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Abstract

In the sequel, we extend the Strichartz average approach, for the Laplacian on Sierpiński
Simplices, which uses average values of a function over basic sets, following the seminal work
of S. Kusuoka and X. Y. Zhou, rather than using pointwise ones as classically done in the litera-
ture. Until now, the implementation of the related finite volume method, in the case of Sierpiński
Simplices, had not been done.
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1 Introduction

Why should one focus on fractals as, for instance, Sierpiński simplices ? Let us go back to the
study of Rammal Rammal, the condensed matter physicist [RT83], who layed the emphasis upon the
fact that fractals could “fill the gap between well-ordered crystalline structures and those that are
disordered”. Then, the work of S. Havlin and D. Ben Avraham [HBA87] showed that diffusion in those
disordered systems did not follow classical laws, and thus required specifically designed tools.

In the years that followed, people began to take an interest in the applications of fractals, for
numerous reasons.To begin with, one may note that fractal structures, because of the very large size
of the length or surface they cover, show isolant or repellent properties. One may refer to the silicium
airgel, with a branched microstructure of the fractal type, which is a remarkable insulator, in so far as
it almost completely stops the propagation of heat. In chemistry, to go on, scientists started to design
dentritic polymers with an arborescent structure (as it is the case of arborol), where patterns such
as the Sierpiński Gasket, the Koch curve, or the Menger sponge, are respectively used as model for
linear polymer chains, or porous media [Liu86], [HBA87]. In recent years, particularly, one has seen
the design of polymers of fractal type (see, for instance, [NWM+06], or [SKM+85], where the authors
describe terpyridine-based architecture which simulates a first-generation Sierpiński triangle, as it can
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be observed on Figures 1 and 2).

Dentritic polymers are at stake in diffusion phenomena ; for instance, they are now more and more
used in pharmacology, since their very specific architecture enable one to control (prevent or facilitate)
drug delivery.

Figure 1 – Conceptual progression of a 1→ 3 dendritic branching pattern and its geometric relationship
to the classical Sierpiński triangle [SKM+85]. Figure reprinted with permission from the authors and
publisher.

Figure 2 – Terpyridine-based Sierpiński triangle [SKM+85]. Figure reprinted with permission from the
authors and publisher.

One thus require specifically fitted numerical tools. In our work [RD19], following the seminal
work of J. Kigami and R. S. Strichartz for Laplacians on Sierpiński simplices, we built the related
finite difference scheme as it had not been done before. For instance, if, in the case of he Sierpiński
gasket SG, K. Dalrymple, R. S. Strichartz, and J. Vinson [DSV99] gave an equivalent method for
the finite difference approximation, using the spectral shape of the solution (heat kernel), it involved
eigenvalues and eigenvectors, calling for an approximation of those quantities.

As for us, the novelty of our contribution layed in defining the discretization of the considered
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PDE’s (heat and wave equation), by taking into account the recursive construction of the matrix re-
lated to a sequence of graph Laplacians. We thus did not call for approximations of the eigenvalues.
This enabled us not only to compute the consistency error, but, also, to set stability conditions of
Courant-Friedrichs-Lewy type, and, then, to prove the convergence of the scheme.

The extension to the finite volume method (FVM) of those specifically devoted to fractals differen-
tial operators was a natural step, especially in the light of the paper of R. S. Strichartz [Str01], where
he shows how the symmetric Laplacian on SG can be defined entirely in terms of average values of
a function over basic sets, following the seminal work of S. Kusuoka and X. Y. Zhou [KZ92] for the
Sierpiński Carpet, rather than using pointwise ones as classically done in the literature. This approach
is interesting, in so far as the Sierpiński Carpet, contrary to Sierpiński simplices, is not what may be
called a post-critically finite fractal, i.e. a set which can become totally disconnected if we remove
a finite number of points, and therefore requires a non-pointwise valued approach, as in the case of
the FVM method. The advantages of dealing with the FVM method consist, first, of its physical
approach, which adapts to any geometry, and, in our case, to a fractal one, while being, in the same
time, a conservative approach, and the basis of several general numerical codes.

We hereafter present our results, in the case of Sierpiński simplices (Gasket and Tetrahedron), in
the case of the heat equation: we give, first, the numerical implementation, then, estimates of the
scheme error, and a comparison with the finite-difference method.

2 Framework of the study

Notation. We will denote by N the set of natural integers. and set:

N? = N \ {0} ·

In the following, given d ∈ N?, we place ourselves in the Euclidean space of dimension d−1, re-
ferred to a direct orthonormal frame. The usual Cartesian coordinates will be denoted by (x1, x2, . . . , xd−1).

2.1 Graph approximation

Notation. In the following, {f1, . . . , fd} is a set of contractive maps, of ratio
1

2
, where, for any integer i

of {1, . . . , d}, Pi ∈ Rd the fixed point of fi. For any X of Rd−1:

fi(X) =
1

2
(X + Pi)

Theorem 2.1. Gluing Lemma [BD85]

Given a complete metric space (E, δ), and a set {fi}16i6d of contractions on E with respect to the
metric δ, there exists a unique non-empty compact subset K ⊂ E such that:

K =

d⋃
i=1

fi (K) · (1)

The set K is said self-similar with respect to the family {f1, . . . , fd}, and called attractor of the
iterated function system (IFS) {f1, . . . , fd}.
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Corollary 2.2. There exists a unique subset SS ⊂ Rd−1 such that:

SS =
d⋃
i=1

fi(SS) (2)

which will be called the Sierpiński Simplex.

Definition 2.1. Boundary (or initial) graph

We will denote by V0 the ordered set of the (boundary) points {P1, . . . , Pd}, where Pi is the fixed point of
the contraction fi. The set V0, where, for any i of {2, . . . , d− 1}, the point Pi is respectively connected
to Pi−1 and Pi+1 by means of a line segment, constitutes a complete graph, that we will denote by SS0.

V0 is called the set of vertices of the graph SS0.

Definition 2.2. mth order graph, m ∈ N?

