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Abstract—A microwave emissivity retrieval is ap-
plied to �ve years of Global Precipitation Mea-
surement (GPM) Microwave Imager (GMI) obser-
vations over land and sea ice. The emissivities
are co-located with GPMs Dual-frequency Precipita-
tion Radar (DPR) surface backscatter measurements
in clear-sky conditions. The emissivity-backscatter
database is used to characterize surfaces within the
GPM orbit for precipitation retrieval algorithms and
other applications.

The full 10-166 GHz emissivity vector is retrieved
using optimal estimation. Since GMI includes water
vapor sounding channels, retrieval of the atmospheric
and surface state are performed simultaneously. Using
the MERRA2 reanalysis as the a priori atmospheric
state and with proper characterization of its error,
we are able to effectively screen for cloud- and
precipitation-affected emissivities. Comparisons with
co-located CloudSat data show that this GMI-based
screen is able to detect precipitation that DPR alone
does not; however, about 10% of precipitation occur-
rence from CloudSat is still undetected by GMI.

The unsupervised Kohonen classi�cation technique
was then applied to multi-year monthly 0.25� gridded
mean retrieved emissivities and backscatter distinctly
for snow-free, snow-covered, and sea ice surfaces in
order to classify surfaces based on both active and pas-
sive microwave characteristics. The classes correspond
to vegetation coverage and type, inundation zones, soil
composition, and terrain roughness. Snow and sea ice
surfaces show clear seasonal cycles representing the
increase in snow and ice spatial extent and reduction
in the spring. Applications toward GPM precipitation
retrieval algorithms and sensitivity to accumulated
rain and snowfall are also explored.

I. I NTRODUCTION
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T HE widespread use of microwave radiome-
try to retrieve precipitation globally [1]–[3],

and assimilation into numerical weather prediction
models [4]–[7] including their land surface model
components [8]–[11], require the ability to accu-
rately represent the surface emissivity across the
microwave spectrum (i.e., 10–180 GHz for precip-
itation applications). Likewise, accurate representa-
tion of both the active and passive surface signal
is critical for spaceborne estimates of precipitation
[12]–[14] and has become important for retrievals of
surface properties, such as vegetation water content
[15], soil moisture [16], and inundated area fraction
[17].

In order to represent microwave surface charac-
teristics for these wide-ranging applications, fully
physical forward models, semi-empirical geophys-
ical model functions, and statistical representa-
tions may be employed. Fully physical forward
models calculate the emission and backscatter at
the surface-atmosphere boundary given the vertical
pro�les of properties at play (e.g., temperature,
dielectric constant, roughness spectrum, and scat-
tering properties from vegetation or snow grains).
Examples of such models include the Commu-
nity Radiative Transfer Model Microwave Emis-
sivity Model (CRTM-MEM [18]), Land Surface
Microwave Emission Model (LSMEM [19]), Mi-
crowave Emission Model for Layered Snowpacks
(MEMLS [20]), Dense Media Radiative Transfer -
Multi-Layer (DMRT-ML [21]) and the recent model
framework for Snow Microwave Radiative Transfer
(SMRT [22]). While these models contribute to
our enhanced understanding of the sensitivity of
emissivity to physical properties, the extensive input
parameter set is generally underdetermined with
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respect to observations [23]–[25], and particular
models may not be able to represent all surfaces
[18]. Semi-empirical approaches, sometimes called
geophysical model functions, seek to relate (via re-
gression or other statistical methods) a subset of sur-
face properties (e.g., soil moisture, leaf area index,
snow water equivalent) to the emissivity/backscatter
spectrum, and can be derived from combinations
of observations and physical forward models [26]–
[29]. The fully statistical approaches do not seek
to represent the surface emissivity or backscatter
in terms of physical parameters but instead use
observations to quantify the relationships between
emissivities at various frequencies and incidence
angles as covariance matrices or principal compo-
nents [30], [31]. An example of such an approach
is the Tool to Estimate Land Surface Emissivities
at Microwave frequencies (TELSEM; [32]), which
uses a clustering approach to identify self-similar
surfaces (based on the derived means and covari-
ances) on spatial and temporal (monthly) grids. A
similar clustering approach based upon statistics
of the surface backscatter cross-section from the
TRMM Precipitation Radar (PR) was developed by
[33].

The precipitation retrieval algorithms for the
Global Precipitation Measurement (GPM) mission
[34] include passive microwave algorithms for a di-
verse collection of microwave sounders and imagers
[35], including the GPM Microwave Imager (GMI);
radar-only algorithms for GPM's Dual-frequency
Precipitation Radar (DPR) at Ku- and Ka-band
[36]; and an algorithm for combined DPR and
GMI-based retrievals [37]. For these algorithms, the
existing methods to estimate surface properties meet
some, but not all, algorithm needs [38]. The physi-
cal and semi-empirical approaches require detailed
land surface data that is not reliably available on
the global scale, and some fully-physical models
impose signi�cant computational burden for use in
routine retrievals with large satellite datasets. The
TELSEM classes are used to stratify databases for
the passive microwave retrievals of precipitation
[35], [39], but the actual emissivity atlases and
covariances are only used in forward modeling
step of the combined algorithm. Because TESLEM

was derived from Special Sensor Microwave/Imager
(SSM/I) observations from 19-85 GHz [40], [41],
it does not have a basis for the lowest (10.65
GHz) and highest (166-183 GHz) channels on GMI.
The DPR and combined algorithms currently use
internally-generated atlases of� 0 over land as a
temporal reference [42], but these suffer from poor
sampling at any given incidence angle (ranging
from 0 to 18� in 0.75� increments), yet �ne-
resolution grids (ideally, approaching the radar res-
olution of 5 km) are desirable for this reference
method to account for small-scale heterogeneity of
the land surface [43].

In order to provide a basis for a statistical joint
active-passive surface characterization for the GPM
combined precipitation algorithm, as well as to take
advantage of the superior resolution, calibration,
and frequency range of GMI compared to SSMI, we
have generated a database of co-located retrieved
land surface emissivity and measured backscatter
cross-section (� 0) at Ku and Ka bands derived
from GPM GMI and DPR observations. While
the immediate application of this database is im-
proved precipitation retrievals, it is envisioned that
the unique, extensive dataset may motivate further
study and evaluation of semi-empirical and fully
physical microwave surface models and surface
property retrievals. The details of the emissivity re-
trieval and database construction, including deriva-
tion and analysis of the surface-atmosphere state
and observation error covariances matrices, which
are required for robust estimation of the surface
emissivity, are described in section II. An unsuper-
vised classi�cation method is applied in section III.
A few examples of applications of this database and
classi�cation, including implementation in the GPM
precipitation algorithms, are given in section IV. A
summary description of the database and classi�-
cation �ndings, along with concluding remarks, are
given in section V.

