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A completely averaged model of two-phase flow of compressible fluids in a medium with double porosity is8

developed. The variational asymptotic two-scale averaging method with splitting the nonlocality and nonlin-9

earity is presented. Several mechanisms of delay are detected, as the nonequilibrium capillary redistribution10

of phases, pressure field relaxation caused by the compressibility, and the cross effects of fluid extrusion from11

pores due to the rock com- paction and fluid expansion. A generalized non-equilibrium capillary equation is12

obtained. All characteristic times of delay are explicitly defined as functions of saturation.13

I. INTRODUCTION14

A double porosity medium, which is also called15

fractured-porous medium, is the classical model applied16

to study the effects of memory or delay occurrence in17

fluid flow after changing the scale of examination. Such18

a medium consists of low permeable blocks and highly19

permeable fractures. A single-phase compressible flow in20

such a medium is characterized by the delay in pressure21

behaviour. Indeed, in tight blocks, non-stationary pro-22

cesses of perturbation propagation are much slower than23

in fractures, therefore, the average pressure in blocks re-24

acts to a perturbation coming from fractures with a delay.25

As the result, the average pressure in the blocks depends26

on the all history of variation of the average pressure in27

the fractures, but not only on its current value, which28

is the phenomenon of memory. Such a phenomenon is29

observed in terms of the averaged pressures, i.e. on the30

macroscopic scale. In the single-phase case, it is possi-31

ble to obtain completely averaged model and to describe32

explicitly the kernel of the memory operator. The first33

mathematical model was suggested in11, where the con-34

cept of a delay between the pressures was introduced.35

Later, in9 and22 it was shown by homogenization that36

high contrast in the permeability of blocks and fractures37

leads to a long memory and changes the original diffusion38

equation into an integro-differential homogenized equa-39

tion. In some papers a more complete version of com-40

pressible single-phase flow in double-porosity medium41

was homogenized, by introducing elastic deformations of42

the medium described by Biot’s equations,1,21.43

In the case of two-phase flow, another type of mem-44

ory arises, which is caused by the capillarity. The cap-45

illary forces push the more wetting fluid from fractures46

into blocks, while displacing the non-wetting fluid from47

the blocks to the fractures. This phenomenon is known48

as the counter-current spontaneous imbibition. In par-49

ticular, this mechanism is essential for oil recovery by50
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water injection in heterogeneous reservoirs,20. With re-51

spect to the flow in fractures, the spontaneous imbibition52

in blocks is very slow, which causes the capillary delay53

effects in terms of the averaged saturation of water (the54

term ”saturation” means the volume fraction).55

The capillary imbibition can be represented in terms of56

the propagation of the wave of water saturation from the57

block boundary towards the block centre. The dynam-58

ics of this wave is nonlinear, proper to two-phase flow in59

general. In classical two-phase model the counter-current60

imbibition is described by a nonlinear diffusion equation61

with nonlinear boundary conditions. We are, thus, faced62

with a situation where delay/memory (or time nonlocal-63

ity) at the macroscale is caused by the propagation of a64

nonlinear wave at the local scale.65

In the flow is two-phase and compressible simultane-66

ously, the two types of the memory mentioned above,67

caused by the capillarity and the compressibility, should68

interact in some way, which could generate new physical69

cross phenomena. The detection of such phenomena is70

the main objective of the present paper. For this, it was71

necessary to develop the macroscale model of two-phase72

compressible flow in double-porosity media.73

Attempts to develop the model of two-phase flow in74

double porosity media have been undertaken essentially75

for incompressible fluids4,7,8,10,12,13,19,22,28. The ap-76

pearance of nonlocality in a nonlinear system, mentioned77

above, is a strong obstacle for obtaining averaged model.78

This is why the problem remains open for two-phase case,79

even non-compressible. Two papers devoted to compress-80

ible two-phase flow in double-porosity media,2,8, in which81

one phase was an ideal gas while the second one was in-82

compressible, have illustrated even deeper problems of83

interference between the nonlocality and twice nonlinear-84

ity. The attempts to overcome this difficulty by lineariz-85

ing the equations of capillary imbibition, as, for instance,86

in6,7,10, mean physically that the flow in blocks becomes87

single-phase.88

As a result of such an imposition of nonlocality and89

nonlinearity, the models obtained are not completely90

averaged. Namely, macroscopic equations and the cell91

problems make up a coupled system of equations, which92
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should be solved together. This means that macroscopic93

