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An Active-Passivavlicrowave Land
SurfaceDatabasdrom GPM

S. JosephMunchak, SarahRingerud, Ludovic Brucker,Yalei You, *SJT EF (FMJT
CatherinePrigent

Abstract—A microwave emissivity retrieval is ap- HE widespread use of microwave radiome-
plied to ve years of Global Precipitation Mea- try to retrieve precipitation globally [1]-[3],
surement (GPM) Microwave Imager (GMI) obser- 4,4 assimilation into numerical weather prediction

vations over land and sea ice. The emissivities . . .
are co-located with GPMs Dual-frequency Precipita- models [4]-[7] including their land surface model

tion Radar (DPR) surface backscatter measurements components [8]-[11], require the ability to accu-
in clear-sky conditions. The emissivity-backscatter rately represent the surface emissivity across the
database is used to characterize surfaces within the microwave spectrum (i.e., 10-180 GHz for precip-
GPM orbit for precipitation retrieval algorithms and  jiation applications). Likewise, accurate representa-

other applications. . . - .
The full 10-166 GHz emissivity vector is retrieved 10N Of both the active and passive surface signal

using optimal estimation. Since GMI includes water IS critical for spaceborne estimates of precipitation
vapor sounding channels, retrieval of the atmospheric [12]-[14] and has become important for retrievals of
and surface state are performed simultaneously. Using surface properties, such as vegetation water content

the MERRAZ reanalysis as the a priori atmospheric 151 sojl moisture [16], and inundated area fraction
state and with proper characterization of its error, [17]

we are able to effectively screen for cloud- and
precipitation-affected emissivities. Comparisons with In order to represent microwave surface charac-
co-located CloudSat data show that this GMI-based ot AL ; ot
screen is able to detect precipitation that DPR alone teh”St.ICSi ffor the(sie Wlt;jel ranglng appllpa'[ilons, fiLi]”y
does not; however, about 10% of precipitation occur- Physical forward models, semi-empirical geopnys-
rence from CloudSat is still undetected by GMI. ical model functions, and statistical representa-
The unsupervised Kohonen classi cation technique tions may be employed. Fully physical forward
was then applied to multi-year monthly 0.25 gridded models calculate the emission and backscatter at
mean retrieved emissivities and backscatter distinctly the surface-atmosphere boundary given the vertical

for snow-free, snow-covered, and sea ice surfaces in | f ) |
order to classify surfaces based on both active and pas- Pr0 1es of properties at play (e.g., temperature,

sive microwave characteristics. The classes correspond dielectric constant, roughness spectrum, and scat-
to vegetation coverage and type, inundation zones, soil tering properties from vegetation or snow grains).
composition, and terrain roughness. Snow and sea ice Examples of such models include the Commu-

surfaces show clear seasonal cycles representing their, Radiative Transfer Model Microwave Emis-
increase in snow and ice spatial extent and reduction

in the spring. Applications toward GPM precipitation ~ SIVity Model (CRTM-MEM [18]), Land Surface
retrieval algorithms and sensitivity to accumulated Microwave Emission Model (LSMEM [19]), Mi-
rain and snowfall are also explored. crowave Emission Model for Layered Snowpacks
(MEMLS [20]), Dense Media Radiative Transfer -
Multi-Layer (DMRT-ML [21]) and the recent model
framework for Snow Microwave Radiative Transfer
(SMRT [22]). While these models contribute to

S.J.Munchak is with the Mesoscale Atmospheric Process?iir enhanced understanding of the Sensitivity of
Laboratory, NASA Goddard Space Flight Center, 8800 Greenbelt

Road, Greenbelt, MD 20771 e-mail: s.j.munchak@nasa.gov. emissivity to phy_SicaI properties, the eXten_Sive inp_ut
Manuscript received 16 August 2019. parameter set is generally underdetermined with

I. INTRODUCTION
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respect to observations [23]-[25], and particularvas derived from Special Sensor Microwave/lmager
models may not be able to represent all surfacéSSM/I) observations from 19-85 GHz [40], [41],
[18]. Semi-empirical approaches, sometimes callad does not have a basis for the lowest (10.65
geophysical model functions, seek to relate (via résHz) and highest (166-183 GHz) channels on GMI.
gression or other statistical methods) a subset of siihe DPR and combined algorithms currently use
face properties (e.g., soil moisture, leaf area indeiternally-generated atlases of, over land as a
snow water equivalent) to the emissivity/backscattéemporal reference [42], but these suffer from poor
spectrum, and can be derived from combinatiorsampling at any given incidence angle (ranging
of observations and physical forward models [26]ffom 0 to 18 in 0.75 increments), yet ne-
[29]. The fully statistical approaches do not seekesolution grids (ideally, approaching the radar res-
to represent the surface emissivity or backscattetution of 5 km) are desirable for this reference
in terms of physical parameters but instead useethod to account for small-scale heterogeneity of
observations to quantify the relationships betweehe land surface [43].

emissivities at various frequencies and incidence In order to provide a basis for a statistical joint
angles as covariance matrices or principal compactive-passive surface characterization for the GPM
nents [30], [31]. An example of such an approachombined precipitation algorithm, as well as to take
is the Tool to Estimate Land Surface Emissivitieadvantage of the superior resolution, calibration,
at Microwave frequencies (TELSEM,; [32]), whichand frequency range of GMI compared to SSMI, we
uses a clustering approach to identify self-similanave generated a database of co-located retrieved
surfaces (based on the derived means and covdand surface emissivity and measured backscatter
ances) on spatial and temporal (monthly) grids. Aross-section () at Ku and Ka bands derived
similar clustering approach based upon statistifeom GPM GMI and DPR observations. While
of the surface backscatter cross-section from thibe immediate application of this database is im-
TRMM Precipitation Radar (PR) was developed byproved precipitation retrievals, it is envisioned that
[33]. the unique, extensive dataset may motivate further

The precipitation retrieval algorithms for theStudy and evaluation of semi-empirical and fully

Global Precipitation Measurement (GPM) missioffNysical microwave surface models and surface
[34] include passive microwave algorithms for a diProperty retrievals. The deta|ls.of the em|_SS|V|ty re-
verse collection of microwave sounders and image eval and database construction, including deriva-

[35], including the GPM Microwave Imager (GMI): tion and ana!ysis of the su.rface—atmos'phere state
radar-only algorithms for GPM's Dual-frequenc nd observation error covariances matrices, which