II. EMISSIVITY RETRIEVAL

The retrieval of the land surface emissivity
from GMI observations is described in this sec-
tion, beginning with datasets used, retrieval as-
sumptions, and forward model components, fol-
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lowed by a description of the process for selecting
cloud- and precipitation-free observations. From
these retrievals, the active-passive surface emissivity
and backscatter database is constructed from GPM
swath data to be used for surface classi�cation and
other applications.

A. GMI Observations

The observations used to retrieve emissivity are
the calibrated, co-registered brightness temperatures
from GMI (Level 1C-R). The calibration process
is described by [44], who consider the calibration
accuracy to be within 0.25 K at all channels. As
such, it can be claimed that GMI is the most
well-calibrated microwave imager presently making
Earth observations and is accordingly used as a
reference to intercalibrate other earth-viewing mi-
crowave imagers [45].

The feedhorns on GMI are arranged in two rows,
at approximately 48.45� off-nadir angle from 10-89
GHz (scan line S1) and 45.28� at 166 and both 183
GHz channels (S2) [46]. As a consequence, the S1
and S2 scan lines trace out arcs of differing radii on
the Earth's surface, which intersect at some azimuth
angles but can be offset by as much as half of the
inter-scan line spacing, which is approximately 13
km from a nominal altitude of 407 km and 32 rpm
re�ector rotation rate. The resulting 6.5 km offset
is larger than the effective �eld of view (EFOV)
at frequencies� 89 GHz (Table I). Therefore, the
swath is under-sampled at these frequencies and
the S1 and S2 channels do not necessarily sam-
ple the same volume. Nevertheless, for emissivity
estimation we use the Level 1C-R product which
maps the S2 channels to the nearest-neighbor S1
position, allowing co-registered GMI observations
to be treated independently, as is the current practice
for the GMI rainfall products [35]. This practice
effectively assumes that the scene is homogeneous
on the scale of the largest footprint (10 GHz). While
we could (de)convolve the brightness temperatures
so that they are matched on a common footprint
before the retrieval, this is only possible at frequen-
cies � 36 GHz [47]. Furthermore, for analysis and
classi�cation the emissivities are gridded at 0.25�

which is close to the 10 GHz footprint.

B. Retrieval method

The retrieval itself is an implementation of the
optimal estimation method [48], which is com-
monly used for atmospheric sounding either as a
pre-processor for data assimilation [6] or a stan-
dalone geophysical parameter retrievals [49], [50].
The retrieval is performed by minimizing the cost
function

� = ( Y sim (X ) � Y obs )T S� 1
y (Y sim (X ) � Y obs ) +

(X � X a )T S� 1
a (X � X a ) ;

(1)
where Y is the observation vector, consisting of
the co-located GMI brightness temperatures,Sy is
the observation and forward model error covariance
matrix, X is the retrieval geophysical parameter
vector, which is constrained by its priorX a and its
error covariance matrixSa . The retrieval outcome
depends strongly on the choice of parameters to
include in X and the tightness of the constraints
implied by Sy and Sa . Since we are interested in
surface emissivity estimates under clear-sky con-
ditions, only the parameters that have a signi�-
cant (relative to channel NEDT) impact on GMI-
frequency brightness temperature under these con-
ditions are considered. These parameters include the
surface (skin) temperature, atmospheric temperature
and water vapor pro�les, and the frequency- and
polarization-dependent emissivity vector. Surface
temperature is of primary importance for retrievals
over land covers that have a shallow microwave
penetration depth. However, terrestrial snowpacks
and some sandy deserts in contrast allow the mi-
crowave radiation to penetrate, especially at fre-
quencies� 89 GHz [51]. Therefore, the temperature
of the emitting media cannot be independently
retrieved from the emissivity vector, and is not
the same at all channels due to frequency- and
polarization-dependent penetration depths [52]. In
the retrieval we �x the surface temperature (Ts)
from ancillary data and acknowledge that we are, in
essence, retrieving an “effective emissivity” vector
(� e� ), where the upwelling radiance (R" ) at the
surface at frequencyf and polarizationp is

R" (f; p ) = Ts � ef f (f; p )+(1 � � ef f (f; p ))R#(f; p ):
(2)
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TABLE I
SUBSET OFGMI CHANNEL CHARACTERISTICS DESCRIBED BY[46]

Frequency Polarization EIA Beamwidth EFOV NEDT (V) NEDT (H)

(GHz) (deg) (deg) (km) (K) K

10.65 V/H 52.8 1.72 20x32 0.77 0.78

18.7 V/H 52.8 0.98 12x18 0.63 0.60

23.8 V 52.8 0.85 10x16 0.51

36.64 V/H 52.8 0.82 10x15 0.41 0.42

89 V/H 52.8 0.38 6x7 0.32 0.31

166 V/H 49.1 0.38 6x6 0.70 0.65

183� 3 V 49.1 0.37 6x5 0.56

183� 7 V 49.1 0.37 6x5 0.47

Although we know and expect that strong covari-
ances exist between emissivities at the GMI fre-
quencies and polarizations, these are left out ofSa

to avoid over-constraining the result. Indeed, since
one of the purposes of developing this database is
to discover these covariances (and their covariance
with DPR � 0), the diagonal elements ofSa rep-
resenting emissivity are purposely set to the large
(unitless) value of0:252 with zero covariance. The
prior values inX a are interpolated in angle and fre-
quency from the TELSEM atlas. The emissivity at
each GMI frequency and polarization is considered
as an independent retrieval parameter, except that
the 23.8V emissivity is bounded by the 18.7V and
36.64V estimates (although free to vary within these
bounds) and that the emissivity is assumed to not
vary between the 166V, 183� 7V, and 183� 3V. Un-
der most conditions, the high atmospheric opacity
at the 183 GHz channels precludes the independent
estimation of emissivity for those channels.