equations are not spared from microscopic variables, and94

cell problems are not spared from macroscopic variables.95

Despite the importance of such works for mathematics,96

the significance of such models for physics is disputable.97

This is one of the main reasons why the results of the ho-98

mogenization theory were not well received by the phys-99

ical community.100

This is why, the physics of two-phase flow in fractured-101

porous media continue to be studied mainly experimen-102

tally, or numerically. Among the recent experiments, it is103

important to cite the studies based on transparent glass104

micromodels:17,18,25, and on real rock samples scanned105

by nuclear magnetic resonance technique:20. The numer-106

ical modeling of the first kind is based on Darcy’s scale107

model:14,15,23,25,26, in which the main problem is fo-108

cused on matching two-dimensional schemes for fractures109

with three-dimensional schemes for blocks. The numer-110

ical modeling of the second kind is based on pore-scale111

models of two-phase flow:16,24,27. In all these papers,112

the Navier-Stokes and Cahn-Hilliard equations were used113

(the diffuse interface method). The results obtained in all114

these studies converge regarding the role of the capillary115

imbibition on the oil recovery: the higher the capillary116

forces, the higher the imbibition effect and the ultimate117

oil recovery,17,18,24. In24 the capillary forces were varied118

by the surface tension, in16 by the flow rate, while in18 by119

injecting foams. However, the results remain contradic-120

tory regarding the dependence of the ultimate recovery121

on the injection rate. In16,18,24,25 the ultimate recovery122

decreases with the injection rate, whilst in17,20 the re-123

sult is inverse. This indicates that the general physical124

theory of two-flow in double porosity media remains an125

open problem.126

However, the development of such a theory is possible.127

More exactly, it is possible to develop the completely128

averaged model of such systems, in which nonlocality129

and nonlinearity are superimposed. The idea of such a130

method consists of spreading nonlinearity and nonlocal-131

ity into different levels of the asymptotic expansion, that132

is, to weaken their interaction. Such a splitting can be133

performed in so-called media with moderately contrast-134

ing properties.135

On the basis of this idea, in the present work, we con-136

struct a completely averaged model of two-phase com-137

pressible flow, which combines elements of single-phase138

compressible and two-phase incompressible systems. We139

show that the interference between the capillarity and140

compressibility is more complicated than a simple sum141

of the saturation and pressure delay, but leads to more142

complicated cross effects:143

- the effect of saturation delay caused by asymmetric144

extrusion of phases from the blocks due to the expansion145

and compaction of pores;146

- the effect of saturation delay caused by nonlinear147

overlap of compressibility and capillarity.148

All characteristic times have been obtained explicitly149

as the functions of saturation.150

We applied the homogenization method based on two-151

scale asymptotic expansion in variational form, which is152

technically close to the constructive part of the two-scale153

convergence method3. It enables us to present all the154

calculations in the most compact form. This method is155

frequently applied to heterogeneous media. We extended156

the technique of the method to double porosity media,157

so that the method enables us to obtain the averaged158

equations both in fractures and blocks, and to remove159

macroscopic variables in the cell problem for the delay160

operator. This is why we prefer to explain the method161

in the main body of the paper, but not to place it in the162

appendix.163

We underline that the paper does not study ”de-164

formable” media, but only ”compressible” media, i.e. the165

media in which the porosity and permeability depend on166

pressure.167

We also note that the model of periodic double porosity168

medium may be applied even for randomly heterogeneous169

media. This is shown, for instance, in27, where a two-170

phase flow was calculated on the pore scale. It was shown171

that the width of fingers (i.e. the width of fractures) and172

the distance between fingers (i.e. the width of blocks)173

are monotonically decreasing functions of the variance of174

the permeability field.175

II. PROBLEM FORMULATION176

A. Equations of two-phase compressible flow177

Compressibility means that the density of liquids and178

the porosity/permeability of the medium depend on pres-179

sure. Traditionally, one uses the exponential laws for liq-180

uid and tight rocks:181

dρw
dp

= C̃wρw,
dρo
dp

= C̃oρo,
dφ

dp
= C̃φφ (1)

where p is the pressure, C̃w, C̃o, and C̃φ are the isother-182

mal compressibility coefficients, which are considered to183

be constant and positive. Their dimension is Pa−1. The184

characteristic values of this parameter are discussed fur-185

ther in section VIIA. The positive derivative dφ/dp186

means that the porosity decreases if the pressure of liq-187

uid in the pores drops, which corresponds to the pore188

compaction under the weight of superimposed rocks.189

For single-phase compressible fluids in compressible190

medium, one uses the classical simplification of flow equa-191

tions, which consists in the following. Let us substitute192

the equation of compressibility (1) in the mass conserva-193

tion law:194

∂t (ρφ) +∇ · (ρV) = 0 (2)

where V is the Darcy velocity. Then we obtain:195

0 =
d(ρφ)

dp
∂tp+ ρ∇ ·V +

dρ

dp
V · ∇p (3)
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The last term, V · ∇p ∼ (∇p)2 is negligible, since the196

gradients of pressure are very low in geological porous197

reservoirs. Then we obtain the classical equation of198

single-phase compressible flow in compressible porous199

media:200

φC ∂tp+∇ ·V = 0, C ≡ 1

ρφ

d(ρφ)

dp
= C̃w + C̃φ (4)

Let us apply the same assumption for two-phase fluids.201

Consider the immiscible phases and call them ”water”202

and ”oil”. Each phase has its own pressure: pw and po.203

Note that ρw = ρw(pw), ρo = ρo(po), and φ = φ(pw) for204

the pores occupied by water, or φ = φ(po) for the pores205

occupied by oil.206

The initial equations of mass conservation of the phases207

are:208

∂t (ρwφs) +∇ · (ρwVw) = 0 (5)

and209

∂t (ρoφ(1− s)) +∇ · (ρoVo) = 0 (6)

where s is the volume fraction of water (”the satura-210

tion”); ρ is the phase density; φ is the medium porosity;211

p is the pressure; V is the Darcy velocity vector. Indices212

w and o mean water and oil. Differentiating by parts, we213

obtain for water:214

ρwφ∂ts+
d(ρwφ)

dpw
s ∂tpw + ρw∇ ·Vw +

dρw
dpw

V · ∇pw = 0

(7)

Neglecting the terms of the order ∼ (∇p)2, we finally215

obtain the equations of two-pase compressible flow in a216

porous medium217 {
φ∂ts+ φCws ∂tpw +∇ ·Vw = 0,

−φ∂ts+ φCo(1− s) ∂tpo +∇ ·Vo = 0
(8)

where Cw ≡ C̃w + C̃φ, Co ≡ C̃o + C̃φ.218

This system is complemented by the equations of con-219

servation of momentum in the form of Darcys law for each220

phase and the equation of capillary equilibrium, which221

relates the phase pressures:222

Vα = −Kλα(s)∇pα, λα(s) ≡ kα(s)

μα
, α = w, o (9a)

po = pw + pc(s) (9b)

where K is the absolute permeability of the medium; μ223

is the dynamic viscosity of the phase. The functions of224

relative phase permeability kw(s) and ko(s), and the cap-225

illary pressure pc(s) are given. They have the following226

properties:227

• kw(s) is continuous monotonically increasing func-228

tion of water saturation s, such that kw ≡ 0 for229

s ∈ [0, s∗], and kw(1) = 1;230

• ko(s) is continuous monotonically decreasing func-231

tion of s, such that ko(0) = 1 and ko ≡ 0 for232

s ∈ [s∗, 1];233

• pc(s) is monotonically decreasing, such that234

pc(1) = 0 and pc → ∞ for s → s∗. It is unde-235

fined for s ∈ [0, s∗];236

The values s∗ and 1 − s∗ are called the percolation237

thresholds or residual saturations. They mark the critical238

water and oil saturation below which the corresponding239

phase becomes immobile in porous medium. An example240

of these functions is given in Fig. 2.241

III. AVERAGING PROBLEM242

Let the flow domain be a bounded, connected region243

with a periodic microstructure of a characteristic scale244

ε, which is the ratio of the length of a period of hetero-245

geneity to the length of the entire region. Parameter ε is246

small: 0 < ε� 1 (Fig. 1a).247

FIG. 1. Medium structure (a) and a single cell (b)
248

249

Four equations of mass and momentum conservation250

(8) and (9) can be reduced to two equations, excluding251

the Darcy velocities:252

φε ∂ts
ε
α + φεCε

αs
ε
α ∂tp

ε
α = ∇ · (Kελεα∇pεα) (10)

where sεo ≡ 1− sεw, λεα (x, s) is defined in (9a).253

The system (10) and (9b) defines three unknown func-254

tions: water saturation sεw, pressure in water pεw, and255

pressure in oil pεo.256

At the interface between the media, the normal phase257

fluxes and the phase pressures are continuous.258

The boundary conditions specify the water pressure259

and saturation. The initial conditions fixes a speci-260

fied saturation and pressure distribution in the domain:261

sε(x, 0) = s0(x) and pεw(x, 0) = p0w(x). If these initial262

values do not satisfy the condition of local capillary equi-263

librium, then the stated problem describes the relaxation264

of the initially non-equilibrium system to an equilibrium265

state.266
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A. Parameters of the problem267

