predicts amplitudes which are
smaller by a factor of ∼ 103. In both cases, the perturbed con-
vection case is dominated by the real component, whereas the
frozen convection case is dominated by the imaginary com-
ponent. The arguments therefore differ by a factor of π/2,
giving a clear phase difference in the observable signal.

5.2 WASP-18

Results for this system are displayed in Figure 8. The very
massive, short period planet gives rise to a large equilibrium
tide RV response of ∼ 30 m s−1. This is a factor of ∼ 5 greater
than the perturbed convection model’s response (∼ 6 m s−1),
though it is still around an order of magnitude smaller than
the frozen convection model’s prediction (∼ 200 m s−1). As
the stellar model used here has a resonance close to orbital
period, the values given in Table 2 for this system could vary
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Figure 8. Same as Figure 7 but for WASP–18.

significantly for a small change in the orbital period modelled,
and if on resonance could give very large values.

The perturbation to the flux within the star is very large
in both the perturbed and frozen convection models, being
∼ 0.13 and ∼ 0.04, respectively. This would likely break the
assumption of small perturbations, and therefore this model
– particularly the prediction for the variation in observed flux
– may not be reliable.

If the contribution from only ξr is taken into account, the
observed flux variation is still fairly large (∼ 10−4). The per-
turbed convection model prediction is similar to the expec-
tation from the equilibrium tide, as ξr ≈ ξr,eq. The frozen
convection prediction is smaller by a factor of 2, and is phase
shifted compared to both the equilibrium tide and the per-
turbed convection prediction.

5.3 WASP-12

Results for this system are displayed in Figure 9. The star
of this system is fairly massive, with M ∼ 1.4 M�, giving rise
to a thin convective zone, starting at around r ≈ 0.93R. The
behaviour of the surface is therefore much less insulated from
the behaviour in the radiative zone than in the test case dis-
cussed in section 4. This, coupled with the short orbital pe-
riod of the planet, means that resonances may have a non–
negligible effect on the surface behaviour. Even if the system
is not exactly in resonance, the magnitude, and particularly
the phase, of the surface response could be affected. The ac-
curacy of the modelled oscillations for this system is therefore
likely to be more limited by the accuracy of the background
stellar model than in cases with longer orbital periods of lower
mass stars.

The radial velocity signals for this system are all fairly
similar, with a difference of, at most, a factor of 6 between
them. The equilibrium tide predicts a magnitude of 4 m s−1,
and the perturbed convection model predicts a magnitude of

∼ 12 m s−1, lagging slightly behind the equilibrium prediction
by approximately 20◦ of orbital phase. The frozen convection
amplitude is larger than both, at ∼ 23 m s−1, and is nearly
in anti–phase with the equilibrium signal.

Whether considering the full observed flux variation, or
only that arising due to ξr, the perturbed convection case
predicts a semi–amplitude an order of magnitude larger than
that predicted in the frozen convection case: 2 per cent com-
pared to 0.1 per cent in the full observed flux variation, and
44 ppm compared to 4 ppm when considering only the effect
arising due to ξr.

5.4 Qatar 5

Results for this system are displayed in Figure 10. The Qatar
5 system has a star which is very similar to the Sun in terms
of structure, with a fairly massive planet on a short period
orbit. As the orbital period is varied, the surface displacement
behaves in a way similar to that described in section 4. In the
perturbed convection case, the radial displacement tracks the
equilibrium tide well, whilst the frozen convection prediction
is an order of magnitude smaller. In both cases, the tangential
displacement is fairly insensitive to the forcing frequency. At
the orbital period of the real system, we expect a greater RV
signal than predicted by the equilibrium tide as a result of the
tangential displacement being increased by a factor of ∼ 10
for the perturbed convection case, and ∼ 100 for the frozen
convection case. The frozen convection amplitude of 20 m s−1

would be much more easily detectable than the equilibrium
tide prediction, and even the perturbed convection prediction
of 2 m s−1 is potentially detectable.

The observed flux variation ∆L for the perturbed convec-
tion model is an order of magnitude greater than, and out
of phase with, the same quantity for the frozen convection
model. This applies whether or not F ′r is taken into account
in the calculation of ∆L. The phase difference could be used
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Figure 9. Same as Figure 7 but for WASP–12.

Figure 10. Same as Figure 7 but for Qatar 5.

to distinguish between the perturbed and frozen convection
models.

5.5 CoRoT–17

The star in the CoRoT–17 system is similar to an aged Sun,
which has expanded. The increased stellar radius would be
expected to lead to a greater response to the tidal potential.
The star maintains a radiative core surrounded by a convec-
tive envelope, with a thin radiative skin at the very surface.

The radial displacement once again closely tracks the equi-
librium tide prediction, whilst the tangential displacement
remains fairly insensitive to the orbital period.

The large radius of the star gives a large prediction for
the equilibrium radial displacement, given the comparatively
long period orbit. The perturbed convection case matches this
prediction fairly well, giving rise to a fairly small discrepancy
between ξr and V : only a factor of ∼ 5. The frozen convec-
tion model predicts a much greater discrepancy, as the radial
displacement is an order of magnitude smaller than the equi-
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Figure 11. Same as Figure 7 but for CoRoT–17.

librium tide prediction, and the horizontal displacement is a
factor of ∼ 16 greater than the perturbed convection model’s
prediction.

Overall, this results in a RV prediction from the perturbed
convection model which is a factor of ∼ 3 greater than the
equilibrium tide prediction (∼ 90 cm s−1 compared to ∼ 30
cm s−1). On the other hand, the frozen convection model
predicts a signal a factor of ∼ 50 greater than the equilibrium
tide, at ∼ 16 m s−1. Each of the three cases has a different
phase, which could help to distinguish between the different
behaviours.