For any strictly positive integer m, we set:

Vm =

d⋃
i=1

fi (Vm−1) · (3)

The set of points Vm, where the points of the mth cells are linked in the same way as SS0, is an
oriented graph, which we will denote by SSm. Vm is called the set of vertices of the graph SSm.
By extension, we will write:

SSm =

d⋃
i=1

fi (SSm−1) · (4)

Property 2.3. For any natural integer m:

Vm ⊂ Vm+1 · (5)

Definition 2.3. Word

Given a strictly positive integer m, we will call number-letter any integerWi of {1, . . . , d}, and word
of length |W| = m, on the graph SSm, any set of number-letters of the form:

W = (W1, . . . ,Wm) · (6)

We set:

fW = fW1 ◦ . . . ◦ fWm · (7)
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Definition 2.4. Vertex

A point X of SS will be called vertex of the graph SS if there exists a natural integer m such that:

X ∈ Vm · (8)

Definition 2.5. Consecutive (or neighbor) vertices

Two points X and Y of SS will be called consecutive vertices, or neighbor vertices, if there exists
a natural integer m, and an integer j of {1, . . . , d}, such that:

X = (fi1 ◦ . . . ◦ fim) (Pj) and Y = (fi1 ◦ . . . ◦ fim) (Pj+1) {i1, . . . , im} ∈ {1, . . . , d}m (9)

or:

X = (fi1 ◦ . . . ◦ fim) (Pd) and Y = (fi1+1 ◦ . . . ◦ fim) (P1) · (10)

Definition 2.6. Edge relation

For any m ∈ N, two points X and Y of SSm will be called adjacent if and only if X and Y are
neighbors in SSm. We set:

X ∼
m
Y · (11)

This edge relation ensures the existence of a wordW = (W1, . . . ,Wm) of length m, such that X and Y
both belong to the iterate:

fW V0 = (fW1 ◦ . . . ◦ fWm) V0 · (12)

Given two points X and Y of SS, we will say that X and Y are adjacent if and only if there exists
a natural integer m such that:

X ∼
m
Y · (13)

Definition 2.7. Adresses

For any m ∈ N, and any vertex X of SSm, we will call address of the vertex X an expression of the
form

X = fW (Pi) (14)

where W is a word of length m, and i a natural integer in {1, . . . , d}.
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Proposition 2.4. For any m ∈ N, we will denote by Nm the number of vertices of the graph SSm.
We have:

N0 = d , ∀m ∈ N : Nm = dNm−1 −
d (d− 1)

2
=
dm+1 + d

2
· (15)

Proof. The graph SSm is the union of d copies of the graph SSm−1. Each copy shares a vertex with
the other ones. So, one may consider the copies as the vertices of a complete graph Kd, the number of

edges is equal to
d (d− 1)

2
, which leads to

d (d− 1)

2
vertices to take into account.

Definition 2.8. For any m ∈ N, we consider the graph SSm, built from SSm in the following way:

i. a cell in SSm becomes a vertex in SSm ;

ii. two vertices are linked in SSm if the corresponding cells in SSm have a vertex in common.

iii. The vertices number of SSm is dm.

Remark 2.1. For the 2-Simplex (Triangle):

Figure 3 – SS1 Figure 4 – SS1

2.2 Self-similar measures on Sierpiński Simplices

Definition 2.9. Self-similar measure, on the Sierpiński simplex SS

A measure µ on Rd will be said to be self-similar on the Sierpiński simplex SS, if there exists a
family of strictly positive weights (µi)16i6d such that:

µ =
d∑
i=1

µi µ ◦ f−1
i ,

d∑
i=1

µi = 1 · (16)

For further precisions on self-similar measures, we refer to the works of J. E. Hutchinson (see [Hut81]).
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Figure 5 – SS2 Figure 6 – SS2

Property 2.5. Building of a self-similar measure, for the Sierpiński simplex SS

The aforementioned Dirichlet forms require a positive Radon measure with full support.
We set, for any integer i belonging to {1, . . . , d}:

µi = R
DH(SS)
i (17)

where DH (SS) is the Hausdorff dimension of the Sierpiński simplex SS. Since:

d∑
i=1

R
DH(K)
i = 1 · (18)

one may define a self-similar measure µ on SS through:

µ =
d∑
i=1

µiµ ◦ f−1
i (19)

which simply yields the standard measure:

µ =
1

d

d∑
i=1

µ ◦ f−1
i · (20)

2.3 Laplacians, on Sierpiński Simplices (we refer to [Str06])

Definition 2.10. Energy, on the graph SSm, m ∈ N, of a pair of functions

For any m ∈ N, and two real valued functions u and v, defined on the set Vm of the vertices of SSm,
we introduce the energy, on the graph SSm, of the pair of functions (u, v), as:

ESSm(u, v) =
∑
X∼
m
Y

(u(X)− u(Y )) (v(X)− v(Y )) (21)

where the adjacency relation ∼ has been defined in Definition 2.6.
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Definition 2.11. Dirichlet form, on a finite set (see [Kig03])

Let V denote a finite set V , equipped with the usual inner product which, to any pair (u, v) of functions
defined on V , associates:

(u, v) =
∑
p∈V

u(p) v(p) · (22)

A Dirichlet form on V is a symmetric bilinear form E , such that:

1. For any real valued function u defined on V : E(u, u) > 0.

2. E(u, u) = 0 if and only if u is constant on V .

3. For any real-valued function u defined on V , if: u? = min (max(u, 0), 1), i.e.:

∀ p ∈ V : u?(p) =


1 if u(p) > 1

u(p) if 0 < u(p) < 1
0 if u(p) 6 0

(23)

then: E(u?, u?) 6 E(u, u) (Markov property).