Porosity, compressibility factors, phase permeability,268

and capillary pressure are different in blocks and frac-269

tures, but remain of the same order:270

φε(x) =

{
φF

φM
, Cε

α(x) =

{
CF

α , x ∈ ΩF

CM
α , x ∈ ΩM (11)

271

λεα(s, x) =

{
λFα (s)

λMα (s)
, pεc(s, x) =

{
pFc (s), x ∈ ΩF

pMc (s), x ∈ ΩM

(12)
where α = w, o.272

Parameters φF , φM, CF
α , CM

α , λFα (s), λMα (s), pFc (s),273

pMc (s) do not depend on ε. Parameters φF , φM, CF
α ,274

CM
α are positive. Functions λFα (s), λMα (s), pFc (s),275

pMc (s) are non-negative. We assume that pMc (s) ≥276

pFc (s), for any s, because the capillary pressure is higher277

when the permeability is lower.278

At the same time, the absolute permeability of blocks279

and fractures can be very different. It is known that280

the permeability changes by several orders of magnitude281

when the porosity varies within 0.1− 0.2. Therefore, we282

accept the following basic condition of double porosity:283

Kε (x) =

{
KF , x ∈ ΩF

δKM, x ∈ ΩM (13)

Coefficients KF andKM are positive and independent284

of ε.285

Parameter δ is the degree of the contrast between the286

permeabilities of blocks and fractures. If the blocks are287

much less permeable than fractures, then this causes a288

delay/memory. The delay rate (or the memory length)289

can ne measured by another parameter, ω, defined as:290

ω =
ε2

δ
(14)

Two types of media are of interest, regarding the con-291

trast degree and the memory length13:292

- media with long memory (or strong contrast): ω ∼ 1293

or δ ∼ ε2. They are also called ε2-media;294

- media with short memory (or moderate contrast):295

ε� ω � 1 or ε2 � δ � ε.296

There are also non-contrast media: δ ∼ 1, and media297

with impermeable blocks: δ � ε2. In the first case, the298

exchange process between blocks and fractures is without299

delay (ω ∼ ε2 � 1), while it is completely absent in the300

second one due to a very strong delay (ω 
 1). Both301

these cases are of no interest for our research purposes.302

IV. METHOD OF HOMOGENIZATION WITH303

SPLITTING NONLOCALITY AND NONLINEARITY304

A. The idea of the method305

The purpose of this paper is to obtain a completely306

averaged model. This concept was introduced in7. A307

model is called completely averaged, if its macroscopic308

equations do not contain microscopic variables, and the309

cell problem, which determines macroscopic coefficients,310

does not depend on macroscopic variables and, therefore,311

is solved only once.312

To avoid the superimposition of the nonlinearity and313

the nonlocality, the idea is to spread them into differ-314

ent levels of asymptotic expansion over the parameter315

of memory length ω, that is, nonlinearity is preserved316

in terms of zero order, whilst the nonlocality is allowed317

only in the first order. Since in asymptotic expansions318

the problem for the first approximation is usually linear,319

this enables us to treat the nonlocality completely and320

explicitly. For incompressible fluids, this was done in13321

for the so-called moderate contrast between blocks and322

fractures.323

This idea can be realized by considering ω as a small324

parameter and developing the solution of our problem325

into the asymptotic series over ω. Therefore, we neces-326

sarily deal with media of moderate contrast in the perme-327

ability of block and fractures. For the sake of simplicity,328

we assume that329

ω ∼ √
ε, or δ = ε

√
ε (15)

which was used in13. Then, the total asymptotic expan-330

sion over ε and ω reduces to a single expansion over ε331

but which should include the fractional powers of ε.332

B. Two-scale formulation333

First of all, let us introduce the new variable y that be-334

longs to the unit cell of the microstructure, Y = (0, 1)d,335

which is shown in Fig. 1b, where d is the space dimen-336

sion. Domain Y consists of two subdomains: a connected337

subdomain Y F (Fractures) and YM (Matrix block). We338

denote by Γ the boundary between the two subdomains339

in Y . Let us introduce the solution extension s̃ ε(x, y, t),340

p̃ ε
α(x, y, t), where y ∈ Y , so that341

sε(x, t) = s̃ ε(x, y, t)|y= x
ε
, p ε

α(x, t) = p̃ ε
α(x, y, t)|y= x

ε

(16)
Then the following is true for the derivatives:342

∂f(x, t)

∂xi
→
(
∂f̃(x, y, t)

∂xi
+

1

ε

∂f̃(x, y, t)

∂yi

)
(17)

where f is any function from sε, pεw, p
ε
o343

Since the operations of extension and differentiation344

commute, we find that the argument y can be considered345
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as an independent variable of x, and we should put it346

equal to x/ε in final results. This is the main idea of347

the two-scale homogenization method. The variable x is348

called ”slow”, while y is ”fast”.349

Further, we will omit tilde.350

The two-scale formulation of the problem (10) has the351

following form:352 ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

φε(y)∂ts
ε
α + φε(y)Cε

α(y)s
ε
α∂tp

ε
α =(

∂xi +
1

ε
∂yi

)(
Kε(y)λεα

(
∂xip

ε
α +

1

ε
∂yip

ε
α

))
,

x ∈ Ω, y ∈ Y, t ∈ (0, T )

pεo = pεw + pεc, sεo = 1− sεw
(18)

with conditions:353 ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
sεw|t=0 = s0(x), pεw|t=0 = p0w(x)[
Kε λεα

