

Gene Expression Analysis by Multiplex Single-Cell RT-PCR

Ludovic Tricoire, Bruno Cauli, Bertrand Lambolez

To cite this version:

Ludovic Tricoire, Bruno Cauli, Bertrand Lambolez. Gene Expression Analysis by Multiplex Single-Cell RT-PCR. Glutamate Receptors, pp.139-154, 2019, 10.1007/978-1-4939-9077-1_10. hal-03044302

HAL Id: hal-03044302 <https://hal.sorbonne-universite.fr/hal-03044302v1>

Submitted on 7 Dec 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Metadata of the chapter that will be visualized online

Chapter 10

Gene Expression Analysis by Multiplex Single-Cell RT-PCR 2 Ludovic Tricoire, Bruno Cauli, and Bertrand Lambolez **3 AU1** 3 AU1 Abstract 4 and 4 a

Brain circuit assemblies comprise different cellular subpopulations that exhibit morphological, electrophys- 5 iological, and molecular diversity. Here we describe a protocol which, combined with whole-cell patch- 6 clamp recording and morphological reconstruction, allows the transcriptomic analysis of the recorded cell. 7 This protocol provides recipes on how to detect simultaneously the expression of 24 genes/markers at the 8 single-cell level using polymerase chain reaction (PCR), how to design gene-specific probes, and how to 9 validate them. This technique provides multiplexed expression data that cannot be easily obtained by other 10 approaches such as immunological co-labeling. 11

Key words mRNA, cDNA, Cell type, Transcriptome, Electrophysiology ¹²

1 Introduction 13

Figure 1 outlines the general protocol for multiplex single-cell PCR ¹⁴ (scPCR). After recording of a cell in the whole-cell configuration of ¹⁵ the patch-clamp technique, cell content is collected into the elec- ¹⁶ trode and expelled into a test tube. Reagents are then added to ¹⁷ perform first-strand complementary DNA (cDNA) synthesis from ¹⁸ harvested mRNAs. Following overnight incubation of the reverse ¹⁹ transcription (RT) reaction, a PCR is set in the same tube to amplify ²⁰ multiple cDNAs of interest by mixing all different primer pairs. ²¹ Hence, the procedure is fast and simple because one tube corre- ²² sponds to one cell and few manipulations are required. The purpose ²³ of the first PCR round is to increase the numbers of cDNA copies ²⁴ to ensure a reliable aliquoting for subsequent re-amplification. ²⁵ Indeed, primer dimers and nonspecific primer-amplicon interac- ²⁶ tions substantially decrease multiplex PCR amplification efficiency. ²⁷ The first PCR products are re-amplified through a second gene- ²⁸ specific PCR to achieve consistent detection by agarose gel electro- ²⁹ phoresis. Besides flexibility and robustness, a major advantage of ³⁰ scPCR resides in its speed and ease of application, which allows ³¹ rapid feedback between functional and molecular analyses. These ³²

Fig. 1 Gene expression profiling by multiplex scPCR. In the first amplification step, all cDNAs of interest are co-amplified by mixing their specific PCR primers together. PCR products are then individually re-amplified using their specific PCR primers and analyzed by agarose gel electrophoresis. Note that expression of 16 genes was detected in this cortical GABAergic neuron among the 31 genes probed, helping to determine cell-type-specific expression profiles (see $[21]$ for the list of genes analyzed in this cell). During the recording, biocytin present in the intracellular solution diffuses in the neuron and allows post hoc morphological reconstruction

> properties prove essential to establishing correlations between ³³ molecular and functional properties at the single-cell level, beyond ³⁴ the large cellular diversity of brain tissues. In parallel with the ³⁵ recording, biocytin included in the intracellular recording solution 36 diffuses throughout and fills the patched cell allowing performing 37 morphological analyses. 38

1.1 Correlating mRNA Expression and Functional Properties of Single Cells

The scPCR technique was initially designed to establish correlates 39 between the functional properties of native glutamate receptor ⁴⁰ channels of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropio- ⁴¹ nic acid (AMPA) subtype and their mRNA expression [1]. AMPA 42 receptors are multimeric assemblies of four different subunits ⁴³ GluA1–4 and mediate fast excitatory synaptic transmission in the ⁴⁴ central nervous system (CNS). Further diversity is generated by ⁴⁵ alternative splicing and mRNA editing. The initial scPCR report ⁴⁶ established the reliability and selectivity of this technique by ⁴⁷ showing that single cerebellar Purkinje neurons expressed a rela- ⁴⁸ tively constant set of AMPA receptor subunit mRNAs, which dif- ⁴⁹ fered from that found in cerebellar granule cells $[1]$. $\qquad \qquad$ 50

