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Homogenized Model with Memory for Two-Phase Compressible Flow in Double-Porosity Media

A completely averaged model of two-phase flow of compressible fluids in a medium with double porosity is developed. The variational asymptotic two-scale averaging method with splitting the nonlocality and nonlinearity is presented. Several mechanisms of delay are detected, as the nonequilibrium capillary redistribution of phases, pressure field relaxation caused by the compressibility, and the cross effects of fluid extrusion from pores due to the rock com-paction and fluid expansion. A generalized non-equilibrium capillary equation is obtained. All characteristic times of delay are explicitly defined as functions of saturation. 51 spect to the flow in fractures, the spontaneous imbibition 52 in blocks is very slow, which causes the capillary delay 53 effects in terms of the averaged saturation of water (the 54 term "saturation" means the volume fraction). 55 The capillary imbibition can be represented in terms of 56 the propagation of the wave of water saturation from the 57 block boundary towards the block centre. The dynam-58 ics of this wave is nonlinear, proper to two-phase flow in 59 general. In classical two-phase model the counter-current 60 imbibition is described by a nonlinear diffusion equation 61 with nonlinear boundary conditions. We are, thus, faced 62 with a situation where delay/memory (or time nonlocal-63 ity) at the macroscale is caused by the propagation of a 64 nonlinear wave at the local scale. 65 In the flow is two-phase and compressible simultane-66 ously, the two types of the memory mentioned above, 67 caused by the capillarity and the compressibility, should 68 interact in some way, which could generate new physical 69 cross phenomena. The detection of such phenomena is 70 the main objective of the present paper. For this, it was 71 necessary to develop the macroscale model of two-phase 72 compressible flow in double-porosity media. 73 Attempts to develop the model of two-phase flow in 74 double porosity media have been undertaken essentially 75 for incompressible fluids 4 , 7 , 8 , 10 , 12 , 13 , 19 , 22 , 28 . The ap-76 pearance of nonlocality in a nonlinear system, mentioned 77 above, is a strong obstacle for obtaining averaged model. 78 This is why the problem remains open for two-phase case, 79 even non-compressible. Two papers devoted to compress-80 ible two-phase flow in double-porosity media, 2 , 8 , in which 81 one phase was an ideal gas while the second one was in-82 compressible, have illustrated even deeper problems of 83 interference between the nonlocality and twice nonlinear-84 ity. The attempts to overcome this difficulty by lineariz-85 ing the equations of capillary imbibition, as, for instance, 86 in 6 , 7 , 10 , mean physically that the flow in blocks becomes 87 single-phase. 88 As a result of such an imposition of nonlocality and 89 nonlinearity, the models obtained are not completely 90 averaged. Namely, macroscopic equations and the cell 91 problems make up a coupled system of equations, which 92

I. INTRODUCTION

A double porosity medium, which is also called fractured-porous medium, is the classical model applied to study the effects of memory or delay occurrence in fluid flow after changing the scale of examination. Such a medium consists of low permeable blocks and highly permeable fractures. A single-phase compressible flow in such a medium is characterized by the delay in pressure behaviour. Indeed, in tight blocks, non-stationary processes of perturbation propagation are much slower than in fractures, therefore, the average pressure in blocks reacts to a perturbation coming from fractures with a delay.

As the result, the average pressure in the blocks depends on the all history of variation of the average pressure in the fractures, but not only on its current value, which is the phenomenon of memory. Such a phenomenon is observed in terms of the averaged pressures, i.e. on the macroscopic scale. In the single-phase case, it is possible to obtain completely averaged model and to describe explicitly the kernel of the memory operator. The first mathematical model was suggested in 11 , where the concept of a delay between the pressures was introduced.

Later, in 9 and 22 it was shown by homogenization that high contrast in the permeability of blocks and fractures leads to a long memory and changes the original diffusion equation into an integro-differential homogenized equation. In some papers a more complete version of compressible single-phase flow in double-porosity medium was homogenized, by introducing elastic deformations of the medium described by Biot's equations, 1 , 21 .

In the case of two-phase flow, another type of memory arises, which is caused by the capillarity. The capillary forces push the more wetting fluid from fractures into blocks, while displacing the non-wetting fluid from the blocks to the fractures. This phenomenon is known as the counter-current spontaneous imbibition. In particular, this mechanism is essential for oil recovery by a) mikhail.panfilov@univ-lorraine.fr water injection in heterogeneous reservoirs, 20 . With re-should be solved together. This means that macroscopic equations are not spared from microscopic variables, and cell problems are not spared from macroscopic variables.

Despite the importance of such works for mathematics, the significance of such models for physics is disputable. This is one of the main reasons why the results of the homogenization theory were not well received by the physical community. This is why, the physics of two-phase flow in fracturedporous media continue to be studied mainly experimentally, or numerically. Among the recent experiments, it is important to cite the studies based on transparent glass micromodels: 17 , 18 , 25 , and on real rock samples scanned by nuclear magnetic resonance technique: 20 . The numerical modeling of the first kind is based on Darcy's scale model: 14 , 15 , 23 , 25 , 26 , in which the main problem is focused on matching two-dimensional schemes for fractures with three-dimensional schemes for blocks. The numerical modeling of the second kind is based on pore-scale models of two-phase flow: 16 , 24 , 27 . In all these papers, the Navier-Stokes and Cahn-Hilliard equations were used (the diffuse interface method). The results obtained in all these studies converge regarding the role of the capillary imbibition on the oil recovery: the higher the capillary forces, the higher the imbibition effect and the ultimate oil recovery, 17 , 18 , 24 . In 24 the capillary forces were varied by the surface tension, in 16 by the flow rate, while in 18 by injecting foams. However, the results remain contradictory regarding the dependence of the ultimate recovery on the injection rate. In 16 , 18 , 24 , 25 the ultimate recovery decreases with the injection rate, whilst in 17 , 20 the result is inverse. This indicates that the general physical theory of two-flow in double porosity media remains an open problem.