Property 2.6. Given a natural integer m, the usual inner product of a pair (u, v) of real-valued,
continuous functions defined on Vm, through:

ESSm(u, v) =
∑
X∼
m
Y

(u(X)− u(Y )) (v(X)− v(Y )) (24)

is a Dirichlet form on SSm.
Moreover:

ESSm(u, u) = 0⇔ u is constant · (25)

Proposition 2.7. For any strictly positive integer m, if u is a real-valued function defined on Vm−1,
its harmonic extension, denoted by ũ, is obtained as the extension of u to Vm which minimizes the
energy:

ESSm(ũ, ũ) =
∑
X∼
m
Y

(ũ(X)− ũ(Y ))2 · (26)

Remark 2.2. More explicitly:

The link between ESSm and ESSm−1 is obtained through the introduction of two strictly positive
constants rm and rm−1 such that:

rm
∑
X∼
m
Y

(ũ(X)− ũ(Y ))2 = rm−1

∑
X ∼
m−1

Y

(u(X)− u(Y ))2 · (27)
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In particular:

r1

∑
X∼

1
Y

(ũ(X)− ũ(Y ))2 = r0

∑
X∼

0
Y

(u(X)− u(Y ))2 · (28)

We set: r0 = 1. Thus:

ESS1(ũ, ũ) =
1

r1
ESS0(ũ, ũ), · (29)

Let us introduce:

r =
1

r1
(30)

and:

Em(u) = rm
∑
X∼
m
Y

(ũ(X)− ũ(Y ))2 · (31)

Since the determination of the harmonic extension of a function appears to be a local problem, on
the graph SSm−1, which is linked to the graph SSm by a similar process as the one that links SS1

to SS0, one deduces, for any strictly positive integer m:

ESSm(ũ, ũ) =
1

r1
ESSm−1(ũ, ũ) · (32)

By induction, one gets:

rm = rm1 =
1

rm
· (33)

If v is a real-valued function, defined on Vm−1, of harmonic extension ṽ, we set:

Em(u, v) =
1

rm

∑
X∼
m
Y

(ũ(X)− ũ(Y )) (ṽ(X)− ṽ(Y )) · (34)

For further details on the construction and existence of harmonic extensions, we refer to [Sab97].

Definition 2.12. Renormalized energy, for a continuous function u, defined on SSm, m ∈ N

Given a natural integer m, one defines the normalized energy, for a continuous function u, defined
on SSm, by:

Em(u) =
∑
X∼
m
Y

1

rm
(u(X)− u(Y ))2 · (35)

Definition 2.13. Normalized energy, for a continuous function u, defined on SS

Given a function u defined on V? =
⋃
i∈N

Vi, one defines the normalized energy:

E(u) = lim
m→+∞

Em(u) (36)
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Definition 2.14. Dirichlet form, for a pair of continuous functions defined on SS

We define the Dirichlet form E which, to any pair of real-valued, continuous functions (u, v) defined
on the graph SS, associates, when it exists:

E(u, v) = lim
m→+∞

∑
X∼
m
Y

1

rm
(
u|Vm(X)− u|Vm(Y )

) (
v|Vm(X)− v|Vm(Y )

)
· (37)

Notation. We will denote by:

i. dom E the subspace of continuous functions defined on SS, such that: E(u) < +∞.

ii. dom0 E the subspace of continuous functions defined on SS, which take the value zero on V0,
and such that: E(u) < +∞.

Lemma 2.8. The map:

dom E
/
Constants× dom E

/
Constants → R

(u, v) 7→ E(u, v)
(38)

defines an inner product on dom E
/
Constants.

Theorem 2.9. [Str06](
dom E

/
Constants, E(·, ·)

)
is a complete Hilbert space.

Definition 2.15. Graph Laplacian of order m ∈ N?

For any strictly positive integer m, and any real-valued function u, defined on the set Vm of the vertices
of the graph SSm, we introduce the graph Laplacian of order m, ∆m(u), by:

∀X ∈ Vm \ V0 ∆mu(X) =
∑

Y ∈Vm, Y∼
m
X

(u(Y )− u(X)) · (39)

Definition 2.16. Harmonic functions

A real-valued function u, defined on V? =
⋃
i∈N

Vi, will be said to be harmonic if, for any natural

integer m, its restriction u|Vm is harmonic:

∀m ∈ N, ∀X ∈ Vm \ V0 : ∆mu|Vm(X) = 0 · (40)
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Notation. We will denote by dom E the subspace of continuous functions u defined on SS, such that:

E(u) = lim
m→+∞

∑
X∼
m
Y

r−m
(
u|Vm(X)− u|Vm(Y )

)2
< +∞· (41)

Definition 2.17. We will denote by dom∆ the existence domain of the Laplacian, on SS, as the set
of functions u of dom E such that there exists a continuous function on SS, denoted by ∆u, that we
will call Laplacian of u, such that, for any v ∈ dom E , v|SS0

= 0 :

E(u, v) = lim
m→+∞

∑
X∼
m
Y

r−m
(
u|Vm(X)− u|Vm(Y )

) (
v|Vm(X)− v|Vm(Y )

)
= −

∫
SS

v∆u dµ

· (42)

Theorem 2.10. [Str06]

(u ∈ dom∆ and ∆u = 0) if and only if u is harmonic · (43)

Notation. i. Given a natural integerm, S (H0, Vm) denotes the space of spline functions "of levelm", u,
defined on SS, continuous, such that, for any word W of length m, u ◦ fW is harmonic, i.e.:

∆m (u ◦ fW) = 0 · (44)

ii. H0 ⊂ dom∆ denotes the space of harmonic functions, i.e. the space of functions u ∈ dom∆
such that: ∆u = 0.

Property 2.11. For any natural integer m: S (H0, Vm) ⊂ dom E.

Theorem 2.12. Pointwise formula

Let m be a strictly positive integer, X ∈ V? \V0, and ψmX ∈ S (H0, Vm) a spline function such that:

ψmX (Y ) =

{
δXY ∀ Y ∈ Vm

0 ∀ Y /∈ Vm
, where δXY =

{
1 if X = Y
0 else · (45)

i. For any function u of dom∆, such that its Laplacian exists, the sequence(
r−m

{∫
SS

ψmX dµ

}−1

∆mu(X)

)
m∈N

converges uniformly towards

∆u(X)
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ii. Conversely, given a continuous function u on SS such that the sequence(
r−m

{∫
SS

ψmX dµ

}−1

∆mu(X)

)
m∈N

converges uniformly towards a continuous function on V? \ V0, one has:

u ∈ dom∆ and ∆u(X) = lim
m→+∞

r−m
{∫

SS
ψmX dµ

}−1

∆mu(X) · (46)

Definition 2.18. Normal derivative

Given a boundary point X = fW(Pi) of a cell fW (SS), 1 6 i 6 d,W ∈ {1, . . . , d}`, and a continuous
function u on SS, we will say that the normal derivative ∂nu exists if the limit

∂nu(Pi) = lim
m→+∞

1

rm

∑
Y∼
m
X

Y ∈fW (SS)

(u(X)− u(Y ))

exists. The local normal derivative satisfies:

∂nu(X) = r−` ∂n(u ◦ fW)(Pi) · (47)

Theorem 2.13. Green-Gauss formula

Given u ∈ dom∆ for a measure µ, ∂nu exists for all X ∈ V0, and:

E(u, v) = −
∫
SS

∆µu v dµ+
∑
V0

∂nu(X) v (48)

holds for all v ∈ dom E.

