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Abstract

Background: Machine learning algorithms using magnetic resonance imaging (MRI)
data can accurately discriminate parkinsonian syndromes. Validation in patients re-
cruited in routine clinical practice is missing.
Objective: The aim of this study was to assess the accuracy of a machine learning
algorithm trained on a research cohort and tested on an independent clinical replication
cohort for the categorization of parkinsonian syndromes.
Methods: Three hundred twenty-two subjects, including 94 healthy control subjects,
119 patients with Parkinson’s disease (PD), 51 patients with progressive supranuclear
palsy (PSP) with Richardson’s syndrome, 35 with multiple system atrophy (MSA) of
the parkinsonian variant (MSA-P), and 23 with MSA of the cerebellar variant (MSA-
C), were recruited. They were divided into a training cohort (n = 179) scanned in a
research environment and a replication cohort (n = 143) examined in clinical practice
on different MRI systems. Volumes and diffusion tensor imaging (DTI) metrics in
13 brain regions were used as input for a supervised machine learning algorithm. To
harmonize data across scanners and reduce scanner-dependent effects, we tested two
types of normalizations using patient data or healthy control data.
Results: In the replication cohort, high accuracies were achieved using volumetry in
the classification of PD vs PSP, PD vs MSA-C, PSP vs MSA-C, and PD vs atypical
parkinsonism (balanced accuracies: 0.840 − 0.983, area under the receiver operating
characteristic curves: 0.907 − 0.995). Performances were lower for the classification of
PD vs MSA-P, MSA-C vs MSA-P (balanced accuracies: 0.765− 0.784, area under the
receiver operating characteristic curve: 0.839−0.871) and PD vs PSP vs MSA (balanced
accuracies: 0.773). Performance using DTI was improved when normalizing by controls,
but remained lower than that using volumetry alone or combined with DTI.
Conclusions: A machine learning approach based on volumetry enabled accurate
classification of subjects with early-stage parkinsonism, examined on different MRI sys-
tems, as part of their clinical assessment.

Key Words: Parkinson’s disease; progressive supranuclear palsy; multiple system at-
rophy; multimodal magnetic resonance imaging; machine learning algorithm
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1 Introduction

Diagnosis of idiopathic Parkinson’s disease (PD) and atypical parkinsonism, whose most
frequent types are progressive supranuclear palsy (PSP) and multiple system atrophy
(MSA), relies on clinical criteria (Gilman et al., 2008; Hoglinger et al., 2017; Hughes
et al., 2002). The diagnostic accuracy of PD is greatly improved when made by clinical
experts in movement disorders with a sensitivity of 91.1% and a specificity of 98.4%
(Berardelli et al., 2013; Hughes et al., 2002). However, on initial presentation, a correct
diagnosis of atypical parkinsonism may be difficult, and clinical uncertainty is high.
Accurate diagnosis is crucial to assess the prognosis, enroll patients in adequate care
systems, and allow their inclusion in appropriate therapeutic trials.

Degeneration of dopaminergic neurons within the substantia nigra pars compacta is
the hallmark of neurodegenerative parkinsonian syndromes (Dickson, 2012, 2018; Levin
et al., 2016). Although patients with PD exhibit only nigral abnormalities in a limited
number of small brain stem nuclei at the early stage of the disease (Dickson, 2012, 2018;
Kalia and Lang, 2015; Levin et al., 2016), patients with PSP show a larger involvement
of the midbrain, dentate nucleus, and superior cerebellar peduncles (SCPs) (Dickson,
2012; Hauw et al., 1994; Levin et al., 2016; Pyatigorskaya et al., 2020; Steele et al.,
2014), and patients with MSA are characterized by damage particularly affecting the
posterior putamen in the parkinsonian variant (MSA-P) and the pons, middle cerebellar
peduncles, and cerebellum in the cerebellar variant (MSA-C) (Castellani, 1998; Dickson,
2012; Levin et al., 2016).

Multimodal magnetic resonance imaging (MRI) can detect these different patterns of
brain damage (Heim et al., 2018; Kassubek, 2018; Lehericy et al., 2017; Rizzo et al., 2016;
Whitwell et al., 2017). Atrophy is visible on T1-weighted images, tissue microstructure
alterations are detected using diffusion-weighted images, and iron deposition can be
evidenced using iron-sensitive sequences (Heim et al., 2018; Kassubek, 2018; Lehericy
et al., 2017; Rizzo et al., 2016; Whitwell et al., 2017). Using MRI data, machine learning
algorithms can accurately differentiate between parkinsonian syndromes (Archer et al.,
2019; Cherubini et al., 2014; Du et al., 2017; Huppertz et al., 2016; Morisi et al., 2018;
Péran et al., 2018; Salvatore et al., 2014; Scherfler et al., 2016). Most studies have used a
single type of MRI data, either volumetry (Huppertz et al., 2016; Salvatore et al., 2014;
Scherfler et al., 2016) or diffusion-weighted data (Archer et al., 2019). Some studies
have combined volumetry and diffusion (Cherubini et al., 2014), or have included R2*
relaxometry (Péran et al., 2018) or spectroscopy (Morisi et al., 2018). Two studies have
included large cohorts of 1002 subjects (Archer et al., 2019) or 464 subjects (Huppertz
et al., 2016), whereas most studies have investigated smaller samples (Morisi et al., 2018;
Salvatore et al., 2014; Scherfler et al., 2016). Only two studies have included subjects
with PD, PSP, MSA-P, and MSA-C (Huppertz et al., 2016; Morisi et al., 2018), while
other studies have not differentiated between MSA-P and MSA-C (Scherfler et al., 2016),
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have included only patients with MSA-P (Archer et al., 2019) or MSA-C (Du et al.,
2017), or have not included patients with MSA (Cherubini et al., 2014; Salvatore et al.,
2014) or PSP (Péran et al., 2018). Moreover, these studies have been mainly designed in
a research environment and have been tested without an independent replication cohort
(Cherubini et al., 2014; Huppertz et al., 2016; Péran et al., 2018; Salvatore et al., 2014).
To transpose an automated MRI classification approach based on machine learning to
clinical practice, it is necessary to evaluate this approach on large cohorts scanned in
clinical environments and including the different types of parkinsonian syndromes.