∂pεα
∂n

]
Γ

= 0, [pεα]Γ = 0, α = w, o

sεw, p
ε
w are y − periodic

(19)

where [·] means a jump. Note that the continuity of phase354

pressures means the continuity of the capillary pressure:355

[pεc] = 0, which determine a discontinuity of the satura-356

tion sε.357

It can be presented in variational form:358 ∫
Ω

∫
Y

ζ φε∂ts
ε
α dxdy +

∫
Ω

∫
Y

ζ φεCε
αs

ε
α ∂tp

ε
α dxdy =

− 1

ε2

∫
Ω

∫
Y F

KF λFα (∂yip
ε
α + ε∂xip

ε
α) (∂yiζ + ε∂xiζ) dydx−

1√
ε

∫
Ω

∫
Y M

KM λMα (∂yip
ε
α + ε∂xip

ε
α) (∂yiζ + ε∂xiζ) dydx

(20)
for any function ζ(x, y) in Ω× Y , such that ζ is contin-359

uous, ζ|∂Ω = 0 and is periodic with respect to y.360

The relationship (20) is obtained by multiplying361

(18) by ζ, integrating by parts, and using the Gauss-362

Ostrogradsky theorem. The integrals over the boundary363

∂Ω are zero due to the fact that the function ζ is zero on364

∂Ω. The integrals over the boundary ∂Y of the period365

Y are zero due to the periodicity of all functions with366

respect to y.367

C. Asymptotic expansion368

Homogenization is performed by the method of two-369

scale asymptotic expansions with respect to parameter370

ε, as well as regular asymptotic series with respect to the371

nonlocality parameter ω, which means, given (15), the372

appearance of terms containing fractional powers ε1/2.373

The general structure of the expansion is as follows, for374

α = w, o:375

pεα (x, y, t) =⎧⎨⎩
pα0 (x, t) +

√
ε pMα1/2

(x, y, t) + ε pMα1 (x, y, t) + ..., y ∈ YM

pα0 (x, t) +
√
ε pFα1/2

(x, t) + ε pFα1 (x, y, t) + ..., y ∈ Y F

376

sεα (x, y, t) =⎧⎨⎩
sα0 (x, t) +

√
ε sMα1/2

(x, y, t) + ε sMα1 (x, y, t) + ..., y ∈ YM

sα0 (x, t) +
√
ε sFα1/2

(x, t) + ε sFα1 (x, y, t) + ..., y ∈ Y F

(21)
In addition, the condition of continuity of phase pres-377

sures holds:378

pMα1/2
(x, y, t)

∣∣∣
y∈Γ

= pFα1/2
(x, t) (22)

The independence of the zero terms of y is easy to prove379

by substituting the asymptotic expansion into (20). For380

nonlinear functions in (20), the expansion is as follows:381

λεα =

⎧⎨⎩ λα0 (x, t) +
√
ε λMα1/2

(x, y, t) + ε..., y ∈ YM

λα0 (x, t) +
√
ε λFα1/2

(x, t) + ε..., y ∈ Y F

(23)
Then the integral identity (20) takes the form:382 ∫

Ω

∫
Y

ζ φε
(
∂tsα0 +

√
ε ∂tsα1/2

)
dxdy+

∫
Ω

∫
Y

ζ φε Cε
α

(
sα0 +

√
ε sα1/2

) (
∂tpα0 +

√
ε ∂tpα1/2

)
dxdy =

−1

ε

∫
Ω

∫
Y F

KF
(
λFα0 +

√
ε λFα1/2

)(
∂yipα1 + ∂xipα0+

√
ε
(
∂yipα3/2 + ∂xipα1/2

) )
(∂yiζ + ε∂xiζ) dydx−

−
∫
Ω

∫
Y M

KM λMα0
(
∂yipα1/2 +

√
ε (∂yipα1 + ∂xipα0)

)×
(∂yiζ + ε∂xiζ) dydx+O (ε)

(24)
The homogenization technique consists of substituting383

the asymptotic expansion into the integral identity (24)384

and obtaining closed expressions for subsequent terms of385

the expansion by selecting various types of test functions386

ζ.387

D. Result of homogenization: macroscopic model388

We immediately give the result of homogenization. Its389

derivation is given in the next section.390
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Let us define the averaged phase saturations and pres-391

sures in the blocks and fractures as follows:392

PF
α ≡ 1

|Y F |
∫
Y F

(
pα0 +

√
ε pFα1/2

)
dy = pα0 +

√
ε pFα1/2

,

PM
α ≡ 1

|YM|
∫

Y M

(
pα0 +

√
ε pMα1/2

)
dy =

pα0 +
√
ε
〈
pMα1/2

〉
M
,

SF
α ≡ 1

|Y F |
∫
Y F

(
sα0 +

√
ε sFα1/2

)
dy = sα0 +

√
εsFα1/2

,

SM
α ≡ 1

|YM|
∫

Y M

(
sα0 +

√
ε sMα1/2

)
dy =

sα0 +
√
ε
〈
sMα1/2

〉
M

(25)

where 〈·〉i =
1

|Y i|
∫
Y i

(·)dy, i = F ,M393

The following links exist between them:394

SF
o = 1− SF

w , SM
o = 1− SF

w ,

PF
o = PF

w + pFc
(SF

w

)
, PM

o = PM
w + pMc

(SM
w

) (26)

Note that macroscopic capillary pressures in fractures395

and blocks, PF
c

(SF
w

)
and PM

c

(SM), do not figure in396

this model, since they are simply equal to the original397

capillary pressure functions taken from the average sat-398

urations, with accuracy O(ε):399

PF
c

(SF
w

)
= pFc

(SF
w

)
, PM

c

(SM
w

)
= pMc

(SM
w

)
(27)

The macroscopic model has the form of the following400

system of equations for the average pressures and satu-401

rations in the blocks and fractures:402

φF (1 − θ)∂tSF
α + φFCF

α (1− θ)SF
α ∂tPF

α =

∂xi
(
Kikλ

F
α ∂xiPF

α

)
+ ξα

(PM
α − PF

α

)
, α = w, o (28a)

PM
w = PF

w − τcomw

CM
w SM

w

[
∂tSM

w + CM
w SM

w ∂tPM
w

]
, (28b)

pMc
(SM

w

)
= pFc +

τcap + τcc

CM
o

∂tSM
w + (28c)

(τcomw − τcomo ) ∂tPM
w (28d)

where θ is the volume fractions of the blocks.403

The effective permeability is defined as:404

Kik ≡
∫
Y F

KF (∂yiψk + δik) dy (29)

and the cell functions ψk(y) are the solution to the first405

problem in a cell (in the fracture), for k = 1, 2, 3:406 ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂yi

(
KF (∂yiψk + δik)

)
= 0, y ∈ Y F

KF (∂yiψk + δik)n
Γ
i

∣∣
y∈Γ

= 0,

ψk is y − periodic

〈ψk〉Y F = 0

(30)

The delay times between blocks and fractures caused407

by the phase compressibility are defined as:408

τcomα

(SM
w

)
=

√
ε 〈ϕ〉MφM

CM
α SM

α

λMα
, α = w, o (31)

The delay times caused by capillarity and joint action409

of capillarity and compressibility are as follows:410

τcap
(SM

w

)
=

√
ε 〈ϕ〉MφMCM

o

(
λMw + λMo

)
λMw λMo

,

τcc
(SM

w

)
= −CM

o

dpMc
dSM τcomo

(32)

where the function ϕ(y) is the solution of the second cell411

problem (in the block):412 ⎧⎪⎨⎪⎩
∂

∂yi

(
KM ∂ϕ

∂yi

)
= −1, y ∈ YM

ϕ|y∈Γ = 0

(33)