The photometric variation is very similar to that of Qatar
5 b, with the perturbed convection case predicting an ob-
served flux variation which is an order of magnitude greater
than the frozen convection prediction, whether including F ′r
or just ξr. The prediction taking F ′r into account should be de-
tectable, at ∼ 10−3, and is three orders of magnitude greater
than the prediction which includes ξr only, which would be
very difficult to detect.

5.6 Non–disc–integrated signal

The profiles for the radial velocity signal blocked by the
planet over the course of a transit are shown in Figure 12.
This shows only the value of the radial velocity blocked
against time, and not the depth of the transit at that value
of vRV .

This signal could be observed by subtracting the signal
during transit from the signal during the secondary eclipse.
In an ideal case, this would produce a peak centred on the
blocked radial velocity, and it is the variation of this central
value that is plotted against time.

The curves in Figure 12 show the predictions for the per-
turbed convection model and the equilibrium tide prediction
applied to WASP-18, Qatar 5 and CoRoT-17. In each case
the perturbed convection curves are significantly different to

the equilibrium tide prediction, whilst similarities between
the different systems are apparent.

The deviation from the equilibrium tide comes from the dif-
ference in V from the equilibrium tide prediction, as in each
of these systems the imaginary component of V is not negligi-
ble, and the magnitude of V differs from ξr,eq (for WASP-18
it is smaller than expected, for the other two systems it is
significantly larger than expected). If time-resolved spectra
are able to detect signals such as these, the radial velocity
signal originating from a specific, known point on the stellar
surface could be isolated. This would enable the profile of
the radial velocity along the path of the transit to be broken
down into its spatial components in order to separate the ra-
dial and tangential contributions and directly exposing the
form of the oscillations.

6 DISCUSSION

The response of a star being perturbed by a nearby compan-
ion may be significantly different to that predicted by a sim-
ple equilibrium approximation, due to the presence of non–
adiabatic behaviour towards the stellar surface. This could
lead to observable signals which greatly differ from those pre-
dicted from the equilibrium tide.

At the surface, the horizontal displacement is found to tend
to a constant value, independent of the orbital period. For
long orbital periods, where the horizontal displacement dom-
inates over the radial displacement, this results in the magni-
tude of the radial velocity perturbation scaling as P−1, instead
of P−3 for the equilibrium tide. Therefore, for long orbital pe-
riods, the radial velocity perturbation is much greater than
expected from the equilibrium tide.

This constant value is attained for orbital periods where
|ξr,eq|. |V |, and therefore breaks down for ultra–short period
planets. For those, the predicted RV signal may be smaller

MNRAS 000, 1–22 (2020)



Tidal oscillations: predicted observables 15

Figure 12. This figure shows the radial velocities blocked by the planets over the course of a transit, causing a dip in brightness at the
corresponding location in the line–shape, for the perturbed convection model applied to WASP-18 (top), Qatar 5 (middle) and CoRoT-17

(bottom). The left column shows the case that the planet is transiting exactly edge-on, such that the blocked portion of the star is at
θ∗ = π/2. The right column shows the case that the system is not exactly edge-on, such that the portion of the star that is blocked is at
θ∗ = π/4. Note that this both affects the shape of the signal and shortens the duration of the transit. The contrast between the equilibrium

tide and the modelled response (with perturbed convection) is significant in each shape, whilst the diversity of possible curves arising due
to different surface behaviours and transit locations is apparent.
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16 A. Bunting, C. Terquem

than expected from the equilibrium tide, and the scaling with
period reverts to roughly match the P−3 of the equilibrium
tide. The phase of the RV signal is also generally found to
differ from the equilibrium tide, as the RV signal is dominated
by the real and negative component of V , leading to a signal
which is roughly inverted compared to the equilibrium tide.

The photometric variation is found to have the same scal-
ing as predicted by the equilibrium tide, being proportional
to P−2, which holds whether F ′r is taken into account or not
in the calculation of the change in observed flux. If F ′r is
included, the magnitudes predicted can become very large,
which are likely to be overestimates of the real signal. If only
the contribution from the radial displacement is included, the
observed flux variation is smaller by three orders of magni-
tude. In this case, the perturbed convection model matches
well with the equilibrium tide prediction, as ξr ≈ ξr,eq, though
the frozen convection prediction is several times smaller than
this. For very short period orbits, the value of F ′r is likely in-
accurate, as it can become large and the assumption of small
perturbations in the model would no longer be valid. The
phase of the prediction using perturbed convection matches
the equilibrium tide prediction (whether F ′r is included or
not), though the frozen convection case does not – this could
potentially be used to distinguish between the two models
using observations.

Near resonances the response of the stellar surface can de-
pend strongly on the orbital frequency of the companion. In
order to correctly capture this resonant behaviour, the reso-
nant frequencies of the model must match those of the real
star. As the resonances depend upon the structure of the star
as a whole, matching the stellar model to the real resonant
frequencies can be difficult, particularly if the stellar prop-
erties are not tightly constrained. In general, we would still
expect deviation from the equilibrium tide near resonances.
Whilst this is unlikely to be observed for periods greater than
a day, where resonances are very narrow, it could be seen at
very short periods, where the resonances are wider.