Our objective was to assess the predictive performance of machine learning algo-
rithms for the categorization of parkinsonian syndromes, including PSP, MSA-C, and
MSA-P, compared with PD and healthy control subjects (HCs). Such algorithms were
trained on a research cohort and tested on an independent replication cohort scanned
on different MRI scanners in clinical conditions in a neuroradiology department, using
volumetry and diffusion tensor imaging (DTI).

2 Materials and Methods

2.1 Population

Two populations of participants were included: a training cohort to train and validate
the algorithms and a replication cohort to independently evaluate each algorithm’s
performance. The training cohort was constituted of research studies conducted between
2007 and 2012 at the Paris Brain Institute (ICM): Genepark (LSHB-CT-2006-037544),
BBBIPPS (DGS 2006/0524), and Nucleipark (RCB 2009-A00922-55). Inclusion criteria
for patients were a diagnosis of PD, PSP, or MSA established by movement disorders
specialists according to published consensus criteria for PD (Hughes et al., 2002) with
no or minimal cognitive disturbances with Mini Mental State Examination score > 24,
PSP with Richardson’s syndrome (Litvan et al., 1996), or MSA (Gilman et al., 2008).

Participants in the replication cohort were consecutively enrolled between 2013 and
2019 in the movement disorders clinic of the Pitié-Salpêtrière Hospital, Paris. Diagnosis
of probable PD, PSP, or MSA was retrospectively established in 2019 by movement dis-
orders specialists according to the aforementioned clinical criteria based on all available
clinical data.

The clinical examination included the Unified Parkinson’s Disease Rating Scale Part
III (UPDRS III) scores. Baseline MRI scans were obtained on the same days as the clin-
ical examination. For both cohorts, HCs without a history of neurological or psychiatric
disease were included. Subjects were excluded if they had any additional neurological
disorder.

Local institutional review boards approved the studies (Genepark: CPP Paris II,
2007-A00208-45; BBBIPPS: CPP Paris VI, P040410–65-06; Nucleipark: CPP Paris VI,
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65–09; Park Atypique: CPP Ile-de-France VI, 08012015). Written informed consent
was obtained from all participants.

2.2 Image Acquisition

Participants in the training cohort were scanned at the Paris Brain Institute using
a 3T Siemens Trio system (Siemens Healthineers, Erlangen, DE) with a 32-channel
head coil. Participants in the replication cohort were scanned in clinical conditions for
diagnostic purposes in the Neuroradiology Department of the hospital using two MRI
systems: (i) a 3T GE Signa HDxt (GE Healthcare, Chicago, IL) with an 8-channel head
coil, and (ii) a 3T Siemens Skyra using a 64-channel head coil. HCs in the replication
cohort were scanned twice during different sessions on Siemens Skyra and GE Signa
systems. All participants were scanned using a standardized protocol including a high-
resolution T1-weighted gradient-recalled echo sequence (magnetization-prepared rapid
acquisition with gradient-recalled echo or spoiled gradient recalled acquisition in steady
state) and DTI with 30 (Siemens Skyra and GE Signa), 60, or 64 (Siemens Trio) diffusion
directions. Acquisition parameters are provided in Supporting Information Table S1.
Quality control was performed by visual inspection; T1-weighted and diffusion-weighted
images with significant motion artifacts or image distortions were excluded.

2.3 Data Processing and Analysis

Image processing and analysis were performed using Matlab (R2017b; The MathWorks,
Inc., Natick, MA). T1-weighted images were automatically segmented using FreeSurfer
6.0 (http://freesurfer.net/; MGH, Boston, MA, USA) (Fischl et al., 2002). DTI
preprocessing was performed using the FMRIB Software Library v5.0 (FMRIB, Oxford,
United Kingdom). Motion and eddy currents were corrected using the eddycor func-
tion. Fractional anisotropy (FA) and diffusivity maps were computed using the DTIfit
function for the entire brain volume. The diffusion maps were coregistered to the three-
dimensional T1-weighted volume using the Statistical Parametric Mapping coregister
function (SPM 12; https://www.fil.ion.ucl.ac.uk/spm/software/spm12/).

We included 13 regions of interest known for being involved in parkinsonian syn-
dromes in the gray matter (midbrain, pons, putamen, posterior putamen, caudate,
thalamus, pallidum, precentral cortex, insular cortex), white matter (SCPs, cerebellum
white matter including the middle cerebellar peduncles), and ventricles (third ventricle,
fourth ventricle). Volumes, average values of FA, mean diffusivity, axial diffusivity, and
radial diffusivity (RD) were calculated in all segmented regions of interest and used as
input features for the algorithms. To remove inter-individual variability, all volumes
were corrected by the total intracranial volume for each participant. Means of the
volumes and DTI metrics were used for bilateral regions.
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2.4 Normalization Procedures

Two independent normalization procedures were investigated and performed in both
cohorts. “Normalization 1” scaled the features so that they were normally distributed.
For a given between-group comparison (e.g. PSP vs PD), each variable of each partic-
ipant was normalized using the mean and standard deviation (SD) of this variable in
all patients in these two groups of the training cohort (e.g. all patients with PSP and
PD in the training cohort). For example, for the “PD vs PSP” classification in either
the training or the replication cohort, each variable of each patient with PD and PSP
in the corresponding cohort was normalized using the following formula: (Variable vs
mean of PD and PSP in the training cohort)/SD of PD and PSP in the training cohort.