Precipitation Radar (DPR) at Ku- and Ka-bande required for robust estimation of the surface
[36]: and an algorithm for combined DPR anoemissivity, are described in section Il. An unsuper-
GMI-based retrievals [37]. For these algorithms, thi'Sed classi cation method is applied in section Ill.
existing methods to estimate surface properties mé%lfew_ exe}mp'?s of allppl'lcatlons of th's Qatabase and
some, but not all, algorithm needs [38]. The physﬁlass' cation, including implementation in the GPM
cal and semi-empirical approaches require detail@j€ciPitation algorithms, are given in section IV. A
land surface data that is not reliably available ofuMmmary description of the database and classi -
the global scale, and some fully-physical modelSation ndings, along with concluding remarks, are

impose signi cant computational burden for use iff'Ven in section V.

routine retrievals with large satellite datasets. The

TELSEM classes are used to stratify databases for Il. EMISSIVITY RETRIEVAL

the passive microwave retrievals of precipitation The retrieval of the land surface emissivity
[35], [39], but the actual emissivity atlases androm GMI observations is described in this sec-
covariances are only used in forward modelingjon, beginning with datasets used, retrieval as-
step of the combined algorithm. Because TESLEMumptions, and forward model components, fol-
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lowed by a description of the process for selectinB. Retrieval method

cloud- and precipitation-free observations. From the retrieval itself is an implementation of the
these retrievals, the active-passive surface emissiv'g_\mimm estimation method [48], which is com-
and backscatter database is constructed from GPrM)nIy used for atmospheric sounding either as a

swath data to be used for surface classi cation ar&e-processor for data assimilation [6] or a stan-

other applications. dalone geophysical parameter retrievals [49], [50].
The retrieval is performed by minimizing the cost
A. GMI Observations function

The observations used to retrieve emissivity are _ « v (xy v s 1(y. (X) Y +
the calibrated, co-registered brightness temperatures ( Yaim ( (>2 XOb)ST)S b (X( S')n(] () _) obs )
from GMI (Level 1C-R). The calibration process al Ta al (1)

is described by [44], who consider the calibratiohere v is the observation vector, consisting of
accuracy to be within 0.25 K at all channels. Afyq co-jocated GMI brightness temperaturgg,is
such, it can be claimed that GMI is the mOsl,q ohservation and forward model error covariance
well-calibrated microwave imager presently mak'ngnatrix, X is the retrieval geophysical parameter
Earth observations and is accordingly used as\Rctor, which is constrained by its pridt, and its
reference to intercalibrate other earth-viewing miérror covariance matri,. The retrieval outcome

crowave imagers [45]. depends strongly on the choice of parameters to

The feedhorns on GMI are arranged in twWo roW§p, o ge jn X and the tightness of the constraints
at approximately 48.450ff-nadir angle from 10-89 implied by S, and S.. Since we are interested in

GHz (shcan "Te S1) and 45.2@t 166 and both 1:‘33 surface emissivity estimates under clear-sky con-
GHz c annelg, (S2) [46]. As a confse%ue_nce, t € ttions, only the parameters that have a signi-
and S2 scan lines trace out arcs of differing radii op, (relative to channel NEDT) impact on GMI-

the Earth's surface, which intersect at some azimu; quency brightness temperature under these con-
f'ingles but can be o_ffset bY as much as half of trH"ftions are considered. These parameters include the
inter-scan line spacing, which is approximately 13, o (skin) temperature, atmospheric temperature
km from a nominal altitude of 407 km and 32 rpM, 4 \yater vapor pro les, and the frequency- and
re ector rotation rate. The resulting 6.5 km offset, -, ation_dependent emissivity vector. Surface
is larger ‘h?‘” the effective eld of view (EFOV) temperature is of primary importance for retrievals
at frequencies 89 GHz (Table I). Therefore, the oo |50 covers that have a shallow microwave

sr\]/vath 1S u;der-se;]mpledl a(tj these freq“enc_;es a gnetration depth. However, terrestrial snowpacks
tle il and S2 IC ann('a\ls ohncl)t necfessarl_y Salld some sandy deserts in contrast allow the mi-
ple the same volume. Nevertheless, for emissivity. 4ve radiation to penetrate, especially at fre-

estimation we use the Level 1C-R produgt whic uencies 89 GHz [51]. Therefore, the temperature
maps the S2 channels to the nearest-neighbor the emitting media cannot be independently

position, allowing co-registered GMI Observation?‘etrieved from the emissivity vector, and is not
to be treated independently, as is the current practiﬁ?e same at all channels due to frequency- and

for thg GMI rainfall products [35]. .This practice polarization-dependent penetration depths [52]. In
effectively assumes that the scene is homogeneaus, \otrieval we x the surface temperaturd)

on the scale of the largest footprint (10 GHz). Whilg, ) o ncillary data and acknowledge that we are, in
we could (de)convolve the brightness temperatur%§sence, retrieving an “effective emissivity” vector

so that they are matched on a common footprirate ), where the upwelling radianceR() at the

before the retrieval, this is only possible at freq“e'Eurface at frequenc and polarizatiorp is
cies 36 GHz [47]. Furthermore, for analysis and

classi cation the emissivities are gridded at 0.25R-(f;p) = Ts et (F;p)+(1 et (f;p))Re(f; p):
which is close to the 10 GHz footprint. (2)
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TABLE |
SUBSET OFGMI CHANNEL CHARACTERISTICS DESCRIBED BY[46]

Frequency Polarization EIA  Beamwidth EFOV  NEDT (V) NEDT (H)

(GHz) (deg) (deg) (km) (K) K
10.65 VIH 52.8 1.72 20x32 0.77 0.78
18.7 V/IH 52.8 0.98 12x18 0.63 0.60
23.8 Y, 52.8 0.85 10x16 0.51
36.64 VIH 52.8 0.82 10x15 0.41 0.42
89 V/H 52.8 0.38 6X7 0.32 0.31
166 VIH 49.1 0.38 6x6 0.70 0.65
183 3 Y 49.1 0.37 65 0.56
183 7 \Y 49.1 0.37 65 0.47

