Automated Categorization of Parkinsonian Syndromes Using Magnetic Resonance Imaging in a Clinical Setting

Lydia Chougar1,2,3,4, MD; Johann Faouzi1,5; Nadya Pyatigorskaya1,2,3,4, MD, PhD; Lydia Yahia-Cherif1,3, PhD; Rahul Gaurav1,2,3; Emma Biondetti1,2,3, PhD; Marie Vilotte6, MD; Romain Valabгре1,3, PhD; Jean-Christophe Corvol1,7, MD, PhD; Alexis Brice1,8, MD, PhD; Louise-Laure Mariani1,7,9, MD, PhD; Florence Cormier9, MD; Marie Vidalhет1,2,9, MD, PhD; Gwendoline Dupont10,11, MD; Ines Piot4, MD; David Grabli9, MD, PhD; Christine Payan12,13, MD; Olivier Colliot1,5, PhD; Bertrand Degos14,15, MD, PhD; Stéphane Lehéricty1,2,3,4, MD, PhD

1 Paris Brain Institute – ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, UMR S 1127, CNRS UMR 7225, Paris, France
2 ICM, “Movement Investigations and Therapeutics” Team (MOV’IT), Paris, France
3 ICM, Centre de NeuroImagerie de Recherche – CENIR, Paris, France
4 Department of Neuroradiology, Pitié-Salpêtrière University Hospital, APHP, Paris, France
5 Inria, Aramis Team, Paris, France
6 Faculté de Médecine, Université Denis Diderot, Paris, France
7 ICM, Centre d’Investigation Clinique Neurosciences, Paris, France
8 ICM, Team Neurogénétique Fondamentale et Translationnelle, Paris, France
9 Clinique des Mouvements Anormaux, Département des Maladies du Système Nerveux, Hôpital Pitié-Salpêtrière, APHP, Paris, France
10 Université de Bourgogne, Dijon, France
11 Centre Hospitalier Universitaire François Mitterrand, Département de Neurologie, Dijon, France
12 BESPIM, Hôpital Universitaire de Nîmes, Nîmes, France
13 Service de Pharmacologie Clinique, Hôpital Pitié-Salpêtrière, APHP, Paris, France
14 Dynamics and Pathophysiology of Neuronal Networks Team, Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241 / Inserm U1050, MemoLife Labex, Paris, France
15 Department of Neurology, Avicenne University Hospital, Sorbonne Paris Nord University, Bobigny, France

\textbf{Journal:} Movement Disorders

\textbf{First published:} 02 November 2020

\textbf{DOI:} https://doi.org/10.1002/mds.28348
Abstract

Background: Machine learning algorithms using magnetic resonance imaging (MRI) data can accurately discriminate parkinsonian syndromes. Validation in patients recruited in routine clinical practice is missing.

Objective: The aim of this study was to assess the accuracy of a machine learning algorithm trained on a research cohort and tested on an independent clinical replication cohort for the categorization of parkinsonian syndromes.

Methods: Three hundred twenty-two subjects, including 94 healthy control subjects, 119 patients with Parkinson’s disease (PD), 51 patients with progressive supranuclear palsy (PSP) with Richardson’s syndrome, 35 with multiple system atrophy (MSA) of the parkinsonian variant (MSA-P), and 23 with MSA of the cerebellar variant (MSA-C), were recruited. They were divided into a training cohort (n = 179) scanned in a research environment and a replication cohort (n = 143) examined in clinical practice on different MRI systems. Volumes and diffusion tensor imaging (DTI) metrics in 13 brain regions were used as input for a supervised machine learning algorithm. To harmonize data across scanners and reduce scanner-dependent effects, we tested two types of normalizations using patient data or healthy control data.

Results: In the replication cohort, high accuracies were achieved using volumetry in the classification of PD vs PSP, PD vs MSA-C, PSP vs MSA-C, and PD vs atypical parkinsonism (balanced accuracies: 0.840 – 0.983, area under the receiver operating characteristic curves: 0.907 – 0.995). Performances were lower for the classification of PD vs MSA-P, MSA-C vs MSA-P (balanced accuracies: 0.765 – 0.784, area under the receiver operating characteristic curve: 0.839–0.871) and PD vs PSP vs MSA (balanced accuracies: 0.773). Performance using DTI was improved when normalizing by controls, but remained lower than that using volumetry alone or combined with DTI.