“Normalization 2” aimed to harmonize data across scanners, reduce scanner-
dependent effects in the images, and find a good trade-off between standard normal
distribution and same distribution of the features in both cohorts. Normalization 2
used the mean and SD of the controls scanned using the same scanner as the patient,
according to the formula: (Variable vs mean of controls scanned using the same scan-
ner)/SD of controls scanned using the same scanner.

2.5 Machine Learning Algorithms

Using the scikit-learn package (Pedregosa et al., 2011), four supervised machine learning
algorithms were used: logistic regression, support vector machine (SVM) with a linear
kernel, SVM with a radial basis function kernel, and random forest. They were trained
and validated on the training cohort, then tested on the replication cohort.

The cross-validation procedure on the training cohort included two nested loops: an
outer loop with repeated stratified random splits with 50 repetitions evaluating the clas-
sification performances and an inner loop with 5-fold cross-validation used to optimize
the hyper-parameters of the algorithms. One model was created for each split, leading
to 50 models. We selected the model with the highest mean balanced accuracies among
the models with frequencies of appearance greater than 10% (Supporting Information
Fig. S1).

Correlation between the different input features was investigated in both cohorts
(Supporting Information Tables S2 and S3). Ridge regularization was used to avoid
overfitting and to deal with possible correlation between the features. Three models
were evaluated: “volumetry only”, “DTI only” and “volumetry + DTI” with age and
sex as covariates. DTI was missing in 13 patients of the training cohort and 14 patients
of the replication cohort. Missing values were imputed with the mean values of the
features from the training cohort. The algorithms were retrained and retested after
removing subjects with missing DTI images. In addition, analysis with UPDRS III
scores alone was performed, and performances were compared with the other models.

We evaluated binary classification tasks (PD vs PSP, PD vs MSA-P, PD vs MSA-C,
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PSP vs MSA-P, PSP vs MSA-C, MSA-P vs MSA-C, PD vs atypical parkinsonism) and
the multi-class classification task (PD vs PSP vs MSA, with patients with MSA merged
in one group because of their small number).

Receiver operating characteristic curves were generated, and balanced accuracy
(BA), area under the curve (AUC), sensitivity, and specificity were calculated to eval-
uate the algorithm performances. BA was defined as the average sensitivity and speci-
ficity in each group. BA avoids overestimation of classification performance because of
imbalanced group sizes (Huppertz et al., 2016).

2.6 Weighting Factors

Weighting factors of the volume and DTI metrics of each brain region were extracted
from the logistic regression training after normalization 2 (corresponding to the best
model). They reflected the contribution of each feature to group differentiation. A
rescaling to a range of −1 to +1 was applied to highlight the relative importance of
each feature: the higher the absolute value, the bigger the contribution of the feature.
This assertion relied on the assumption that each feature had the same scale, which was
a reasonable assumption because all features were standardized. When the coefficient
was positive, the algorithm favored the first group if the value of the feature was high
or the second group if the value was low, and vice versa (Huppertz et al., 2016).

2.7 Statistical Analyses

2.7.1 Participant Characteristics

Statistical analyses were performed using R software (R Core Development Team, 2017).
Group demographic and clinical scores within each cohort were analyzed. Statistical
difference in sex distribution was evaluated using Fisher’s exact test, followed by pairwise
comparisons with p adjustment (Holm’s method). Age, disease duration, and UPDRS
III scores were compared using the Kruskal-Wallis test, followed by pairwise comparisons
with Holm-Bonferroni correction. Inter-cohort comparisons were also performed by
assessing group-wise differences using Fisher’s exact test for sex and Wilcoxon’s rank
sum test with continuity correction for age, disease duration, and the UPDRS III scores.

2.7.2 Comparison of Normalization Procedures, Biomarkers, and Algo-
rithms

We compared BAs between normalization, biomarker, and classification methods in the
replication cohort using multiple factor analysis (MFA) as a datadriven exploratory
technique and repeated-measures analysis of variance (RM-ANOVA). For the MFA, a
first analysis was run by grouping the data by normalization × biomarkers generating
six blocks (2 normalizations × 3 biomarkers) of four variables (four algorithms) each
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to determine which “normalization × biomarker” blocks induced the same structures.
A second analysis was run on four blocks (four algorithms) of six variables (2 nor-
malizations × 3 biomarkers) to identify similarities/dissimilarities between algorithms
performances. As a first step, individual principal component analysis was performed
on each block, which was then normalized by the corresponding first eigenvalue. The
obtained matrices were merged to form a global matrix, and a global principal compo-
nent analysis was performed. The individual observations were then projected onto the
global space.

We used RM-ANOVA with a 2 × 4 × 3 factorial design [normalization (1 and 2)
× algorithm (logistic regression, linear SVM, radial SVM, random forest) × biomarker
(volumetry, volumetry + DTI, DTI)] after testing data for normality with Shapiro-
Wilk test (p > 0.05). Sphericity assumption was checked using Mauchly’s test and, if
necessary, corrected using Greenhouse-Geisser correction. Pairwise comparisons with
Bonferroni correction were then performed.