However, the development of such a theory is possible. More exactly, it is possible to develop the completely averaged model of such systems, in which nonlocality and nonlinearity are superimposed. The idea of such a method consists of spreading nonlinearity and nonlocality into different levels of the asymptotic expansion, that is, to weaken their interaction. Such a splitting can be performed in so-called media with moderately contrasting properties.

On the basis of this idea, in the present work, we construct a completely averaged model of two-phase compressible flow, which combines elements of single-phase compressible and two-phase incompressible systems. We show that the interference between the capillarity and compressibility is more complicated than a simple sum of the saturation and pressure delay, but leads to more complicated cross effects:

-the effect of saturation delay caused by asymmetric extrusion of phases from the blocks due to the expansion and compaction of pores; -the effect of saturation delay caused by nonlinear overlap of compressibility and capillarity.

All characteristic times have been obtained explicitly as the functions of saturation.

We applied the homogenization method based on two- operator. This is why we prefer to explain the method 161 in the main body of the paper, but not to place it in the 162 appendix.

163

We underline that the paper does not study "de-164 formable" media, but only "compressible" media, i.e. the 165 media in which the porosity and permeability depend on 166 pressure.

167

We also note that the model of periodic double porosity 168 medium may be applied even for randomly heterogeneous 169 media. This is shown, for instance, in 27 , where a two- 

181 dρ w dp = C w ρ w , dρ o dp = C o ρ o , dφ dp = C φ φ (1)
where p is the pressure, C w , C o , and C φ are the isother- 

194 ∂ t (ρφ) + ∇ • (ρV) = 0 (2)
where V is the Darcy velocity. Then we obtain:

195 0 = d(ρφ) dp ∂ t p + ρ∇ • V + dρ dp V • ∇p (3)
The last term, 

200 φC ∂ t p + ∇ • V = 0, C ≡ 1 ρφ d(ρφ) dp = C w + C φ (4)
Let us apply the same assumption for two-phase fluids.

201

Consider the immiscible phases and call them "water" 206

The initial equations of mass conservation of the phases 207 are:

208 ∂ t (ρ w φs) + ∇ • (ρ w V w ) = 0 (5)
and

209 ∂ t (ρ o φ(1 -s)) + ∇ • (ρ o V o ) = 0 ( 6 
)
where s is the volume fraction of water ("the satura-210 tion"); ρ is the phase density; φ is the medium porosity; 

φ ∂ t s + φC w s ∂ t p w + ∇ • V w = 0, -φ ∂ t s + φC o (1 -s) ∂ t p o + ∇ • V o = 0 (8)
where

C w ≡ C w + C φ , C o ≡ C o + C φ .

218

This system is complemented by the equations of con- 222 

V α = -Kλ α (s)∇p α , λ α (s) ≡ k α (s) μ α , α = w, o (9a) p o = p w + p c (s) ( 9 
252 φ ε ∂ t s ε α + φ ε C ε α s ε α ∂ t p ε α = ∇ • (K ε λ ε α ∇p ε α ) ( 10 
)
where

s ε o ≡ 1 -s ε w , λ ε α (x, s) is defined in (9a).
253

The system ( 10) and (9b) defines three unknown func- tures, but remain of the same order: when the porosity varies within 0.1 -0.2. Therefore, we 282 accept the following basic condition of double porosity:

270 φ ε (x) = φ F φ M , C ε α (x) = C F α , x ∈ Ω F C M α , x ∈ Ω M (11) λ ε α (s, x) = λ F α (s) λ M α (s) , p ε c (s, x) = p F c (s), x ∈ Ω F p M c (s), x ∈ Ω M (12) where α = w, o. Parameters φ F , φ M , C F α , C M α , λ F α (s), λ M α (s), p F c (s), 273 p M c (s) do not depend on ε. Parameters φ F , φ M , C F α , 274 C M α are positive. Functions λ F α (s), λ M α (s), p F c (s), 275 p M c (s)
283 K ε (x) = K F , x ∈ Ω F δK M , x ∈ Ω M (13)
Coefficients K F and K M are positive and independent 

290 ω = ε 2 δ (14)
Two types of media are of interest, regarding the con-291 trast degree and the memory length 13 :

292

-media with long memory (or strong contrast): ω ∼ 1 293 or δ ∼ ε 2 . They are also called ε 2 -media;

294

-media with short memory (or moderate contrast):

295 ε ω 1 or ε 2 δ ε.
There are also non-contrast media: δ ∼ 1, and media 297 with impermeable blocks: δ ε 2 . In the first case, the 298 exchange process between blocks and fractures is without 

299 delay (ω ∼ ε 2 1),
s ε (x, t) = s ε (x, y, t)| y= x ε , p ε α (x, t) = p ε α (x, y, t)| y= x ε
(16) Then the following is true for the derivatives:

342 ∂f (x, t) ∂x i → ∂ f (x, y, t) ∂x i + 1 ε ∂ f (x, y, t) ∂y i ( 17 
)
where f is any function from

s ε , p ε w , p ε o 343
Since the operations of extension and differentiation 344 commute, we find that the argument y can be considered 345 as an independent variable of x, and we should put it equal to x/ε in final results. This is the main idea of the two-scale homogenization method. The variable x is called "slow", while y is "fast".