Conclusions: A machine learning approach based on volumetry enabled accurate classification of subjects with early-stage parkinsonism, examined on different MRI systems, as part of their clinical assessment.

Key Words: Parkinson’s disease; progressive supranuclear palsy; multiple system atrophy; multimodal magnetic resonance imaging; machine learning algorithm
1 Introduction

Diagnosis of idiopathic Parkinson’s disease (PD) and atypical parkinsonism, whose most frequent types are progressive supranuclear palsy (PSP) and multiple system atrophy (MSA), relies on clinical criteria (Gilman et al., 2008; Hoglinger et al., 2017; Hughes et al., 2002). The diagnostic accuracy of PD is greatly improved when made by clinical experts in movement disorders with a sensitivity of 91.1% and a specificity of 98.4% (Berardelli et al., 2013; Hughes et al., 2002). However, on initial presentation, a correct diagnosis of atypical parkinsonism may be difficult, and clinical uncertainty is high. Accurate diagnosis is crucial to assess the prognosis, enroll patients in adequate care systems, and allow their inclusion in appropriate therapeutic trials.

Degeneration of dopaminergic neurons within the substantia nigra pars compacta is the hallmark of neurodegenerative parkinsonian syndromes (Dickson, 2012, 2018; Levin et al., 2016). Although patients with PD exhibit only nigral abnormalities in a limited number of small brain stem nuclei at the early stage of the disease (Dickson, 2012, 2018; Kalia and Lang, 2015; Levin et al., 2016), patients with PSP show a larger involvement of the midbrain, dentate nucleus, and superior cerebellar peduncles (SCPs) (Dickson, 2012; Hauw et al., 1994; Levin et al., 2016; Pyatigorskaya et al., 2020; Steele et al., 2014), and patients with MSA are characterized by damage particularly affecting the posterior putamen in the parkinsonian variant (MSA-P) and the pons, middle cerebellar peduncles, and cerebellum in the cerebellar variant (MSA-C) (Castellani, 1998; Dickson, 2012; Levin et al., 2016).

Multimodal magnetic resonance imaging (MRI) can detect these different patterns of brain damage (Heim et al., 2018; Kassubek, 2018; Lehericy et al., 2017; Rizzo et al., 2016; Whitwell et al., 2017). Atrophy is visible on T1-weighted images, tissue microstructure alterations are detected using diffusion-weighted images, and iron deposition can be evidenced using iron-sensitive sequences (Heim et al., 2018; Kassubek, 2018; Lehericy et al., 2017; Rizzo et al., 2016; Whitwell et al., 2017). Using MRI data, machine learning algorithms can accurately differentiate between parkinsonian syndromes (Archer et al., 2019; Cherubini et al., 2014; Du et al., 2017; Huppertz et al., 2016; Morisi et al., 2018; Péran et al., 2018; Salvatore et al., 2014; Scherfler et al., 2016). Most studies have used a single type of MRI data, either volumetry (Huppertz et al., 2016; Salvatore et al., 2014; Scherfler et al., 2016) or diffusion-weighted data (Archer et al., 2019). Some studies have combined volumetry and diffusion (Cherubini et al., 2014), or have included R2* relaxometry (Péran et al., 2018) or spectroscopy (Morisi et al., 2018). Two studies have included large cohorts of 1002 subjects (Archer et al., 2019) or 464 subjects (Huppertz et al., 2016), whereas most studies have investigated smaller samples (Morisi et al., 2018; Salvatore et al., 2014; Scherfler et al., 2016). Only two studies have included subjects with PD, PSP, MSA-P, and MSA-C (Huppertz et al., 2016; Morisi et al., 2018), while other studies have not differentiated between MSA-P and MSA-C (Scherfler et al., 2016),
have included only patients with MSA-P (Archer et al., 2019) or MSA-C (Du et al., 2017), or have not included patients with MSA (Cherubini et al., 2014; Salvatore et al., 2014) or PSP (Péran et al., 2018). Moreover, these studies have been mainly designed in a research environment and have been tested without an independent replication cohort (Cherubini et al., 2014; Huppertz et al., 2016; Péran et al., 2018; Salvatore et al., 2014).

To transpose an automated MRI classification approach based on machine learning to clinical practice, it is necessary to evaluate this approach on large cohorts scanned in clinical environments and including the different types of parkinsonian syndromes.