The atmospheric temperature and water vapor
pro�les also have a signi�cant impact on GMI
brightness temperatures. Since these pro�les are
highly variable in space and time, it is bene�cial
to utilize atmospheric reanalyses that assimilate
heterogeneous observing systems with a dynamic
model to constrain the atmospheric state. Such
analyses provide a more accurate prior constraint
on the atmosphere than a static climatology. In this
study, we use the NASA Modern-Era Retrospective
analysis for Research and Applications, Version

2 (MERRA-2; [53]). The atmospheric temperature
and water vapor pro�le is linearly interpolated in
time and space from the 3-hourly, 0.5� x0.625�

atmospheric analysis data [54] and the surface
(skin) temperature and 2-meter (T2m ) are interpo-
lated from the hourly, 0.5� x0.625� surface analysis
data [55]. Sensitivity tests showed that the GMI
brightness temperatures were not sensitive (at the
0.1 K level) to the atmosphere above 50 hPa, so
MERRA-2 pro�les were truncated at this level,
retaining 27 layers of the original 42. Additionally,
the MERRA-2 cloud liquid water path (CLWP),
while not used in the retrieval itself, is interpolated
to each GMI footprint and used as a input to the
screening process, intended to �lter out cloud- and
precipitation-contaminated retrievals and described
later in this section.

As with all reanalyses, MERRA-2 pro�les are not
without error, particularly with respect to mesoscale
features that are smaller than the reanalysis ef-
fective resolution [56] or in data-sparse regions1.
These features, which include jet streaks, cyclonic
eddies, and convection, can locally alter the atmo-
spheric temperature and water vapor pro�les from
the larger-scale mean. Thus, we need to derive an
accurate characterization of these errors so thatSa

properly constrains the retrieval. To achieve this, ap-
proximately 10,000 radiosonde observations, evenly

1MERRA-2 does not assimilate GMI, so performing GMI-
based atmospheric and surface retrievals introduces new infor-
mation to the knowledge of the state.
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sampled throughout the year 2015, were subset
from the International Global Radiosonde Archive
(IGRA; [57]), Version 2. These were compared to
the MERRA-2 data interpolated to the radiosonde
location and used to derive the error covariance
matrix of MERRA-2 atmospheric temperature (T)
and water vapor (expressed in terms of relative
humidity – RH) at the 27 MERRA-2 pressure levels
� 50 hPa along with T2m . (Figure 1a). It should be
noted that, because these radiosonde observations
are also input to the MERRA-2 analysis, they do
not provide a fully independent assessment of the
analysis error. Ideally, non-assimilated observations
would be used to deriveSa , but to our knowledge,
such a comprehensive yet independent and globally
representative dataset does not exist.

The error covariance matrix shown in Figure 1a
was then used to derive the empirical orthogonal
functions (EOFs) of temperature and relative hu-
midity error, which are shown in Figures 1b-c.
These EOFs represent the correlated structure of
these errors and are retrieved (along with the ef-
fective emissivity vector) in the optimal estimation
framework state vectorX . The number of retrieved
EOFs was determined by modeling the GMI bright-
ness temperatures (Tbs) for each radiosonde pro�le
in the IGRA subset and its corresponding repre-
sentation as a sum of the MERRA-2 analysis and
NEOF error EOFs. Because the variance explained
in T-RH space does not necessarily correspond to
the variance explained in Tb space, the EOFs were
reordered such that the maximum reduction in all-
channel Tb root-mean-square error was achieved
with each sequential EOF. We also found, through
trial and error, that giving RH twice the weight of T
(after normalizing by the standard deviation at each
level) resulted in a more rapid reduction of the Tb
rmse with fewer EOFs than equal T-RH weights,
and these weighted EOFs are what is shown in
Figure 1b (this result is not altogether surprising,
considering that the GMI 183 GHz channels are
near a water vapor absorption line). The rmse for
each channel is shown as a function ofNEOF in
Figure 2. The rmse is highest for the high-frequency
channels that are more sensitive to the atmospheric
state, and decrease with decreasing frequency. We

Fig. 1. a) Correlation matrix of MERRA-2 temperature and
humidity pro�le departures from radiosonde observations. b)
Temperature and c) relative humidity empirical orthogonal func-
tions derived from the covariance matrix represented in (a).

note an in�ection point atNEOF = 5 and the error
is also less than or comparable to the NEDT at
most channels. Thus we choose this value for the
retrieval. This process also provides input to the ob-
servation + forward model error covariance matrix
Sy , which is the residual error covariance from the
non-retrieved EOFs plus the channel NEDT (Table
I) along the diagonal.

The forward model used to calculate the GMI
brightness temperatures accounts for absorption by
O2, N2, and H2O, but not O3 (sensitivity tests
showed< 0.1 K impact at the most-affected chan-
nel, 166 GHz, when integrated over the GMI band-
width). The extinction coef�cients were obtained
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Fig. 2. a) Residual Tb rms error as a function of number of error
EOFs used to represent the radiosonde pro�les. b) Residual error
covariance matrix atNEOF = 5 , plus channel NEDT from Table
I along the diagonal.

from MonoRTM [58] version 5.3 and integrated
over the GMI spectral response function. Surface
re�ection is assumed to be specular, which should
not introduce signi�cant error over snow-free sur-
faces [59] at the GMI incidence angle [60], [61],
although it is important that this assumption be
carried forward when using the retrieved emis-
sivities in other applications. The forward model
intentionally does not account for scattering by
hydrometeors or emission from liquid cloud water,
as these can dominate the measured Tb, especially
at high frequencies, leaving little information about
the surface.

C. Optimal Estimation Retrieval Information Con-
tent

Ignoring errors inTs, the degree to which the
estimated emissivity is determined by observations
(rather than the prior) can be assessed by examining
the posterior error covariance matrix

Sx = ( Sa
� 1 + K T Sy

� 1K ) � 1 (3)

and averaging kernel

A = Sx (K T Sy
� 1K ): (4)

Both of these terms are driven by the sensitiv-
ity of the observation brightness temperatures to
the emissivity in the Jacobian matrixK . This is
strongly related to the optical depth of the atmo-
sphere, which at GMI frequencies under cloud-
and precipitation-free conditions corresponds to the
column water vapor (CWV). In the limiting case
of an optically thin atmosphere, and ignoring off-
diagonal terms (because we assume independent
emissivities at each channel),K ii are approximately
equal toTs, and thenSx;ii becomeT2

s S� 1
y ;ii . This

term is much larger thanS� 1
a;ii , and thusSx;ii can

be approximated asSy;ii T � 2
s , and A ii are close

to one. In Figure 3,A ii , the averaging kernel
for emissivities, is shown as a function of CWV.
We note that at 89 GHz and below, the condition
of A ii close to one is satis�ed for most CWV
values, although the information content at 89 GHz
does decrease slightly over the terrestrial range of
CWV. At 166 GHz, the sensitivity of brightness
temperature to emissivity decreases rapidly with
increasing CWV, causing a corresponding decrease
in the averaging kernel diagonals and increase in
Sx which asymptotically approach the prior values
(Sa ) at about 40 mm of CWV.