The transfer functions ξα are defined as:413

ξα ≡ θλMα√
ε 〈ϕ〉M

(34)

where θ is the volume fraction of blocks.414

The model (28) is the formal asymptotic expansion415

of the original problem that keeps the terms of order416

O (
√
ε). The order of residual terms is, thus, O (ε).417

V. DERIVATION OF THE AVERAGED MODEL418

A. First step of homogenization: expansion in fractures419

Let ζ = ζ(x, y) in Ω×Y , ζ|∂Ω = 0, ζ is continuous and420

periodic with respect to y. Then one obtains from (24)421

for negatives powers of ε:422

0 =
1

ε

∫
Ω

∫
Y F

KFλFα0 (∂yipα1 + ∂xipα0) ∂yiζ dydx,

0 =
1√
ε

∫
Ω

∫
Y F

KF
[
λFα0

(
∂yipα3/2 + ∂xipα1/2

)
+

λFα1/2
(∂yipα1 + ∂xipα0)

]
∂yiζ dydx+O (ε)

(35)
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This yields the following:423

0 = −
∫
Ω

∫
Y F

ζ ∂yi
(
KFλFα0 (∂yipα1 + ∂xipα0)

)
dxdy+

∫
Ω

∫
Γ

ζ KFλFα0 (∂yipα1 + ∂xipα0)n
Γ
i dxdy

(36)424

0 =

∫
Ω

∫
Y F

ζ ∂yi

(
KFλFα0

(
∂yipα3/2 + ∂xipα1/2

)
+

KFλFα1 (∂yipα1 + ∂xipα0)
)
dydx+

∫
Ω

∫
Γ

ζ
[
KFλFα0

(
∂yipα3/2 + ∂xipα1/2

)
+

KFλFα1 (∂yipα1 + ∂xipα0)
]
nΓ
i dxdy

(37)

Taking into account (23), this is equivalent to two425

problems in classical formulation:426

⎧⎨⎩
∂yi
(
KF (∂yipFα1 + ∂xipα0

))
= 0, y ∈ Y F

KF (∂yipFα1 + ∂xipα0
)
nΓ
i

∣∣
y∈Γ

= 0
(38)

427

⎧⎪⎨⎪⎩
∂yi

(
KF

(
∂yip

F
α3/2

+ ∂xipα1/2

))
= 0, y ∈ Y F

KF
(
∂yip

F
α3/2

+ ∂xipα1/2

)
nΓ
i

∣∣∣
y∈Γ

= 0
(39)

This leads to the following representation of pFα1 and428

pFα3/2
through pα0 and pFα1/2

:429

pFα1 = ψk(y)
∂pα0
∂xk

+ p̄Fα1(x, t),

pFα3/2
= ψk(y)

∂pFα1/2

∂xk
+ p̄Fα3/2

(x, t)

(40)

where p̄Fα1(x, t) and p̄Fα3/2
(x, t) are some slow functions,430

which do not enter in the homogenized model. For431

functions ψk, we obtain the first cell problem (30), in432

which the latter condition is added to ensure the solu-433

tion uniqueness.434

B. Second step: the averaged equation in fractures435

Let us select the test functions as ζ = ζ(x) in Ω and436

ζ|∂Ω = 0. Then one obtains from (24):437

∫
Ω

∫
Y

ζ φ
(
∂tsα0 +

√
ε∂tsα1/2

)
dxdy+

∫
Ω

∫
Y

ζ φCα

(
sα0 +

√
εsα1/2

) (
∂tpα0 +

√
ε∂tpα1/2

)
dxdy =

−
∫
Ω

∫
Y F

KF
(
λFα0 +

√
ελFα1/2

) [
∂yipα1 + ∂xipα0+

√
ε
(
∂yipα3/2 + ∂xipα1/2

) ]
∂xiζ dydx+O (ε)

(41)

Using (40) we deduce:438

∫
Ω

∫
Y

ζ φ∂t
(
sα0 +

√
εsα1/2

)
dxdy+

∫
Ω

∫
Y

ζ φCα

(
sα0 +

√
εsα1/2

)
∂t
(
pα0 +

√
εpα1/2

)
dxdy =

∫
Ω

∫
Y F

ζ ∂xi

(
KF

(
λFα0 +

√
ελFα1/2

)
(∂yiψk + δik)×

∂xk

(
pα0 +

√
εpFα1/2

))
dydx+O (ε)

(42)

Introducing the averaged pressures and saturations439

(25), we obtain:440

∫
Ω

ζ
[
φF (1− θ) ∂tSF

α + φMθ∂tSM
α

]
dx+

∫
Ω

ζ
[
φFCF

α (1− θ)SF
α ∂tPF

α + φMCM
α θSM

α ∂tPM
α

]
dx =

∫
Ω

ζ ∂xi

(
Kikλ

F
α (SαF) ∂xkPF

α

)
dx

(43)
where the effective permeability tensor is (29). This gives441

the first averaged equation (28a) in the as-yet-incomplete442

form:443

φF (1− θ) ∂tSF
α + φFCF

α (1− θ)SF
α ∂tPF

α =

∂xi

(
Kikλ

F
α (SαF) ∂xkPF

α

)
− φMθ∂tSM

α −

φMCM
α θSM

α ∂tPM
α , α = w, o

(44)



8

C. Third step: expansion in blocks444

Let ζ = ζ(x, y) in Ω × Y , ζ|∂Ω = 0, ζ ≡ 0 in Y F , and445

ζ is continuous. Then the identity (24) gives:446 ∫
Ω

∫
Y M

ζ φ
(
∂tsα0 +

√
ε ∂ts

M
α1/2

)
dxdy+

∫
Ω

∫
Y M

ζ φCα

(
sα0 +

√
εsMα1/2

)(
∂tpα0 +

√
ε∂tp

M
α1/2

)
dxdy =

−
∫
Ω

∫
Y M

KM
(
λα0 +

√
ελMα1/2

) [
∂yipα1/2+

√
ε (∂yipα1 + ∂xipα0)

]
∂xiζ dydx+O (ε)

(45)
The integral over the block boundary is zero, since447

functions w are zero in the fracture and are continuous.448

The zero-order terms yield:449 ∫
Ω

∫
Y M

ζ φ
(
∂tsα0 + Cαsα0∂tpα0

)
dxdy =

∫
Ω

∫
Y M

ζ ∂yi

(
KMλα0∂yipα1/2

)
dydx

(46)