3 Results

3.1 Participants’ Clinical and Demographic Characteristics

In total, 322 subjects were analyzed, divided into a training cohort (n = 179) and a
replication cohort (n = 143) (Table 1). In the training cohort, there was a significant
difference in sex distribution (Fisher’s test, p = 0.031) due to a difference between HCs
and patients with PD (p = 0.040). There was no significant difference in age and disease
duration between groups. Patients with PD had lower UPDRS III scores than other
patient groups (p < 0.002). In the replication cohort, there was a difference in age
(Kruskal-Wallis, p < 0.002), with patients with PSP being older than other groups.
There were no differences in sex distribution, disease duration, and UPDRS III scores
between groups.

When comparing both cohorts, there was a significant difference in sex distribution
for patients with PSP (p = 0.042) and age, because HCs (p = 0.007), patients with PD
(p = 0.002), and patients with PSP (p = 0.019) were older in the replication cohort.
Disease duration was shorter in the replication cohort for patients with PD (p < 0.001),
MSA-P (p < 0.001), and MSA-C (p = 0.020), but not for patients with PSP (p = 0.055).
UPDRS III scores were lower for MSA-P (p = 0.003) and MSA-C (p = 0.002) in the
replication cohort.

3.2 Comparison of Normalization Methods

The first MFA showed that the first two components with eigenvalues greater than 1
explained 56% and 20% of the total variance. Both normalizations with volumetry and
normalization 2 with volumetry + DTI strongly correlated with the first dimension,
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Table 1: Demographic and clinical characteristics of the population.

Training cohort (n = 179) Replication cohort (n = 143)

Groups HC PD PSP MSA-P MSA-C HC PD PSP MSA-P MSA-C

n 72 63 21 11 12 22 56 30 24 11

Sex ratio (M/F) 24/48a 37/26 10/11b 4/7 7/5 12/10 36/20 23/7 18/6 7/4

Age at MRI scan (year) 60.8± 8.2c 60.7± 9.7 c 65.6± 9.1c 62.8± 7.1 60.3± 7.4 64.7± 7.3 66.6± 11.4 71.7± 5.7d 63.0± 7.0 58.3± 7.7

Disease duration (year) NA 6.0± 4.0e 4.2± 1.9 5.0± 1.9e 5.2± 1.8e NA 4.2± 3.4 3.4± 2.0 3.8± 1.8 2.4± 1.1

UPDRS III scoresf 0.4± 0.7 21.0± 13.1g 38.5± 15.7 42.2± 13.9h 47.4± 14.4 g 0.1± 0.3 20.6± 9.6 29.6± 17.6 26.3± 10.8 16.7± 7.7

Group demographics and clinical scores within each cohort were compared. Statistical difference in sex distribution was evaluated using Fisher’s exact test, followed by pairwise
comparisons with p adjustment (Holm’s method). Age, disease duration, and UPDRS III scores were compared using Kruskal-Wallis test, followed by pairwise comparisons with
Holm-Bonferroni correction. Inter-cohort comparisons were also performed by assessing group-wise differences using Fisher’s exact test for sex and Wilcoxon’s rank sum test
with continuity correction for age, disease duration, and UPDRS III scores.
Abbreviations: HC, healthy control subjects; PD, Parkinson’s disease; PSP, progressive supranuclear palsy; MSA-P, parkinsonian variant of multiple system atrophy; MSA-C,
cerebellar variant of multiple system atrophy; M, male; F, female; MRI, magnetic resonance imaging; UPDRS III, Unified Parkinson’s Disease Rating Scale Part III.
a p < 0.05 for HCs vs patients with PD in the training cohort.
b p < 0.05 for patients with PSP between both cohorts.
c p < 0.05 for HCs, patients with PD, and patients with PSP between both cohorts.
d p < 0.05 for patients with PSP vs HCs and patients with PD; p < 0.001 for patients with PSP vs MSA-P and MSA-C in the replication cohort.
e p < 0.001 for PD and MSA-P groups between both cohorts; p < 0.05 for patients with MSA-C.
f UPDRS III scores were missing in 20.2% of the participants.
g p < 0.002 for PD vs PSP, MSA-P, and MSA-C in the training cohort.
h p < 0.05 for patients with MSA-P and MSA-C between both cohorts.



and thus showed the same profiles. Normalization 2 with DTI also correlated with
the first dimension but less strongly. Normalization 1 with DTI and normalization 1
with volumetry + DTI had a different profile and did not perform as well as the other
combinations (Supporting Information Figs. S2 and S3).

RM-ANOVA showed a significant effect of the normalization factor with higher
performance of normalization 2 (p < 0.001) and no interactions with the biomarker and
algorithm factors. Thus, only results with normalization 2 are provided in the following
paragraphs (see Supporting Information Table S4 for results with normalization 1).

3.3 Comparisons of Biomarkers

The highest mean BA was observed for volumetry (mean BA = 0.803) followed by vol-
umetry + DTI (mean BA = 0.756) and DTI (mean BA = 0.631). RM-ANOVA with
sphericity correction showed a significant effect of biomarkers (p = 0.03) and a trend
for an algorithm × biomarkers interaction (p = 0.050). Paired t-tests confirmed that
volumetry had similar performances to that of volumetry + DTI (p = 0.1), and that
both performed better than DTI alone (p < 0.001). Therefore, DTI underperformed
compared with volumetry and did not improve classification when combined with vol-
umetry. Additional MFA did not reveal any significant difference between analyses
performed with and without patients with missing DTI. Therefore, imputing the data
did not have a significant effect on the overall analysis (Supporting Information Table
S6 and Fig. S4). Performances obtained with UPDRS III scores alone were low in both
cohorts (BA: 0.397−0.861, AUC: 0.473−0.899 in the training cohort; BA: 0.316−0.656,
AUC: 0.567− 0.659 in the replication cohort) (Supporting Information Table S7).