61

The functional relevance of scPCR analyses was next assessed ⁵¹ by demonstrating that the calcium permeability of AMPA receptor ⁵² is determined by transcriptional control of the expression level of ⁵³ the GluA2 subunit. This was established by showing that the abun- ⁵⁴ dance of the GluA2 mRNA relative to that of other subunits ⁵⁵ correlates with the channel properties of native AMPA receptors ⁵⁶ in different cell types $[2, 3]$. Besides its scientific importance, the 57 Jonas et al. [3] study was the first to report scPCR from acute brain 58 slices, which preserve the cytoarchitecture and connectivity of brain ⁵⁹ tissues. 60

1.2 Quantitative Analyses by scPCR

Studies of AMPA receptors relied on relative quantification ⁶² between AMPA receptor subunit mRNAs and their splice and ⁶³ editing variants expressed by single neurons. This was made possi- ⁶⁴ ble by the fact that a single primer pair co-amplified the four ⁶⁵ subunit cDNAs and that their original mRNA ratios were main- ⁶⁶ tained throughout the whole RT-PCR process $[I, 4]$. This relative 67 quantification was performed by using subunit-specific restriction ⁶⁸ enzymes following amplification with radiolabeled primers [5] or ⁶⁹ fluorescently labeled primers $[6, 7]$. This approach has been 70 recently used to quantify the expression ratio of GluD1 and ⁷¹ GluD2, the two members of the delta family of glutamate ⁷² receptors [7]. 73

The issue of comparing mRNA expression levels between dif- ⁷⁴ ferent cells has been further addressed using real-time PCR follow- ⁷⁵ ing patch-clamp harvesting of the cell's content and RT reaction as ⁷⁶ described above $[8, 9]$. It is noteworthy that in the procedure 77 described by Tricoire et al. [9], the protocol of the first PCR is ⁷⁸ modified to obtain a linear pre-amplification of the target cDNA. ⁷⁹ The second PCR step is replaced by a real-time PCR reaction based 80 on TaqMan chemistry (Applied Biosystems). In a single well, the ⁸¹ gene-specific amplification is performed at the same time as the ⁸² amplification as a reference gene allowing normalization. The ⁸³ amplifications of the two genes in a single well are followed on ⁸⁴ two separate fluorescence channels. Absolute quantification of ⁸⁵ AMPA receptor subunit mRNAs expressed by single neurons was ⁸⁶ performed by introducing just prior to the RT an internal standard ⁸⁷ consisting in a full-length GluA2 RNA bearing a point mutation ⁸⁸ [4]. This allowed determining the number of AMPA receptor ⁸⁹ mRNA copies harvested by patch-clamp, estimating the proportion ⁹⁰ of AMPA receptor mRNA harvested from single neuron and their ⁹¹ respective distribution in somatic versus neuritic compartments. ⁹² 93

1.3 Molecular and Functional Phenotyping of Neuronal Types

Initially, scPCR was developed to quantify expression of a homolo- ⁹⁴ gous gene, but then it was extended to the detection of multiple ⁹⁵ unrelated genes in single cells (as outlined in Fig. 1), aimed at ⁹⁶ establishing detailed electrophysiological, gene expression, and ⁹⁷ morphological phenotypes of single neurons [10–12]. This ⁹⁸ approach was further used to correlate pharmacological response to 99 the expression of cognate receptors $[13-16]$. This approach has 100 significantly contributed to establishing the distinctive molecular, ¹⁰¹ functional, and morphological phenotypes of the diverse neuronal 102 types in the cerebral cortex and in the hippocampus $[9-11]$. Finally, 103 these multivariate phenotypes have been used to classify cortical ¹⁰⁴ and hippocampal neuronal types based on unsupervised multipara- ¹⁰⁵ metric clustering analyses, hence establishing their statistical signif- ¹⁰⁶ icance on a large array of features $[9-11, 17, 18]$.