Whilst the above behaviours are found to be common to
both the frozen convection and perturbed convection models,
the specific predictions made for a system depend strongly
upon the choice of model used for the convective flux. Both
models have different virtues, with the frozen convection ap-
proach providing a baseline comparison without complicat-
ing the model by perturbing a process as non–linear and
non–local as convection. However, the artificial suppression
of the stellar response within the convection zone does give
rise to very large gradients in a thin region just below the
surface, once the radiative flux begins to become significant.
The perturbed flux approach was designed to describe the
behaviour in the superadiabatic zone towards the top of the
convective zone, and therefore is well suited to model the
non–adiabatic effects in the region where convection becomes
inefficient. Deep in the convection zone, this approach may
not be applicable, as the entropy gradient is very shallow
and errors may accumulate, giving rise to overly large flux
perturbations at the surface. Overall, it is likely that both
approaches fall short of reality, but they can be used to pro-
vide insight into the range of possible behaviours, and the
dependence of the stellar response on the model of convec-
tion, whilst highlighting the deviation from the equilibrium
tide.

The planets modelled in this work with periods under one

day exhibited similar behaviour. Both WASP–19 and WASP–
18 produced RV signals that were smaller than predicted
by the equilibrium tide in the perturbed convection model,
whilst the frozen convection model predicted a signal much
larger than vRV,eq. If observed, this signal would therefore en-
able the different models to be distinguished from each other.
The predictions for the photometric variation were also very
large, with the signal taking the perturbed flux into account
on the order of 1−10 per cent. If the flux were overestimated
and the change in observed flux were mainly due to the radial
displacement, the signal would still be potentially detectable,
at 10−100 ppm. A photometric tidal signal has been observed
for WASP–18 (Shporer et al. 2019), with a semi–amplitude
of ∼ 190 ppm, which is similar in both phase and amplitude
to the ξr-only prediction in the perturbed convection case.
This confirms that our calculation has greatly overestimated
the perturbation to the flux in this case, as expected from
the discussion in section 5.2.

A radial velocity signal at twice the orbital frequency has
been detected for WASP–18 b (Triaud et al. 2010). This was
attributed to a non–zero eccentricity, although this explana-
tion was disputed by Arras et al. (2012) who favoured the
tidal oscillation as the source. Later, work by Maciejewski
et al. (2020a) has suggested that the tidal signal has an am-
plitude of ∼ 18 m s−1, which is smaller than predicted by
the equilibrium tide by a factor of two, and approximately
a factor of three larger than the perturbed convection pre-
diction in this work. There is a phase difference between the
two predictions, and the equilibrium tide phase more closely
matches the observations. However, the fact that the model is
close to resonance can lead to a large change in the phase for
a small change in forcing frequency, which may account for
such a large discrepancy between the phase of the perturbed
convection prediction and the observed tidal signal.

Similarly, Maciejewski et al. (2020b) suggest the presence
of a tidal radial velocity signal in WASP-12, with an ampli-
tude of ∼ 7 m s−1, which lies between the equilibrium tide
amplitude of ∼ 4 m s−1 used in this work, and the perturbed
convection case, which gives an amplitude of ∼ 12 m s−1.
In the perturbed convection result there is a phase lag com-
pared to the equilibrium tide, although this is fairly sensitive
to the response in the radiative zone, due to the relatively
thin convection zone of the star. Stars with thin surface con-
vection zones may therefore be more difficult to model, as
the behaviour of the radiative zone is likely to have a greater
impact upon the surface response, and at short periods this
may bring in effects due to resonances. The observed flux
variation of WASP-12 would be expected to be observable,
with a fractional semi–amplitude of ∼ 10−3−10−4. If only the
signal arising due to ξr is present, it may be on the edge of
being detectable, ranging from ∼ 10−6−10−5, depending on
the model used for convection.

For the longer period planets, Qatar 5 and CoRoT–17, the
perturbed convection model predicts signals ∼ 1 m s−1, with
the prediction from the frozen convection model being an or-
der of magnitude larger. Both values are larger than the RV
signal expected from the equilibrium tide. The photometric
variation from the flux is around 0.1 per cent, and would
therefore be expected to be observable, whilst the signal aris-
ing only from the radial displacement would be much more
difficult to detect, at ∼ 1 ppm. Measurements in the detec-
tion of both Qatar 5–b (Alsubai et al. 2017) and CoRoT–17
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b (Csizmadia et al. 2011) do not constrain either the photo-
metric variation or the RV signal to the level where either of
these signal would be clearly visible.

In applying this to more systems, this approach could be
used to provide an independent estimate of the mass of a
transiting planet, or could even be combined with the RV
signal from the star’s motion about the system’s common
centre of mass to break the degeneracy between the planetary
mass and the orbital inclination. If other planets in the same
system were present, it could be helpful to remove the tidal
signal from the Hot Jupiter in order to reduce the periodic
background noise, especially if the planets were in resonance
with each other.

The non–disc–integrated methods for observing these tidal
oscillations could provide useful insight into the nature of
the tidal oscillations themselves, as the signal during transit
and the time–dependent broadening both give signals which
depend separately on ξr and V . Detecting the signal during
transit would require spectra to be taken quickly, and with a
short cadence, which would be best suited for nearby, bright
stars. In order to build up the SNR it would also be useful
to capture many transits, and therefore a short period orbit
would be preferable. The time–dependent broadening signal
would be difficult to detect due to the many other sources of
line–broadening, with a comparatively small variation. How-
ever, the long coherence time expected from the tidal sig-
nal could be taken advantage of by using observations taken
over a long time in order to average out the other sources
of broadening, and detect the coherent underlying variation,
small though it is.

Whilst it may be simple to show that a system is deviat-
ing from the equilibrium tide, more work would be required
in order to investigate the scaling of the behaviour with or-
bital period, amongst other parameters. Future work would
be required in order to make testable predictions for systems
which could be observed, and particularly for distinguishing
between the non–adiabatic models and the equilibrium tide
approximation.

Observations of the photometric signal arising from a tidal
perturbation would give very useful constraints on the model
used for the convective flux, and would help improving the
model as a whole.