Further, we will omit tilde.

The two-scale formulation of the problem (10) has the following form:

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ φ ε (y)∂ t s ε α + φ ε (y) C ε α (y)s ε α ∂ t p ε α = ∂ xi + 1 ε ∂ yi K ε (y) λ ε α ∂ xi p ε α + 1 ε ∂ yi p ε α , x ∈ Ω, y ∈ Y, t ∈ (0, T ) p ε o = p ε w + p ε c , s ε o = 1 -s ε w (18) with conditions: ⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩ s ε w | t=0 = s 0 (x), p ε w | t=0 = p 0 w (x) K ε λ ε α ∂p ε α ∂n Γ = 0, [p ε α ] Γ = 0, α = w, o s ε w , p ε w are y -periodic (19)
where [•] means a jump. Note that the continuity of phase pressures means the continuity of the capillary pressure:

[p ε c ] = 0, which determine a discontinuity of the saturation s ε .

It can be presented in variational form: 

Ω Y ζ φ ε ∂ t s ε α dxdy + Ω Y ζ φ ε C ε α s ε α ∂ t p ε α dxdy = - 1 ε 2 Ω Y F K F λ F α (∂ yi p ε α + ε∂ xi p ε α ) (∂ yi ζ + ε∂ xi ζ) dydx- 1 √ ε Ω Y M K M λ M α (∂ yi p ε α + ε∂ xi p ε α ) (∂ yi ζ + ε∂ xi ζ) dydx

C. Asymptotic expansion

Homogenization is performed by the method of twoscale asymptotic expansions with respect to parameter ε, as well as regular asymptotic series with respect to the nonlocality parameter ω, which means, given (15), the appearance of terms containing fractional powers ε 1/2 . The general structure of the expansion is as follows, for

374 α = w, o: 375 p ε α (x, y, t) = ⎧ ⎨ ⎩ p α0 (x, t) + √ ε p M α 1 / 2 (x, y, t) + ε p M α1 (x, y, t) + ..., y ∈ Y M p α0 (x, t) + √ ε p F α 1 / 2 (x, t) + ε p F α1 (x, y, t) + ..., y ∈ Y F 376 s ε α (x, y, t) = ⎧ ⎨ ⎩ s α0 (x, t) + √ ε s M α 1 / 2 (x, y, t) + ε s M α1 (x, y, t) + ..., y ∈ Y M s α0 (x, t) + √ ε s F α 1 / 2 (x, t) + ε s F α1 (x, y, t) + ..., y ∈ Y F (21)
In addition, the condition of continuity of phase pres-377 sures holds:

378 p M α 1 / 2 (x, y, t) y∈Γ = p F α 1 / 2 (x, t) (22)
The independence of the zero terms of y is easy to prove 379 by substituting the asymptotic expansion into (20). For 380 nonlinear functions in (20), the expansion is as follows:

381 λ ε α = ⎧ ⎨ ⎩ λ α0 (x, t) + √ ε λ M α 1 / 2 (x, y, t) + ε..., y ∈ Y M λ α0 (x, t) + √ ε λ F α 1 / 2 (x, t) + ε..., y ∈ Y F (23)
Then the integral identity (20) takes the form: sures in the blocks and fractures as follows:

382 Ω Y ζ φ ε ∂ t s α0 + √ ε ∂ t s α 1 / 2 dxdy+ Ω Y ζ φ ε C ε α s α0 + √ ε s α 1 / 2 ∂ t p α0 + √ ε ∂ t p α 1 / 2 dxdy = - 1 ε Ω Y F K F λ F α0 + √ ε λ F α 1 / 2 ∂ yi p α1 + ∂ xi p α0 + √ ε ∂ yi p α 3 / 2 + ∂ xi p α 1 / 2 (∂ yi ζ + ε∂ xi ζ) dydx- - Ω Y M K M λ M α0 ∂ yi p α 1 / 2 + √ ε (∂ yi p α1 + ∂ xi p α0 ) × (∂ yi ζ + ε∂ xi ζ) dydx + O (ε) (24 
392 P F α ≡ 1 |Y F | Y F p α0 + √ ε p F α 1 / 2 dy = p α0 + √ ε p F α 1 / 2 , P M α ≡ 1 |Y M | Y M p α0 + √ ε p M α 1 / 2 dy = p α0 + √ ε p M α 1 / 2 M , S F α ≡ 1 |Y F | Y F s α0 + √ ε s F α 1 / 2 dy = s α0 + √ εs F α 1 / 2 , S M α ≡ 1 |Y M | Y M s α0 + √ ε s M α 1 / 2 dy = s α0 + √ ε s M α 1 / 2 M ( 25 
)
where

• i = 1 |Y i | Y i (•)dy, i = F , M 393
The following links exist between them: 399

394 S F o = 1 -S F w , S M o = 1 -S F w , P F o = P F w + p F c S F w , P M o = P M w + p M c S M w ( 26 
P F c S F w = p F c S F w , P M c S M w = p M c S M w ( 27 
)
The macroscopic model has the form of the following 400 system of equations for the average pressures and satu-401 rations in the blocks and fractures:

402 φ F (1 -θ)∂ t S F α + φ F C F α (1 -θ)S F α ∂ t P F α = ∂ xi K ik λ F α ∂ xi P F α + ξ α P M α -P F α , α = w, o (28a) P M w = P F w - τ com w C M w S M w ∂ t S M w + C M w S M w ∂ t P M w , (28b) p M c S M w = p F c + τ cap + τ cc C M o ∂ t S M w + (28c) (τ com w -τ com o ) ∂ t P M w ( 28d 
)
where θ is the volume fractions of the blocks.