3.4 Comparison of Algorithms

The second MFA showed that logistic regression, linear SVM, and random forest had
similar performances and outperformed radial SVM (Supporting Information Fig. S5).
The highest mean BA was observed for logistic regression (mean BA = 0.768), followed
by random forest (mean BA = 0.754), linear SVM (mean BA = 0.745), and radial SVM
(mean BA = 0.652). RM-ANOVA with sphericity correction showed a trend for an
algorithm effect (p = 0.055) and a trend for a normalization × algorithm interaction
(p = 0.051). Post hoc t-tests showed that radial SVM underperformed compared with
the other three algorithms that had similar performances. In the following paragraphs,
only the results obtained with the logistic regression are reported because it provided the
highest mean BA. Results with the three other algorithms are provided in Supporting
Information Table S5.
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3.5 Results per Group Comparison With Normalization 2 and Logistic
Regression

In the training cohort, using volumetry, the best classification performances were ob-
tained in decreasing order for PSP vs MSA-C, PD vs MSA-C, PD vs PSP, PD vs atypical
parkinsonian syndromes, and PD vs MSA-P (BA: 0.892− 0.963, AUC: 0.928− 0.997).
The performances were lower for the classification of PD vs PSP vs MSA (BA: 0.807),
PSP vs MSA-P, and MSA-C vs MSA-P (BA: 0.668−0.732, AUC: 0.757−0.858). Com-
bining volumetry and DTI did not tend to improve BAs (0.622 − 0.942) or AUCs
(0.723 − 0.998), while performances with DTI alone were lower (BA: 0.373 − 0.880,
AUC: 0.243− 0.967) (Table 2).

In the replication cohort, using volumetry, performances remained high for the classi-
fications of PD vs MSA-C, PSP vs MSA-C, PD vs PSP, and PD vs atypical parkinsonism
(BA: 0.840− 0.983, AUC: 0.907− 0.995). Better accuracies than in the training cohort
were obtained for the comparisons of PSP vs MSA-P (BA: 0.896, AUC: 0.968) and
MSA-C vs MSA-P (BA: 0.784, AUC: 0.871). Performances were lower for the classifica-
tions of PD vs MSA-P (BA: 0.765, AUC: 0.839) and PD vs PSP vs MSA (BA: 0.773).
Classification accuracy using DTI alone was significantly lower (BA: 0.560 − 0.917,
AUC: 0.731 − 0.982) than volumetry alone (p < 0.001), whereas volumetry + DTI
(BA: 0.777− 0.982, AUC: 0.833− 0.994) did not differ from volumetry alone (p = 0.1)
(Table 2).

3.6 Weighting Factors

The best features to differentiate PD and PSP were the volumes of the midbrain (1) and
third ventricle (−0.94), FA in the SCP (0.72), and the volumes of the globus pallidus
(0.71) and the putamen (0.63). For discriminating subjects with MSA-C, the most
relevant features were the midbrain/pons ratio (vs PD and PSP: −1, MSA-P: 1) and
the pons atrophy (vs PD: 0.61, MSA-P: −0.47, PSP: 0.31). The other features were the
volumes of the fourth ventricle (vs PD: −0.46) and the cerebellum (vs PD: 0.49, PSP:
0.22, MSA-P: −0.36). MSA-P differentiation relied mostly on the putamen volume
(0.46− 1), with the contribution of DTI metrics in the putamen being low (Table 3 and
Figure 1).

4 Discussion

Our study demonstrates the feasibility of an automated classification of parkinsonian
syndromes in a clinical setting using a large cohort of patients (Archer et al., 2019;
Huppertz et al., 2016). The classification algorithms were tested on a large indepen-
dent replication cohort comprising patients recruited in a movement disorder clinic and
scanned using different MRI systems as part of their routine diagnostic workup. Over-
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Table 2: Performances of the logistic regression classification in both cohorts using
normalization 2, with volumetry, DTI, and the combination of volumetry and DTI.

Training cohort Replication cohort

Metric Vol DTI Vol + DTI Vol DTI Vol + DTI

PD vs PSP BA 0.892 (0.090) 0.794 (0.103) 0.892 (0.094) 0.840 0.644 0.879
AUC 0.977 (0.033) 0.885 (0.104) 0.974 (0.033) 0.968 0.739 0.943
Se 0.850 (0.189) 0.695 (0.197) 0.840 (0.187) 0.733 0.467 0.900
Sp 0.934 (0.066) 0.892 (0.091) 0.945 (0.062) 0.946 0.821 0.857

PD vs MSA-P BA 0.845 (0.127) 0.800 (0.190) 0.880 (0.133) 0.765 0.679 0.744
AUC 0.928 (0.096) 0.863 (0.167) 0.975 (0.044) 0.839 0.749 0.847
Se 0.909 (0.069) 0.931 (0.081) 0.969 (0.044) 0.821 0.857 0.946
Sp 0.780 (0.251) 0.670 (0.373) 0.790 (0.269) 0.708 0.500 0.542