7 CONCLUSIONS

The response of a star to a tidal perturbation is strongly af-
fected by non–adiabatic effects towards the stellar surface,
resulting in observable signals which can differ greatly from
the equilibrium tide prediction. Generally, it is found that
the horizontal displacement tends towards a constant value,
independent of the orbital period of the system. This results
in larger RV signals than predicted by the equilibrium tide,
particularly for longer period orbits such as Qatar 5 b and
CoRoT–17 b. For ultra–short period orbits, such as WASP–
19 b and WASP–18 b, the RV signal is found to be lower
than expected from the equilibrium tide. The photometric
variation is predicted to scale as in the equilibrium tide ap-
proximation, proportional to P−2, but the magnitude of the
flux at the surface found here is very large, and may be an
overestimate. Observations would be helpful in constraining
the model used for the perturbation to the convective flux.

Non–disc–integrated methods could be used to give clear
evidence of deviation from the equilibrium tide, and to sep-
arate the contributions from the radial and horizontal dis-
placements, either using the RV signal during a transit or by
observing the time–dependent line–broadening signal.

Observations of these signals would provide independent
mass estimates for transiting exoplanets, and would enable
to break the mass–inclination degeneracy for non–transiting
exoplanets.
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APPENDIX A: EULER ANGLES AND ROTATIONS

In calculating the response of the star, it is greatly simplified
by working in the star’s natural frame of reference, (θ∗,φ∗),
with the planet orbiting in the plane defined by θ∗ = π/2. In
this frame, the observer is taken to be in the direction given
by (θ0,φ0). In the observer’s frame, described by (θob,φob),
the observer is at θob = 0, with θob < π/2 visible to the ob-
server.

To convert between the two frames, we use the properties
of spherical harmonics and Euler angles, guided by Morrison
& Parker (1987). The two frames of reference are related to
each other by a rotation given by

ez∗ = R(a)(α,β ,γ)ezob , (A1)

with ez∗ being a unit vector in the star’s frame, and ezob being
the corresponding unit vector in the observer’s frame. The
operator R(a)(α,β ,γ) is equivalent to Rzob(α)Ryob(β )Rzob(γ)
where the active convention for rotations is being used, and
the yob and zob axes are those of the observer’s frame. The
Euler angles are found to be (α,β ,γ) = (0,−θ0,−φ0).

This leads to the relation between a given spherical har-
monic, Y m

l , between the two frames as

Y m
l (θ∗,φ∗) =

l

∑
µ=−l

Y µ

l (θob,φob)Dl
µ,m(0,−θ0,−φ0) (A2)

where Dl
µ,m(α,β ,γ) is an element of the Wigner D–matrix.

The relevance of this on the system of interest is that the
tidal potential φP of the hot Jupiter (or any companion) can
be expressed as a sum of spherical harmonics, and the lowest
order (in terms of R/D, where R is the stellar radius and D is
the semi–major axis of the orbiting body) non–constant term
is:

φP = ℜ

(
−

Gmp

4D

( r
D

)2
P2

2 (cosθ∗)e
2i(ωt−φ∗)

)
, (A3)

where G is Newton’s gravitational constant, ω is the angu-
lar frequency of the planet’s orbit, t is the time, measured

from the start point defining the coordinate system, mp is the
planet’s mass, r is the radial position in the star, P2

2 (cosθ∗) =
3sin2

θ∗ is the associated Legendre polynomial, and ℜ denotes
the taking of the real part. The Legendre polynomial relates

to spherical harmonics, as Y−2
2 (θ∗,φ∗) = 1

4

√
15
2π

sin2
θ∗e−2iφ∗ .

Since this is the only source of time and angular dependence
in the system of linear equations describing the response of
the star, any perturbed quantity q′ can be written as:

q′(r,θ∗,φ∗, t) = ℜ

(
q′(r)×3sin2

θ∗e
2i(ωt−φ∗)

)
. (A4)

By using equation A2, this can be expressed in the coor-
dinates of the observer’s frame. The great benefit of this
comes when integrating over the visible disc, as its limits are
θob ∈ {0, π

2 }, and φob ∈ {0,2π}. If integrating over the visible
disc without any weighting in φ , the complex expression in
equation A2 can be simplified by the fact that

∫ 2π

0 eiµφ dφ is
non–zero (and equal to 2π) only when µ = 0. Therefore:∫ 2π

0
Y−2

2 (θ∗,φ∗)dφob =
∫ 2π

0
D2

0,−2(0,−θ0,−φ0)Y 0
2 (θob,φob)dφob.

Using:

D2
0,−2(0,−θ0,−φ0) =

√
3
8

sin2
θ0e−2iφ0 ,

and:

Y 0
2 (θob,φob) =

1
2

√
5

4π

(
3cos2

θob−1
)
,

we obtain the useful expression:∫ 2π

0
dφob sin2

θ∗e
−2iφ∗ = π sin2

θ0e−2iφ0 (3cos2
θob−1). (A5)

Therefore, for a perturbed quantity with angular dependence
given by equation (A4), the integral over the visible circle of
constant θob is:∫ 2π

0
dφobq′(R,θob,φob, t) =

3πℜ
[
q′(R)(3 cos2

θob−1)sin2
θ0e2i(ωt−φ0)

]
, (A6)

where it is important to note the change from θ∗ and φ∗ to
θ0 and φ0 in the sine function and exponential respectively,
compared to equation A4.

APPENDIX B: OBSERVED FLUX VARIATION
DERIVATION

Here, the details of the derivation of the observed flux vari-
ation are given and justified. The results derived below are
used in section 2.2. The method followed is similar to that of
Robinson et al. (1982), the primary difference being that this
work explicitly keeps track of the non–radial perturbations
to displacement, ξξξ h.