403

The effective permeability is defined as:

404 K ik ≡ Y F K F (∂ yi ψ k + δ ik ) dy (29)
and the cell functions ψ k (y) are the solution to the first 405 problem in a cell (in the fracture), for k = 1, 2, 3:

406 ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ ∂ yi K F (∂ yi ψ k + δ ik ) = 0, y ∈ Y F K F (∂ yi ψ k + δ ik ) n Γ i y∈Γ = 0, ψ k is y -periodic ψ k Y F = 0 (30)
The delay times between blocks and fractures caused 407 by the phase compressibility are defined as:

408 τ com α S M w = √ ε ϕ M φ M C M α S M α λ M α , α = w, o (31)
The delay times caused by capillarity and joint action 409 of capillarity and compressibility are as follows:

410 τ cap S M w = √ ε ϕ M φ M C M o λ M w + λ M o λ M w λ M o , τ cc S M w = -C M o dp M c dS M τ com o ( 32 
)
where the function ϕ(y) is the solution of the second cell 411 problem (in the block):

412 ⎧ ⎪ ⎨ ⎪ ⎩ ∂ ∂y i K M ∂ϕ ∂y i = -1, y ∈ Y M ϕ| y∈Γ = 0 (33) 
The transfer functions ξ α are defined as:

413 ξ α ≡ θλ M α √ ε ϕ M ( 34 
)
where θ is the volume fraction of blocks.

414

The model ( 28) is the formal asymptotic expansion for negatives powers of ε:

422 0 = 1 ε Ω Y F K F λ F α0 (∂ yi p α1 + ∂ xi p α0 ) ∂ yi ζ dydx, 0 = 1 √ ε Ω Y F K F λ F α0 ∂ yi p α 3 / 2 + ∂ xi p α 1 / 2 + λ F α 1 / 2 (∂ yi p α1 + ∂ xi p α0 ) ∂ yi ζ dydx + O (ε) (35) 
This yields the following:

0 = - Ω Y F ζ ∂ yi K F λ F α0 (∂ yi p α1 + ∂ xi p α0 ) dxdy+ Ω Γ ζ K F λ F α0 (∂ yi p α1 + ∂ xi p α0 ) n Γ i dxdy (36) 0 = Ω Y F ζ ∂ yi K F λ F α0 ∂ yi p α 3 / 2 + ∂ xi p α 1 / 2 + K F λ F α1 (∂ yi p α1 + ∂ xi p α0 ) dydx+ Ω Γ ζ K F λ F α0 ∂ yi p α 3 / 2 + ∂ xi p α 1 / 2 + K F λ F α1 (∂ yi p α1 + ∂ xi p α0 ) n Γ i dxdy (37)
Taking into account ( 23), this is equivalent to two problems in classical formulation:

⎧ ⎨ ⎩ ∂ yi K F ∂ yi p F α1 + ∂ xi p α0 = 0, y ∈ Y F K F ∂ yi p F α1 + ∂ xi p α0 n Γ i y∈Γ = 0 (38) ⎧ ⎪ ⎨ ⎪ ⎩ ∂ yi K F ∂ yi p F α 3 / 2 + ∂ xi p α 1 / 2 = 0, y ∈ Y F K F ∂ yi p F α 3 / 2 + ∂ xi p α 1 / 2 n Γ i y∈Γ = 0 (39)
This leads to the following representation of p F α1 and

p F α 3 / 2 through p α0 and p F α 1 / 2 : p F α1 = ψ k (y) ∂p α0 ∂x k + pF α1 (x, t), p F α 3 / 2 = ψ k (y) ∂p F α 1 / 2 ∂x k + pF α 3 / 2 (x, t) (40)
where pF α1 (x, t) and pF α 3 / 2 (x, t) are some slow functions, which do not enter in the homogenized model. For functions ψ k , we obtain the first cell problem (30), in which the latter condition is added to ensure the solution uniqueness. 437

Ω Y ζ φ ∂ t s α0 + √ ε∂ t s α 1 / 2 dxdy+ Ω Y ζ φC α s α0 + √ εs α 1 / 2 ∂ t p α0 + √ ε∂ t p α 1 / 2 dxdy = - Ω Y F K F λ F α0 + √ ελ F α 1 / 2 ∂ yi p α1 + ∂ xi p α0 + √ ε ∂ yi p α 3 / 2 + ∂ xi p α 1 / 2 ∂ xi ζ dydx + O (ε) (41) 
Using ( 40) we deduce:

438 Ω Y ζ φ∂ t s α0 + √ εs α 1 / 2 dxdy+ Ω Y ζ φ C α s α0 + √ εs α 1 / 2 ∂ t p α0 + √ εp α 1 / 2 dxdy = Ω Y F ζ ∂ xi K F λ F α0 + √ ελ F α 1 / 2 (∂ yi ψ k + δ ik ) × ∂ xk p α0 + √ εp F α 1 / 2 dydx + O (ε) (42)
Introducing the averaged pressures and saturations

439

(25), we obtain:

440 Ω ζ φ F (1 -θ) ∂ t S F α + φ M θ∂ t S M α dx+ Ω ζ φ F C F α (1 -θ) S F α ∂ t P F α + φ M C M α θS M α ∂ t P M α dx = Ω ζ ∂ xi K ik λ F α (S α F ) ∂ xk P F α dx
(43) where the effective permeability tensor is (29). This gives 441 the first averaged equation (28a) in the as-yet-incomplete 442 form:

443 φ F (1 -θ) ∂ t S F α + φ F C F α (1 -θ) S F α ∂ t P F α = ∂ xi K ik λ F α (S α F ) ∂ xk P F α -φ M θ∂ t S M α - φ M C M α θS M α ∂ t P M α , α = w, o (44) 
C. Third step: expansion in blocks

Let ζ = ζ(x, y) in Ω × Y , ζ| ∂Ω = 0, ζ ≡ 0 in Y F , and
ζ is continuous. Then the identity ( 24) gives:

Ω Y M ζ φ ∂ t s α0 + √ ε ∂ t s M α 1 / 2 dxdy+ Ω Y M ζ φ C α s α0 + √ εs M α 1 / 2 ∂ t p α0 + √ ε∂ t p M α 1 / 2 dxdy = - Ω Y M K M λ α0 + √ ελ M α 1 / 2 ∂ yi p α 1 / 2 + √ ε (∂ yi p α1 + ∂ xi p α0 ) ∂ xi ζ dydx + O (ε) (45)
The integral over the block boundary is zero, since functions w are zero in the fracture and are continuous.

The zero-order terms yield:

Ω Y M ζ φ ∂ t s α0 + C α s α0 ∂ t p α0 dxdy = Ω Y M ζ ∂ yi K M λ α0 ∂ yi p α 1 / 2 dydx (46)
This produces the following expression for p M α 1 / 2 given ( 22):

p M α 1 / 2 = p F α 1 / 2 -ϕ(y) φ M λ α0 ∂ t s α0 + C M α s α0 ∂ t p α0 ( 47 
)
where ϕ(y) is he solution of the second cell problem (33).

The boundary condition in (33) results from the continuity of the phase pressures (22).

D. Fourth step: averaged equation in blocks

Formula (47) enables us to obtain an explicit relation between P M α and P F α . Indeed, taking the average of ( 47) over Y M (and noting that only the function φ depends on y in the right-hand side of ( 47)), multiplying by √ ε and adding p α0 , we obtain:

p α0 + √ ε p M α 1 / 2 M = p α0 + √ εp F α 1 / 2 - √ ε ϕ M φ M λ α0 ∂ t s α0 + C M α s α0 ∂ t p α0 (48)
Using the definition of the averaged pressures and saturations (25), we deduce:

P M α = P F α - τ com α C M α S M α ∂ t S M α +C M α S M α ∂ t P M α , α = w, o
(49) which is identical to (28b). The characteristic times of delay are defined as (31).

In the structure of the delay times, we have taken into 465 account the following circumstances:

466 ∂ t s α0 = ∂ t s α0 + √ ε s M α,01 M - √ ε ∂ t s M α,01 M = ∂ t S M α + O √ ε , ( 50 
) 467 λ M α0 = λ M α (s α0 ) + √ ε dλ M α ds α0 s M α 1 / 2 M - √ ε dλ M α ds α0 s M α 1 / 2 M = λ M α s α0 + √ ε s M α 1 / 2 M + O √ ε = λ M α S M α + O √ ε (51)
Consequently, we deduce the following:

468 √ ε λ M α0 ∂ t s α0 = √ ε ∂ t S M α + O (ε) λ M α (S M α ) + O ( √ ε) = √ ε ∂ t S M α λ M α (S M α ) + O (ε)
(52) and similarly for other terms. 

P M w = P F w + τ com w ∂ t P M w -τ com o ∂ t P M w + P M c + τ com w C M w S M w + τ com o C M o S M o ∂ t S M w = P F w + τ com w C M w S M w + τ com o C M o S M o -τ com w dP M c dS M w ∂ t S M w + (τ com w -τ com o ) ∂ t P M w ( 53 
479 p F c S F w = p F c (s w0 ) + √ ε dp F c ds w0 s F w 1 / 2 + O (ε) , p M c S M w = p M c (s w0 ) + √ ε dp M c ds w0 s M w 1 / 2 M + O (ε)
(54) Since all the functions on the right do not depend on 480 y, then the averaging over the fractures or blocks does 481 not change anything:

482 P F c S F w ≡ p F c S F w F = p F c S F w + O (ε) , P M c S M w ≡ p M c S M w M = p M c S M w + O (ε) (55) 
which proves (27).