Recently, studies have reported the development of RNA ¹⁰⁸ sequencing on single neurons after whole-cell patch-clamp record- ¹⁰⁹ ing $[19, 20]$. The entire somatic compartment is aspirated into the 110 recording pipette. After reverse transcription of RNA and cDNA ¹¹¹ amplification, a sequencing library is prepared. Although this ¹¹² approach appears quite extensive, it is difficult to implement in a ¹¹³ classical molecular biology lab and requires high capacity of ¹¹⁴ sequencing and expensive equipment. The protocol described fur-
115 ther is easier to implement and provides results very quickly and ¹¹⁶ does not require complex analysis of the data. We routinely use this 117 protocol to probe expression of 30 or more different genes from ¹¹⁸ single neurons (e.g., $[21]$). In this chapter, the protocol is given for 119 the simultaneous analysis of 24 genes per cell and is based on a ¹²⁰ 96-well format. ¹²¹

As a rule we have a set of pipettes especially reserved for single- ²³¹ cell RT-PCR and related preliminary tests. With these pipettes we ²³² never manipulate natural RNA or cDNA solutions containing more ²³³ than $1 \text{ ng}/\mu$. We never use these pipettes for plasmids or in vitro 234 transcript solutions containing more than 10^3 molecules/μl. In 235 addition, these pipettes are never used either for solutions contain- ²³⁶ ing PCR-amplified fragments. Although we worked for 1 year ²³⁷ without aerosol-blocking tips and avoided contamination, we ²³⁸ now routinely use them. 239

All solutions are kept as aliquots, rather than in stock. 240

Keep in mind that pH electrodes can be a source of ²⁴¹ contamination. ²⁴²

We always wear gloves. 243

Harvesting of mRNA from cells surrounding the target cell or ²⁴⁴ released from dying cells is yet another possible source of contami- ²⁴⁵ nation. Thus it is important to have good quality slices and to ²⁴⁶ include, in the set of gene, one gene that is only express in sur- ²⁴⁷ rounding cells (see Note 2).

3 Methods 250

3.1 Design of Gene-Specific Primers

Before starting the design of the primer, you need to collect as ²⁵¹ much information regarding the structure of your gene of interest ²⁵² such as the presence of introns and whether splice variants have ²⁵³ been described in the literature. During the harvesting procedure, ²⁵⁴ it is possible to harvest some genomic DNA. If your gene is intron- ²⁵⁵ less, it is impossible to distinguish amplification from genomic ²⁵⁶ DNA or from mRNA-derived cDNA. Therefore we recommend ²⁵⁷ designing primers on two different exons. You have to make sure of ²⁵⁸ the sequence of your coding sequence and that it is the most ²⁵⁹ updated. As much as possible, use the sequences labeled "reference ²⁶⁰ sequence" in Genbank. You can get this information on the page of 261 your gene of interest in Genbank [\(http://www.ncbi.nlm.nih.gov/](http://www.ncbi.nlm.nih.gov/gene/) ²⁶² [gene/\)](http://www.ncbi.nlm.nih.gov/gene/). This page also indicates the genomic structure of your ²⁶³ gene. Usually in reference sequence, the beginning and end of ²⁶⁴ exons are given along with the sequence. ²⁶⁵

The requirement for designing primers for single-cell RT-PCR ²⁶⁶ is the same as for a basic PCR. The melting temperature should be ²⁶⁷ around 60 \degree C; the %GC should not exceed 60%. They should not 268 form secondary structure such as hairpin, and the two primers ²⁶⁹ should not hybridize to each other. Any program for primer design ²⁷⁰ takes into account these parameters. An example of such program is ²⁷¹ Primer3 [\(http://primer3.ut.ee/\)](http://primer3.ut.ee/). The size of the PCR product is 272 typically in the range 200–500 bp. 273

Primers should be specific for your gene of interest and should ²⁷⁴ not significantly recognize other gene sequence. To check the ²⁷⁵ specificity of the designed primers, you can run a nucleotide blast ²⁷⁶

search (NCBI website) of your sequence against the nucleotide 277 collection of Genbank using the blastn program. Alternatively, ²⁷⁸ you can use the primer-BLAST program of NCBI that designs in ²⁷⁹ a single step the sequence of the primers using primer3 and run the ²⁸⁰ BLAST against reference sequence database. ²⁸¹