B1 Surface normal

The change in surface normal due to the oscillations is calcu-
lated by normalising:

∂ rrr
∂θob

××× ∂ rrr
∂φob

,
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where rrr is the location of the surface, given by Rr̂rr +ξξξ , with ξξξ

being the vector displacement of the surface. The calculation
is done in the observer’s frame. This leads to an expression
for the perturbed normal to the surface as n̂nn = r̂rr + ∆n̂nn, where
the perturbation is:

∆n̂nn =
1
R

[
θ̂θθ ob

(
ξθ −

∂ξr

∂θob

)
+ φ̂φφ ob

(
ξφ −

1
sinθob

∂ξr

∂φob

)]
, (B1)

where ξr and ξθ are evaluated at (r,θob,φob) and ξθ =
∂V/∂θob.

Note that no rescaling is necessary to first order, and that
the perturbation to the normal acts only perpendicular to the
radial direction.

This yields a change of observed flux:

∆Ln =
∫

π/2

0

∫ 2π

0
h0F̄0∆n̂ ·n̂obdS0, (B2)

with dS0 = R2 sinθobdθobdφob, and n̂ob is in the direc-
tion of the z–axis in the observer’s frame, so that h0 =

c
[
1−a(1− cosθob)−b(1− cosθob)2

]
. Using:

∆n̂ ·n̂ob =
−sinθob

R
∂

∂θob
(V −ξr) , (B3)

equation (B2) becomes:

∆Ln =−RF0c
∫

π/2

0
dθob

{
sin2

θob×[
1−a(1− cosθob)−b(1− cosθob)2

]
×

∂

∂θob

∫ 2π

0
dφob

[
V (R,θob,φob, t)−ξr(R,θob,φob, t)

]}
. (B4)

The integral over φob is given by equation (A6), and after
integration over θob we finally obtain:

∆Ln = ℜ

[
9
2

πRc
(

1− 7a + 4b
15

)
F0 [V (R)−ξr(R)]sin2

θ0e2i(ωt−φ0)

]
.

(B5)

B2 Limb-darkening

Limb-darkening is given as:

h = c
[
1−a(1− n̂ ·n̂ob)−b(1− n̂ ·n̂ob)2

]
, (B6)

where the variables are as described in section 2.2. This is
perturbed through the normal to the surface, giving:

h = c
[
1−a(1− r̂ ·n̂ob)−b(1− r̂ ·n̂ob)2

]
+ c [a + 2b−2br̂ ·n̂ob]∆n̂ ·n̂ob +O

(
(∆n̂ ·n̂ob)2

)
, (B7)

in which the first term is h0, the second is defined as ∆h (with
∆n̂ ·n̂ob given by equation B3), and the third term is second
order in a small quantity, so is neglected.

This results in a change in observed flux of the form

∆Lh =
∫

π/2

0

∫ 2π

0
∆hF̄0r̂ ·n̂obdS0. (B8)

This integral is calculated in the same way as the inte-
gral (B2) which gives ∆Ln, and this leads to the final ex-
pression:

∆Lh = ℜ

[
12π

5
Rc
(

a +
3b
4

)
F0 [V (R)−ξr(R)]sin2

θ0e2i(ωt−φ0)

]
.

(B9)

B3 Flux

The emergent flux is defined as F̄ = F ·n̂ , which assumes that
all flux which reaches the surface is radiated isotropically
(or, more precisely, that the anisotropy is included through
limb-darkening). This separates into the equilibrium and per-
turbed quantities as

F̄ = (F0r̂ + ∆F ) ·(r̂ + ∆n̂) = F0 + ∆F ·r̂ , (B10)

where second order terms in small quantities have been ne-
glected, and the fact that r̂ ·∆n̂ = 0 has been used. ∆F is the
Lagrangian perturbed flux, equal to F’ +(ξ ·∇)F 0, where the
prime indicates an Eulerian perturbation.

Therefore, the perturbation to the emergent flux can be
finally expressed as:

∆F̄ = ∆F ·r̂ = F ′r + ξr
dF0

dr
, (B11)

where the subscript italic r indicates the radial component.
This results in a change in observed flux as:

∆LF =
∫

π/2

0

∫ 2π

0
h0∆F̄ r̂ ·n̂obdS0. (B12)

With F ′r and ξr in ∆F̄ being evaluated at (R,θob,φob), the
integral over φob is here again given by equation (A6). After
integration over θob we then obtain:

∆LF = ℜ

[
3π

4
R2c

(
1 +

a + 2b
15

)(
F ′r (R)+ξr(R)

dF0

dr

)
× sin2

θ0e2i(ωt−φ0)

]
(B13)

where dF0/dr is evaluated at the surface.

B4 Surface area

In the observer’s frame, the surface area element is defined as
dS(ob,P) = r2

(ob,P) sinθ(ob,P)dθ(ob,P)dφ(ob,P), where the subscript

(ob,P) indicates that the coordinates are measured in the ob-
server’s frame and take into account the perturbation.
At equilibrium, the vector position of a point at the surface of
the star is given by r = Rr̂ and its coordinates are (R,θob,φob).
When the star is perturbed, this point is moved and its vector
position becomes:

rP = r + ξ = (R + ξr)r̂ + ξθ θ̂ob + ξφ φ̂ob. (B14)

Writing the displacement rP − r as ∆rr̂ + R∆θobθ̂ob +
Rsinθob∆φobφ̂ob and identifying with equation (B14) yields the
perturbed coordinates of the point:

r(ob,P) ≡ R + ∆r = R + ξr,

θ(ob,P) ≡ θob + ∆θob = θob +
ξθ

R
,

φ(ob,P) ≡ φob + ∆φob = φob +
ξφ

Rsinθob
.