Corollary 2.14.

Given u ∈ dom∆ for a measure µ:∫
SS

∆µu v dµ−
∫
SS

u∆µv dµ =
∑
V0

(∂nu(X) v − u ∂nv(X)) (49)

holds for all v ∈ dom E.

Theorem 2.15. Matching condition

Given u ∈ dom∆ , at each junction point

X = fW(Pi) = fW ′(Pj) , (i, j),∈ {0, . . . , d− 1}2 ,
(
W,W ′

)
∈ {1, . . . , d}m × {1, . . . , d}m
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the local normal derivative exists, and

∂nu(fW(Pi)) + ∂nu(fW ′(Pj)) = 0 (50)

holds for all v ∈ dom E.

3 The Finite Volume Method

Notation. In the following, T is a strictly positive real number, while N is a non-zero natural integer.
Let us introduce:

h =
T

N
, tn = n× h , n = 0, 1, . . . , N − 1 · (51)

3.1 The heat equation

3.1.1 Formulation of the problem

We hereafter consider a solution u of the problem:
∂u

∂t
(t,X)−∆u(t,X) = 0 ∀(t,X) ∈ ]0, T [×SS

u(t,X) = 0 ∀ (X, t) ∈ ∂SS× [0, T [
u(0, X) = g(X) ∀X ∈ SS

· (52)

Definition 3.1. Let m ∈ N. We introduce the mth-control volume as the mth-order cell

Cjm = fWj (SS) , Wj ∈ {1, . . . , d}m (53)

where Wj is some word of length m, and whose mth-order cells neighbors are

C lm = fWl(SS) , W l ∈ {1, . . . , d}m , l = 1, . . . , d− 1 · (54)

Remark 3.1. One may check that:

dm⋃
j=1

Cjm = SS · (55)

We define then, for any integer j in {1, . . . , dm}:

u0
j =

1

µ(Cjm)

∫
Cjm

g(x)dµ(x) (56)

unj =
1

µ(Cjm)

∫
Cjm

u(tn, x) dµ(x) (57)

(58)
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and, for any t in [0, T [:

utj =
1

d

∑
Y ∈∂Cjm

u(t, Y ) ≈ 1

µ(Cjm)

∫
Cjm

u(t, x) dµ(x) · (59)

(60)

The local Gauss-Green formula enables one to write:∫
Cjm

∆µu dµ =
∑

x∈∂Cjm

∂nu(x) (61)

and, given a natural integer n, to integrate the heat equation over Cjm × ]tn, tn+1[:∫
Cjm

u(tn+1, X)− u(tn, X) dµ =

∫ tn+1

tn

∑
x∈∂Cjm

∂nu(t,X) dt · (62)

We recall that Cjm = fW j (SS). The boundary points are given, by:

for some (i, k, `) ∈ {1, . . . , d} × {1, . . . , d} × {1, . . . , d} : fWj (Pi) = fWl(Pk) · (63)

One may use the approximation:

∂nu(t,X) ≈ 1

rm

∑
Y∼
m
X

Y ∈Cjm

(u(t,X)− u(t, Y )) (64)

=
1

rm

(d− 1)u(t,X)−
∑
Y∼
m
X

Y ∈Cjm

u(t, Y )

 (65)

=
1

rm

d u(t,X)− u(t,X)−
∑
Y∼
m
X

Y ∈Cjm

u(t, Y )

 (66)

≈ 1

rm
d
(
u(t,X)− utj

)
(67)

We then introduce the matching condition:

∂nu(t, fWj (Pi)) = −∂nu(t, fWl(Pk)) (68)

i.e.

1

rm
d
(
u(t,X)− utj

)
= − 1

rm
d
(
u(t,X)− utl

)
· (69)

This implies:

u(t,X) =

(
utj + utl

)
2

· (70)
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The normal derivative is then:

∂nu(t,X) =
1

rm
d


(
utj + utl

)
2

− utj

 (71)

= r−m
d

2

(
utl − utj

)
. (72)

Back to the equation (60)

un+1
j = unj +

h

µ(Cjm)

∑
X∈∂Cjm

∂nu(tn, X) (73)

one may now build the finite volume scheme:

un+1
j = unj +

h

µ(Cjm)

1

rm
d

2

∑
j∼
m
l

(
unl − unj

)
(74)

where j ∼
m
l means that the cell fWj (SS) and fWj (SS) are neighbors.

Remark 3.2.

i. One may note that we retrieve the finite difference scheme, from a totally independent approach.

ii. We can also define the backward scheme:

unj = un−1
j +

h

µ(Cjm)

1

rm
d

2

∑
j∼
m
l

(
utl − utj

)
(75)

Given m ∈ N, and denote any X ∈ Vm \ V0 as XW,Pi , where W ∈ {1, . . . , d}m denotes a word of
length m, and where Pi, 1 6 i 6 d belongs to V0.