D. DPR matching and Cloud/Precipitation Screen-
ing

The emissivity retrievals, which are performed
for each set of co-registered GMI brightness tem-
peratures, are nearest-neighbor mapped to the DPR
coordinate system, which consists of 49 cross-
track pixels per scan over a 245km swath and
approximately 7930 scans per orbit, with a nominal
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Fig. 3. Mean diagonal elements of the retrieved emissivity
averaging kernel as a function of column water vapor.

ground footprint of 5km per pixel [34]. Fields from
DPR Level 2 products are used to facilitate further
screening and categorization of the emissivity-� 0

database; these include the Ku and Ka data quality
�ags, GANAL skin temperature (for bias correction
of emissivities for applications that use the GANAL
inputs), precipitation �ag,� 0 saturation �ags, land
surface type, snow/ice cover �ag, and vertically
integrated precipitation water content.

Three datasets are used to remove cloud-
and precipitation-affected pixels from the matched
emissivity-� 0 dataset: the retrieval normalized error,
� N , the DPR precipitation �ag, and the MERRA-
2 CLWP. The retrieval normalized error is adapted
from (1) as

� N =
�

nobs + nvar
; (5)

and large values indicate a large departure from
the background state and/or inability of the forward
model to replicate the observations. The most com-
mon reason for a large value of� N is hydrometeor
scattering, which produces brightness temperatures
in the S2 channels that are too cold to be replicated
with any realistic combination of surface emissivity
and water vapor. However, because the scattering
signal can be masked by emission from cloud liquid
water and water vapor, particularly for shallow
clouds, the DPR precipitation �ag is also used to
screen out precipitation-affected pixels. Figure 4
shows that the fraction of pixels with precipitation
detected by DPR increases rapidly with� N � 0:5.

The matched GPM-CloudSat dataset [62] was
also used to verify this threshold for precipitation,
given the much greater sensitivity of CloudSat to
light precipitation while acknowledging that the
matchups are subject to some co-location error due
to timing differences and differences in the sensor
footprint, as well as spatial representativeness (the
CloudSat-GPM matchups are biased towards high
latitudes). Nevertheless we note generally good
agreement with the DPR detection as a function
of � N for rainfall but a slightly lower threshold
for falling snow, around� N � 0:3. There is
also a substantial fraction (about 10%) of pixels
with � N < 0:3 that are still classi�ed as snow
certain or probable by CloudSat, but are not able
to be detected by the� N screening method. It is
possible that these events are shallow enough to be
masked by water vapor and/or liquid cloud emission
above the scattering hydrometeors, or simply do
not consist of a large enough ice water path to
produce a detectable scattering depression at the
GMI frequencies.

In order to determine the appropriate threshold
on CLWP, we examine the impact of unaccounted
cloud water on the retrieved emissivities in Figure
5. The error in retrieved emissivity depends on both
the true emissivity as well as the CLWP. The largest
errors are for the combination of low true emissivity
and large CLWP. Small negative error can exist
at higher frequencies when the true emissivity is
close to one, because the cloud becomes opaque
and emits at a lower temperature than the surface.
A CLWP as low as 0.02 kg m� 2 can introduce
signi�cant error (relative to that from uncertainties
in the atmospheric pro�le; see Figure 3a) at 89
and 166 GHz with emissivities< 0.75, whereas a
CLWP of 0.1 kg m� 2 is not problematic at lower
frequencies and/or emissivities> 0.85. The fraction
of observations with CLWP exceeding these thresh-
olds is shown in Figure 4 as a function of� N . It is
notable that a signi�cant fraction of observations
exceed both thresholds at� N values far below
those associated with precipitation, justifying the
use of a CLWP screen. It is also notable that� N

steadily increases with the fraction of observations
containing CLWP, suggesting that there is some
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Fig. 4. Probability of precipitation (from the DPR precipitation �ag), probability of precipitation from CloudSat (pro�les �agged
as certain, probable, or possible in each precipitation phase), and mean MERRA-2 cloud liquid water path as a function of residual
normalized error. Data were compiled from all CloudSat-GPM matchups between March 2014 and December 2018 over land
surfaces.

information in the microwave radiances related to
the presence of cloud liquid water over land as
suggested by [63], [64], and [65]. With stronger
constraints on the surface emissivity our retrieval
technique could conceivably retrieve CLWP over
some land surfaces.

Considering that that the� N threshold of detec-
tion for snow is slightly lower than for rain and that
low-emissivity surfaces are more prone to CLWP-
induced error than high-emissivity surfaces, and
balancing the desire for uncontaminated estimates
with the need for suf�cient samples to derive means
and covariances on �ne spatial scales, we chose
to set different thresholds based upon DPR snow-
IceCover �ag for compilation of uncontaminated
emissivity estimates and� 0 observations for the
classi�cation in section III:

� For snow-covered surfaces and sea ice: no
DPR-detected precipitation,� N � 0:3, and
CLWP � 0:02 kg m� 2;

� For all other surfaces: no DPR-detected pre-
cipitation, � N � 0:5, and CLWP� 0:1 kg
m� 2.

To demonstrate the importance of the CLWP screen-
ing step, the difference in average emissivity at 89
GHz H-pol between observations that have only
been �ltered to exclude precipitation (DPR precipi-
tation �ag and� N threshold), and those �ltered with
both precipitation and CLWP thresholds, is shown
in Figure 6. Note the regions with a high percentage
of observations that do not past the cloud screening
test despite passing the precipitation-screening tests
in Figures 6a and 6b. When these regions are
coincident with a low background emissivity, such
as eastern Canada and Russia in January, Antarc-
tic sea ice, and coastal regions, the precipitation-
cleared emissivity is biased high relative to the
cloud- and precipitation-cleared scenes, consistent
with the error analysis in Figure 5. When these
cloudy-but-not-precipitating regions are coincident
with high background emissivity, as is the case in
the equatorial rainforests, a small negative bias in
the retrieved emissivity is noted, again consistent
with Figure 5.