To first order in the perturbation we then obtain:

r2
(ob,P) = R2 + 2Rξr,

sinθ(ob,P) = sinθob +
ξθ

R
cosθob,
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and we use the Jacobian to change the variables over which
we are integrating as:

dθ(ob,P)dφ(ob,P) =

[
1 +

1
R

(
∂ξθ

∂θob
+

1
sinθob

∂ξφ

∂φob

)]
dθobdφob,

(B15)

where second order terms have been neglected.
Using ∆dS = dS(ob,P) − dS0, where dS0 = R2 sinθobdθobdφob,
gives the expression for the change in surface area element
as:

∆dS = R
[

sinθob

(
2ξr +

∂ξθ

∂θob

)
+ cosθobξθ +

∂ξφ

∂φob

]
dθobdφob,

(B16)

where second order terms in the perturbation have been ne-
glected.

The change in observed flux due to this effect is given by

∆LS =
∫

π/2

0

∫ 2π

0
h0F̄0r̂ ·n̂ob∆dS. (B17)

To calculate this integral, ξφ (θ∗,φ∗) has to be transformed
into ξφ (θob,φob) in the expression (B16) for ∆dS. This in-

volves summing up over the spherical harmonics Y µ

l , as in-
dicated in equation (A2). However, only the non–zero values
of µ contribute to ∂ξφ/∂φob, and the corresponding spher-
ical harmonics give zero when integrated over φob in equa-
tion (B17). Therefore, the term involving ξφ does not con-
tribute. As above, using ξθ = ∂V/∂θob and equation (A6) to
calculate the integral over φob, we obtain after integration
over θob:

∆LS = ℜ

[
3
2

πRc
(

1 +
a + 2b

15

)
F0 [ξr(R)−3V (R)]sin2

θ0e2i(ωt−φ0)

]
.

(B18)

B5 Limits

The limits of the visible disc, and therefore of any integrals,
are given by the points at which the vector towards the ob-
server is tangential to the surface, such that n̂nnob ···rrr = 0, which
can be re-expressed as n̂nnob ··· (r̂rr + ∆n̂nn) = 0, where ∆n̂nn is the
change in surface normal, given in section B1. For simplicity
of notation, we can rewrite this as ∆n̂nn = Aθ̂θθ ob + Bφ̂φφ ob, where
A and B are both first order in the perturbation and can be
found by identifying this expression with equation (B1).

Since n̂nnob = ẑ in the observer’s frame, this leads to the
expression for the limits to be given by r̂ ·ẑ +Aθ̂ ·ẑ +Bφ̂ ·ẑ = 0,
which becomes cosθup −A

(
θup
)

sinθup = 0, where θup is the
coordinate of the point which delimits the visible disc and we
have made it explicit that A depends on θob. Since the limit
is π/2 at equilibrium, we write θup = π/2 + δθ . The equation
above then becomes, to first order in δθ , δθ = −A0, where
A0 is the value of A at θob = π/2. We have used A

(
θup
)

=

A0 + ∂A
∂θob

δθ and neglected the second term on the right–hand
side, which is second order in the perturbation.

This leads to the change in observed flux:

∆LL =
∫ 2π

0

∫ π

2−A0

π

2

h0F̄0n̂ob·r̂ dS0. (B19)

Since A0 depends on φob, we have to integrate over θob first.

This yields:

∆LL =−
∫ 2π

0
cR2F̄0

(
1−a−b

2
sin2 A0 +

a + 2b
3

sin3 A0

− b
4

sin4 A0

)
dφob. (B20)

As A is a small quantity, sinA0 will also be a small quantity.
The integral above will therefore be equal to 0 to first order
in small quantities, as the sin2 A0, sin3 A0 and sin4 A0 terms
can be neglected. Therefore, any change in observed flux due
to a change in the limits of the integral can be neglected to
first order.

APPENDIX C: RADIAL VELOCITY VARIATION
DERIVATION

Here, the details of the derivation of the radial velocity vari-
ation are given and fully justified. The results derived below
are used in section 2.3.

The periodic change in shape of the star results in a peri-
odic change in the velocity of any given surface element. Pro-
jecting this along the observer’s line of sight gives the radial
velocity (RV) which is proportional to the shift in wavelength
caused by the motion (for the very non–relativistic motions
considered here). Expressing this formally gives:

vRV =−ṙrr ··· n̂nnob, (C1)

where rrr is the vector from the centre of the star to the surface
element in question.

To first order in perturbed quantities, this becomes:

vRV =−ξ̇ξξ ··· n̂nnob = ℜ(−2iωξξξ ··· n̂nnob) (C2)

This can be encapsulated by a single curve by integrat-
ing over the disk, weighted by the observed flux, as done by
Dziembowski (1977):

vdisc =

∫∫
hr̂rr ··· n̂nnobF̄0vRVdS0∫∫

hr̂rr ··· n̂nnobF̄0dS0
=

1
2πR2

∫
π/2

0

∫ 2π

0
hr̂rr ··· n̂nnobvRVdS0,

(C3)

which can be analytically solved.
Using dS0 = R2 sinθobdθobdφob, n̂nnob = ẑzz, and ξθ = ∂V/∂θob,

we obtain:

vdisc = ℜ

{
−iω

π

∫
π/2

0
dθobhcosθob sinθob[

cosθob

∫ 2π

0
ξr (R,θob,φob)dφob

−sinθob
∂

∂θob

∫ 2π

0
V (R,θob,φob)dφob

]}
(C4)

The integrals over φob are given by equation (A6), which
yields:

vdisc = ℜ

{
−3iω sin2

θ0e2i(ωt−φ0) ×∫ π

2

0
dθobc

[
(1− a−b)+(a + 2b)cosθob−bcos2

θob

]
cosθob sinθob×[

ξr(R)
(

3cos2
θob−1

)
cosθob + 6V (R)cosθob sin2

θob

]}
. (C5)
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Evaluating this integral gives the final expression for the disc-
integrated radial velocity as:

vdisc = ℜ

{
−4

5
iω csin2

θ0e2i(ωt−φ0)[(
1− a

16
+

b
56

)
ξr(R)+ 3

(
1− 3a

8
− 5b

28

)
V (R)

]}
.