This produces the following expression for pMα1/2
given450

(22):451

pMα1/2
= pFα1/2

− ϕ(y)
φM

λα0

(
∂tsα0 + CM

α sα0∂tpα0

)
(47)

where ϕ(y) is he solution of the second cell problem (33).452

The boundary condition in (33) results from the conti-453

nuity of the phase pressures (22).454

D. Fourth step: averaged equation in blocks455

Formula (47) enables us to obtain an explicit relation456

between PM
α and PF

α . Indeed, taking the average of (47)457

over YM (and noting that only the function φ depends458

on y in the right-hand side of (47)), multiplying by
√
ε459

and adding pα0, we obtain:460

pα0 +
√
ε
〈
pMα1/2

〉
M

= pα0 +
√
εpFα1/2

−

√
ε 〈ϕ〉M

φM

λα0

(
∂tsα0 + CM

α sα0∂tpα0

) (48)

Using the definition of the averaged pressures and sat-461

urations (25), we deduce:462

PM
α = PF

α − τcomα

CM
α SM

α

(
∂tSM

α +CM
α SM

α ∂tPM
α

)
, α = w, o

(49)
which is identical to (28b). The characteristic times of463

delay are defined as (31).464

In the structure of the delay times, we have taken into465

account the following circumstances:466

∂tsα0 = ∂t

(
sα0 +

√
ε
〈
sMα,01

〉
M

)
−√

ε ∂t
〈
sMα,01

〉
M =

∂tSM
α +O (√ε) ,

(50)467

λMα0 = λMα (sα0) +
√
ε
dλMα
dsα0

〈
sMα1/2

〉
M

−

√
ε
dλMα
dsα0

〈
sMα1/2

〉
M

= λMα
(
sα0 +

√
ε
〈
sMα1/2

〉
M

)
+

O (√ε) = λMα
(SM

α

)
+O (√ε)

(51)
Consequently, we deduce the following:468

√
ε

λMα0
∂tsα0 =

√
ε ∂tSM

α +O (ε)

λMα (SM
α ) +O (

√
ε)

=

√
ε ∂tSM

α

λMα (SM
α )

+O (ε)

(52)
and similarly for other terms.469

Instead of two equations (49) for phase pressures, it is470

possible to replace one of them by the equation for the471

capillary pressure. Subtracting one equation (49) from472

another one, we deduce the relation between the averaged473

capillary pressures in the blocks and fractures:474

PM
w = PF

w + τcomw ∂tPM
w − τcomo ∂t

(PM
w + PM

c

)
+

(
τcomw

CM
w SM

w

+
τcomo

CM
o SM

o

)
∂tSM

w =

PF
w +

(
τcomw

CM
w SM

w

+
τcomo

CM
o SM

o

− τcomw

dPM
c

dSM
w

)
∂tSM

w +

(τcomw − τcomo ) ∂tPM
w

(53)
which is reduced to (28d) if we prove the link (49) be-475

tween the average capillary pressures PM
c and PF

c and476

the original capillary pressure curves pMc and pFc . This is477

done in the following way. Let us expand the expression478

for pMc and pFc in Taylor series:479

pFc
(SF

w

)
= pFc (sw0) +

√
ε
dpFc
dsw0

sFw 1/2
+O (ε) ,

pMc
(SM

w

)
= pMc (sw0) +

√
ε
dpMc
dsw0

〈
sMw 1/2

〉
M

+O (ε)

(54)
Since all the functions on the right do not depend on480

y, then the averaging over the fractures or blocks does481

not change anything:482

PF
c

(SF
w

) ≡ 〈pFc (SF
w

)〉
F = pFc

(SF
w

)
+O (ε) ,

PM
c

(SM
w

) ≡ 〈pMc (SM
w

)〉
M = pMc

(SM
w

)
+O (ε)

(55)

which proves (27).483
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E. Fifth step: final form of Eqs. (28a)484

For the expressions in the right-hand side of the macro-485

scopic equations (28a), it is possible to obtain an explicit486

relation through the pressure difference, using (28b):487

CM
α SM

α ∂tPM
α = −C

M
α SM

α

τcomα

(PM
α − PF

α

)
(56)

which gives a more traditional form to the terms of ex-488

change between blocks and fractures and leads to the489

definite form (28a).490

VI. PHYSICAL INTERPRETATION OF THE RESULTS491

OBTAINED492

A. Particular case of compressible single-phase flow493

In the single-phase case, system (28) takes the form:494 ⎧⎨⎩ φFCF (1− θ)∂tPF − ∂xi
(
Kik∂xiPF) = ξ

(PM − PF)
PM = PF − τcom∂tPM

(57)

where ξ ≡ θ√
ε 〈ϕ〉M

, τcom =
√
ε 〈ϕ〉M φMCM, which495

is the well-known model of single-phase flow in double496

porosity medium with moderate contrast11.497

B. Particular case of an incompressible two-phase system498

In the incompressible case, system (28) takes the fol-499

lowing form:500

φF (1− θ)∂tSF
α = ∂xi

(
Kikλ

F
α ∂xiPF

α

)
+

ξα
(PM

α − PF
α

)
, α = w, o

PM
w = PF

w − τcomw

CM
w SM

w

∂tSM
w ,

pMc
(SM

w

)
= pFc +

τcap

CM
o

∂tSM
w

(58)

where parameters
τcom
w

CM
w SM

w
and τcap

CM
o

do not depend on the501

compressibility coefficients:502

τcomw

CM
w SM

w

=
√
ε 〈ϕ〉M

φM

λMw
,

τcap

CM
o

=
√
ε 〈ϕ〉M φM

(
λMw + λMo

)
λMw

(59)

As seen from two last equations in (58), only the latter503

is differential (with respect to SM
w ), while the former is504

algebraic with respect to PM
w . This means that the delay505

effects, which are caused only by the capillarity in this506

case, concern the capillary pressure and saturation. The507

difference in phase pressures in blocks and fractures also508

exists, but only as a consequence of the link of phase509

pressures with capillary pressure.510

C. Capillary delay and delay caused by compressibility511

Comparison with the case of incompressible fluids (58)512

and single-phase flow (57) enables us to better under-513

stand the essence of the obtained model (28) and the role514

of compressibility in two-phase systems. The nonequilib-515

rium behavior of system (28) is determined by the sub-516

system of two ordinary differential equations (28b) and517

(28d) for saturation and pressure. This means that the518

pressure and the saturation of water in blocks are delayed519

with respect to those in fractures. Such a delay is caused520

by the following mechanisms on the microscale.521

• Non-equilibrium capillary redistribution of phases522

between the blocks and fractures, caused by the523

fact that the average saturation in blocks changes524

more slowly than in fractures, which violates the525

equality of average capillary pressures (the condi-526

tion of capillary equilibrium). As a result, a differ-527

ence in the average capillary pressures arises, which528

depends on the rate of variation of the saturation529

in the blocks. In equation (28d), this process is530

described by the first term:531

pMc − pFc =
τcap

CM
o

∂tSM
w (60)