483

For the expressions in the right-hand side of the macro-485 scopic equations (28a), it is possible to obtain an explicit 486 relation through the pressure difference, using (28b):

487 C M α S M α ∂ t P M α = - C M α S M α τ com α P M α -P F α (56)
which gives a more traditional form to the terms of ex-488 change between blocks and fractures and leads to the 489 definite form (28a). In the single-phase case, system (28) takes the form: In the incompressible case, system (28) takes the fol-499 lowing form:

494 ⎧ ⎨ ⎩ φ F C F (1 -θ)∂ t P F -∂ xi K ik ∂ xi P F = ξ P M -P F P M = P F -τ com ∂ t P M (57) where ξ ≡ θ √ ε ϕ M , τ com = √ ε ϕ M φ M C M , which
500 φ F (1 -θ)∂ t S F α = ∂ xi K ik λ F α ∂ xi P F α + ξ α P M α -P F α , α = w, o P M w = P F w - τ com w C M w S M w ∂ t S M w , p M c S M w = p F c + τ cap C M o ∂ t S M w ( 58 
)
where parameters

τ com w C M w S M w and τ cap C M o
do not depend on the 501 compressibility coefficients:

502 τ com w C M w S M w = √ ε ϕ M φ M λ M w , τ cap C M o = √ ε ϕ M φ M λ M w + λ M o λ M w ( 59 
)
As seen from two last equations in (58), only the latter is differential (with respect to S M w ), while the former is 

531 p M c -p F c = τ cap C M o ∂ t S M w (60)
The difference in capillary pressures automatically This process does not depend on the two-phase nature of the system and is the same as in the singlephase case, (57).

• Non-equilibrium asymmetric extrusion of the 

p M c -p F c = (τ com w -τ com o ) ∂ t P M w (63)
As seen, this effect is really zeroed if the extrusion of the phases is symmetrical, that is if

τ com w -τ com o .
• The nonlinear component of extrusion, which is also caused by the imposition of the capillarity, compressibility and nonlinearity of the flow equations. This effect is described by the second term in (28d):

p M c -p F c = τ cc C M o ∂ t S M w ( 64 
)

VII. QUANTITATIVE ANALYSIS

To analyse the role of various memory effects, we will consider two examples of the application of this model to an underground reservoir of oil or gas in an aquifer:

-Case I: monotonic depletion of an oil reservoir;

-Case II: oscillatory functioning of an underground gas storage in an aquifer.

In both cases we assume that the saturation and pressure in fractures are constant in space but vary in time as given functions, whose behaviour reflects the physical process we are analyzing. For instance, for the depletion process, the fracture pressure and saturation are monotonic functions of time, whilst for the gas storage they are oscillatory in time. Then it is sufficient to solve only the system of two differential equations ( 28b) and (28d), which can be presented in the following form:

⎧ ⎨ ⎩ a 11 ∂ t S M + a 12 ∂ t P M = -P M -P F a 21 ∂ t S M + a 22 ∂ t P M = p M c -p F c ( 65 
)
where S ≡ S 

623 k w (s) = s 2 , k o (s) = (1 -s) 2 p F c (s) = γ √ -ln s, p M c (s) = γ η √ -ln s ( 67 
)
where γ = 0.1 and η = 0.65. These functions are shown 624 in Fig. 2. For the sake of simplicity, the relative perme- 

P F w = P M w = 1, S F w = 0.2, at t = 0 (68)
The production of oil leads to the decrease in reservoir pressure and to the invasion of the aquifer water, which leads, in turn, to the increase in water saturation. This can be expressed in terms of the following behaviour of the pressure and saturation in fractures:

P F w = 0.7 -qt, S F w = 0.2 + qt
where q is the depletion rate.

This means that P F w instantaneously drops from 1 to 0.7 and then decreases linearly with time.

The behaviour of block pressure and saturation is shown in Fig. 3 for high compressibility:

C w = C o = 3.
A significant delay in pressure propagation is observed only for highly compressible systems (C w 1).

The saturation field is much more affected by the compressibility effects than pressure.

C. Oscillatory regimes of injection-production

Let the pressure and saturation in fractures oscillate in time, which corresponds in practice to functioning of an underground storage of gas in an aquifer. A half of year the gas in injected (the pressure increases and the water saturation decreases). For another half year, the gas is withdrawn, so that the pressure decreases and the water saturation increases: The behaviour of pressure and saturation is shown in Fig. 4, for high compressibility (C ∼ 3).

P F =
As in the previous case, the pressure delay is observed only for very high compressibility of fluids or rocks. In contrast, the delay in the saturation is significant even for moderate values of compressibility C w , C o ∼ 1 -3. In the case of high compressibility, the saturation in blocks is totally different from the incompressible case.

D. Impact of asymmetrical compressibility of phases

If the compressibility of two phases is very different, it has a significant impact on saturation, even for moderate compressibility. This impact is even greater than that of a strong but identical compressibility for the two phases. This is clearly seen in Fig. 5, which compares In all the situations, one sees that the delay effects concern much more the saturation, than the pressure. A moderate and even low but asymmetrical compressibility has significant impact on the saturation.

