STUDIES ON THE BIOCHEMICAL VARIABILITY OF TWO NATURAL CRAYFISH POPULATIONS IN THE INTERMOLT STAGE
A Zekhnini, C Desvilettes, C Chaisemartin

To cite this version:
A Zekhnini, C Desvilettes, C Chaisemartin. STUDIES ON THE BIOCHEMICAL VARIABILITY OF TWO NATURAL CRAYFISH POPULATIONS IN THE INTERMOLT STAGE. Vie et Milieu / Life & Environment, 1991, pp.249-253. hal-03039967

HAL Id: hal-03039967
https://hal.sorbonne-universite.fr/hal-03039967
Submitted on 4 Dec 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
STUDIES ON THE BIOCHEMICAL VARIABILITY OF TWO NATURAL CRAYFISH POPULATIONS IN THE INTERMOLT STAGE

A. ZEKHNINI, C. DESVILETTES, C. CHAISEMARTIN

Université de Limoges, Faculté des Sciences, Laboratoire de biologie des populations, Hydrobiologie, 87060 Limoges cédex, France

INTRODUCTION

The recent focus on crayfish studies can easily be explained by new possibilities of crustacean farming, and also by restricted distribution of wild species in Europe.

If metabolism of biochemical components in Decapoda has been thoroughly studied (O'Connor and Gilbert, 1968; C. Chaisemartin, 1971, 1984) some questions are still unsolved.

In the Astacidae, the molt cycle (Chaisemartin, 1967), season and starvation (Chaisemartin, 1974) influence the metabolism of calcium, lipids and carbohydrates.

Therefore, we tried to compare the main metabolic components between Austropotamobius pallipes and Pacifastacus leniusculus at the physiological balance stage of intermolt. We also tried to analyse the change in components according to the size of crayfish.

STUDIED STREAMS AND METHODS

Both species of crayfish were caught in river Anglin, a little stream in Limousin (Middle West of France), 210 m above sea level.

The capture was done with a «Haveneau» fishing net. The length of each animal was routinely measured as the distance between the rostral apex and the telson. The fresh weight was also determined. We exposed the crayfish to 105°C during 4 hours to determine dry weight.

Lipids were extracted by chloroform methanol (2 : 1) according to Folch's method (Folch et al. 1957). Phospholipids were analysed by the colorimetric method (Barnes & Blackstock 1973) and triglycerids were estimated by the method of Bouletreau 1977. Protein concentrations were determined by using Lowry's method (Lowry et al. 1951) in which a sample of dry crayfish (0.1 g) is mixed with 1 ml of NaOH in
Table I – Percentage of biochemical components as a function of dry weight ($m = \bar{T}o\sigma m$). $n$ : number of crayfish; $m$ : mean; $\sigma m$ : standard deviation; $T = T_{0.05} = \frac{1}{\sqrt{n-1}}$ value of Student coefficient for $p = 0.05$ and ($n-1$) degree of freedom.

<table>
<thead>
<tr>
<th></th>
<th>Carbohydrates</th>
<th>Lipids</th>
<th>Proteins</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$n$</td>
<td>$m = To\sigma m$</td>
<td>$m = T_0\sigma m$</td>
</tr>
<tr>
<td>Austropotamobius</td>
<td>male 5</td>
<td>17.85 = 3.2</td>
<td>47.85 = 9.8</td>
</tr>
<tr>
<td></td>
<td>female 5</td>
<td>14.59 = 1.5</td>
<td>58.89 = 7.2</td>
</tr>
<tr>
<td>Pacifastacus</td>
<td>male 5</td>
<td>10.05 = 1.8</td>
<td>49.70 = 8.0</td>
</tr>
<tr>
<td></td>
<td>female 5</td>
<td>11.04 = 1.9</td>
<td>26.53 = 3.7</td>
</tr>
</tbody>
</table>

Table I shows the quantity of lipids, proteins and carbohydrates in the two wild species at the «C4» stage of intermolt (Drach & Tchernigovtzeff, 1967). The values in Figure 1 and 2 indicate that lipids are quantitatively the most important...
component. In Artemia (Nauplii larvae), percentages of biochemical parameters (according to dry weight) are divided up in the following way: (Barnes, 1973; Benyts et al. 1978).

Carbohydrates : 6 %
Fatty acids : 16 %
Proteins : 50 %

In Cancer pagurus, Giese (1966) found 2.3% lipids and 22.4 % proteins. Chaisemartin et al. (1984) reported that A. pallipes fed with a percentage varying from 2.5 % to 4 % of body weight/day, had the following composition:

Carbohydrates : 11.9 to 17.8 %
Lipids : 66.2 to 17.3 %
Proteins : 10.4 to 15.1 %

These results, determined from the dry weight in stabulation conditions, are not very far from the ones found in wild animals.

Circulating biochemical components permit to distinguish crayfish populations. Thus Kabre & Chaisemartin (1987) discriminated two types of crayfish according to their organic haemolymph content. A. pallipes from a polluted area and Orconectes limosus contain more glucides and less lipids and proteins. These authors have concluded to the existence of a specific pattern of organic constituents in the haemolymph for each population.