(C6)

APPENDIX D: NON–DISC–INTEGRATED
APPROACHES

Whilst we are unable to spatially resolve the surface of the
star, there are still some possibilities for observing signals
without simply taking the average effect.

D1 Inhomogeneous line broadening

Because of the different motions across the visible surface of
the stellar disc, different parts of the stellar surface will emit
light which has been Doppler shifted differently. Instead of
taking the average of the total Doppler shift by looking at the
variation in the central wavelength, we can examine the vari-
ation in the line–broadening by tracking how the brightness
at each wavelength changes over the course of the oscillation.

By summing the observed flux contributions at each wave-
length we determine the overall shape of the line–broadening
that results from the non–uniform surface motion. This can
be expressed as:

nti =
1

L0

(
dL(v)

dv

)
ti

=
1

L0∆v

v+ ∆v
2

∑
v− ∆v

2

hcosθobF̄0dS0, (D1)

where ∆v is the width of the bin, v is the radial velocity equiv-
alent to the change in wavelength, and nti is the normalised
lineshape, such that its total area is equal to 1. This sums
over only the visible area elements that fall within the bin
centred on v.

In general, the resulting shape will not be simple, and can
have significant flux at radial velocities much greater than
the disc–integrated value. All viewing angles will produce this
broadening, with greatest time–dependence when the system
is viewed edge–on, and a steady state when viewed at either
pole.

This simplified case only accounts for broadening arising
due to the tidal motion of the stellar surface. If other sources
of line broadening are present the overall lineshape will be
the result of all of the different sources combined. As a simple
example, the tidal broadening is here briefly discussed in the
context of thermal broadening to set out the general method
for incorporating different broadening sources.

The lineshape arising from thermal broadening for a sta-
tionary surface element is

nth(T,v) =

√
µmH

2πkBT
exp
(
−µmHv2

2kBT

)
. (D2)

where µ is the molar mass of the source particle for the line
being studied. For thermal broadening, the intensity emitted
at a given radial velocity also depends upon the temperature
of the surface element.

To combine the effect of both the tidal motion and the

thermal broadening for a given surface element, the two line-
shapes must be convolved. The thermal lineshape is given
by equation D2, and the tidal lineshape for a given surface
element is a delta function, offset by the radial velocity of
that surface element, vRV, giving nti,elem = δ (v−vRV). The to-
tal lineshape for a particular surface element, ntot,elem, is then
the convolution of these two lineshapes, given by

ntot,elem =
∫

∞

−∞

nth(T,x− v)nti,elem(x− vRV)dx (D3)

which can be written explicitly as

ntot,elem =

√
µmH

2πkBT
exp
(
−µmH(v− vRV)2

2kBT

)
. (D4)

In order to calculate the observable lineshape, nobs, we in-
tegrate over the visible disc, giving

nobs =
1

L0

∫
ntot,elemdL. (D5)

If equation D3 is substituted in, we arrive at a triple inte-
gral giving the observable lineshape, as

nobs =
1

2π

∫
∞

−∞

dx
∫ 2π

0
dφob

∫
π/2

0
dθob cosθob sinθobh0δ (x− vRV)

×
√

µmH

2πkBT
exp
(
−µmH(x−v)2

2kBT

)
(D6)

where both vRV and T are dependent upon θob and φob. Due
to this dependence on the location on the disc, the integral
over x must be undertaken first. Therefore although the final
lineshape is a result of the two different mechanisms, it is
not equivalent to the convolution of the disc-integrated line-
shapes arising from the individual mechanisms. This makes
it difficult to compute.

This is because the thermal lineshape of each surface ele-
ment is much wider than the disc-integrated lineshape arising
from the tidal motion. Therefore the numerical integration
must be sufficiently fine at all levels to resolve the line broad-
ening from both mechanisms. This may still be possible, but
does not lend itself to a nice analytical expression.

Two extreme cases may be considered – the case of uniform
surface temperature, and the case of negligible surface mo-
tion. In the former case, T is independent of the location on
the disc, and the observable lineshape reduces to the convo-
lution of the disc-integrated thermal and tidal lineshapes. In
the latter vRV ≈ 0, eliminating the need for the convolution.
However, some time-dependent broadening will still occur, as
the temperature distribution over the visible disc will change
over time.