Although we know and expect that strong covari2 (MERRA-2; [53]). The atmospheric temperature
ances exist between emissivities at the GMI freand water vapor pro le is linearly interpolated in
quencies and polarizations, these are left ouspf time and space from the 3-hourly, 0:0.625
to avoid over-constraining the result. Indeed, sinca&tmospheric analysis data [54] and the surface
one of the purposes of developing this database (iskin) temperature and 2-meter,(J) are interpo-
to discover these covariances (and their covariantaed from the hourly, 0.50.625 surface analysis
with DPR (), the diagonal elements @3, rep- data [55]. Sensitivity tests showed that the GMI
resenting emissivity are purposely set to the larderightness temperatures were not sensitive (at the
(unitless) value of:25% with zero covariance. The 0.1 K level) to the atmosphere above 50 hPa, so
prior values inX 5 are interpolated in angle and fre-MERRA-2 pro les were truncated at this level,
guency from the TELSEM atlas. The emissivity atetaining 27 layers of the original 42. Additionally,
each GMI frequency and polarization is considerethe MERRA-2 cloud liquid water path (CLWP),
as an independent retrieval parameter, except thalhile not used in the retrieval itself, is interpolated
the 23.8V emissivity is bounded by the 18.7V ando each GMI footprint and used as a input to the
36.64V estimates (although free to vary within thesscreening process, intended to lIter out cloud- and
bounds) and that the emissivity is assumed to nptecipitation-contaminated retrievals and described
vary between the 166V, 183V, and 183 3V. Un- later in this section.
der most conditions, the high atmospheric opacity As with all reanalyses, MERRA-2 pro les are not
at the 183 GHz channels precludes the independefithout error, particularly with respect to mesoscale
estimation of emissivity for those channels. features that are smaller than the reanalysis ef-

fective resolution [56] or in data-sparse regitins

The atmospheric temperature and water vapghese features, which include jet streaks, cyclonic

proles also have a signicant impact on GMI eddies, and convection, can locally alter the atmo-
brightness temperatures. Since these proles agpheric temperature and water vapor pro les from
highly variable in space and time, it is bene cialthe |arger-scale mean. Thus, we need to derive an
to utilize atmospheric reanalyses that assimilatgccurate characterization of these errors so fat
heterogeneous observing systems with a dynanigoperly constrains the retrieval. To achieve this, ap-
model to constrain the atmospheric state. Su@joximately 10,000 radiosonde observations, evenly
analyses provide a more accurate prior constraint
on the atmosphere than a static climatology. In this, . _

. ERRA-2 does not assimilate GMI, so performing GMI-
StUdyv we use the NASA Modern-Era RetrOSpeCtlvﬁased atmospheric and surface retrievals introduces new infor-
analysis for Research and Applications, Versiomation to the knowledge of the state.



IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 5

sampled throughout the year 2015, were subset
from the International Global Radiosonde Archive
(IGRA; [57]), Version 2. These were compared to
the MERRA-2 data interpolated to the radiosonde
location and used to derive the error covariance
matrix of MERRA-2 atmospheric temperature (T)
and water vapor (expressed in terms of relative
humidity — RH) at the 27 MERRA-2 pressure levels
50 hPa along with 3,. (Figure 1a). It should be
noted that, because these radiosonde observations
are also input to the MERRA-2 analysis, they do
not provide a fully independent assessment of the
analysis error. Ideally, non-assimilated observations
would be used to deriv8,, but to our knowledge,
such a comprehensive yet independent and globally
representative dataset does not exist.

The error covariance matrix shown in Figure la
was then used to derive the empirical orthogonal
functions (EOFs) of temperature and relative hu-
midity error, which are shown in Figures 1b-c.
These EOFs represent the correlated structure of
these errors and are retrieved (along with the ef-
fective emissivity vector) in the optimal estimation
framework state vectaX . The number of retrieved
EOFs was determined by modeling the GMI bright-
ness temperatures (Tbs) for each radiosonde pro le
in the IGRA subset and its corresponding repre-

sentation as a sum of the MERRA-2 analysis a d'g. 1. a) Correlation matrix of MERRA-2 temperature and
midity prole departures from radiosonde observations. b)

_NEOF error EOFs. Because the vanance eXpla'nel‘imperature and c) relative humidity empirical orthogonal func-
in T-RH space does not necessarily correspond tions derived from the covariance matrix represented in (a).

the variance explained in Tb space, the EOFs were

reordered such that the maximum reduction in all-

channel Tb root-mean-square error was achievé@te an in ection point aNegor =5 and the error
with each sequential EOF. We also found, througis also less than or comparable to the NEDT at
trial and error, that giving RH twice the weight of Tmost channels. Thus we choose this value for the
(after normalizing by the standard deviation at eadietrieval. This process also provides input to the ob-
level) resulted in a more rapid reduction of the Tiservation + forward model error covariance matrix
rmse with fewer EOFs than equal T-RH weightsSy, which is the residual error covariance from the
and these weighted EOFs are what is shown Imon-retrieved EOFs plus the channel NEDT (Table
Figure 1b (this result is not altogether surprising) along the diagonal.

considering that the GMI 183 GHz channels are The forward model used to calculate the GMI
near a water vapor absorption line). The rmse fdarightness temperatures accounts for absorption by
each channel is shown as a functionMgor in O, N, and HO, but not Q (sensitivity tests
Figure 2. The rmse is highest for the high-frequencghowed< 0.1 K impact at the most-affected chan-
channels that are more sensitive to the atmospheniel, 166 GHz, when integrated over the GMI band-
state, and decrease with decreasing frequency. Wadth). The extinction coef cients were obtained
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C. Optimal Estimation Retrieval Information Con-
tent

Ignoring errors inTs, the degree to which the
estimated emissivity is determined by observations
(rather than the prior) can be assessed by examining
the posterior error covariance matrix

Sx =(Sa '+KTS, k) ! (3)
and averaging kernel
A =S,(KTS, K): (4)

Both of these terms are driven by the sensitiv-
ity of the observation brightness temperatures to
the emissivity in the Jacobian matrik. This is
strongly related to the optical depth of the atmo-
sphere, which at GMI frequencies under cloud-
and precipitation-free conditions corresponds to the
column water vapor (CWV). In the limiting case
of an optically thin atmosphere, and ignoring off-
diagonal terms (because we assume independent
emissivities at each channelj); are approximately
equal toTs, and thenSq;j becomeTSZSy;iil. This
term is much larger thalsa;“l, and thusS,.; can
be approximated a$,; T 2, and Aj are close
to one. In Figure 3,A;, the averaging kernel
for emissivities, is shown as a function of CWV.