Let us consider:

∀n ∈ {0, . . . , N − 1} : U(n) =

 un1
...

undm

 (76)

(one has to bear in mind that there are dm mth-order cells).
One has:

∀n ∈ {0, . . . , N − 1} : U(n+ 1) = AU(n)

where:

A = Idm − h
d

2
∆̃m (77)

and where Idm denotes the dm×dm identity matrix, and ∆̃m the dm×dm Laplacian normalized matrix.
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3.1.2 Consistency, stability and convergence

3.1.2.1 Theoretical study of the error

Let us consider a real-valued continuous function u defined on SS. One has:

∀ (n,X) ∈ {0, . . . , N − 1} ×SS :

∫ tn+1

tn

u(t,X) dt = hu(tn, X) +O(h2) · (78)

On the other hand, given a strictly positive integer m, X ∈ Vm \ V0, and a harmonic function ψ(m)
X on

the mth-order cell, taking the value 1 on X = FWj (Pi) = FWl(Pk) and 0 on the others vertices (see
[Str99]), and using the corollary of the Gauss-Green formula:∫

fWj (SS)
∆µuψ

(m)
X dµ = ∂nu(X)− r−m

∑
Y∼
m
X

Y ∈fWj (SS)

(u(t,X)− u(t, Y )) (79)

By considering the equivalent relation on the neighbor cells fWl(SS), while, at the same time, using
the matching condition, one gets:

∫
SS

∆µuψ
(m)
X dµ =

1

rm
∆mu(X) (80)

= O
(∫

SS
ψ

(m)
X dµ

)
(81)

We have thus proved that:

∂nu(X)− 1

rm

∑
Y∼
m
X

Y ∈fWj (SS)

(u(t,X)− u(t, Y )) = O
(∫

SS
ψ

(m)
X dµ

)
(82)

Finally, for the discrete average, on a mth-order cell fWj (SS):

1

µ(fWj (SS))

∫
FWj (SS)

u(t,X) dµ(X)− 1

d

∑
Y ∈∂fWj (SS)

u(t, Y ) =
1

µ(fWj (SS))

∫
fWj (SS)

u(t,X)− 1

d

∑
Y ∈∂fWj (SS)

u(t, y) dµ(X)

(83)

=
1

µ(fWj (SS))

∫
fWj (SS)

1

d

∑
Y ∈∂fWj (SS)

u(t,X)− u(t, Y )

 dµ(X)

(84)

6 max
Y ∈∂fWj (SS)

‖ u(t,X)− u(t, Y ) ‖∞ (85)

= δu(2
−m) (86)

where δu(·) is the continuity modulus of u (which is O(2−αm) if u is α-Hölderian, α > 0).

3.1.2.2 Consistency

Definition 3.2. The scheme is said to be consistent if the consistency error tends towards zero when
h→ 0 and m→ +∞, for a given norm.

For 0 6 n 6 N − 1, 1 6 i 6 dm, the scheme error is obtained through:
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εmn,i = O(h2) +O
(∫

SS
ψ

(m)
X dµ

)
+

δ

2m
(87)

= O(h2) +O
(

1

dm

)
+

δ

2m
(88)

= O(h2) +O
(

1

2αm

)
if u ∈ C0,α(SS) (89)

One has:

lim
h→0+,m→+∞

εmn,i = 0 (90)

which yields the consistency of the scheme.

3.1.2.3 Stability

Notation. Spectral radius
Given a square matrix A, we will denote by λmax its spectral radius.

Notation. Spectral norm
Given a square matrix A, we will denote by ρ(A) its spectral norm, obtained through:

ρ(A) =
(
λmax

(
AT A

)) 1
2 (91)

Proposition 3.1. We introduce the real valued function Φ, defined on R?, by:

∀ t ∈ R? : Φ(t) = (d+ 2− t) t ·

For any strictly positive integer m, and any λm belonging to the spectrum of the Laplacian, one has:

λm−1 = Φ (λm) · (92)

Proof. Let us consider the sequence of graphs (SSm)m>1 related to the sequences of vertices (Ṽm)m>1.
The initial graph SS1 is just a d-simplex, and one may construct the next graph as the union of d
copies which are linked in the same manner as SS1, and so on ...

We now fix m ∈ N, and choose a vertex X1 of SSm, of neighbors X2, . . . , Xd, Y , such that Y belongs
to another m-simplex (we can remark that the graph SSm is composed by d m-simplices).

We denote by u the eigenfunction related to the eigenvalue λm. One has:

{(d− 1)− λm} u(X) =

d−1∑
i=1

u(Xi) + u(Y ) · (93)

On the other hand, we have the same idea in the graph SSm+1, if we take the vertex ak1 and his
neighbors ak2, . . . , akd, a

l
h of the graph SSm+1, where alh belongs to another m-simplex, we have, for

every interior (non-boundary) vertex:
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{(d− 1)− λm+1} u(aki ) =
∑
j 6=i

u(akj ) + u(alh) (94)

X3X2

X1

Y

Figure 7 – SSm for the Sier-
piński triangle.

a6a5

a4

a9

a7

a8

a3

a1

a2

b

Figure 8 – SSm+1 for the Sierpiński tri-
angle.

Using the mean property:

u(Xk) =
1

d

d∑
i=1

u(aki ) (95)

one obtains, by adding aki to both sides of the eigenfunction relation:

(d− λm+1)u(aki ) = d u(Xk) + u(alh) , (d− λm+1)u(alh) = d u(Xh) + u(aki ) (96)

which leads to:

u(aki ) = d
((d+ 1)− λm+1)u(Xk) + u(Xh)

(d+ 2− λm+1)(d− λm+1)
· (97)

Now, given a boundary vertex ci:

((d− 1)− λm+1)u(ci) =
∑
j 6=i

u(cj) (98)

(d− λm+1)u(ci) = d u(Xl) (99)

u(ci) =
d u(Xl)

(d− λm+1)
(100)

Finally, by summation over all the u(aki ), we obtain:

λm = λm+1 (d+ 2− λm+1) · (101)
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Thus:

∀m ∈ N? :


λ−m =

(d+ 2)−
(
(d+ 2)2 − 4λm−1

) 1
2

2

λ+
m =

(d+ 2)−
(
(d+ 2)2 − 4λm−1

) 1
2

2

· (102)

It is then natural to consider the maps ψ− and ψ+ defined as follows:

∀x ∈
]
−∞, (d+ 2)2

4

]
:


ψ−(x) =

(d+ 2)−
(
(d+ 2)2 − 4x

) 1
2

2

ψ+(x) =
(d+ 2) +

(
(d+ 2)2 − 4x

) 1
2

2

· (103)