Our objective was to assess the predictive performance of machine learning algorithms for the categorization of parkinsonian syndromes, including PSP, MSA-C, and MSA-P, compared with PD and healthy control subjects (HCs). Such algorithms were trained on a research cohort and tested on an independent replication cohort scanned on different MRI scanners in clinical conditions in a neuroradiology department, using volumetry and diffusion tensor imaging (DTI).

2 Materials and Methods

2.1 Population

Two populations of participants were included: a training cohort to train and validate the algorithms and a replication cohort to independently evaluate each algorithm’s performance. The training cohort was constituted of research studies conducted between 2007 and 2012 at the Paris Brain Institute (ICM): Genepark (LSHB-CT-2006-037544), BBBIPPS (DGS 2006/0524), and Nucleipark (RCB 2009-A00922-55). Inclusion criteria for patients were a diagnosis of PD, PSP, or MSA established by movement disorders specialists according to published consensus criteria for PD (Hughes et al., 2002) with no or minimal cognitive disturbances with Mini Mental State Examination score > 24, PSP with Richardson’s syndrome (Litvan et al., 1996), or MSA (Gilman et al., 2008).

Participants in the replication cohort were consecutively enrolled between 2013 and 2019 in the movement disorders clinic of the Pitié-Salpêtrière Hospital, Paris. Diagnosis of probable PD, PSP, or MSA was retrospectively established in 2019 by movement disorders specialists according to the aforementioned clinical criteria based on all available clinical data.

The clinical examination included the Unified Parkinson’s Disease Rating Scale Part III (UPDRS III) scores. Baseline MRI scans were obtained on the same days as the clinical examination. For both cohorts, HCs without a history of neurological or psychiatric disease were included. Subjects were excluded if they had any additional neurological disorder.

Local institutional review boards approved the studies (Genepark: CPP Paris II, 2007-A00208-45; BBBIPPS: CPP Paris VI, P040410–65-06; Nucleipark: CPP Paris VI,
Written informed consent was obtained from all participants.

2.2 Image Acquisition

Participants in the training cohort were scanned at the Paris Brain Institute using a 3T Siemens Trio system (Siemens Healthineers, Erlangen, DE) with a 32-channel head coil. Participants in the replication cohort were scanned in clinical conditions for diagnostic purposes in the Neuroradiology Department of the hospital using two MRI systems: (i) a 3T GE Signa HDxt (GE Healthcare, Chicago, IL) with an 8-channel head coil, and (ii) a 3T Siemens Skyra using a 64-channel head coil. HCs in the replication cohort were scanned twice during different sessions on Siemens Skyra and GE Signa systems. All participants were scanned using a standardized protocol including a high-resolution T1-weighted gradient-recalled echo sequence (magnetization-prepared rapid acquisition with gradient-recalled echo or spoiled gradient recalled acquisition in steady state) and DTI with 30 (Siemens Skyra and GE Signa), 60, or 64 (Siemens Trio) diffusion directions. Acquisition parameters are provided in Supporting Information Table S1. Quality control was performed by visual inspection; T1-weighted and diffusion-weighted images with significant motion artifacts or image distortions were excluded.

2.3 Data Processing and Analysis

Image processing and analysis were performed using Matlab (R2017b; The MathWorks, Inc., Natick, MA). T1-weighted images were automatically segmented using FreeSurfer 6.0 (http://freesurfer.net/; MGH, Boston, MA, USA) (Fischl et al., 2002). DTI preprocessing was performed using the FMRIB Software Library v5.0 (FMRIB, Oxford, United Kingdom). Motion and eddy currents were corrected using the eddyCor function. Fractional anisotropy (FA) and diffusivity maps were computed using the DTIfit function for the entire brain volume. The diffusion maps were coregistered to the three-dimensional T1-weighted volume using the Statistical Parametric Mapping coregister function (SPM 12; https://www.fil.ion.ucl.ac.uk/spm/software/spm12/).

We included 13 regions of interest known for being involved in parkinsonian syndromes in the gray matter (midbrain, pons, putamen, posterior putamen, caudate, thalamus, pallidum, precentral cortex, insular cortex), white matter (SCPs, cerebellum white matter including the middle cerebellar peduncles), and ventricles (third ventricle, fourth ventricle). Volumes, average values of FA, mean diffusivity, axial diffusivity, and radial diffusivity (RD) were calculated in all segmented regions of interest and used as input features for the algorithms. To remove inter-individual variability, all volumes were corrected by the total intracranial volume for each participant. Means of the volumes and DTI metrics were used for bilateral regions.
2.4 Normalization Procedures

Two independent normalization procedures were investigated and performed in both cohorts. “Normalization 1” scaled the features so that they were normally distributed. For a given between-group comparison (e.g. PSP vs PD), each variable of each participant was normalized using the mean and standard deviation (SD) of this variable in all patients in these two groups of the training cohort (e.g. all patients with PSP and PD in the training cohort). For example, for the “PD vs PSP” classification in either the training or the replication cohort, each variable of each patient with PD and PSP in the corresponding cohort was normalized using the following formula: \(\frac{\text{Variable} - \text{mean of PD and PSP in the training cohort}}{\text{SD of PD and PSP in the training cohort}} \).