Fig. 2. a) Residual Tb rms error as a function of number of erroYve note that at 89 GHz and below, the condition

EOFs used to represent the radiosonde pro les. b) Residual en@f Aji close to one is satis ed for most CWV
covariance matrix @l gor =5, plus channel NEDT from Table values, although the information content at 89 GHz

| along the diagonal. does decrease slightly over the terrestrial range of
CWV. At 166 GHz, the sensitivity of brightness
temperature to emissivity decreases rapidly with

, ) increasing CWYV, causing a corresponding decrease
from MonoRTM [58] version 5.3 and integratediy the averaging kernel diagonals and increase in

over t_he G MI spectral response function. Surfach which asymptotically approach the prior values
re ection is assumed to be specular, which shoultdsa) at about 40 mm of CWV.

not introduce signi cant error over snow-free sur-

faces [59] at the GMI incidence angle [60], [61], ] o

although it is important that this assumption bé)- DPR matching and Cloud/Precipitation Screen-
carried forward when using the retrieved emis9

sivities in other applications. The forward model The emissivity retrievals, which are performed
intentionally does not account for scattering byor each set of co-registered GMI brightness tem-
hydrometeors or emission from liquid cloud waterperatures, are nearest-neighbor mapped to the DPR
as these can dominate the measured Th, especiatordinate system, which consists of 49 cross-
at high frequencies, leaving little information aboutrack pixels per scan over a 245km swath and
the surface. approximately 7930 scans per orbit, with a nominal
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The matched GPM-CloudSat dataset [62] was
also used to verify this threshold for precipitation,
given the much greater sensitivity of CloudSat to
light precipitation while acknowledging that the
matchups are subject to some co-location error due
to timing differences and differences in the sensor
footprint, as well as spatial representativeness (the
CloudSat-GPM matchups are biased towards high
latitudes). Nevertheless we note generally good
agreement with the DPR detection as a function
of n for rainfall but a slightly lower threshold

Fig. 3._ Mean diagonal el_ements of the retrieved emissivitjgr falling snow, around 0:3. There is
averaging kernel as a function of column water vapor. also a substantial fraction (about 10%) of pixels
with < 0:3 that are still classied as snow

ground footprint of 5km per pixel [34]. Fields from certain or probable by CloudSat, but are not able

DPR Level 2 products are used to facilitate furthei© P€ detected by the n screening method. It is
screening and categorization of the emissivity- possible that these events are _shqllow enoug_h t_o be
database; these include the Ku and Ka data qualfj2sked by water vapor and/or liquid cloud emission
ags, GANAL skin temperature (for bias correction@20ve the scattering hydrometeors, or simply do
of emissivities for applications that use the GANALNOt consist of a large enough ice water path to
inputs), precipitation ag, o saturation ags, land produce a de_tectable scattering depression at the
surface type, snowlice cover ag, and vertically®M! frequencies.
integrated precipitation water content. In order to determine the appropriate threshold
Three datasets are used to remove cloudnh CLWP, we examine the impact of unaccounted
and precipitation-affected pixels from the matchedloud water on the retrieved emissivities in Figure
emissivity- ¢ dataset: the retrieval normalized error5. The error in retrieved emissivity depends on both
n, the DPR precipitation ag, and the MERRA- the true emissivity as well as the CLWP. The largest
2 CLWP. The retrieval normalized error is adaptedrrors are for the combination of low true emissivity
from (1) as and large CLWP. Small negative error can exist
at higher frequencies when the true emissivity is
NS ————; (5) close to one, because the cloud becomes opaque
Mobs + MNvar and emits at a lower temperature than the surface.
and large values indicate a large departure from CLWP as low as 0.02 kg n? can introduce
the background state and/or inability of the forwardigni cant error (relative to that from uncertainties
model to replicate the observations. The most conm the atmospheric pro le; see Figure 3a) at 89
mon reason for a large value ofy is hydrometeor and 166 GHz with emissivities 0.75, whereas a
scattering, which produces brightness temperatur€sWP of 0.1 kg m 2 is not problematic at lower
in the S2 channels that are too cold to be replicatdtequencies and/or emissivities0.85. The fraction
with any realistic combination of surface emissivityof observations with CLWP exceeding these thresh-
and water vapor. However, because the scatteriotfls is shown in Figure 4 as a function of;. It is
signal can be masked by emission from cloud liquidotable that a signi cant fraction of observations
water and water vapor, particularly for shallonexceed both thresholds aty values far below
clouds, the DPR precipitation ag is also used tdhose associated with precipitation, justifying the
screen out precipitation-affected pixels. Figure dse of a CLWP screen. It is also notable that
shows that the fraction of pixels with precipitationsteadily increases with the fraction of observations
detected by DPR increases rapidly wity  0:5. containing CLWP, suggesting that there is some
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Fig. 4. Probability of precipitation (from the DPR precipitation ag), probability of precipitation from CloudSat (pro les agged

as certain, probable, or possible in each precipitation phase), and mean MERRA-2 cloud liquid water path as a function of residual
normalized error. Data were compiled from all CloudSat-GPM matchups between March 2014 and December 2018 over land
surfaces.

information in the microwave radiances related tdo demonstrate the importance of the CLWP screen-
the presence of cloud liquid water over land amg step, the difference in average emissivity at 89
suggested by [63], [64], and [65]. With strongeiGHz H-pol between observations that have only
constraints on the surface emissivity our retrievdleen Itered to exclude precipitation (DPR precipi-
technique could conceivably retrieve CLWP ovetation agand p threshold), and those Itered with
some land surfaces. both precipitation and CLWP thresholds, is shown

Considering that that they threshold of detec- In Figure 6. Note the regions with a high percentage
tion for snow is slightly lower than for rain and thatof observations that do not past the cloud screening
low-emissivity surfaces are more prone to CLWPLest despite passing the precipitation-screening tests
induced error than high-emissivity surfaces, antt Figures 6a and 6b. When these regions are
balancing the desire for uncontaminated estimatégincident with a low background emissivity, such
with the need for suf cient samples to derive mean@S eastern Canada and Russia in January, Antarc-
and covariances on ne spatial scales, we chodl® sea ice, and coastal regions, the precipitation-
to set different thresholds based upon DPR snowleared emissivity is biased high relative to the
IceCover ag for compilation of uncontaminatedcloud- and precipitation-cleared scenes, consistent

emissivity estimates and, observations for the With the error analysis in Figure 5. When these
classi cation in section III: cloudy-but-not-precipitating regions are coincident

with high background emissivity, as is the case in
For snow-covered surfaces and sea ice: nfie equatorial rainforests, a small negative bias in
DPR-detected precipitation,y ~ 0:3, and the retrieved emissivity is noted, again consistent
CLWP  0:02kg m % with Figure 5.
For all other surfaces: no DPR-detected pre-
cipitation, 0:5, and CLWP 0:1 kg As a nal step in preparation for classi cation,
m 2. the DPR-resolution orbital data that pass the pre-
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Fig. 5. Error in retrieved emissivity (retrieved minus truth) due to the presence of liquid clouds as a function of true emissivity
and cloud liquid water path for the GMI window frequencies. These tests were performed for a pro le with 6 mm of column water
vapor to ensure that the 166 GHz brightness temperatures were sensitive to the surface.

cipitation and cloud screening tests are gridded [1l. SURFACE CLASSIFICATION

to the resolution of the 10 GHz GMI channels.