One has: 
ψ−(0) = 0

ψ−
(

(d+ 2)2

4

)
=

d+ 2

2

,


ψ+(0) = d+ 2

ψ+

(
(d+ 2)2

4

)
=

d+ 2

2

(104)

The maps ψ− and ψ+ are respectively non decreasing, and non increasing, with respective fixed points:{
x−,? = 0
x+,? = (d+ 2)− 1

(105)

Another interesting feature of those two maps is their contractive property, due to:
∣∣∣∣ ddxψ−(0)

∣∣∣∣ =
1√

(d+ 2)2
=

1

d+ 2
< 1∣∣∣∣ dd xψ+ ((d+ 2)− 1)

∣∣∣∣ =
1√

(d+ 2)2 − 4 (d+ 2) + 4
=

1

d
< 1

(106)

Since V1 is a complete graph, it has eigenvalues −1 with multiplicity 1, and 2 with multiplicity 2.

The whole Dirichlet spectrum, for m > 2, is generated by the recurrent stable maps ψ− and ψ+.

Thus:

∀m ∈ N : λm ∈ [0, 2 d] (107)

Notation. Matrix norm
In the sequel, we will work with the matrix norm ‖ · ‖ defined, for any square matrix A, by:

‖A‖ =‖ A ‖2

Definition 3.3.

We will say that:

i. The scheme is unconditionally stable if there exists a real constant C ∈ ]0, 1[ such that:

∀n ∈ {1, . . . , N} : ρ(An) 6 C · (108)
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ii. The scheme is conditionally stable if there exist three strictly positive constants α, C1 and C2

such that:

C2 < 1 and ∀n ∈ {1, . . . , N} : h 6
C1

(d+ 2)αm
=⇒ ρ(An) 6 C2 · (109)

Proposition 3.2.

If Sp (A) = {γ1 . . . , γdm} is the spectrum of the matrix A, one has:

∀ j ∈ {1, . . . , dm} : h (d+ 2)m 6
2

d2
=⇒ |γj | 6 1 · (110)

Proof. Since:

∀n ∈ {1, . . . , N} : U(n+ 1) = AU(n) ∀n ∈ {1, . . . , N} (111)

where:

A = Idm − h ∆̃m. (112)

one has:

∀n ∈ {1, . . . , N} : U(n) = An U(0) (113)

Thus:

∀ i ∈ {1, . . . , dm} : γi = 1− h d
2

(d+ 2)m λi (114)

and:

∀ i ∈ {1, . . . , dm} : 1− h d

2
(d+ 2)m × 2 d 6 γi 6 1 · (115)

Consequently, if the condition:

h (d+ 2)m 6
2

d2
(116)

is satisfied, one obtains:

∀ i ∈ {1, . . . , dm} : |γi| 6 1 · (117)

3.1.2.4 Convergence

Definition 3.4.

i. The scheme will be said to be convergent if:

lim
h→0+,m→+∞

∥∥∥∥∥∥
(
unj −

1

µ(Cjm)

∫
Cjm

g(x)dµ(x)

)
06n6N, 16j6dm

∥∥∥∥∥∥ = 0 · (118)
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ii. The scheme will be said to be conditionally convergent if there exist two strictly positive con-
stants α and C such that :

lim
h6 C

(d+2)αm
,m→+∞

∥∥∥∥∥∥
(
unj −

1

µ(Cjm)

∫
Cjm

g(x)dµ(x)

)
06n6N, 16j6dm

∥∥∥∥∥∥ = 0 · (119)

Theorem 3.3.

If the scheme is stable and consistent, then it is also convergent for the norm ‖ · ‖2,∞, such that:

∥∥∥(unj )06n6N,16j6dm∥∥∥2,∞
= max

06n6N

 1

dm

∑
16i6dm

|uni |
2

 1
2

(120)

Proof. Let us set:

wni = unj −
1

µ(Cjm)

∫
Cjm

g(x) dµ(x), 0 6 n 6 N, 1 6 j 6 dm (121)

and:

∀n ∈ {0, . . . , N} : Wn =

 wn1
...

wndm

 , En =

 εmn,1
...

εmn,dm

 (122)

Thus:

W 0 = 0 (123)

and:

∀n ∈ {0, . . . , N − 1} : Wn+1 = AWn + hEn (124)

By induction, one gets:

∀n ∈ {0, . . . , N − 1} : Wn+1 = AnW 0 + h
n−1∑
j=0

Aj En−j−1 = h
n−1∑
j=0

Aj En−j−1 (125)

Due to the symmetry of the matrix A, the Courant Fredrichs Lewy stability condition

h (d+ 2)m 6
2

d2

yields:

∀n ∈ {0, . . . , N − 1} :
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|Wn| 6 h

(
n−1∑
i=0

‖ A ‖i
)

max
06n6i−1

|En|

6 hn max
06n6i−1

|En|

6 hN max
06n6i−1

|En|

6 T max
06n6i−1

 dm∑
j=1

|εmn,j |2
 1

2

(126)

and thus:

max
06n6N−1

(
1

dm

dm∑
i=1

|wni |2
) 1

2

=
1

d
m
2

max
16n6N−1

|Wn| (127)

6
1

d
m
2

T

 max
06n6N−1

(
dm∑
i=1

|εmn,i|2
) 1

2

 (128)

6
1

d
m
2

T

(
d
m
2 max

06n6N−1, 16i6dm
|εmn,i|

)
(129)

= T max
06n6N−1, 16i6dm

|εmn,i| (130)

= O(h2) +O(d−m) +
δ

2m
(131)

= O
(

1

(d+ 2)2m

)
+O

(
1

dm

)
+

δ

2m
(132)

= O
(

1

2αm

)
· (133)

(134)

By assuming the function u to be Hölder-continuous, one obtains the expected result.