PD vs MSA-C BA 0.963 (0.088) 0.798 (0.177) 0.928 (0.112) 0.982 0.902 0.982
AUC 0.991 (0.026) 0.948 (0.070) 0.992 (0.023) 0.995 0.966 0.994
Se 0.995 (0.024) 0.977 (0.045) 0.995 (0.018) 0.964 0.804 0.964
Sp 0.930 (0.175) 0.620 (0.358) 0.860 (0.227) 1.000 1.000 1.000

PSP vs MSA-C BA 0.938 (0.084) 0.880 (0.100) 0.942 (0.092) 0.983 0.917 0.967
AUC 0.997 (0.016) 0.967 (0.058) 0.998 (0.012) 0.991 0.982 0.994
Se 0.970 (0.082) 0.900 (0.152) 0.990 (0.049) 0.967 0.833 0.933
Sp 0.907 (0.166) 0.860 (0.179) 0.893 (0.184) 1.000 1.000 1.000

PSP vs MSA-P BA 0.732 (0.181) 0.833 (0.155) 0.828 (0.156) 0.896 0.750 0.833
AUC 0.858 (0.149) 0.966 (0.066) 0.962 (0.075) 0.968 0.814 0.892
Se 0.784 (0.180) 0.896 (0.135) 0.896 (0.147) 0.833 0.833 0.833
Sp 0.680 (0.331) 0.770 (0.307) 0.760 (0.307) 0.958 0.667 0.833

MSA-C vs MSA-P BA 0.668 (0.152) 0.373 (0.172) 0.622 (0.179) 0.784 0.725 0.788
AUC 0.757 (0.203) 0.243 (0.185) 0.723 (0.217) 0.871 0.811 0.871
Se 0.630 (0.282) 0.320 (0.346) 0.590 (0.345) 0.750 0.542 0.667
Sp 0.707 (0.239) 0.427 (0.337) 0.653 (0.260) 0.818 0.909 0.909

PD vs atypical
parkinsonism

BA 0.879 (0.073) 0.742 (0.089) 0.880 (0.077) 0.853 0.658 0.839
AUC 0.948 (0.051) 0.832 (0.097) 0.947 (0.053) 0.907 0.731 0.905
Se 0.903 (0.083) 0.840 (0.098) 0.934 (0.062) 0.875 0.732 0.893
Sp 0.856 (0.113) 0.644 (0.174) 0.827 (0.139) 0.831 0.585 0.785

PD vs PSP vs MSAa BA 0.807 (0.071) 0.711 (0.100) 0.812 (0.078) 0.773 0.560 0.777
Se (PD) 0.906 (0.080) 0.842 (0.100) 0.912 (0.081) 0.875 0.750 0.911
Se (MSA) 0.684 (0.145) 0.672 (0.218) 0.708 (0.171) 0.743 0.629 0.686
Se (PSP) 0.830 (0.176) 0.620 (0.201) 0.815 (0.172) 0.700 0.300 0.733

For the training cohort, we have reported means and standard deviations (in parentheses) of performance metrics
across all repetitions during the cross-validation procedure.
Abbreviations: Vol, volumetry; DTI, diffusion tensor imaging; PD, Parkinson’s disease; PSP, progressive supranu-
clear palsy; BA, balanced accuracy; AUC, area under the curve; Se, sensitivity; Sp, specificity; MSA-P, parkin-
sonian variant of multiple system atrophy; MSA-C, cerebellar variant of multiple system atrophy; HC, healthy
control subjects.
a For the multi-class classification task (PD vs PSP vs MSA), in addition to BAs, we have reported sensitivities,
that is, the proportion of subjects who have been accurately classified for each class. For instance, Se(PD) =
0.80 means that 80% of the patients with PD have been classified as PD by the algorithm.
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Table 3: Weighting factors extracted from the logistic regression training for the
different group comparisons using normalization 2.