The emissivity retrievals are further screened b1¥a neously to the passive and active monthly mean

requinng a minimum d'|agonal vglue B 09for |_zflveraged products, gridded at 0.250.25 . A Ko-
each channel, in practice ensuring that the 166 GHz e o
honen [66] classi cation, called Self-Organization,

emissivities re ect the observations rather than the

L ) X .~ . IS selected. This algorithm is based on neural net-
a priori assumptions. Separate grids are maintained

works. The speci c feature of this classi cation is

for snow-covered and snow-free observations ?ﬁata neighborhood requirement is imposed on the
indicated by the DPR snowlceCover ag. The mean g d P

emissivity at each GMI channel at which it isclasses: it facilitates the phy§|cal interpretation of
) the classes as two consecutive classes have close
retrieved (11 channels) and the meas at each

DPR incidence angle, assuming symmetry betweé:ﬁaracterlstlcs in the data space. For the passive

the left and right sides of the scan (25 angle bins gglcrowaves, the emissivities at 10.65, 18.7, 36.64,

Ku band and 13 angle bins at Ka band) is calculatea d_ 89 GHz for both vertical and_ hor_lzontal polar-
ations are selected for the classi cation. We found

in each grid box. The covariances between the GM

channel emissivities, emissivities and both Ku antﬁ?at the 23.8 GHz channel is highly correlated to the

Ka o at each incidence angle, and between Ku aq08'7 GHz and would not bring additional informa-

i o jon. The emissivities at 166 GHz are missing for a
Ka at a given incidence angle are also calculated In

each grid box, but it is not possible to obtain thglgnl_cant part of the globe due to water vapor ob-
. . L Scuring the surface signal. As a consequence, they
covariance betweeny at different incidence angles

. \ﬁ'" not be considered, except for the classi cation
because DPR does not simultaneously measure the : .
. . over snow- and sea ice-covered areas where there is
same surface location at different angles.

usually less water vapor. For the active microwaves,
o at Ka and Ku bands are aggregated per incidence

An unsupervised classi cation is applied simul-
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Fig. 6. Fraction of retrievals that pass the DPR precipitation ag ampd precipitation-screening tests, but not the cloud liquid
water screening test for (a) January and (b) July. Mean cloud- and precipitation-cleared emissivity at 89H in (c) January and (d)
July. Difference between precipitation-cleared and cloud-cleared mean 89H emissivity in (e) January and (f) July.

angle ranges from 02 , 2 -4 and 6-8 for both However, the cluster center coordinates are derived
Ku and Ka, in addition to 1012 and 14-16 only once using the entire 12-month dataset, so
for Ku. With passive and active observations hawhe de nition of each cluster does not change from

ing different amplitudes of variability and differentmonth to month.

units, the inputs are normalized by their variance

over the entire dataset. Three separate classi catioBs The snow-free surface clusters

are performed: one for snow-free surfaces; another|, order to have enough clusters to represent the
for snow-covered surfaces; and another for S&ayiapility of soil and vegetation and at the same

ice. These categories are obtained from the DPffne to limit the number of clusters for the analysis,

snow/ice cover ag, which is derived from the Inter-5 nymper of 20 clusters is chosen. Note that there
active Multisensor Snow and Ice Mapping Systerge eight passive microwave variables as well as
(IMS) product [67]. For the classi cations, clustersgight active parameters (coming from the different

are identi ed that describe self-similar surfaces i_r?requencies and incidence angle bins) used for the
the multi-dimensional space spanning the passisss; cation, giving the same weight to the passive

and active microwave characteristics. Each clustghq active modes.

is characterized by the coordinates of its center Figure 7 presents the meaningful maps obtained
in this space. The classi cation is performed Ofjor the snow-free classi cation results for January

the monthly gridded means, allowing for a changgng july. They show well-known geographical fea-

in cluster at a given location in different monthsy;res and for example, some vegetation types clearly
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Fig. 7. Snow-free surface classi cation for January (top) and July (bottom).

stand out, such as the deserts or the rain forespml channels<0.7) and large differences between
Figure 8 represents the center of each cluster fpplarizations. The backscattering at nadir is high.
all passive and active parameters and a histogradomparing January and July, notice the change in
of cluster area averaged over the annual cycle. cluster over India to a more wetland-like cluster

during the monsoon. This is visible to a lesser extent

Clusters 1 to 4 are coastal areas and wetlang$er the Sahel and Orinoco in Venezuela.
with relatively low leaf area index. They include

the oodplains of the Amazon, the Mississippi, and Clusters 5 to 11 indicate increasing vegetation
the Congo rivers. These surfaces are characterizaéensity, with decreasing polarization difference in
by low emissivities (V-pol channels 0.8 and H- the emissivity and decreasing backscattering (as
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Fig. 8. Centre of each cluster for the snow-free surface classi cation for each passive and active microwave inputs (the emissivity
is unitless and the normalized surface backscatter cross-section is in dB).

also observed in [68]). Clusters 7 to 11 corresponof the covariance matrices for clusters 2, 6, 11,
to very densely vegetated areas with a very loand 19, representative respectively of coasts, wet-
polarization difference and low backscattering: thelands, dense vegetation and sand deserts. Figure
are representative of evergreen broadleaf forest a@idshows that there is a great variability of co-
mixed forest according to the IGBP land covewvariances between channels and between emissivity
[69]. Cluster 8 also includes some surfaces witand backscatter from a cluster to another. For the
little vegetation, but similar roughness charactecoastal cluster, channels of a similar footprint size
istics at the microwave wavelengths. Clusters 1@&.g., 10 GHz, 19-36 GHz) are strongly correlated,
to 14 correspond to decreasing vegetation, witsince the fraction of land within the footprint is
increasing emissivity polarization differences, higlthe driving factor for emissivity. The backscatter
emissivity at vertical polarization, and increasin@nd emissivity have a strong inverse correlation for
backscattering at low incidence angles. Sand desetite same reason, except at 166V where the land
correspond to clusters from 15 to 20, with low emisand ocean emissivity are similar. Wetlands (cluster
sivity at horizontal polarization and very high po-6) share similar behavior although the footprint
larization difference [51], [70]. Some coastal areasize is less important owing perhaps to more ho-
are also included in clusters 17 and 18, which amogeneous conditions within this cluster, and the
primarily focused on carbonate outcrops in Yemeamissivity-backscatter correlations are weaker than
and center Asia. Water and carbonate surfaces hdee the coastal cluster. Dense vegetation (cluster
very similar microwave radiometric signatures, agl) shows positive correlations among all chan-
already mentioned in different studies [70], [71]nels that decreases with increasing frequency dif-
and con rmed here even when adding GPM DPRerence (polarization is less important because the
backscatter observations in the analysis. polarization difference is minimal for this cluster).