Remark 3.3. One has to bear in mind that, for piecewise constant functions u on the mth-order cells:

∥∥(unj )∥∥2
=

 1

dm

∑
16i6dm

|uni |2
 1

2

=
∥∥(unj )∥∥L2(SS)

· (135)

3.1.3 The implicit Euler Method

Let consider the implicit Euler scheme, for any integer k belonging to {0, . . . , N − 1}:

unj = un−1
j +

h

µ(Cjm)

1

rm
d

2

d−1∑
l=1

(
unl − unj

)
· (136)

It satisfies the recurrence relation:

Ã U(n) = U(n− 1) (137)
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where:

Ã = Idm + h× ∆̃m (138)

and where Idm denotes the dm×dm identity matrix, and ∆̃m the dm×dm normalized Laplacian matrix.

3.1.3.1 Consistency, stability and convergence

i. Consistency

The consistency error of the implicit Euler scheme is given by :
For 0 6 n 6 N − 1, 1 6 i 6 dm, the consistency error of our scheme is given by :

εmn,i = O(h2) +O
(

1

dm

)
+

δ

2m
(139)

= O(h2) +O
(

1

2αm

)
if u ∈ C0,α(SS) (140)

One has:

lim
h→0+,m→+∞

εmn,i = 0

which yields the consistency of the scheme.

ii. Stability

Definition 3.5. We will say that:

i. The scheme is unconditionally stable for the norm ‖ · ‖∞ if there exists a constant C > 0
independent of h and m such that :

‖ Umh (n) ‖∞6 C ‖ Umh (0) ‖∞ ∀n ∈ {1, . . . , N} · (141)

ii. The scheme is conditionally stable if there exist three constants α > 0, C1 > 0 and C2 < 1 such
that :

h 6
C1

(d+ 2)mα
=⇒‖ Umh (n) ‖∞6 C2 ‖ Umh (0) ‖∞ ∀n ∈ {1, . . . , N} · (142)

We set:

Ã = INm−d + h ∆̃m · (143)

One has then:

Ã U(n) = U(n− 1) (144)

We have:

‖ Ã−1 ‖∞6 1 =⇒ ‖ Ã−n ‖∞6 1 (145)
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The scheme is thus unconditionally stable :

U(n) 6 U(0) · (146)

iii. Convergence

Theorem 3.4. The implicit Euler scheme is convergent for the norm ‖ · ‖2,∞.

Proof. Let:

wni = unj −
1

µ(Cjm)

∫
Cjm

g(x)dµ(x), 0 6 n 6 N, 1 6 j 6 dm · (147)

We set:

Wn =

 wn1
...

wndm

 , En =

 εmn,1
...

εmn,dm

 (148)

Thus, W 0 = 0, and, for 0 6 n 6 N − 1:

Wn+1 = Ã−1Wn + hEn 0 6 n 6 N − 1 (149)
(150)

We find, by induction, for 0 6 n 6 N − 1:

Wn+1 = Ã−nW 0 + h
n−1∑
j=0

Ã−j En−j−1 (151)

= h

n−1∑
j=0

Ã−jEn−j−1 (152)

Due to the stability of the scheme, we have, for n = 0, . . . , N :

|Wn| 6 h

n−1∑
j=0

‖ Ã−1 ‖j
( max

06n6j−1
|En|

)
(153)

6 hn max
06n6j−1

|En| (154)

6 hN max
06n6j−1

|En|) (155)

6 T max
06n6j−1

(
dm∑
i=1

|εmn,i|2
) 1

2

(156)

(157)

Thus:
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max
06n6N

(
1

dm

dm∑
i=1

|wni |2)

) 1
2

=
1

d
m
2

max
06n6N

|Wn| (158)

6
1

d
m
2

T

 max
06n6N−1

(
dm∑
i=1

|εmn,i|2
) 1

2

 (159)

6
1

d
m
2

T d
m
2 max

06n6N−1, 16i6dm
|εmn,i| (160)

= T max
06n6N−1, 16i6dm

|εmn,i| (161)

= O(h2) +O(d−m) +
δ

2m
(162)

= O
(

δ

(d+ 2)2m

)
+O

(
1

dm

)
+

δ

2m
(163)

= O
(

1

2αm

)
· (164)

(165)

The last equality holds if one assumes that u is Hölder-continuous. The scheme is thus convergent.

3.1.4 Numerical application

3.1.4.1 The graph Laplacian sequence

i. The 2-Simplex (Triangle).

For any m ∈ N?, we will denote by Cornerk,m, 1 6 k 6 3, the three corners of a mth-order cell (see
figure 3.1.4.1).

C1(k,m) C2(k,m)

C3(k,m)

Figure 9 – mth-order cell.

the (m+1)th-order triangle is then constructed by connecting threemth-order cells T (k), with k = 1, 2, 3.

The initial triangle is labelled such that Corner1 ∼ 1, Corner2 ∼ 2 and Corner3 ∼ 3 (see figure 1).
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C1(3,m) C2(3,m)

C3(3,m)

Figure 10 – The third copy T3

C1(1,m) C2(1,m)

C3(1,m)

Figure 11 – The first copy T1

C1(2,m) C2(2,m)

C3(2,m)

Figure 12 – The second copy T2

Notation. We set:

I2(1) = 2 (166)

and:

∀m ∈ N? : I2(m) = I2(m− 1) + 3m−2 (167)

Iterative process:

i. The starting point is the set of vertices V0 of the initial simplex. The corresponding matrix is
given by:

A0 =

 2 −1 −1
−1 2 −1
−1 −1 2

 (168)

ii. At a given order m ∈ N?, the fusion requires the following connections:
Corner2(1,m) ∼ Corner1(2,m)
Corner3(1,m) ∼ Corner1(3,m)
Corner3(2,m) ∼ Corner2(3,m)

· (169)

Vertex corners are such that:
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
Corner1(k,m) = 1 + (k − 1) 3m−1

Corner2(k,m) = I2(m) + (k − 1) 3m−1

Corner3(k,m) = k 3m−1
· (170)

where k is the number of copies.

iii. The connection matrix (we refer to [FL04]) is obtained through:

∀ m ∈ N? : Cm =

(
Corner2(1,m) Corner3(1,m) Corner3(2,m)
Corner1(2,m) Corner1(3,m) Corner2(3,m)

)
(171)

where the following compatibility conditions are to be satisfied:{
ACornerm(2,j),Cm(1,j) = ACornerm(1,j),Cornerm(2,j) = −1

ACornerm(2,j),Cornerm(2,j) = ACornerm(1,j),Cornerm(1,j) = 3
· (172)

ii. The 3− Simplex (Tetrahedron).