When possible, it is better if the primers for the second PCR 282 are different from those of the first PCR. The use of internal ²⁸³ (nested) primers during the second PCR round enhances amplifi- ²⁸⁴ cation specificity and minimizes the carry-over of primer dimers ²⁸⁵ from the first PCR, improving amplification efficiency and speci- ²⁸⁶ ficity. It increases the confidence in the identity of the PCR prod- ²⁸⁷ uct and further guarantees that you are not amplifying another ²⁸⁸ gene that shares some homology with your gene of interest. ²⁸⁹ Depending on the gene, it is complicated to design two different ²⁹⁰ sets of primers. You can use a common primer for the two PCRs. ²⁹¹ In the worst-case scenario, the primers can be the same for the ²⁹² two PCRs. ²⁹³

In case your gene is intronless, the approach for the design is ²⁹⁴ the same, but you have to include in your PCR a control reaction ²⁹⁵ intended for the detection of genomic DNA. We routinely probe ²⁹⁶ the presence of the intron of somatostatin gene [15]. After the ²⁹⁷ second PCR, if we obtain a positive result for this intron, we discard 298 the results of intronless genes obtained from the same cell ²⁹⁹ harvesting. 300

- 8. Incubate for 1 min at 95 \degree C in the PCR instrument, and then 325 add 20 μl of primer mix containing forward and reverse primers ³²⁶ in RNase-free H₂O (primer final concentration: 2 pmol/ μ l). 327
- 9. Run PCR program: ³²⁸

- 10. Analyze your PCR product by agarose gel electrophoresis. You ³³⁴ must verify you obtain a single band at the correct size. We ³³⁵ routinely run all PCR reactions on 2% agarose gel in $0.5 \times \text{TBE}$ 336
buffer next to a DNA molecular marker buffer next to a DNA molecular marker.
- 11. Mix and dilute the primers for the first PCR (48 different ³³⁸ primers) at 1 pmol/μl in water. This mix can be aliquoted ³³⁹ and stored at -20 °C. 340
- 12. Set up the first PCR reaction: 341

- 13. Incubate 1 min at 95 \degree C in the PCR machine, and then add 348 20 μl of first PCR primer mix prepared in Subheading 2.5. ³⁴⁹
- 14. Run PCR program: 350

(continued)

15. Set up the second PCR. 356

- 16. Transfer 90 μl of the mix in 24 PCR tubes, one per gene to ³⁶³ analyze. 364
- 17. Add 10 μl of gene-specific primer mix in each tube. 365
- 18. Run the PCR program: 366

- 19. Analyze your PCR product by agarose gel electrophoresis. You ³⁷² must verify you obtain a single band of the expected size. In ³⁷³ case one or several bands are absent, it indicates that some ³⁷⁴ primers are incompatible, and a new set of primer pairs have ³⁷⁵ to be designed. 376
- 20. It is important to perform negative control experiments ³⁷⁷ from time to time to check the absence of contamination (see 378) Note 2). This is primarily achieved by running the same pro- 379 tocol as described above using no RNA $(H₂O$ control). You 380 also have to perform the protocol described in Subheadings ³⁸¹ 3.4–3.6 using just intracellular recording solution. This step ³⁸² allows you to check the quality of the recording solution. 383

A key issue in single-cell molecular biology, especially in tissue ³⁸⁴ slices, is to harvest selectively the cellular content without contami- ³⁸⁵ nation from surrounding cells. The whole-cell configuration of the ³⁸⁶ patch-clamp technique confers a tightly insulated physical and ³⁸⁷

3.3 Patch-Clamp Harvesting of Single Cells

electrical access to the cell's cytoplasm. It thus provides ideal means ³⁸⁸ of harvesting in complex tissue following electrophysiological char- ³⁸⁹ acterization. Patch-clamp harvesting of a GABAergic neuron from ³⁹⁰ a slice of rat cerebral cortex is illustrated in Fig. 2. 391

The very first step of the single-cell RT-PCR protocol starts ³⁹² with the electrophysiological recording of the neuron to be ana- ³⁹³ lyzed. The cell is first visually identified and chosen according to ³⁹⁴ morphological criteria. The patch pipette filled with 8 μl intracellu- ³⁹⁵ lar solution (see Note 3) is then advanced toward the neuron with 396 positive pressure in order to avoid contamination by the surround- ³⁹⁷ ing tissue. ³⁹⁸