. However, the H-pol channels are more strongl
Figure 9 shows examples of the absolute value P gy
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Fig. 9. Correlation matrix for emissivity and emissivity-backscatter relationships for selected snow-free surfaces representing coasts
(2), wetlands(6), dense vegetation (11), and sandy deserts (19).

correlated to backscatter than the V-pol channelhat alters the effective surface temperature, and the
and most prominently at frequencies similar to thaon-linearity in scattering ef ciency of sand grains
radar frequency, indicating that variations in surfaceith frequency (Raleigh scattering approximation).
roughness on the scale of the radar wavelengBackscatter-emissivity correlations are strongest at
are the dominant factor for emissivity-backscattethe vertically-polarized high frequencies (89 & 166
covariability in this cluster. Finally, over the sandyGHz), which have the shallowest penetration depth
deserts (cluster 19), emissivity correlation rapidlycompared to lower frequencies and horizontal po-
drops off with frequency difference. This is likelylarizations) and thus are more in uenced by sur-
due to the frequency-dependent penetration depfice characteristics than the subsurface temperature
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pro le. The correlations change sign as a functiomre dominant in the early season and at lower lati-
of incidence angle, indicating some competitiotudes, indicating that they likely represent relatively
between roughness and dielectric variability. shallow, ephemeral snowpacks.
Figure 12 presents the emissivity and emissivity-
backscatter correlation matrices for three clusters
C. The snow-covered surface clusters representing ice sheets (1), deep dry snowpacks

A classi cation of the snow-covered surfaces iQVer tundra (5), and seasonal snow over vegetated
also conducted. It only considers pixels agge(§urfaces (15). The 10-36 GHz emissivities over the
as snow by the DPR snowlceCover ag. For thdce sheets have a strong correlation among each

snow classi cation, the 166 GHz emissivities forother and are decoupled from the 89 and 166

both vertical and horizontal polarizations have beefiZ emissivities. The backscatter at Ku band is

added, as previous analyses showed that high ffé€gatively correlated to emissivity at 10-36 GHz,
quencies are very sensitive to snow presence afh increasing (decreasing) magnitude of the corre-
surface properties (e.g., [72], [73]). To emphal_ation with increasing incidence angle at horizontal
size more the inuence of higher frequencies ifvertical) polarization. Ka-band backscatter shows
the classi cation, weights are doubled in the 8% .similar pattern with the strongest correlations
GHz and 166 GHz bands. Figure 10 presents ttfgifted to higher frequencies (18-89 GHz). The deep
classi cation of the snow-covered surfaces in th€NOWPacks (cluster 5) present quite a different emis-
northern hemisphere, for three months (Nov., JarsiVity correlation matrix, with the 10 GHz chan-
and Mar.). Signi cant changes are observed in thg€lS decoupled from all higher frequencies. The
snow classi cation maps, illustrating the strongem|ss!V|ty—backscatter correlations are qw_te strong,
temporal variability of the snow responses througfRSPecially at Ka band, and at frequencies36
the season as already observed with passive Giz show a pattern with weak positive correlations
active observations by [74]. near nadir and strong negative correlations off nadir,
Figure 11 shows the centers of each cluster f&onsistent with increasingly specular re ecting sur-

each considered parameter. Clusters 1 and 2 repfa€e Wwith increasing snow depth. These patterns are

sent ice sheets. Greenland mostly belongs to the ?ilar for the shallow snow over vegetated surfaces
' ? uster 15), except that the 10 GHz channels are

clusters. Clusters 3 to 10 correspond to cold and d SRR
en more poorly correlated to the other emissivities

snow. The emissivities at high frequencies are ve 4 back idicati hat th .
low due to strong scattering in the snow where ackscatter, an indication that the snow is not

the low frequencies show rather high emissivitie®1te" deep enough to affect the 10 GHz emissivity.

which may be a consequence of the combination

of deep penetration depth and insulating propertiéd The sea ice clusters

of these snowpacks. Backscattering at all anglesAn additional classi cation is performed for sur-
tends to decrease with emissivity in these clusterfaces identied as sea or lake ice, that is, water
These clusters correspond to cold and dry snosurfaces that have ice cover as indicated by the
like tundra or taiga (Eastern Siberia and NortherDPR snowlceCover ag. The same inputs as for
America) [75]. Clusters 10 to 14 have increasinghe snow classi cation are used, but due to the
emissivities and low backscattering for all frequenfewer degrees of freedom for sea ice than for snow-
cies and angles. They are related to mountain fee and snow-covered land, only a number of 10
maritime snow, with high emissivities even at higlttlusters is chosen. Figure 13 shows maps of the
frequencies. These clusters correspond to mountailusters for the month of maximum sea ice extent in
and prairie snow in the Sturm classi cation. Foreach hemisphere (March and September), keeping
clusters 15 to 20, the emissivities again decreasemind the limit of the GPM orbit to 65 .

at the high frequencies and backscatter increasesFigure 14 shows the centers of each cluster for
especially near nadir. On the maps, these clusterach considered parameter. Cluster 1 represents the
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Fig. 10. Northern Hemisphere snow-covered surface classi cation for November (top), January (middle), and March (bottom).

Fig. 11. Center of each cluster for the snow-covered surface classi cation, for each passive (left) and active (center) inputs. The
spatial extent of each cluster is shown on the right panel.
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Fig. 12. Correlation matrix for emissivity and emissivity-backscatter relationships for selected snow-covered surfaces representing
ice sheets (1), deep dry snow (5), and shallow snow (15).

marginal ice zone, then there is a trend towardset snow cover.
increasing emissivity (especially at horizontal polar-
ization) and decreasing off-nadir backscatter from
clusters 2-7, representing increasing concentratiofi
of sea ice. These trends are reversed from clusters

10, but with weaker polarization differences. Thes

clusters are common during melting season, so pé?
haps they represent sea ice with melt ponds (whi
can contribute to high near-nadir backscatter) al

Figure 15 presents the correlation matrices for
Iéjsters 2 (low concentration sea ice), 7 (high con-
ntration sea ice), and 10 (sea ice with melt ponds).
ote that there is a high degree of similarity in the

pvariance matrices between emissivities, partially
e to the monthly classi cation grid which may not
{gpresent changing sea ice concentrations within a
month or anomalies within a particular year, thereby
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Fig. 13. Sea ice classi cation for the Northern Hemisphere in March (left) and Southern Hemisphere in September (right).