The difference in capillary pressures automatically532

causes a difference in phase pressures, which is ex-533

pressed by the first term in (28b):534

PM
w − PF

w =
τcomw

CM
w SM

w

∂tSM
w (61)

In a medium with strong contrast in permeabilisity,535

such a process would lead to long memory, but in536

the case of moderate contrast, we obtain the short537

memory described by the kinetic relationship (28d).538

This process does not depend on the compressibil-539

ity of phases and rocks and is the same as in the540

incompressible case (58).541

• Nonuniform pressure redistribution between the542

blocks and fractures. The compressibility of543

the system determines the appearance of pres-544

sure waves, whose rate of propagation is equal to545

K/(μCφ). Thus, it is lower in low permeable blocks546

than in fractures. This leads to a delay in the be-547

havior of pressures, which is described by the sec-548

ond term in equation (28b):549

PM
w − PF

w = −τcomw ∂tPM
w (62)
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This process does not depend on the two-phase na-550

ture of the system and is the same as in the single-551

phase case, (57).552

• Non-equilibrium asymmetric extrusion of the553

phases (peristalsis) due to their expansion and com-554

paction of pores. Compressibility leads to expan-555

sion of liquids and compaction of pores under the556

weight of overlying rocks, which leads to the extru-557

sion of both phases from the pores. This effect558

is similar to peristalsis, when a fluid in a chan-559

nel is driven by the deformation of the channel560

walls. If such extrusion is symmetrical for both561

phases, they are extruded as a whole, which does562

not change their volume fraction. In contrast, an563

asymmetrical extrusion leads to a redistribution of564

phases in space, which affects their saturation. In565

blocks, such a movement caused by extrusion is de-566

layed, which involves an additional non-equilibrium567

in the saturation behavior, and enhances the cap-568

illary disequilibrium. This leads to an additional569

difference in capillary pressures, which is reflected570

by the third term in (28d):571

pMc − pFc = (τcomw − τcomo ) ∂tPM
w (63)

As seen, this effect is really zeroed if the extrusion572

of the phases is symmetrical, that is if τcomw − τcomo .573

• The nonlinear component of extrusion, which is574

also caused by the imposition of the capillarity,575

compressibility and nonlinearity of the flow equa-576

tions. This effect is described by the second term577

in (28d):578

pMc − pFc =
τcc

CM
o

∂tSM
w (64)

VII. QUANTITATIVE ANALYSIS579

To analyse the role of various memory effects, we will580

consider two examples of the application of this model to581

an underground reservoir of oil or gas in an aquifer:582

- Case I: monotonic depletion of an oil reservoir;583

- Case II: oscillatory functioning of an underground gas584

storage in an aquifer.585

In both cases we assume that the saturation and pres-586

sure in fractures are constant in space but vary in time587

as given functions, whose behaviour reflects the physical588

process we are analyzing. For instance, for the depletion589

process, the fracture pressure and saturation are mono-590

tonic functions of time, whilst for the gas storage they591

are oscillatory in time. Then it is sufficient to solve only592

the system of two differential equations (28b) and (28d),593

which can be presented in the following form:594 ⎧⎨⎩ a11 ∂tSM + a12 ∂tPM = − (PM − PF)
a21 ∂tSM + a22 ∂tPM = pMc − pFc

(65)

where S ≡ Sw, P ≡ Pw, and595

a11 ≡ τcomw

CM
w SM , a12 ≡ τcomw

a21 ≡ (τcap + τcc)

CM
o

, a22 ≡ τcomw − τcomo

(66)

A. Parameters of natural systems596

All the variables in the system (28) are assumed to be597

dimensionless.598

The dimensionless value of compressibility parameter599

corresponds to Cwp
0 where p0 is the initial pressure600

((19)). In natural underground reservoirs, p0 ∼ 20 − 50601

MPa. The compressibility of water and consolidated602

rocks (silicates) is of order 10−9 − 10−8 Pa−1, which603

corresponds to dimensionless value of Cw ∼ 0.02 − 0.5.604

The compressibility of oil and soft rocks is higher: ∼605

10−8 − 10−7 Pa−1, so that the dimensionless compress-606

ibility is Co ∼ 0.2− 5.607

The exponential law of compressibility (1) is applied608

to liquids and solids. But it can also be used for highly609

compressed gas, whose properties are close to those of610

liquid. The compressibility of such a dense gas may be611

much higher than any liquid, so that the dimensionless612

parameter C is of order 2− 50.613

Thus, we conclude that:614

- Cα ∼ 0.03: low compressibility, 10−9 Pa−1;615

- Cα ∼ 0.3: moderate compressibility, 10−8 Pa−1;616

- Cα ∼ 3: high compressibility, 10−7 Pa−1;617

- Cα ∼ 30: very high compressibility (of dense gases),618

10−6 Pa−1.619

Other parameters are: KF = 1, KM = 1, ε = 0.2,620

φF = 0.2, φM = 0.2, θ = 0.8, μw/μo = 0.5. We use the621

following analytical curves of relative permeability and622

capillary pressure:623

kw(s) = s2, ko(s) = (1 − s)2

pFc (s) = γ
√− ln s, pMc (s) =

γ

η

√− ln s
(67)

where γ = 0.1 and η = 0.65. These functions are shown624

in Fig. 2. For the sake of simplicity, the relative perme-625

abilities are assumed to be identical in blocks and frac-626

tures.627628

The cell problem (33) represents a Dirichlet problem629

for Poisson’s equation. It was solved numerically in a630

square block by the finite element method using the Mat-631

lab PDE Toolbox, which is the solver of partial differen-632

tial equations integrated into the package Matlab. The633

domain was discretized by triangular elements. The ba-634

sic functions were linear. The solution has the form of635

a convex surface having the maximum at the block cen-636

tre and zero at the block boundary. Its average value is637

〈ϕ〉M = 0.025.638
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FIG. 2. Original curves of relative permeability and capillary
pressure

B. Monotonic depletion of an oil reservoir639

Let the reservoir contain initially oil and water. The640

initial pressure is uniform in the entire reservoir, while641

the saturations are different in blocks and fractures, being642

controlled by the capillary equilibrium:643

PF
w = PM

w = 1, SF
w = 0.2, at t = 0 (68)