As a �nal step in preparation for classi�cation,
the DPR-resolution orbital data that pass the pre-
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Fig. 5. Error in retrieved emissivity (retrieved minus truth) due to the presence of liquid clouds as a function of true emissivity
and cloud liquid water path for the GMI window frequencies. These tests were performed for a pro�le with 6 mm of column water
vapor to ensure that the 166 GHz brightness temperatures were sensitive to the surface.

cipitation and cloud screening tests are gridded
monthly at 0.25� resolution, roughly corresponding
to the resolution of the 10 GHz GMI channels.
The emissivity retrievals are further screened by
requiring a minimum diagonal value ofA � 0:9 for
each channel, in practice ensuring that the 166 GHz
emissivities re�ect the observations rather than the
a priori assumptions. Separate grids are maintained
for snow-covered and snow-free observations as
indicated by the DPR snowIceCover �ag. The mean
emissivity at each GMI channel at which it is
retrieved (11 channels) and the mean� 0 at each
DPR incidence angle, assuming symmetry between
the left and right sides of the scan (25 angle bins at
Ku band and 13 angle bins at Ka band) is calculated
in each grid box. The covariances between the GMI
channel emissivities, emissivities and both Ku and
Ka � 0 at each incidence angle, and between Ku and
Ka at a given incidence angle are also calculated in
each grid box, but it is not possible to obtain the
covariance between� 0 at different incidence angles
because DPR does not simultaneously measure the
same surface location at different angles.

III. SURFACE CLASSIFICATION

A. The unsupervised classi�cation methodology

An unsupervised classi�cation is applied simul-
taneously to the passive and active monthly mean
averaged products, gridded at 0.25� � 0.25� . A Ko-
honen [66] classi�cation, called Self-Organization,
is selected. This algorithm is based on neural net-
works. The speci�c feature of this classi�cation is
that a neighborhood requirement is imposed on the
classes: it facilitates the physical interpretation of
the classes as two consecutive classes have close
characteristics in the data space. For the passive
microwaves, the emissivities at 10.65, 18.7, 36.64,
and 89 GHz for both vertical and horizontal polar-
izations are selected for the classi�cation. We found
that the 23.8 GHz channel is highly correlated to the
18.7 GHz and would not bring additional informa-
tion. The emissivities at 166 GHz are missing for a
signi�cant part of the globe due to water vapor ob-
scuring the surface signal. As a consequence, they
will not be considered, except for the classi�cation
over snow- and sea ice-covered areas where there is
usually less water vapor. For the active microwaves,
� 0 at Ka and Ku bands are aggregated per incidence
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Fig. 6. Fraction of retrievals that pass the DPR precipitation �ag and� N precipitation-screening tests, but not the cloud liquid
water screening test for (a) January and (b) July. Mean cloud- and precipitation-cleared emissivity at 89H in (c) January and (d)
July. Difference between precipitation-cleared and cloud-cleared mean 89H emissivity in (e) January and (f) July.

angle ranges from 0� -2� , 2� -4� and 6� -8� for both
Ku and Ka, in addition to 10� -12� and 14� -16�

for Ku. With passive and active observations hav-
ing different amplitudes of variability and different
units, the inputs are normalized by their variance
over the entire dataset. Three separate classi�cations
are performed: one for snow-free surfaces; another
for snow-covered surfaces; and another for sea
ice. These categories are obtained from the DPR
snow/ice cover �ag, which is derived from the Inter-
active Multisensor Snow and Ice Mapping System
(IMS) product [67]. For the classi�cations, clusters
are identi�ed that describe self-similar surfaces in
the multi-dimensional space spanning the passive
and active microwave characteristics. Each cluster
is characterized by the coordinates of its center
in this space. The classi�cation is performed on
the monthly gridded means, allowing for a change
in cluster at a given location in different months.

However, the cluster center coordinates are derived
only once using the entire 12-month dataset, so
the de�nition of each cluster does not change from
month to month.

B. The snow-free surface clusters

In order to have enough clusters to represent the
variability of soil and vegetation and at the same
time to limit the number of clusters for the analysis,
a number of 20 clusters is chosen. Note that there
are eight passive microwave variables as well as
eight active parameters (coming from the different
frequencies and incidence angle bins) used for the
classi�cation, giving the same weight to the passive
and active modes.

Figure 7 presents the meaningful maps obtained
for the snow-free classi�cation results for January
and July. They show well-known geographical fea-
tures and for example, some vegetation types clearly
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Fig. 7. Snow-free surface classi�cation for January (top) and July (bottom).

stand out, such as the deserts or the rain forests.
Figure 8 represents the center of each cluster for
all passive and active parameters and a histogram
of cluster area averaged over the annual cycle.

Clusters 1 to 4 are coastal areas and wetlands
with relatively low leaf area index. They include
the �oodplains of the Amazon, the Mississippi, and
the Congo rivers. These surfaces are characterized
by low emissivities (V-pol channels< 0.8 and H-

pol channels< 0.7) and large differences between
polarizations. The backscattering at nadir is high.
Comparing January and July, notice the change in
cluster over India to a more wetland-like cluster
during the monsoon. This is visible to a lesser extent
over the Sahel and Orinoco in Venezuela.

Clusters 5 to 11 indicate increasing vegetation
density, with decreasing polarization difference in
the emissivity and decreasing backscattering (as
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Fig. 8. Centre of each cluster for the snow-free surface classi�cation for each passive and active microwave inputs (the emissivity
is unitless and the normalized surface backscatter cross-section is in dB).

also observed in [68]). Clusters 7 to 11 correspond
to very densely vegetated areas with a very low
polarization difference and low backscattering: they
are representative of evergreen broadleaf forest and
mixed forest according to the IGBP land cover
[69]. Cluster 8 also includes some surfaces with
little vegetation, but similar roughness character-
istics at the microwave wavelengths. Clusters 12
to 14 correspond to decreasing vegetation, with
increasing emissivity polarization differences, high
emissivity at vertical polarization, and increasing
backscattering at low incidence angles. Sand deserts
correspond to clusters from 15 to 20, with low emis-
sivity at horizontal polarization and very high po-
larization difference [51], [70]. Some coastal areas
are also included in clusters 17 and 18, which are
primarily focused on carbonate outcrops in Yemen
and center Asia. Water and carbonate surfaces have
very similar microwave radiometric signatures, as
already mentioned in different studies [70], [71],
and con�rmed here even when adding GPM DPR
backscatter observations in the analysis.