Fig. 14. Center of each cluster for the sea ice classi cation, for each passive (left) and active (center) inputs. The spatial extent of
each cluster is shown on the right panel.
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Fig. 15. Correlation matrix for emissivity and emissivity-backscatter relationships for selected sea ice clusters representing low
concentration (2), high concentration (7), and melt ponds (10).

allowing several classes of sea ice to contributeetween nadir backscatter and emissivity but this
to the covariance calculations. Nevertheless somskifts to a strong negative correlation at off-nadir
differences are worth noting, in particular, in clasangles. Much of this behavior is consistent with the
2 the 89V and 166V emissivities are decoupledffect of replacing a relatively low-emissivity, rough
from the other channels whereas in class 7 theveater surface with higher-emissivity sea ice, less
are strong correlations between nearby frequenciesugh (which acts to reduce off-nadir backscatter)
and class 10 displays strong anticorrelation betwesea ice, so the primary factor in these relationships
166V and the other H-pol channels. Like snowvis sea ice concentration.

classes 5 and 15, there is a weak positive correlation
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IV. APPLICATIONS and
In this section we document the use of the active- NXor
passive surface database and classication in thex(f; )= oret + ri Ei(s;f; ) PIA(KT);
GPM Level 2 precipitation retrieval algorithms (in i=1 )
particular, the combined radar-radiometer algorithm

; ‘aaivity i th
and radiometer-only Goddard Pro ling AIgoritthhere k is the emissivity in thek_ ensgmble
ember at frequencly and polarizatiorp, is the

GPROF). We also demonstrate the use of the daia o : :
) L S mean emissivity at latitude, longitudey, month
for investigations of the surface emissivity response o .
. t, frequencyf, and polarizatiorp, r is a random
to rain and snowfall. 2 !
normally-distributed number with a mean of zero
L s . and standard deviation of one, aRdis the magni-
A. Implementation in GPM Precipitation Retrlevaltude of the EOF for surface class; frequenc?t
Algorithms _ _ and polarizatiorp. A similar procedure is followed
The properties of the earth's surface are impokp derive  for each ensemble member except
tant for the combined algorithm in two ways: Thehat an incidence angle X dependency is added
normalized radqr backscatter cross—secup@,, i and the reference valueye; comes directly from
needed for deriving estimates of the path-integrat§e 2ADPR product, which uses a hybrid reference
attenuation (PIA) which is an observational inpuiethod to optimally combine spatial, temporal, and
to the ensemble Iter method at the core of thejual-frequency precipitation-free reference values.
combined algorithm retrieval [37], and the surfacen this way, for example, the corresponding increase
emissivity is necessary to simulate the brightness ; and decrease in emissivity that occurs with
temperatures that are used in the Iter as well. Sing@icreasing soil moisture over some surfaces may be
emissivity and re ectivity are inversely related bYrepIicated in the ensemble lter framework.
Kirchoff's law of thermal radiation, ando is @  The retrieved emissivities described in this
measure of a surface re eCt|V|ty at a partlculal’ anmanuscript have aISO been implemented Oper_
gle, it is advantageous to use relationships betwegfonally into the passive microwave precipita-
emissivity and o to further constrain the ensemblejon algorithm for the GPM constellation sensors.
than if no r9|at|0nSh|p between em|SS|V|ty an@ Th|s is done via the Goddard Pro ||ng A|gor|thm
was assumed. For water surfaces, a geophysiggJpROF), within the forward modeling component
model function is used for emissivity ang [76], creating the retrieval database from combined al-
whereas land and sea ice follow a statistical treadorithm output, as described in [35]. Speci cally,
ment. . . the retrieved emissivities are used in computing the
Over land and sea ice, surfaces are considereddgrface emission component of brightness tempera-
belong to distinct clusters (derived in Section lll}yre, which for land areas and clear skies form the

describing different levels of vegetation and snowy|k of the top of the atmosphere signal at the lower
cover, sea ice, wetlands, and coasts. In each gficrowave frequencies.

these clusters, an emissivity- covariance matrix

has been derived from precipitation-free observa- L . .
tions. The empirical orthogonal functions (EOFs) of Emissivity response to the previous rainfall
emissivity and ¢ are then used to create ensemblepsvents

of perturbed emissivityy values that follow the  Studies showed that the clear-sky emissivity, es-
observed correlation structure by assigning eadt¢cially at the low frequencies (e.g., 10 and 19

EOF a random normally distributed value: GHz) may be able to memorize the previous rainfall
N events information. For example, [38] noticed that
xeF the emissivity at 19H has a noticeable decrease after
«(fip)= (yitfip)+ ri Ei(s; f;p); Y

previous one-day rainfall accumulation greater than
(6) "5 mm over the Southern Great Plains (SGP) site

i=1
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Fig. 16. First column: emissivity at H10, wet (rainfall occurs in previous one day) minus dry (no rainfall in previous one day)
conditions. The rainfall accumulation (R) in previous one day is separated into three categofes§® R> 10,R>10). Second
column: same as the rst column except for H19.