Carbohydrate, lipid and protein values show large variations (Fig. 1). These variations are connected with physiological differences in the two species studied. Similar observations were reported by Chaisemartin (1971) in three other species of crayfish.

Wild crayfish develop variable biochemical concentrations according to the season of measurements and the type of food (Kabre, 1983).

We found intraspecific variations in the percentage of total lipids (according to dry weight) in the two wild species. Males of P. leniusculus had a total lipid percentage twice that of the females, but the opposite situation was shown by A. pallipes.

In each species there were important differences in metabolic components according to size. Males of A. pallipes showed a high decrease of total lipids at a size of 60 mm, the same happened in females of P. leniusculus when they reached a size of 90 mm. On the other hand, figure 3 shows quite a linear increase of total lipids in A. pallipes females.

At the intermolt stage (C4) lipid categories were in different quantities depending on the sex. Phospholipids, structural material, showed very similar data in the species (Fig. 2). We observed

<table>
<thead>
<tr>
<th></th>
<th>Phospholipids</th>
<th>Triglycerids</th>
<th>Sterols</th>
<th>Esterified sterols</th>
</tr>
</thead>
<tbody>
<tr>
<td>Austropotamobius male 5</td>
<td>40.0 ± 11.5</td>
<td>37.0 ± 10.0</td>
<td>9.0 ± 1.6</td>
<td>10.8 ± 2.0</td>
</tr>
<tr>
<td>Pallipes female 5</td>
<td>50.5 ± 11.3</td>
<td>40.0 ± 12.2</td>
<td>12 ± 3.5</td>
<td>10.6 ± 1.8</td>
</tr>
<tr>
<td>Pacifastacus leniusculus male 5</td>
<td>55.6 ± 10.0</td>
<td>29.3 ± 12.8</td>
<td>8.97 ± 10.5</td>
<td>11.8 ± 2.0</td>
</tr>
<tr>
<td>Female 5</td>
<td>53.8 ± 10.5</td>
<td>27.6 ± 11.0</td>
<td>9.46 ± 10.3</td>
<td>10.5 ± 2.0</td>
</tr>
</tbody>
</table>

Table II. – Major lipids components (% of Total lipids). \( m = \text{Tom; } m = \text{mean; } \sigma_m : \text{standard deviation; } T : t_0.05 = \text{value of Student coefficient for } p = 0.05 \) and (n-1) degree of freedom.
that *P. leniusculus* has the lower values in triglycerides (energetic substrate) (Fig. 2).

Among the organic constituents of haemolymph, Kabre *et al.* (1987) found that only phospholipids and triglycerides can significantly differentiate healthy populations of *A. pallipes* from populations parasited by *Thelohania contejeani* (microsporidian). In our study, two other components also distinguish populations: sterols and esterified sterols (Fig. 2).

Total carbohydrates showed virtually identical values in both sexes of a same species, with slightly higher amounts in *A. pallipes* (Fig. 1). Circulating carbohydrates increase under the influence of capture, anoxia, digestion, repetitive bleeding (Chaisemartin, 1971). According to Telford & Canard (1968), glucose increase is a stress response in invertebrates. In both species, total carbohydrates reach a maximum at a size of 50 mm (Fig. 3); above that limit these components become stabilized in *P. leniusculus* and raise in *A. pallipes* (Fig. 1).

Total proteins give, as a physiological «sign», an illustration of the disturbed state of a population (Chaisemartin, 1979; Kabre *et al.*, 1984). On the other hand, proteins do not give us possibilities of differentiating the population infected by *T. contejeani* (Kabre G., 1987). Table 1 and Fig. 1 indicate significant differences in protein data between the two species. As a function of the size, percentage of total proteins increases significantly during the intermolt, but not in the case of *A. pallipes* males. These show a decrease of total proteins (Fig. 3). Among metabolic components, total proteins are used at least as energetic substrate in Crustacea (C. Chaisemartin, 1971). It seems that *A. pallipes* use proteins as energetic substrate before carbohydrates and lipids (Fig. 1).

**CONCLUSIONS**

Metabolic components, carbohydrates, lipids and proteins, as percentages of dry weight are analysed in whole bodies of crayfish.

This composition is significantly different between the two wild species of crayfish (Fig. 1) at the physiological balance stage of intermolt.

Biochemical differences are found between the sexes and the different sizes of the animals.

Lipids, the main source of energy in crustacea, have the highest values. Sex differences are reported in several lipid categories (Fig. 3). Between *A. pallipes* and *P. leniusculus*, triglycerides are the components which show the highest variations.

The crayfish were captured in the same stream at the same time, their sizes were roughly equal, so it is probable that the differences observed in carbohydrate, lipid and protein composition are ascribable to some divergent as: Feeding behaviour, Metabolic activity, Genetic factors ...
REFERENCES


Reçu le 27 juin 1990; received July 27, 1990
Accepté le 18 avril 1991; accepted April 18, 1991