Figure 9 shows examples of the absolute value

of the covariance matrices for clusters 2, 6, 11,
and 19, representative respectively of coasts, wet-
lands, dense vegetation and sand deserts. Figure
9 shows that there is a great variability of co-
variances between channels and between emissivity
and backscatter from a cluster to another. For the
coastal cluster, channels of a similar footprint size
(e.g., 10 GHz, 19-36 GHz) are strongly correlated,
since the fraction of land within the footprint is
the driving factor for emissivity. The backscatter
and emissivity have a strong inverse correlation for
the same reason, except at 166V where the land
and ocean emissivity are similar. Wetlands (cluster
6) share similar behavior although the footprint
size is less important owing perhaps to more ho-
mogeneous conditions within this cluster, and the
emissivity-backscatter correlations are weaker than
for the coastal cluster. Dense vegetation (cluster
11) shows positive correlations among all chan-
nels that decreases with increasing frequency dif-
ference (polarization is less important because the
polarization difference is minimal for this cluster).
However, the H-pol channels are more strongly
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Fig. 9. Correlation matrix for emissivity and emissivity-backscatter relationships for selected snow-free surfaces representing coasts
(2), wetlands(6), dense vegetation (11), and sandy deserts (19).

correlated to backscatter than the V-pol channels,
and most prominently at frequencies similar to the
radar frequency, indicating that variations in surface
roughness on the scale of the radar wavelength
are the dominant factor for emissivity-backscatter
covariability in this cluster. Finally, over the sandy
deserts (cluster 19), emissivity correlation rapidly
drops off with frequency difference. This is likely
due to the frequency-dependent penetration depth

that alters the effective surface temperature, and the
non-linearity in scattering ef�ciency of sand grains
with frequency (Raleigh scattering approximation).
Backscatter-emissivity correlations are strongest at
the vertically-polarized high frequencies (89 & 166
GHz), which have the shallowest penetration depth
(compared to lower frequencies and horizontal po-
larizations) and thus are more in�uenced by sur-
face characteristics than the subsurface temperature
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pro�le. The correlations change sign as a function
of incidence angle, indicating some competition
between roughness and dielectric variability.

C. The snow-covered surface clusters

A classi�cation of the snow-covered surfaces is
also conducted. It only considers pixels �agged
as snow by the DPR snowIceCover �ag. For the
snow classi�cation, the 166 GHz emissivities for
both vertical and horizontal polarizations have been
added, as previous analyses showed that high fre-
quencies are very sensitive to snow presence and
surface properties (e.g., [72], [73]). To empha-
size more the in�uence of higher frequencies in
the classi�cation, weights are doubled in the 89
GHz and 166 GHz bands. Figure 10 presents the
classi�cation of the snow-covered surfaces in the
northern hemisphere, for three months (Nov., Jan.,
and Mar.). Signi�cant changes are observed in the
snow classi�cation maps, illustrating the strong
temporal variability of the snow responses through
the season as already observed with passive and
active observations by [74].

Figure 11 shows the centers of each cluster for
each considered parameter. Clusters 1 and 2 repre-
sent ice sheets. Greenland mostly belongs to these
clusters. Clusters 3 to 10 correspond to cold and dry
snow. The emissivities at high frequencies are very
low due to strong scattering in the snow whereas
the low frequencies show rather high emissivities,
which may be a consequence of the combination
of deep penetration depth and insulating properties
of these snowpacks. Backscattering at all angles
tends to decrease with emissivity in these clusters.
These clusters correspond to cold and dry snow
like tundra or taiga (Eastern Siberia and Northern
America) [75]. Clusters 10 to 14 have increasing
emissivities and low backscattering for all frequen-
cies and angles. They are related to mountain or
maritime snow, with high emissivities even at high
frequencies. These clusters correspond to mountain
and prairie snow in the Sturm classi�cation. For
clusters 15 to 20, the emissivities again decrease
at the high frequencies and backscatter increases,
especially near nadir. On the maps, these clusters

are dominant in the early season and at lower lati-
tudes, indicating that they likely represent relatively
shallow, ephemeral snowpacks.

Figure 12 presents the emissivity and emissivity-
backscatter correlation matrices for three clusters
representing ice sheets (1), deep dry snowpacks
over tundra (5), and seasonal snow over vegetated
surfaces (15). The 10-36 GHz emissivities over the
ice sheets have a strong correlation among each
other and are decoupled from the 89 and 166
GHz emissivities. The backscatter at Ku band is
negatively correlated to emissivity at 10-36 GHz,
with increasing (decreasing) magnitude of the corre-
lation with increasing incidence angle at horizontal
(vertical) polarization. Ka-band backscatter shows
a similar pattern with the strongest correlations
shifted to higher frequencies (18-89 GHz). The deep
snowpacks (cluster 5) present quite a different emis-
sivity correlation matrix, with the 10 GHz chan-
nels decoupled from all higher frequencies. The
emissivity-backscatter correlations are quite strong,
especially at Ka band, and at frequencies� 36
GHz show a pattern with weak positive correlations
near nadir and strong negative correlations off nadir,
consistent with increasingly specular re�ecting sur-
face with increasing snow depth. These patterns are
similar for the shallow snow over vegetated surfaces
(cluster 15), except that the 10 GHz channels are
even more poorly correlated to the other emissivities
and backscatter, an indication that the snow is not
often deep enough to affect the 10 GHz emissivity.

D. The sea ice clusters

An additional classi�cation is performed for sur-
faces identi�ed as sea or lake ice, that is, water
surfaces that have ice cover as indicated by the
DPR snowIceCover �ag. The same inputs as for
the snow classi�cation are used, but due to the
fewer degrees of freedom for sea ice than for snow-
free and snow-covered land, only a number of 10
clusters is chosen. Figure 13 shows maps of the
clusters for the month of maximum sea ice extent in
each hemisphere (March and September), keeping
in mind the limit of the GPM orbit to� 65� .

Figure 14 shows the centers of each cluster for
each considered parameter. Cluster 1 represents the
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Fig. 10. Northern Hemisphere snow-covered surface classi�cation for November (top), January (middle), and March (bottom).

Fig. 11. Center of each cluster for the snow-covered surface classi�cation, for each passive (left) and active (center) inputs. The
spatial extent of each cluster is shown on the right panel.
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Fig. 12. Correlation matrix for emissivity and emissivity-backscatter relationships for selected snow-covered surfaces representing
ice sheets (1), deep dry snow (5), and shallow snow (15).

marginal ice zone, then there is a trend towards
increasing emissivity (especially at horizontal polar-
ization) and decreasing off-nadir backscatter from
clusters 2-7, representing increasing concentrations
of sea ice. These trends are reversed from clusters 8-
10, but with weaker polarization differences. These
clusters are common during melting season, so per-
haps they represent sea ice with melt ponds (which
can contribute to high near-nadir backscatter) and

wet snow cover.