For any m ∈ N?, we will denote by Cornerk,m, 1 6 k 6 4, the four corners of a mth-order cell (see
figure 3.1.4.1).

Figure 13 – mth-order cell.

For the fusion, one has to make the following connections:

Corner2(1,m) ∼ Corner1(2,m)
Corner3(1,m) ∼ Corner1(3,m)
Corner4(1,m) ∼ Corner1(4,m)
Corner3(2,m) ∼ Corner2(3,m)
Corner4(2,m) ∼ Corner2(4,m)
Corner4(3,m) ∼ Corner3(4,m)

· (173)
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Figure 14 – The fourth copy T4.

Figure 15 – The third copy T3. Figure 16 – The first copy T1. Figure 17 – The second copy T2.

Notation. We set:

I2(1) = 2 , I3(1) = 3 (174)

and:

∀m ∈ N? :

{
I2(m) = I2(m− 1) + 4m−2

I3(m) = I3(m− 1) + 2× 4m−2 (175)

Property 3.5. Number of corners of a mth-order cell, m ∈ N?

To obtain the number of corners, one writes:

∀m ∈ N? :


Corner1(k,m) = 1 + (k − 1) 4m−1

Corner2(k,m) = I2(m) + (k − 1) 4m−1

Corner3(k,m) = I3(m) + (k − 1) 4m−1

Corner4(k,m) = k 4m−1

· (176)

Iterative process:

i. The starting point is the set of vertices V0 of the initial simplex. One has:
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A0 =


3 −1 −1 −1
−1 3 −1 −1
−1 −1 3 −1
−1 −1 −1 3

 · (177)

ii. The connection matrix is obtained through:
∀m ∈ N? :

Cm =

(
Corner2(1,m) Corner3(1,m) Corner3(2,m) Corner4(1,m) Corner4(2,m) Corner4(3,m)
Corner1(2,m) Corner1(3,m) Corner2(3,m) Corner1(4,m) Corner2(4,m) Corner3(4,m)

)

where the following compatibility conditions are to be satisfied:

∀m ∈ N :

{
ACornerm(2,j),Cornerm(1,j) = ACornerm(1,j),Cornerm(2,j) = −1

ACornerm(1,j),Cornerm(1,j) = ACornerm(2,j),Cornerm(2,j) = 4
·

3.1.4.2 Numerical results

Our heat transfer simulation consists in a propagation scenario, where the initial condition is a
harmonic spline g, the support of which being an m-cell of SS, such that it takes the value 1 on a
vertex X, and 0 otherwise. This implies that g is everywhere null except the cell containing X, which
is a vertex of the graph SSm.

Each point represents a m-cell as before. The color function is related to the gradient of tempera-
ture, high values ranging from red to blue.

i. The 2-Simplex (Triangle)

In the following (see figures 16 to 19), we give numerical results of (52) in the case where:

m = 6 , T = 1 , N = 70.5× 103 ·

Each point stands for a mth-order cell of the Simplex.
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Figure 18 – The numerical solution for the initial condition.

Figure 19 – The numerical solution, for n = 100.
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Figure 20 – The numerical solution, for n = 200.

Figure 21 – The numerical solution, for n = 500.

31



ii. The 3-Simplex (Tetrahedron)

In the following (see figures 20, 21, 22, 23, 24), we give a four dimensional representation of the
numerical results in the case where:

m = 5 , T = 1 , N = 60× 103 ·

The color function is related to the gradient of temperature, high values ranging from red to blue.

Figure 22 – The numerical solution for the initial condition (front and rotated view).

Figure 23 – The numerical solution, for n = 10.
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Figure 24 – The numerical solution, for n = 50.

Figure 25 – The numerical solution, for n = 100.

Figure 26 – The numerical solution, for n = 200.
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Figure 27 – The numerical solution, for n = 500.

iii. Discussion

By plotting the energy

E(n) =

∫
SG

u(tn, X)2 dµ(X)

as a function of the iteration step n, one may note the exponential decreasing behaviour (see figure 26).
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Figure 28 – The energy E on the Sierpiński gasket as a function of the iteration step, for m = 3.

More interestingly, as in our previous work [RD19], the loglog plot of the energy (see Figure 29)
shows that, numerically, the temperature follows a law of the form:

ln (u(t, x0)) ≈ −1.01275− 1.44972 ln t

where the slope is close to the spectral dimension dS =
2 ln 3

ln 5
. This yields a power law of the form:

u(t, x0) ≈ C tdS

where C is a strictly positive real constant. This results holds for different values of m.

This suggests that the spectral dimension belongs to the spectrum of the Laplacian, which is in
accordance with theoretical results (see section 3, and [FS92]).
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Figure 29 – The loglog plot of the energy E on the Sierpiński gasket, for m = 3.

By comparing the explicit finite difference method (FDM) and the finite volume method (FVM),
one may deduce from the theoretical results that there are some similarities:

i. The FDM is based on the sequence of graphs (SSm)m∈N, and the FVM is based on the sequence
of graphs (SSm)m∈N, but both generate the same spectral decimation function.

ii. The theoretical errors of both methods are the same for Hölder continuous functions.

iii. The time theoretical error is of order h in the case of the FDM, and of order h2 in the case of
the FVM (the convergence is faster).

iv. The stability conditions are the same.

v. Finally, the numerical simulation shows the same behavior in both approaches.

Conclusion

So far, there are very few studies on the resolution of partial differential equations on Sierpiński
simplices, when it comes to implement numerical methods in accordance to the recent developments
in analysis on fractals.

One of the underlying difficulties comes from the fact that there is not any analytical solution, and
thus, a missing source of comparison. The only thing one can do is to check that the results are in ac-
cordance with the ones related to the fractal dimension of the studied object, which is the case. Then, it
satisfactorily appears that the results are also in accordance with our previous numerical study [RD19].
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