Once the pipette reaches the neuron, a gigaohm seal is ³⁹⁹ obtained which ensures a very tight contact between the cell mem- ⁴⁰⁰ brane and the pipette avoiding the risk of contamination (cell- ⁴⁰¹ attached configuration). The patch membrane under the pipette ⁴⁰² is then broken by applying a brief negative pressure establishing a ⁴⁰³ physical and electrical continuity between the cytoplasm and the ⁴⁰⁴ pipette solution. At the end of the whole-cell recording, which ⁴⁰⁵

Fig. 2 Patch-clamp harvesting in brain slices. Once a cell is visually identified, the recording pipette is approached with positive pressure in order to avoid cellular debris contamination at the tip of the pipette. Note the dimple on the membrane of this neuron. Positive pressure is then interrupted in order to form a cellattached configuration with a gigaohm tight seal, and subsequently brief suctions allow going into whole-cell configuration. At the end of the recording, the cytoplasm is harvested by applying a gentle negative pressure into the pipette, while the tight seal is maintained. Note the shrinkage of the cell body during the harvesting procedure. The recording pipette is then gently withdrawn to form an outside-out patch, which favors cell membrane closure for subsequent biocytin staining, and preservation of harvested material in the patch pipette

should not last more than 20 min for RNA preservation, the cell's 406 content is aspirated into the recording pipette by applying negative 407 pressure under electrophysiological and visual control in order to ⁴⁰⁸ avoid contamination and to ensure a good cytoplasm collection. ⁴⁰⁹ During the harvesting procedure, a careful (re)positioning of the ⁴¹⁰ pipette away from the nucleus (see Note 4), which can obstruct the 411 pipette tip, is sometimes required. In slices, the harvesting proce- ⁴¹² dure is stopped if the gigaohm seal is lost. After the cytoplasm ⁴¹³ collection, the pipette is gently withdrawn from the neuron to ⁴¹⁴ favor the closure of the cell membrane. Ideally, an outside-out ⁴¹⁵ configuration is then achieved which allows the preservation of ⁴¹⁶ the pipette's content and of the cell. ⁴¹⁷

The electrophysiological control of this harvesting procedure 418 offers several advantages. Firstly, only mRNA from the recorded ⁴¹⁹ neuron is harvested with very limited risk of contamination by the ⁴²⁰ tissue surrounding the cell. Secondly, the harvesting procedure ⁴²¹ allows a good preservation of the collected mRNAs. Thirdly and ⁴²² inherently to the single-cell RT-PCR technique, the analyzed neu- ⁴²³ ron can be electrophysiologically and pharmacologically character- ⁴²⁴ ized. Finally, when a diffusible tracer (e.g., biocytin) is added into ⁴²⁵ the patch solution, a detailed morphology of the neuron can be ⁴²⁶ obtained for further anatomical identification. ⁴²⁷

3.4 General Protocol for the Single-Cell RT **Reaction**

- 1. During the course of the electrophysiological experiments, the ⁴²⁹ aliquots of intracellular solution, $5 \times RT$ mix, and $20 \times DTT$ are 430 kept on ice mix and RNase inhibitor and reverse transcriptase ⁴³¹ kept at -20 °C. The patch pipette is filled with 8 μ l patch 432 intracellular solution. At the end of the recording, 2 μ l of 5 \times 433 RT mix and 0.5μ of $20 \times \text{DTT}$ are pipetted into the RT-PCR 434
tube (0.5 ml PCR tube). tube (0.5 ml PCR tube).
- 2. After recording and aspirating the cell, the pipette's content is ⁴³⁶ expelled (we usually collect $6.5 \mu l$) in this tube. The tip of the 437 pipette should be broken in order to facilitate the expelling in ⁴³⁸ the PCR tube containing 2 μl of $5 \times RT$ mix and 0.5 μl 20×439 DTT. We then add 0.5 μl RNase inhibitor and 0.5 μl RT, and ⁴⁴⁰ the tube is flicked and briefly centrifuged. The final volume ⁴⁴¹ should then be roughly 10 μl with final concentrations: ⁴⁴² 0.5 mM each dNTP, 5 μM random primers, 10 mM DTT, ⁴⁴³ and 20 units of RNase inhibitor and 100 units of reverse ⁴⁴⁴ transcriptase. ⁴⁴⁵
- 3. The RT reaction then proceeds overnight at $37 \degree C$. After this 446 incubation, the tube is kept at -80 °C until the PCR reaction. 447

The remainder of the aliquots of $5 \times RT$ mix and $20 \times DTT$ is 448 discarded after each day of experiment. ⁴⁴⁹