Figure 15 presents the correlation matrices for
clusters 2 (low concentration sea ice), 7 (high con-
centration sea ice), and 10 (sea ice with melt ponds).
Note that there is a high degree of similarity in the
covariance matrices between emissivities, partially
due to the monthly classi�cation grid which may not
represent changing sea ice concentrations within a
month or anomalies within a particular year, thereby
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Fig. 13. Sea ice classi�cation for the Northern Hemisphere in March (left) and Southern Hemisphere in September (right).

Fig. 14. Center of each cluster for the sea ice classi�cation, for each passive (left) and active (center) inputs. The spatial extent of
each cluster is shown on the right panel.
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Fig. 15. Correlation matrix for emissivity and emissivity-backscatter relationships for selected sea ice clusters representing low
concentration (2), high concentration (7), and melt ponds (10).

allowing several classes of sea ice to contribute
to the covariance calculations. Nevertheless some
differences are worth noting, in particular, in class
2 the 89V and 166V emissivities are decoupled
from the other channels whereas in class 7 there
are strong correlations between nearby frequencies
and class 10 displays strong anticorrelation between
166V and the other H-pol channels. Like snow
classes 5 and 15, there is a weak positive correlation

between nadir backscatter and emissivity but this
shifts to a strong negative correlation at off-nadir
angles. Much of this behavior is consistent with the
effect of replacing a relatively low-emissivity, rough
water surface with higher-emissivity sea ice, less
rough (which acts to reduce off-nadir backscatter)
sea ice, so the primary factor in these relationships
is sea ice concentration.
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IV. A PPLICATIONS

In this section we document the use of the active-
passive surface database and classi�cation in the
GPM Level 2 precipitation retrieval algorithms (in
particular, the combined radar-radiometer algorithm
and radiometer-only Goddard Pro�ling Algorithm
GPROF). We also demonstrate the use of the data
for investigations of the surface emissivity response
to rain and snowfall.

A. Implementation in GPM Precipitation Retrieval
Algorithms

The properties of the earth's surface are impor-
tant for the combined algorithm in two ways: The
normalized radar backscatter cross-section,� 0, is
needed for deriving estimates of the path-integrated
attenuation (PIA) which is an observational input
to the ensemble �lter method at the core of the
combined algorithm retrieval [37], and the surface
emissivity is necessary to simulate the brightness
temperatures that are used in the �lter as well. Since
emissivity and re�ectivity are inversely related by
Kirchoff's law of thermal radiation, and� 0 is a
measure of a surface re�ectivity at a particular an-
gle, it is advantageous to use relationships between
emissivity and� 0 to further constrain the ensemble
than if no relationship between emissivity and� 0

was assumed. For water surfaces, a geophysical
model function is used for emissivity and� 0 [76],
whereas land and sea ice follow a statistical treat-
ment.

Over land and sea ice, surfaces are considered to
belong to distinct clusters (derived in Section III)
describing different levels of vegetation and snow
cover, sea ice, wetlands, and coasts. In each of
these clusters, an emissivity-� 0 covariance matrix
has been derived from precipitation-free observa-
tions. The empirical orthogonal functions (EOFs) of
emissivity and� 0 are then used to create ensembles
of perturbed emissivity-� 0 values that follow the
observed correlation structure by assigning each
EOF a random normally distributed value:

� k (f; p ) = �� (x; y; t; f; p ) +
N EOFX

i =1

r k;i E i (s; f; p );

(6)

and

� 0;k (f; � ) = � 0;ref +
N EOFX

i =1

r k;i E i (s; f; � )� P IA (k; f );

(7)
where � k is the emissivity in thekth ensemble
member at frequencyf and polarizationp, �� is the
mean emissivity at latitudex, longitudey, month
t, frequencyf , and polarizationp, r is a random
normally-distributed number with a mean of zero
and standard deviation of one, andE is the magni-
tude of the ith EOF for surface classs, frequencyf ,
and polarizationp. A similar procedure is followed
to derive � 0 for each ensemble member except
that an incidence angle (� ) dependency is added
and the reference value� 0;ref comes directly from
the 2ADPR product, which uses a hybrid reference
method to optimally combine spatial, temporal, and
dual-frequency precipitation-free reference values.
In this way, for example, the corresponding increase
in � 0 and decrease in emissivity that occurs with
increasing soil moisture over some surfaces may be
replicated in the ensemble �lter framework.

The retrieved emissivities described in this
manuscript have also been implemented oper-
ationally into the passive microwave precipita-
tion algorithm for the GPM constellation sensors.
This is done via the Goddard Pro�ling Algorithm
(GPROF), within the forward modeling component
creating the retrieval database from combined al-
gorithm output, as described in [35]. Speci�cally,
the retrieved emissivities are used in computing the
surface emission component of brightness tempera-
ture, which for land areas and clear skies form the
bulk of the top of the atmosphere signal at the lower
microwave frequencies.

B. Emissivity response to the previous rainfall
events

Studies showed that the clear-sky emissivity, es-
pecially at the low frequencies (e.g., 10 and 19
GHz) may be able to memorize the previous rainfall
events information. For example, [38] noticed that
the emissivity at 19H has a noticeable decrease after
previous one-day rainfall accumulation greater than
˜5 mm over the Southern Great Plains (SGP) site
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Fig. 16. First column: emissivity at H10, wet (rainfall occurs in previous one day) minus dry (no rainfall in previous one day)
conditions. The rainfall accumulation (R) in previous one day is separated into three categories (0> R> 5,5� R> 10,R> 10). Second
column: same as the �rst column except for H19.

(36.6� N, 97.5� W) in the United States. Figure 16
shows the emissivity response at 10H and 19H to
the previous rainfall accumulation over the GPM
covered land area. Speci�cally, we compute the
emissivity differences at 0.25� resolution between
wet (rainfall occurs in previous one day) and dry
(no rainfall in previous one day) conditions. For
the wet condition, the previous one-day rainfall ac-
cumulation (indicated by R) is further grouped into
three categories, 0< R< 5, 5< R< 10, and R> 10 mm.
The rainfall data is obtained from the Integrated
Multi-Satellite Retrievals for GPM (IMERG) �nal
run product at the half-hour and 0.1� resolution.

First, it is noticed that emissivity decreases over
most of the land areas after rainfall events in the
previous day, and the magnitude of the decrease
corresponds to the rainfall amount, for both 10H
and 19H. The emissivity drop is particularly evident
with rainfall accumulation greater than 10 mm over
Sahel, Southern Africa, Middle East, Indian sub-
continent, northwest China, Australia continent, and

western United States (Fig. 16c and Fig. 16f).
This apparent emissivity drop due to the previous
rainfall impact therefore provides a potential means
to estimate the rainfall accumulation. In fact, [77]
showed that the retrieved rainfall accumulation by
the emissivity drop over Southern Great Plains
agrees reasonably well with the ground radar ob-
servations. These results suggest that the emissivity
dataset described in this paper, along with applying
the emissivity retrieval to other microwave sensors,
could be used to estimate the rainfall accumulation
over much of the GPM domain.