E. Simplification of the macroscopic model

Given the results of simulations, we can suggest a simplified approximate macroscopic model, in which we neglect the delay in the behaviour of pressure. Then the version of the model ( 28), in which only the saturation is in disequilibrium (but not the pressure) takes the fol-708 lowing form:

709 φ F (1 -θ)∂ t S F α + φ F C F α (1 -θ)S F α ∂ t P F α = ∂ xi K ik λ F α ∂ xi P F α , α = w, o (70a) 
P M w = P F w , (70b) showed once again its effectiveness. Averaging by the

τ cap + τ cc C M o ∂ t S M w = p M c S M w -p F c - (70c) 
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  scale asymptotic expansion in variational form, which is 152 technically close to the constructive part of the two-scale 153 convergence method 3 . It enables us to present all the 154 calculations in the most compact form. This method is 155 frequently applied to heterogeneous media. We extended 156 the technique of the method to double porosity media, 157 so that the method enables us to obtain the averaged 158 equations both in fractures and blocks, and to remove 159 macroscopic variables in the cell problem for the delay 160

  170 phase flow was calculated on the pore scale. It was shown 171 that the width of fingers (i.e. the width of fractures) and 172 the distance between fingers (i.e. the width of blocks) 173 are monotonically decreasing functions of the variance of 174 the density of liquids and 178 the porosity/permeability of the medium depend on pres-179 sure. Traditionally, one uses the exponential laws for liq-180 uid and tight rocks:

182

  mal compressibility coefficients, which are considered to 183 be constant and positive. Their dimension is Pa -1 . The 184 characteristic values of this parameter are discussed fur-185 ther in section VII A. The positive derivative dφ/dp 186 means that the porosity decreases if the pressure of liq-187 uid in the pores drops, which corresponds to the pore 188 compaction under the weight of superimposed rocks. 189 For single-phase compressible fluids in compressible 190 medium, one uses the classical simplification of flow equa-191 tions, which consists in the following. Let us substitute 192 the equation of compressibility (1) in the mass conserva-193 tion law:

  202and "oil". Each phase has its own pressure: p w and p o . 203 Note that ρ w = ρ w (p w ), ρ o = ρ o (p o ), and φ = φ(p w ) for 204 the pores occupied by water, or φ = φ(p o ) for the pores 205 occupied by oil.

211p

  is the pressure; V is the Darcy velocity vector. Indices 212 w and o mean water and oil. Differentiating by parts, we 213 obtain for water:214 ρ w φ ∂ t s + d(ρ w φ) dp w s ∂ t p w + ρ w ∇ • V w + dρ w dp w V • ∇p w = 0 (7) Neglecting the terms of the order ∼ (∇p) 2 , we finally 215 obtain the equations of two-pase compressible flow in a 216 porous medium 217

219

  servation of momentum in the form of Darcys law for each 220 phase and the equation of capillary equilibrium, which 221 relates the phase pressures:

  FIG. 1. Medium structure (a) and a single cell (b)

  pressure distribution in the domain: 261 s ε (x, 0) = s 0 (x) and p ε w (x, 0) = p 0 w (x). If these initial 262 values do not satisfy the condition of local capillary equi-263 librium, then the stated problem describes the relaxation 264 of the initially non-equilibrium system to an equilibrium 265 state. 266 Porosity, compressibility factors, phase permeability, 268 and capillary pressure are different in blocks and frac-269

285

  Parameter δ is the degree of the contrast between the 286 permeabilities of blocks and fractures. If the blocks are 287 much less permeable than fractures, then this causes a 288 delay/memory. The delay rate (or the memory length) 289 can ne measured by another parameter, ω, defined as:

  (20) for any function ζ(x, y) in Ω × Y , such that ζ is continuous, ζ| ∂Ω = 0 and is periodic with respect to y. The relationship (20) is obtained by multiplying (18) by ζ, integrating by parts, and using the Gauss-Ostrogradsky theorem. The integrals over the boundary ∂Ω are zero due to the fact that the function ζ is zero on ∂Ω. The integrals over the boundary ∂Y of the period Y are zero due to the periodicity of all functions with respect to y.

  of homogenization: macroscopic model 388 We immediately give the result of homogenization. Its 389 derivation is given in the next section.

  390

  since they are simply equal to the original 397 capillary pressure functions taken from the average sat-398 urations, with accuracy O(ε):

415

  of the original problem that keeps the terms of order 416 O ( √ ε). The order of residual terms is, thus, O (ε).

419

  Let ζ = ζ(x, y) in Ω× Y , ζ| ∂Ω = 0, ζ is continuous and 420 periodic with respect to y. Then one obtains from (24) 421

  the test functions as ζ = ζ(x) in Ω and 436 ζ| ∂Ω = 0. Then one obtains from (24):

469

  Instead of two equations (49) for phase pressures, it is 470 possible to replace one of them by the equation for the 471 capillary pressure. Subtracting one equation (49) from 472 another one, we deduce the relation between the averaged 473 capillary pressures in the blocks and fractures:474

  ) which is reduced to (28d) if we prove the link (49) be-475 tween the average capillary pressures P M c and P F c and 476 the original capillary pressure curves p M c and p F c . This is 477 done in the following way. Let us expand the expression 478 for p M c and p F c in Taylor series:

495

  is the well-known model of single-phase flow in double 496 porosity medium with moderate contrast 11 . 497 B. Particular case of an incompressible two-phase system 498