450

- bench centrifuge. ⁴⁸⁰
- 4. Dispense 90 μl of the mix in the 96-well plate. One cell occu- ⁴⁸¹ pies three columns of eight wells. One plate is for four cells. ⁴⁸² Change tip for each cell. 483
- 5. Take the plate containing the primers simplex (nested primer) ⁴⁸⁴ out of the fridge, and centrifuge them for 10 s. Using the ⁴⁸⁵ multichannel pipette, add 10 μl of second PCR primer mix by ⁴⁸⁶

following the organization of the second PCR mix plate ⁴⁸⁷ prepared in Subheading 2.5. 488

- 6. Cover the plate with aluminum seal; transfer directly the plate ⁴⁸⁹ from ice to the PCR machine. The block must have been ⁴⁹⁰ pre-warmed at 94 °C . 491
- 7. Run PCR program: ⁴⁹²

8. Analyze your PCR product by agarose gel electrophoresis. You ⁴⁹⁸ must verify you obtain a single band of the correct size. For ⁴⁹⁹ loading the agarose gel, use a multichannel pipette different 500 from the one used for loading the second PCR primer mix. 501

4 Notes 502

- 1. Given the high sensitivity of the method and the high risk of 503 contamination, we recommend using the following reagents ⁵⁰⁴ which have been tested by us and others lab successfully: ⁵⁰⁵ RNase-free dithiothreitol (Sigma), hexamer random primers 506 (Roche or Life Technologies), deoxynucleotide solution set ⁵⁰⁷ (New England Biolabs), recombinant RNAsin (Promega), ⁵⁰⁸ reverse transcriptase SuperScript II (Life Technologies), and ⁵⁰⁹ Taq DNA polymerase (Qiagen). 510
- 2. For each new primer pair or combination of primers, we test 511 mRNA contamination from surrounding tissue by placing a ⁵¹² patch-clamp pipette into the slice without establishing a seal. ⁵¹³ Following removal of the pipette, its content is then processed 514 by RT-PCR. In our hands, this control has always yielded ⁵¹⁵ negative results. It must be noted, however, that a better ⁵¹⁶ negative control consists in scPCR of cells devoid of the ⁵¹⁷ mRNA of interest, from the same biological preparation. $\qquad 518$
- 3. Virtually any type of patch-clamp intracellular solution can be ⁵¹⁹ used, as long as it does not interfere with RT-PCR efficiency in ⁵²⁰ cell-free assays. In our experience, intracellular solutions con- 52 AU4 taining $K₊$ or $Cs +$ cations and Cl- and gluconate or methyl 522 sulfate anions are equally suitable to scPCR. $\frac{523}{2}$

- 4. When expression of intronless genes is analyzed, genomic DNA ⁵²⁴ can be a source of false positives, and avoiding nucleus collec- ⁵²⁵ tion is here essential. We addressed this issue by including a ⁵²⁶ control amplifying an intronic DNA sequence in the scPCR ⁵²⁷ reaction and found that this control efficiently detected geno- ⁵²⁸ mic DNA contamination $[16]$. 529
- 5. In case of scaling down the whole procedure, instead of using ⁵³⁰ 96-well format, you can use individual 0.2 or 0.5 ml PCR ⁵³¹ ⁵³² tubes.