(36.6 N, 97.5W) in the United States. Figure 16western United States (Fig. 16c and Fig. 16f).
shows the emissivity response at 10H and 19H fbhis apparent emissivity drop due to the previous
the previous rainfall accumulation over the GPMainfall impact therefore provides a potential means
covered land area. Specically, we compute théo estimate the rainfall accumulation. In fact, [77]
emissivity differences at 0.25resolution between showed that the retrieved rainfall accumulation by
wet (rainfall occurs in previous one day) and drghe emissivity drop over Southern Great Plains
(no rainfall in previous one day) conditions. Foragrees reasonably well with the ground radar ob-
the wet condition, the previous one-day rainfall acservations. These results suggest that the emissivity
cumulation (indicated by R) is further grouped intalataset described in this paper, along with applying
three categories,<OR< 5, 5< R< 10, and B 10 mm. the emissivity retrieval to other microwave sensors,
The rainfall data is obtained from the Integratedould be used to estimate the rainfall accumulation
Multi-Satellite Retrievals for GPM (IMERG) nal over much of the GPM domain.

run product at the half-hour and 0.fesolution. Second, it is noticed that there exist small positive
First, it is noticed that emissivity decreases ovegmissivity responses to rainfall over several very

most of the land areas after rainfall events in thdensely vegetated regions (central Africa and Ama-
previous day, and the magnitude of the decreagen), and very arid areas (Sahara Desert, Arabian
corresponds to the rainfall amount, for both 10HPeninsula, and Taklamakan desert), which are more
and 19H. The emissivity drop is particularly evidenbbvious when previous one day rainfall4s5 mm
with rainfall accumulation greater than 10 mm ove(Fig. 16a, and Fig. 16d). The positive values mean
Sahel, Southern Africa, Middle East, Indian subthat, on average, the emissivity associated with
continent, northwest China, Australia continent, angdrevious 1-day rainfall is higher than the emissivity
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associated with no previous 1-day rainfall. This phe- Comparing the [1,10] and [10,100] kg rh
nomenon directly contradicts the common behavi@WE intervals (right panels of Figure 17, more
where rainfall causes emissivity to decrease. In arfttonounced responses are evident. Decreases in
regions, the penetration depth can be very largamissivity are evident at 18 GHz over prairies and
[52], and increases in moisture can decrease tbermant croplands; at 36-166 GHz they are evident
penetration depth. Depending on season and tiregerywhere at varying magnitudes. Near-nadir there
of the GPM overpass, this can result in an appareista decrease in backscatter over the tundra regions
increase in emissivity. of Siberia and Canada. This can be explained by the
reduction in Fresnel re ection from an air-dry snow
interface relative to the air-ground interface. Off-
C. Emissivity response to snowfall nadir, the volume scattering component dominates

The surface emissivity and backscatter responk&t]; and the backscatter response inversely mirrors
to snow accumulation is complex, depending ndhe emissivity response, particularly at Ka-band.
only on snow water equivalent (SWE), but also on
the density, grain size, liquid water content, and V. SUMMARY AND CONCLUSIONS
vertically layered structure [20], [22], [78]. For sim- This manuscript presents an microwave emissiv-
plicity, only SWE is considered in this analysis andty retrieval method developed for the GPM Mi-
is obtained from the MERRA2 reanalysis, whergrowave Imager and applicable to any microwave
surface snow properties are driven by precipitatiogensor. It is applied to ve years of GMI obser-
and atmosphere via a three-layer snow model [79}ations over snow-free and snow-covered land and
While this introduces model error (because SWEsea ice. The emissivities are co-located with DPR
sensitive observations are not directly assimilatedurface backscatter measurements and screened for
relative to direct SWE site measurements or morgouds and precipitation. The resulting database is
sophisticed regional datasets (e.g., SNODAS [80]jsed to provide an active-passive microwave char-
over large areas, over multiple seasonal cycles atterization of surfaces within the GPM orbit for
GPM data it should be capable of illustrating genprecipitation retrieval algorithms and other applica-
eral trends. tions.

Using the 5-year, 0.25gridded GMI emissivity-  The emissivity retrieval method is novel in that
DPR backscatter database, we examine the chartbe full emissivity vector is retrieved from 10-166
in emissivity and backscatter between observatiofdHz using optimal estimation, and only weak a
associated with different levels of SWE in Fig-priori constraints are placed on individual channels
ure 17. The emissivity and backscatter responsdth no assumed covariance. While appropriate for
varies depending on the underlying topography ardear-sky radiative transfer, these assumptions can
vegetation. Croplands, such as the northern grdatd to contamination of retrieved emissivities with
plains of North America and the central Asiarcloud and precipitation artifacts which has plagued
steppe, which tend to have little vegetation duringrevious studies [38]. Because GMI includes wa-
the winter, show the strongest response (decreasden vapor sounding channels, retrieval of the at-
emissivity) to low levels of SWE< 10 kg m ) mospheric state can be performed simultaneously
at 89 and 166 GHz. Some backscatter differencesth the surface. Using the MERRA2 reanalyis
are also evident: near nadir, backscatter tends @which does not assimilate GMI observations) as
decrease over boreal forests, whereas off-nadir, thifee a priori atmospheric state and knowledge of
reduction is limited to the Ob river basin in Westerrthe error strucutre of the MERRA2 atmospheric
Siberia. Here, the changes with respect to SWE, estate variables, we are able to effectively screen
pecially at low frequencies, might be con ated withfor cloud- and precipitation-affected emissivity re-
the surface signature of typical springtime oodingrievals. Comparisons with co-located CloudSat
that is common in poleward-draining watersheds.data show that this GMI-based screen is able to
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Fig. 17. Difference in emissivity at the horizontally polarized GMI channels and backscatter at Ku and Ka bands bet&een 0
6 -8 incidence angles when MERRA2 SWE increases flomSWE 1kg m 2 to 1 <SWE 10 kg m 2 (left) and from
1<SWE 10kgm 2to 10<SWE 100kg m 2 (right).

detect precipitation that DPR does not; howeveprecipitation retrieval algorithms. The combined al-
about 10% of precipitation occurrence from Cloudgorithm uses the emissivity-backscatter covariance
Sat (mainly light snow) is still undetectable by GMI,matrix for each class as a statistical model for the
either because it produces too weak of a scatterisgrface in its ensemble Iter-based retrieval, while
depression or is shallow enough to be masked ltlge passive algorithm showed improved agreement
emission from water vapor and/or liquid clouds. between observed and simulated database bright-

The Kohonen classi cation technique was aprness temperatures when the retrieved emissivities
plied to monthly 0.25 gridded mean emissivi- described in our study are used in the database
ties and backscatter distinctly for snow-free, snoweonstruction. Finally, we showcase potential appli-
covered, and sea ice surfaces in order to identifiations of our database to develop retrievals of ac-
self-similar surfaces within the bounds of the GPMumulated rain and snow using temporal differences
orbit based on both active and passive microwave emissivity and backscatter. Strong signals for
characteristics. In each case, the addition of actiymth exist over some surfaces; further development
backscatter data provided some distinction betwe®h methods to estimate these hydrological quanti-
land surface types with similar emissivities; for exties from multi-satellite emissivity and backscatter
ample, coasts and carbonate outcrops. Snow and se@asurements appears to be a promising avenue of
ice surfaces show clear seasonal cycles representfoture work.
the asymmetric increase in dry snow/ice coverage
and reduction via melting in the spring. ACKNOWLEDGMENT
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