Second, it is noticed that there exist small positive
emissivity responses to rainfall over several very
densely vegetated regions (central Africa and Ama-
zon), and very arid areas (Sahara Desert, Arabian
Peninsula, and Taklamakan desert), which are more
obvious when previous one day rainfall is< 5 mm
(Fig. 16a, and Fig. 16d). The positive values mean
that, on average, the emissivity associated with
previous 1-day rainfall is higher than the emissivity
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associated with no previous 1-day rainfall. This phe-
nomenon directly contradicts the common behavior
where rainfall causes emissivity to decrease. In arid
regions, the penetration depth can be very large
[52], and increases in moisture can decrease the
penetration depth. Depending on season and time
of the GPM overpass, this can result in an apparent
increase in emissivity.

C. Emissivity response to snowfall

The surface emissivity and backscatter response
to snow accumulation is complex, depending not
only on snow water equivalent (SWE), but also on
the density, grain size, liquid water content, and
vertically layered structure [20], [22], [78]. For sim-
plicity, only SWE is considered in this analysis and
is obtained from the MERRA2 reanalysis, where
surface snow properties are driven by precipitation
and atmosphere via a three-layer snow model [79].
While this introduces model error (because SWE-
sensitive observations are not directly assimilated)
relative to direct SWE site measurements or more
sophisticed regional datasets (e.g., SNODAS [80])
over large areas, over multiple seasonal cycles of
GPM data it should be capable of illustrating gen-
eral trends.

Using the 5-year, 0.25� gridded GMI emissivity-
DPR backscatter database, we examine the change
in emissivity and backscatter between observations
associated with different levels of SWE in Fig-
ure 17. The emissivity and backscatter response
varies depending on the underlying topography and
vegetation. Croplands, such as the northern great
plains of North America and the central Asian
steppe, which tend to have little vegetation during
the winter, show the strongest response (decrease in
emissivity) to low levels of SWE (< 10 kg m� 1)
at 89 and 166 GHz. Some backscatter differences
are also evident: near nadir, backscatter tends to
decrease over boreal forests, whereas off-nadir, this
reduction is limited to the Ob river basin in Western
Siberia. Here, the changes with respect to SWE, es-
pecially at low frequencies, might be con�ated with
the surface signature of typical springtime �ooding
that is common in poleward-draining watersheds.

Comparing the [1,10] and [10,100] kg m� 1

SWE intervals (right panels of Figure 17, more
pronounced responses are evident. Decreases in
emissivity are evident at 18 GHz over prairies and
dormant croplands; at 36-166 GHz they are evident
everywhere at varying magnitudes. Near-nadir there
is a decrease in backscatter over the tundra regions
of Siberia and Canada. This can be explained by the
reduction in Fresnel re�ection from an air-dry snow
interface relative to the air-ground interface. Off-
nadir, the volume scattering component dominates
[81], and the backscatter response inversely mirrors
the emissivity response, particularly at Ka-band.

V. SUMMARY AND CONCLUSIONS

This manuscript presents an microwave emissiv-
ity retrieval method developed for the GPM Mi-
crowave Imager and applicable to any microwave
sensor. It is applied to �ve years of GMI obser-
vations over snow-free and snow-covered land and
sea ice. The emissivities are co-located with DPR
surface backscatter measurements and screened for
clouds and precipitation. The resulting database is
used to provide an active-passive microwave char-
acterization of surfaces within the GPM orbit for
precipitation retrieval algorithms and other applica-
tions.

The emissivity retrieval method is novel in that
the full emissivity vector is retrieved from 10-166
GHz using optimal estimation, and only weak a
priori constraints are placed on individual channels
with no assumed covariance. While appropriate for
clear-sky radiative transfer, these assumptions can
lead to contamination of retrieved emissivities with
cloud and precipitation artifacts which has plagued
previous studies [38]. Because GMI includes wa-
ter vapor sounding channels, retrieval of the at-
mospheric state can be performed simultaneously
with the surface. Using the MERRA2 reanalyis
(which does not assimilate GMI observations) as
the a priori atmospheric state and knowledge of
the error strucutre of the MERRA2 atmospheric
state variables, we are able to effectively screen
for cloud- and precipitation-affected emissivity re-
trievals. Comparisons with co-located CloudSat
data show that this GMI-based screen is able to
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Fig. 17. Difference in emissivity at the horizontally polarized GMI channels and backscatter at Ku and Ka bands between 0� -2�

6� -8� incidence angles when MERRA2 SWE increases from0 < SWE� 1 kg m� 2 to 1 < SWE� 10 kg m� 2 (left) and from
1 < SWE� 10 kg m� 2 to 10 < SWE� 100 kg m� 2 (right).

detect precipitation that DPR does not; however,
about 10% of precipitation occurrence from Cloud-
Sat (mainly light snow) is still undetectable by GMI,
either because it produces too weak of a scattering
depression or is shallow enough to be masked by
emission from water vapor and/or liquid clouds.

The Kohonen classi�cation technique was ap-
plied to monthly 0.25� gridded mean emissivi-
ties and backscatter distinctly for snow-free, snow-
covered, and sea ice surfaces in order to identify
self-similar surfaces within the bounds of the GPM
orbit based on both active and passive microwave
characteristics. In each case, the addition of active
backscatter data provided some distinction between
land surface types with similar emissivities; for ex-
ample, coasts and carbonate outcrops. Snow and sea
ice surfaces show clear seasonal cycles representing
the asymmetric increase in dry snow/ice coverage
and reduction via melting in the spring.

The surface classes have direct application in the
GPM combined [37] and passive microwave [35]

precipitation retrieval algorithms. The combined al-
gorithm uses the emissivity-backscatter covariance
matrix for each class as a statistical model for the
surface in its ensemble �lter-based retrieval, while
the passive algorithm showed improved agreement
between observed and simulated database bright-
ness temperatures when the retrieved emissivities
described in our study are used in the database
construction. Finally, we showcase potential appli-
cations of our database to develop retrievals of ac-
cumulated rain and snow using temporal differences
in emissivity and backscatter. Strong signals for
both exist over some surfaces; further development
of methods to estimate these hydrological quanti-
ties from multi-satellite emissivity and backscatter
measurements appears to be a promising avenue of
future work.
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