⁵³³ References

- 535 1. Lambolez B, Audinat E, Bochet P, Crepel F, 536 Rossier J (1992) Ampa receptor subunits 537 expressed by single purkinje-cells. Neuron 9 538 (2):247–258. [https://doi.org/10.1016/](https://doi.org/10.1016/0896-6273(92)90164-9) 539 [0896-6273\(92\)90164-9](https://doi.org/10.1016/0896-6273(92)90164-9)
- 540 2. Bochet P, Audinat E, Lambolez B, Crepel F, 541 Rossier J, Iino M, Tsuzuki K, Ozawa S (1994) 542 Subunit composition at the single-cell level 543 explains functional-properties of a glutamate-544 gated channel. Neuron 12(2):383–388. 545 [https://doi.org/10.1016/0896-6273\(94\)](https://doi.org/10.1016/0896-6273(94)90279-8) 546 [90279-8](https://doi.org/10.1016/0896-6273(94)90279-8)
- 547 3. Jonas P, Racca C, Sakmann B, Seeburg PH, 548 Monyer H (1994) Differences in Ca2+ perme-549 ability of Ampa-type glutamate-receptor chan-550 nels in neocortical neurons caused by 551 differential Glur-B subunit expression. Neuron 552 12(6):1281–1289. [https://doi.org/10.1016/](https://doi.org/10.1016/0896-6273(94)90444-8) 553 [0896-6273\(94\)90444-8](https://doi.org/10.1016/0896-6273(94)90444-8)
- 554 4. Tsuzuki K, Lambolez B, Rossier J, Ozawa S 555 (2001) Absolute quantification of AMPA 556 receptor subunit mRNAs in single hippocam-557 pal neurons. J Neurochem 77(6):1650–1659. 558 [https://doi.org/10.1046/j.1471-4159.2001.](https://doi.org/10.1046/j.1471-4159.2001.00388.x) 559 [00388.x](https://doi.org/10.1046/j.1471-4159.2001.00388.x)
- 560 5. Lambolez B, Ropert N, Perrais D, Rossier J, 561 Hestrin S (1996) Correlation between kinetics 562 and RNA splicing of alpha-amino-3-hydroxy-563 5-methylisoxazole-4-propionic acid receptors 564 in neocortical neurons. Proc Natl Acad Sci 565 USA 93(5):1797–1802. [https://doi.org/10.](https://doi.org/10.1073/pnas.93.5.1797) 566 [1073/pnas.93.5.1797](https://doi.org/10.1073/pnas.93.5.1797)
- 567 6. Angulo MC, Lambolez B, Audinat E, 568 Hestrin S, Rossier J (1997) Subunit composi-569 tion, kinetic, and permeation properties of 570 AMPA receptors in single neocortical nonpyr-571 amidal cells. J Neurosci 17(17):6685–6696
- 572 7. Hepp R, Hay YA, Aguado C, Lujan R, 573 Dauphinot L, Potier MC, Nomura S, 574 Poirel O, El Mestikawy S, Lambolez B, Tricoire 575 L (2015) Glutamate receptors of the delta fam-576 ily are widely expressed in the adult brain. Brain

Struct Funct 220(5):2797–2815. [https://doi.](https://doi.org/10.1007/s00429-014-0827-4) 577 [org/10.1007/s00429-014-0827-4](https://doi.org/10.1007/s00429-014-0827-4) 578

- 8. Liss B, Franz O, Sewing S, Bruns R, 579 Neuhoff H, Roeper J (2001) Tuning pace-
580 maker frequency of individual dopaminergic 581 neurons by Kv4.3L and KChip3.1 transcrip- 582 tion. EMBO J 20(20):5715–5724. [https://](https://doi.org/10.1093/emboj/20.20.5715) 583 doi.org/10.1093/emboj/20.20.5715 584
- 9. Tricoire L, Pelkey KA, Erkkila BE, Jeffries BW, 585 Yuan XQ, McBain CJ (2011) A blueprint for 586 the spatiotemporal origins of mouse hippo- 587 campal interneuron diversity. J Neurosci 31 588 (30):10948–10970. [https://doi.org/10.](https://doi.org/10.1523/Jneurosci.0323-11.2011) 589 [1523/Jneurosci.0323-11.2011](https://doi.org/10.1523/Jneurosci.0323-11.2011) 590
- 10. Cauli B, Audinat E, Lambolez B, Angulo MC, 591 Ropert N, Tsuzuki K, Hestrin S, Rossier J 592 (1997) Molecular and physiological diversity 593 of cortical nonpyramidal cells. J Neurosci 17 594 $(10):3894-3906$ 595
- 11. Karagiannis A, Gallopin T, David C, 596 Battaglia D, Geoffroy H, Rossier J, Hillman 597 EMC, Staiger JF, Cauli B (2009) Classification 598 of NPY-expressing neocortical interneurons. J 599 Neurosci 29(11):3642–3659. [https://doi.](https://doi.org/10.1523/Jneurosci.0058-09.2009) 600 [org/10.1523/Jneurosci.0058-09.2009](https://doi.org/10.1523/Jneurosci.0058-09.2009) 601
- 12. Perrenoud Q, Rossier J, Geoffroy H, Vitalis T, 602 Gallopin T (2013) Diversity of GABAergic 603 interneurons in layer VIa and VIb of mouse 604 barrel cortex. Cereb Cortex 23(2):423–441. 605 <https://doi.org/10.1093/cercor/bhs032> 606
- 13. Ferezou I, Cauli B, Hill EL, Rossier J, 607 Hamel E, Lambolez B (2002) 5-HT3 recep- 608 tors mediate serotonergic fast synaptic excita- 609 tion of neocortical vasoactive intestinal 610 peptide/cholecystokinin interneurons. J Neu- 611 rosci 22(17):7389–7397 612
- 14. Ferezou I, Hill EL, Cauli B, Gibelin N, 613 Kaneko T, Rossier J, Lambolez B (2007) 614 Extensive overlap of mu-opioid and nicotinic 615 sensitivity in cortical interneurons. Cereb Cor- 616 tex 17(8):1948–1957 617