PD
vs

PSP

PD
vs

MSA-P

PD
vs

MSA-C

PSP
vs

MSA-C

PSP
vs

MSA-P

MSA-C
vs

MSA-P

PD
vs

atypical
parkinsonism

Midbrain_vol 1.00 0.28 0.34 -0.15 -0.46 -0.11 1.00
Pons_vol 0.42 0.29 0.61 0.31 0.14 -0.47 0.74
Midbrain/Pons_vol 0.32 -0.27 -1.0 -1.0 -1.0 1.00 -0.41
SCP_vol 0.37 0.16 0.25 0.04 -0.04 -0.13 0.48
V3_vol -0.94 -0.18 -0.06 0.37 0.64 -0.12 -0.69
V4_vol -0.46 -0.41 -0.5 -0.25 -0.1 0.41 -0.71
Cerebellum_vol 0.49 0.35 0.49 0.22 0.07 -0.36 0.81
Thalamus_vol 0.59 0.22 0.07 -0.21 -0.24 0.18 0.36
Caudate_vol 0.12 0.33 0.02 -0.04 0.20 0.24 0.17
Putamen_vol 0.63 1.00 0.20 -0.09 0.46 0.57 0.98
Pallidum_vol 0.71 0.51 0.17 -0.17 0.03 0.36 0.83
Insula_vol -0.02 0.04 0.03 0.04 0.05 -0.05 -0.15
Precentral_vol 0.24 0.25 -0.01 -0.12 0.03 0.23 0.06
Midbrain_FA 0.40 0.0 0.13 -0.05 -0.2 -0.06 0.24
Pons_FA 0.30 0.15 0.18 0.05 0.06 -0.03 0.20
SCP_FA 0.72 0.17 0.11 -0.22 -0.44 0.06 0.56
Putamen_FA -0.25 -0.23 -0.11 0.0 -0.11 -0.09 -0.43
Posteriorputamen_FA -0.13 -0.14 -0.11 -0.04 -0.04 0.06 -0.25
Pallidum_FA 0.01 0.0 0.02 0.0 -0.03 0.0 0.13
Thalamus_FA 0.15 -0.11 -0.03 -0.09 -0.33 -0.11 -0.15
Caudate_FA -0.01 0.08 0.07 0.05 0.0 -0.08 0.07
Cerebellum_FA 0.21 -0.11 0.13 0.02 -0.23 -0.21 -0.04
Insula_FA 0.01 0.03 0.11 0.06 -0.03 -0.14 -0.02
Precentral_FA 0.25 0.07 0.10 -0.03 -0.21 -0.11 0.26
Midbrain_MD -0.33 0.01 -0.11 0.04 0.20 0.10 -0.2
Pons_MD -0.04 -0.08 -0.19 -0.18 -0.26 0.12 -0.05
SCP_MD -0.22 -0.56 -0.31 -0.21 -0.52 -0.01 -0.43
Putamen_MD -0.06 0.07 -0.05 -0.01 0.06 0.06 -0.07
Posteriorputamen_MD 0.0 -0.01 -0.13 -0.09 -0.05 0.11 -0.12
Pallidum_MD 0.04 0.21 0.08 0.05 0.17 0.02 0.11
Thalamus_MD -0.03 0.18 0.10 0.09 0.23 0.03 0.20
Caudate_MD -0.2 -0.08 -0.01 0.05 0.13 0.02 -0.21
Cerebellum_MD -0.08 -0.23 -0.27 -0.24 -0.34 0.18 -0.23
Insula_MD -0.27 0.03 -0.02 0.08 0.25 0.08 -0.13
Precentral_MD -0.21 0.07 0.02 0.10 0.26 0.04 -0.06
Midbrain_AD -0.21 0.11 -0.07 0.04 0.28 0.16 -0.08
Pons_AD 0.07 0.0 -0.18 -0.22 -0.26 0.18 0.07
SCP_AD 0.14 -0.41 -0.22 -0.29 -0.64 0.03 -0.08
Putamen_AD -0.12 0.01 -0.08 -0.02 0.03 0.04 -0.19
Pallidum_AD 0.07 0.27 0.12 0.07 0.20 0.02 0.22
Thalamus_AD 0.0 0.20 0.11 0.08 0.22 0.03 0.22
Caudate_AD -0.18 -0.06 0.01 0.06 0.12 0.01 -0.16
Cerebellum_AD 0.01 -0.21 -0.2 -0.21 -0.37 0.10 -0.15
Insula_AD -0.25 0.05 0.01 0.10 0.25 0.05 -0.09
Precentral_AD -0.14 0.11 0.07 0.10 0.22 0.0 0.05
Midbrain_RD -0.34 0.01 -0.1 0.09 0.24 -0.02 -0.26
Pons_RD -0.06 0.05 -0.16 -0.11 -0.07 0.09 0.0
SCP_RD -0.46 -0.43 -0.23 0.01 -0.03 -0.08 -0.46
Putamen_RD -0.03 0.10 0.07 0.10 0.07 -0.17 0.09
Pallidum_RD 0.05 0.30 0.18 0.14 0.20 -0.11 0.34
Thalamus_RD -0.08 0.24 0.10 0.13 0.27 -0.04 0.16
Caudate_RD -0.28 -0.02 -0.02 0.11 0.22 -0.02 -0.28
Cerebellum_RD -0.22 -0.23 -0.43 -0.29 -0.25 0.30 -0.45
Insula_RD -0.36 -0.04 0.02 0.19 0.25 -0.17 -0.25
Precentral_RD -0.39 0.0 0.07 0.25 0.42 -0.16 -0.21

Weighting factors were scaled to a range of −1 to +1. Higher absolute values indicate greater contribution of
the feature. When the coefficient was positive, the algorithm favored the first disease group if the value of the
feature was high or the second disease group if the value was low. Conversely, when the coefficient was negative,
the algorithm favored the second group if the value of the feature was high, or the first group if the value was
low. Positive values are highlighted in shades of red while negative values are highlighted in shades of blue.
Abbreviations: PD, Parkinson’s disease; PSP, progressive supranuclear palsy; vol, volume; MSA-P, parkinsonian
variant of multiple system atrophy; MSA-C, cerebellar variant of multiple system atrophy; SCP, superior cere-
bellar peduncles; V3, third ventricle; V4, fourth ventricle; FA, fractional anisotropy; MD, mean diffusivity; AD,
axial diffusivity; RD, radial diffusivity.
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Figure 1: Contribution of each region of interest for the group classification using volumetry. A color shade was
attributed to the weighting factor corresponding to the volume for each brain region, depending on its relevance
for the group differentiation. A color bar in the top left corner of the figure indicates the shades, with brighter
color representing greater weight. Weighting factors were rescaled to the range of 0 to 1. Weighting factors
corresponding to diffusion tensor imaging metrics are not represented. The most relevant regions were Parkinsons
disease (PD) versus progressive supranuclear palsy (PSP): midbrain and putamen; PD versus parkinsonian variant
of multiple system atrophy (MSA-P): putamen; PD versus cerebellar variant of multiple system atrophy (MSA-
C): pons; PSP versus MSA-P: midbrain and third ventricle; PSP versus MSA-C: pons and third ventricle; MSA-P
versus MSA-C: putamen and pons; and PD versus atypical parkinsonism: putamen, midbrain, cerebellum, and
fourth ventricle.
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all, patients in the replication cohort had a shorter disease duration than those in the
training cohort, suggesting that the algorithm could differentiate between patients with
early to moderately advanced parkinsonism. A further strength is that patients with
both parkinsonian and cerebellar subtypes of MSA were included in addition to PD and
PSP, which was only done in two previous studies (Huppertz et al., 2016; Morisi et al.,
2018).