To investigate the perturbation to the thermal broadening,
we express the temperature as T = T0[1 + ∆T (R,θ∗,φ∗, t)/T0],
where ∆T (R,θ∗,φ∗, t) is the Lagrangian perturbation to the
surface temperature, including the full spatial dependence as
given in equation A4, and |∆T (R,θ∗,φ∗, t)| � T0. The thermal
lineshape can then be expanded around the effective temper-
ature, T0, giving

nth(T,v) = nth(T0,v)+ ∆T (R,θ∗,φ∗, t)
∂nth

∂T
(T0,v)

+O(∆T 2(R,θ∗,φ∗, t)/T 2
0 ). (D7)

This gives

nth(T,v)≈ nth(T0,v)

[
1 +

∆T (R,θ∗,φ∗, t)
T0

(
µmHv2

2kBT0
− 1

2

)]
(D8)
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where the only dependence on θ∗ and φ∗ is in ∆T (R,θ∗,φ∗, t).
This can be integrated over the visible disc to give

nobs,th = nth(T0,v)

[
1 + α(t)

(
µmHv2

2kBT0
− 1

2

)]
(D9)

where α(t) is a small quantity which oscillates over time, given
by

α(t) =
3
8

∆T (R)

T0
c
(

1 +
a + 2b

15

)
sin2

θ0e2i(ωt−φ0). (D10)

Thermal broadening, or other sources of broadening (see, e.g.,
Gray 2005), may therefore cause time-dependent broadening
signals due to the time-varying perturbation to the stellar
surface. An estimate for ∆T (R)/T0 can be obtained from the
boundary condition at the surface: 4∆T (R)/T0 = ∆Fr(R)/Fr0,
where ∆Fr(R) is given by equation (12). On the right–hand
side of this equation, the term involving ξr is very small com-
pared to F ′r for the periods of interest, as can be seen in
Figure 6. Therefore, ∆T (R)/T0 ' F ′r (R)/(4Fr0). From Figure 2,
we then see that ∆T (R)/T0 is on the order of a few times 10−4

or a few times 10−5 for the models with perturbed or frozen
convection, respectively, and periods of a few days.

D2 Observations during transit

In the case of a transiting planet, a portion of the star is
blocked from view by the planet, enabling the behaviour of
the surface at that specific location to be studied. As the
stellar oscillations occur at twice the orbital frequency, sub-
tracting the signal whilst the planet is occluded (secondary
eclipse) from the signal during the transit will isolate the sig-
nal from the blocked portion of the stellar surface.

We define δθ = π/2− i, where i is the orbital inclination.
Since the planet is transiting, |δθ | ≤ R/D� 1 is a small quan-
tity. We therefore describe the stellar surface as if δθ = 0
(that is, as if we view it exactly edge–on), which corresponds
to θ0 = π/2, but allow the planet’s silhouette to deviate from
being exactly edge–on. As the transit occurs over an interval
of time short compared to the oscillation period, we assume
that each surface element moves with constant velocity for
the duration of the transit, and that the planet’s motion is
linear. These introduce fractional errors of order R/D. This
arrangement is shown diagrammatically in Figure D1.

The centre of the silhouette will cross the stellar surface
according to:

Rsinθ∗ sinφ∗ = Dωt, (D11)

with:

Rcosθ∗ = Dδθ , (D12)

As we define the origin of the time coordinate as the epoch
of inferior conjunction t = 0 corresponds to the centre of the
transit. This gives:

cosθ∗ =
D
R

δθ ,

sinφ∗ =
Dωt

R
√

1− ( Dδθ

R )2
.

D2.1 Radial velocity

We have ξθ = ∂V/∂θ∗, ξφ = (∂V/∂φ∗)/sinθ∗ and n̂ob = x̂xx. Both
ξr and V are given by equation (A4), in which ωt is taken to
be zero as the transit happens over a time interval short com-
pared to the period of the oscillations, as already mentioned
above. Therefore, equation C2 can be written as:

vRV(θ∗,φ∗) = ℜ

{
−6iω sinθ∗e−2iφ∗[

ξr(r)sinθ∗r̂rr + 2V (r)
(

cosθ∗θ̂θθ∗− iφ̂φφ∗
)]
··· x̂xx
}
, (D13)

which we now re–express in terms of δθ and t.
Introducing the coordinates y = Dωt

R and z = Dδθ

R we get:

vRV(y,z) = ℜ

(
−6ω

1− z2

[
2y
√

1− y2− z2 + i
(

1−2y2− z2
)]

×
{√

1− y2− z2
[
ξr + z2 (2V −ξr)

]
+ 2iV y

})
, (D14)

which is valid over the range y2 + z2 < 1.
To describe the approximate width of the obscured vRV, we

can use

∆vRV ≈ max
(

∂vRV

∂y
RP

R
,

∂vRV

∂ z
RP

R

)
(D15)

where RP is the planetary radius. The observed flux of the
blocked region can also be found, as

Lblocked = πR2
PhF̄0. (D16)

Equations D15 and D16 are valid once the entirety of the
planet’s silhouette is visible, or equivalently whilst y2 + z2 <
(1− RP

R )2.
The disc-integrated RV signal (given in equation 16) defines

a line of solutions for ξr and V , as it is one measurement
being used to determine two complex values. By observing
the variation in the radial velocity signal which is blocked
during the transit the components can be separated, giving
an independent measure of ξr and V . Exactly how this works
out in practise with real and imaginary components may not
be straightforward, but it would be another way to look at
the system and gain information.

D2.2 Luminosity

The same technique could also be applied to variations in
observed flux arising as a result of the transit, however this
signal would be the result of the blocking of both the equilib-
rium flux and the perturbed flux. As such, the extra blocking
due to the obscured perturbed flux would be very small, on

the order of
R2

PF ′

R2F0
.

This paper has been typeset from a TEX/LATEX file prepared by

the author.
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Figure D1. This figure depicts the coordinates used in section D2, as viewed from above the plane of the planet’s orbit, in the case that
δθ = 0. The observer is at infinity in the x̂xx direction, and at t = 0 the planet is at (D,0) in the (x,y) plane. After time t the planet has

moved to be approximately at (D,Dωt) and the location which is blocked by the planet’s silhouette has moved from (R,0) to (Rcosφ∗,Ry),

as shown by the green arrow, where y is the the dimensionless coordinate introduced for eq. D14.
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