- 618 15. Hill EL, Gallopin T, Ferezou I, Cauli B, 619 Rossier J, Schweitzer P, Lambolez B (2007) 620 Functional CB1 receptors are broadly 621 expressed in neocortical GABAergic and gluta-622 matergic neurons. J Neurophysiol 97 623 (4):2580–2589. [https://doi.org/10.1152/jn.](https://doi.org/10.1152/jn.00603.2006) 624 [00603.2006](https://doi.org/10.1152/jn.00603.2006)
- 625 16. Porter JT, Cauli B, Tsuzuki K, Lambolez B, 626 Rossier J, Audinat E (1999) Selective excitation 627 of subtypes of neocortical interneurons by nic-628 otinic receptors. J Neurosci 19 629 (13):5228–5235
- 630 17. Battaglia D, Karagiannis A, Gallopin T, Gutch 631 HW, Cauli B (2013) Beyond the frontiers of 632 neuronal types. Front Neural Circuit 7. ARTN 633 13 [https://doi.org/10.3389/fncir.2013.](https://doi.org/10.3389/fncir.2013.00013) 634 [00013](https://doi.org/10.3389/fncir.2013.00013)
- 635 18. Pohlkamp T, David C, Cauli B, Gallopin T,
- 636 Bouche E, Karagiannis A, May P, Herz J,
- 637 Frotscher M, Staiger JF, Bock HH (2014)
- 638 Characterization and distribution of Reelin-639 positive interneuron subtypes in the rat barrel

Confraction

cortex. Cereb Cortex 24(11):3046–3058. 640 <https://doi.org/10.1093/cercor/bht161> 641

- 19. Cadwell CR, Palasantza A, Jiang XL, Berens P, 642 Deng QL, Yilmaz M, Reimer J, Shen S, 643 Bethge M, Tolias KF, Sandberg R, Tolias AS 644 (2016) Electrophysiological, transcriptomic 645 and morphologic profiling of single neurons 646 using patch-seq. Nat Biotechnol 34 647 (2):199–203. [https://doi.org/10.1038/nbt.](https://doi.org/10.1038/nbt.3445) 648 [3445](https://doi.org/10.1038/nbt.3445) 649
- 20. Fuzik J, Zeisel A, Mate Z, Calvigioni D, 650 Yanagawa Y, Szabo G, Linnarsson S, Harkany T (2016) Integration of electrophysiological 652 recordings with single-cell RNA-seq data iden- 653 tifies neuronal subtypes. Nat Biotechnol 34 654 (2):175–183. [https://doi.org/10.1038/nbt.](https://doi.org/10.1038/nbt.3443) 655 [3443](https://doi.org/10.1038/nbt.3443) 656
- 21. Cauli B, Porter JT, Tsuzuki K, Lambolez B, 657 Rossier J, Quenet B, Audinat E (2000) Classi- 658 fication of fusiform neocortical interneurons 659 based on unsupervised clustering. Proc Natl 660 Acad Sci USA 97(11):6144-6149. [https://](https://doi.org/10.1073/pnas.97.11.6144) 661 doi.org/10.1073/pnas.97.11.6144 662

Author Queries

Chapter No.: 10 429758_1_En

Query Refs. Details Required Author's response AU1 Please check whether the author names and affiliation are presented correctly. AU2 Please check and confirm the presentation of list levels in throughout the chapter. dNTP (dATP, dCTP, dGTP, dTTP; final: 2.5 mM each) 7.5 l each dNTP Random primer (final: 25 M) 9.7 l $dH₂O$ 260.3 l AU3 Please check whether the list "l RNase-free H_2O " is presented correctly here. AU4 Please check if edit to sentence starting "In our experience..." is okay.

Incorrected