504

  algebraic with respect to P M w . This means that the delay 505 effects, which are caused only by the capillarity in this 506 case, concern the capillary pressure and saturation. The 507 difference in phase pressures in blocks and fractures also 508 exists, but only as a consequence of the link of phase 509 pressures with capillary pressure.510 C. Capillary delay and delay caused by compressibility 511 Comparison with the case of incompressible fluids (58) 512 and single-phase flow (57) enables us to better under-513 stand the essence of the obtained model (28) and the role 514 of compressibility in two-phase systems. The nonequilib-515 rium behavior of system (28) is determined by the sub-516 system of two ordinary differential equations (28b) and 517 (28d) for saturation and pressure. This means that the 518 pressure and the saturation of water in blocks are delayed 519 with respect to those in fractures. Such a delay is caused 520 by the following mechanisms on the microscale. 521 • Non-equilibrium capillary redistribution of phases 522 between the blocks and fractures, caused by the 523 fact that the average saturation in blocks changes 524 more slowly than in fractures, which violates the 525 equality of average capillary pressures (the condi-526 tion of capillary equilibrium). As a result, a differ-527 ence in the average capillary pressures arises, which 528 depends on the rate of variation of the saturation 529 in the blocks. In equation (28d), this process is 530 described by the first term:

  phases (peristalsis) due to their expansion and compaction of pores. Compressibility leads to expansion of liquids and compaction of pores under the weight of overlying rocks, which leads to the extrusion of both phases from the pores. This effect is similar to peristalsis, when a fluid in a channel is driven by the deformation of the channel walls. If such extrusion is symmetrical for both phases, they are extruded as a whole, which does not change their volume fraction. In contrast, an asymmetrical extrusion leads to a redistribution of phases in space, which affects their saturation. In blocks, such a movement caused by extrusion is delayed, which involves an additional non-equilibrium in the saturation behavior, and enhances the capillary disequilibrium. This leads to an additional difference in capillary pressures, which is reflected by the third term in (28d):
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  C α ∼ 0.03: low compressibility, 10 -9 Pa -1 ; 615 -C α ∼ 0.3: moderate compressibility, 10 -8 Pa -1 ; 616 -C α ∼ 3: high compressibility, 10 -7 Pa -1 ; 617 -C α ∼ 30: very high compressibility (of dense gases), 618 10 -6 Pa -1 . 619 Other parameters are: K F = 1, K M = 1, ε = 0.2, 620 φ F = 0.2, φ M = 0.2, θ = 0.8, μ w /μ o = 0.5. We use the 621 following analytical curves of relative permeability and 622 capillary pressure:

  FIG. 2. Original curves of relative permeability and capillary pressure

  1 + A cos (νt) , S F = 0.2 + A sin (νt) (69)where A and ν are the amplitude and the period of oscillations.

  FIG. 3. Variation of pressure (a) and water saturation (b) in blocks, for various C M w = C M o = 0.3, 3, 10

  two cases: the high compressibility but identical for both phases (the grey curve, C w = C o = 3), and the case of different compressibility (the black curve, C w = 0.3 and C o = 3).

FIG. 5 .

 5 FIG. 5. Variation of the saturation in blocks in the case of asymmetrical compressibility, for C M w = 0.3 and C M o = 3

FIG. 6 .

 6 FIG. 6. Variation of the saturation in blocks in the case of asymmetrical compressibility, for C M w = 3 and C M o = 10

  FIG. 7. Comparison of the simplified model (the dotted curve) and the exact model (the solid curve) for Cw = Co = 3

Two-scale formulation

  

	310			
	311	does not depend on macroscopic variables and, therefore,
	312	is solved only once.		
	313	To avoid the superimposition of the nonlinearity and
	314	the nonlocality, the idea is to spread them into differ-
	315	ent levels of asymptotic expansion over the parameter
	316	of memory length ω, that is, nonlinearity is preserved
	317	in terms of zero order, whilst the nonlocality is allowed
		only in the first order. Since in asymptotic expansions
	328			
	329	we assume that		
		ω ∼	√ ε, or δ = ε	√ ε	(15)
		which was used in 13 . Then, the total asymptotic expan-

while it is completely absent in the second one due to a very strong delay (ω 1). Both 301 these cases are of no interest for our research purposes. 302 IV. METHOD OF HOMOGENIZATION WITH 303 SPLITTING NONLOCALITY AND NONLINEARITY 304 A. The idea of the method 305 The purpose of this paper is to obtain a completely 306 averaged model. This concept was introduced in 7 . A 307 model is called completely averaged, if its macroscopic 308 equations do not contain microscopic variables, and the 309 cell problem, which determines macroscopic coefficients, 318 the problem for the first approximation is usually linear, 319 this enables us to treat the nonlocality completely and 320 explicitly. For incompressible fluids, this was done in 13 321 for the so-called moderate contrast between blocks and 322 fractures. 323 This idea can be realized by considering ω as a small 324 parameter and developing the solution of our problem 325 into the asymptotic series over ω. Therefore, we neces-326 sarily deal with media of moderate contrast in the perme-327 ability of block and fractures. For the sake of simplicity, 330 sion over ε and ω reduces to a single expansion over ε 331 but which should include the fractional powers of ε. 332 B. 333 First of all, let us introduce the new variable y that be-334 longs to the unit cell of the microstructure, Y = (0, 1) d , 335 which is shown in Fig. 1b, where d is the space dimen-336 sion. Domain Y consists of two subdomains: a connected 337 subdomain Y F (Fractures) and Y M (Matrix block). We 338 denote by Γ the boundary between the two subdomains 339 in Y . Let us introduce the solution extension s ε (x, y, t), 340 p ε α (x, y, t), where y ∈ Y , so that 341

This is however not the case of very high compressibil-724 ity, as illustrated in Fig. 8. We considered only the case of the exponential com-761 pressibility law, which is applicable for liquids and solids.

762

The applicability of this model for a gas-liquid system is 763 acceptable only for high pressures, or for highly com-764 pressed gas, whose properties are close to a liquid.