The production of oil leads to the decrease in reservoir644

pressure and to the invasion of the aquifer water, which645

leads, in turn, to the increase in water saturation. This646

can be expressed in terms of the following behaviour of647

the pressure and saturation in fractures:648

PF
w = 0.7− qt, SF

w = 0.2 + qt

where q is the depletion rate.649

This means that PF
w instantaneously drops from 1 to650

0.7 and then decreases linearly with time.651

The behaviour of block pressure and saturation is652

shown in Fig. 3 for high compressibility: Cw = Co = 3.653654

A significant delay in pressure propagation is observed655

only for highly compressible systems (Cw 
 1).656

The saturation field is much more affected by the com-657

pressibility effects than pressure.658

C. Oscillatory regimes of injection-production659

Let the pressure and saturation in fractures oscillate in660

time, which corresponds in practice to functioning of an661

underground storage of gas in an aquifer. A half of year662

the gas in injected (the pressure increases and the water663

saturation decreases). For another half year, the gas is664

withdrawn, so that the pressure decreases and the water665

saturation increases:666

PF = 1 +A cos (νt) , SF = 0.2 +A sin (νt) (69)

where A and ν are the amplitude and the period of os-667

cillations.668

(a)

(b)

FIG. 3. Variation of pressure (a) and water saturation (b) in
blocks, for various CM

w = CM
o = 0.3, 3, 10

(a)

(b)

FIG. 4. Variation of pressure (a) and saturation (b) in blocks,
for various CM

w = CM
o = 0.3, 3, 10
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The behaviour of pressure and saturation is shown in669

Fig. 4, for high compressibility (C ∼ 3).670671

As in the previous case, the pressure delay is observed672

only for very high compressibility of fluids or rocks. In673

contrast, the delay in the saturation is significant even674

for moderate values of compressibility Cw, Co ∼ 1−3. In675

the case of high compressibility, the saturation in blocks676

is totally different from the incompressible case.677

D. Impact of asymmetrical compressibility of phases678

If the compressibility of two phases is very different,679

it has a significant impact on saturation, even for mod-680

erate compressibility. This impact is even greater than681

that of a strong but identical compressibility for the two682

phases. This is clearly seen in Fig. 5, which compares683

two cases: the high compressibility but identical for both684

phases (the grey curve, Cw = Co = 3), and the case of685

different compressibility (the black curve, Cw = 0.3 and686

Co = 3).687

FIG. 5. Variation of the saturation in blocks in the case of
asymmetrical compressibility, for CM

w = 0.3 and CM
o = 3

688

689

If the compressibility is asymmetrical and high, then690

the saturation in blocks changes even qualitatively the691

behaviour with respect to the incompressible case. In692

Fig. 6 the black curve (high compressibility of both693

phases) has not only much higher amplitude but also694

the inverse maximums/minimus comparing to the incom-695

pressible case (the dashed curve) or to the case of an696

identical compressibility (the grey curve).697698

In all the situations, one sees that the delay effects699

concern much more the saturation, than the pressure. A700

moderate and even low but asymmetrical compressibility701

has significant impact on the saturation.702

E. Simplification of the macroscopic model703

Given the results of simulations, we can suggest a sim-704

plified approximate macroscopic model, in which we ne-705

glect the delay in the behaviour of pressure. Then the706

version of the model (28), in which only the saturation707

FIG. 6. Variation of the saturation in blocks in the case of
asymmetrical compressibility, for CM

w = 3 and CM
o = 10

is in disequilibrium (but not the pressure) takes the fol-708

lowing form:709

φF (1− θ)∂tSF
α + φFCF

α (1− θ)SF
α ∂tPF

α =

∂xi
(
Kikλ

F
α ∂xiPF

α

)
, α = w, o (70a)

PM
w = PF

w , (70b)

τcap + τcc

CM
o

∂tSM
w = pMc

(SM
w

)− pFc − (70c)

(τcomw − τcomo ) ∂tPM
w (70d)

Contrarily to the exact model (28), the first two equa-710

tions (70a) do not contain anymore the exchange term,711

due to a fast equalization of pressure in space. Moreover,712

two kinetic differential equations (28b) and (28d) trans-713

form into a single ordinary differential equation (70d)714

with respect to the saturation SM
w .715

Equation (70d) can be considered as the generalization716

to compressible systems of the capillary non-equilibrium717

equation obtained in13.718

This simplified model is valid for Cw, Co < 3−4. These719

dimensionless values correspond to the compressibility of720

10−7 Pa−1, which is a highly compressible system. Fig.721

7 illustrates this.722723

This is however not the case of very high compressibil-724

ity, as illustrated in Fig. 8.725726

CONCLUSION727

First of all, we note that the averaged model (28) is728

completely homogenized, despite the presence of the non-729

linearity and the memory. This means that it does not730

contain microscopic variables, and the cell problem does731

not contain macroscopic variables, so that it is solved732

only once.733

This was possible to do due to the method of splitting734

nonlocality and nonlinearity, proposed earlier13, which735
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FIG. 7. Comparison of the simplified model (the dotted
curve) and the exact model (the solid curve) for Cw = Co = 3

FIG. 8. Comparison of the simplified model (the dotted
curve) and the exact model (the solid curve) for a highly com-
pressible system: Cw = Co = 5

showed once again its effectiveness. Averaging by the736

variational method (which remains non-popular yet in737

mechanics of porous media), is also highly efficient, since738

it allows minimizing the calculations.739

Secondly, the model predicts and describes several740

mechanisms causing the delay or memory effects. Along741

with the pure capillary delay, typical to two-phase sys-742

tems, and the delay of pressure wave propagation, typi-743

cal for compressible systems, two additional cross-effects744

arise, such as peristalsis (or phase extrusion) and non-745

linear peristalsis, which, in turn, depend non-trivially on746

the asymmetry or symmetry of the compression with re-747

spect to two phases.748

The practical application of this model is necessary749

in cases of strongly non-stationary processes, when com-750

pressibility plays a significant role in the propagation of751

perturbations.752

Various memory effects are particularly pronounced in753

processes with a variable direction of evolution. For ex-754

ample, the gas injection-production in underground gas755

storage. The accumulation of a history of pressure and756

saturation oscillations in such processes can lead to a757

strong delay and a complete discrepancy in the quali-758

tative behavior of the process compared to the process759

without memory.760

We considered only the case of the exponential com-761

pressibility law, which is applicable for liquids and solids.762

The applicability of this model for a gas-liquid system is763

acceptable only for high pressures, or for highly com-764

pressed gas, whose properties are close to a liquid.765

The delay caused by the compressibility affects the sat-766

uration (through the asymmetrical peristalsis) even at767

moderate values of compressibility parameter.768
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