Our results are in agreement with previous studies using machine learning to differ-
entiate parkinsonian syndromes and reporting BAs between from 69% and 89% (Hup-
pertz et al., 2016), and AUC greater than 93% (Archer et al., 2019), and 95% (Scherfler
et al., 2016). Nevertheless, algorithm performances are difficult to compare across stud-
ies given differences in terms of input data, diseases studied, type of classification and
performance indices used. Performances of the logistic regression using volumetry were
also equivalent to those obtained with automated methods using clinical measurements
such as the Magnetic Resonance Parkinsonism Index (MRPI) for the differentiation of
PSP-RS from non-PSP participants (Nigro et al., 2020). However, we found lower ac-
curacy for the classification of MSA-P versus PD and MSA-C and for the multi-class
classification. Indeed, MSA-P and MSA-C patients often have overlapping features, a
clinical and brain imaging continuum existing between both variants, which makes them
more difficult to distinguish (Castellani, 1998; Dickson, 2018). The lower performance
in categorizing MSA-P and MSA-C may also be explained by the fact we included
mixed participants with both patterns of MSA in the MSA-P group, and by insufficient
algorithm training due to the relative small number of MSA patients in the training
cohort.

We confirmed that morphometric measurements are robust MRI biomarkers for the
discrimination of parkinsonism (Huppertz et al., 2016; Salvatore et al., 2014; Scherfler
et al., 2016). In line with previous pathological and imaging studies (Dickson, 2012;
Kassubek, 2018; Levin et al., 2016; Messina et al., 2011; Whitwell et al., 2017), the
best features for the differentiation between PD and PSP were the midbrain and third
ventricle volumes. The midbrain to pons volume ratio was the most relevant feature
for the discrimination between PSP and both MSA variants as reported with manual
morphometric indices such as the midbrain to pons area ratio (Mangesius et al., 2018;
Möller et al., 2017) and the MRPI (Quattrone et al., 2008). The putamen volume
was highly discriminant between MSA-P and PD, MSA-P being characterized by a
prominent putamen atrophy as compared to PD (Heim et al., 2018; Kassubek, 2018;
Messina et al., 2011; Whitwell et al., 2011), but less relevant for the differentiation with
PSP (Messina et al., 2011) and MSA-C patients (Castellani, 1998).

Diffusion measurements in the putamen had low contributions to differentiate MSA-
P from other disease groups in our study. Several studies have shown increased diffu-
sivity in the posterior putamen in MSA-P versus PD patients (Pellecchia et al., 2009;
Seppi et al., 2006; Tsukamoto et al., 2012). Results are less clear between MSA-P
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and PSP patients with overlapping diffusivity (Focke et al., 2011; Nicoletti et al., 2006;
Seppi et al., 2003) and iron content (Focke et al., 2011; Sjöström et al., 2017) reported
in the entire putamen. Measurements in the posterior putamen may provide better
results (Tsukamoto et al., 2012). In our study, co-registration inaccuracies between
T1-weighted images and diffusion maps due to echo planar imaging distortions and sus-
ceptibility artifacts could have contributed to reducing the accuracy of the diffusion
measurements and the performance of the algorithms.

In the replication cohort, normalization using control data reduced the scanner ef-
fect and improved categorization performances using DTI. However, combining DTI to
volumetry did not improve performances while DTI alone had lower performances, as
assessed by the overall low weighting factors associated with DTI measurements. The
heterogeneity of DTI data in the replication cohort, which included images acquired us-
ing two MRI systems and heterogeneous acquisition parameters (voxel size, number of
directions, geometric distortions), probably explained the lower categorization accuracy.
Standardization of DTI acquisition parameters may improve classification performances
as suggested previously (Archer et al., 2019).

Our study has several limitations. First, there was no neuropathological confirma-
tion of parkinsonian diagnosis, which is the case in most neurodegenerative studies.
Second, our study focused on PSP-RS while the differential diagnosis between PD and
PSP-Parkinsonism is also challenging. The recruitment of PSP variants will be the
scope of future studies. Third, DTI-derived white matter tract microstructure could
have improved categorization performance, especially since these large tracts could be
less susceptible to changes in DTI scan resolution. Future work could also involve
free-water and free-water-corrected measurements, which may improve classification
accuracy (Archer et al., 2019). Furthermore, the automated segmentation and machine
learning approach that we used are time-consuming and not yet available in clinical
routine unlike morphometric methods such as the MRPI. However, there is a huge in-
terest in machine learning approaches, with a high potential for translation in clinical
practice.

To conclude, our study showed that automated categorization of parkinsonian syn-
dromes was applicable to patients with early to moderately advanced parkinsonism
recruited in a clinical environment, despite variability in scanners and acquisition pa-
rameters. Volumetry was the most robust discriminative biomarker. Improvement in
acquisition and analysis of diffusion data and inclusion of iron measurements may im-
prove classification. Implementing a machine learning algorithm in the clinical workflow
may thus be relevant to help clinicians improve diagnosis of parkinsonism.
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