“Normalization 2” aimed to harmonize data across scanners, reduce scanner-dependent effects in the images, and find a good trade-off between standard normal distribution and same distribution of the features in both cohorts. Normalization 2 used the mean and SD of the controls scanned using the same scanner as the patient, according to the formula: \(\frac{\text{Variable} - \text{mean of controls scanned using the same scanner}}{\text{SD of controls scanned using the same scanner}} \).

2.5 Machine Learning Algorithms

Using the scikit-learn package (Pedregosa et al., 2011), four supervised machine learning algorithms were used: logistic regression, support vector machine (SVM) with a linear kernel, SVM with a radial basis function kernel, and random forest. They were trained and validated on the training cohort, then tested on the replication cohort.

The cross-validation procedure on the training cohort included two nested loops: an outer loop with repeated stratified random splits with 50 repetitions evaluating the classification performances and an inner loop with 5-fold cross-validation used to optimize the hyper-parameters of the algorithms. One model was created for each split, leading to 50 models. We selected the model with the highest mean balanced accuracies among the models with frequencies of appearance greater than 10% (Supporting Information Fig. S1).

Correlation between the different input features was investigated in both cohorts (Supporting Information Tables S2 and S3). Ridge regularization was used to avoid overfitting and to deal with possible correlation between the features. Three models were evaluated: “volumetry only”, “DTI only” and “volumetry + DTI” with age and sex as covariates. DTI was missing in 13 patients of the training cohort and 14 patients of the replication cohort. Missing values were imputed with the mean values of the features from the training cohort. The algorithms were retrained and retested after removing subjects with missing DTI images. In addition, analysis with UPDRS III scores alone was performed, and performances were compared with the other models.

We evaluated binary classification tasks (PD vs PSP, PD vs MSA-P, PD vs MSA-C,
PSP vs MSA-P, PSP vs MSA-C, MSA-P vs MSA-C, PD vs atypical parkinsonism) and the multi-class classification task (PD vs PSP vs MSA, with patients with MSA merged in one group because of their small number).

Receiver operating characteristic curves were generated, and balanced accuracy (BA), area under the curve (AUC), sensitivity, and specificity were calculated to evaluate the algorithm performances. BA was defined as the average sensitivity and specificity in each group. BA avoids overestimation of classification performance because of imbalanced group sizes (Huppertz et al., 2016).

2.6 Weighting Factors

Weighting factors of the volume and DTI metrics of each brain region were extracted from the logistic regression training after normalization 2 (corresponding to the best model). They reflected the contribution of each feature to group differentiation. A rescaling to a range of -1 to $+1$ was applied to highlight the relative importance of each feature: the higher the absolute value, the bigger the contribution of the feature. This assertion relied on the assumption that each feature had the same scale, which was a reasonable assumption because all features were standardized. When the coefficient was positive, the algorithm favored the first group if the value of the feature was high or the second group if the value was low, and vice versa (Huppertz et al., 2016).

2.7 Statistical Analyses

2.7.1 Participant Characteristics

Statistical analyses were performed using R software (R Core Development Team, 2017). Group demographic and clinical scores within each cohort were analyzed. Statistical difference in sex distribution was evaluated using Fisher’s exact test, followed by pairwise comparisons with p adjustment (Holm’s method). Age, disease duration, and UPDRS III scores were compared using the Kruskal-Wallis test, followed by pairwise comparisons with Holm-Bonferroni correction. Inter-cohort comparisons were also performed by assessing group-wise differences using Fisher’s exact test for sex and Wilcoxon’s rank sum test with continuity correction for age, disease duration, and the UPDRS III scores.

2.7.2 Comparison of Normalization Procedures, Biomarkers, and Algorithms

We compared BAs between normalization, biomarker, and classification methods in the replication cohort using multiple factor analysis (MFA) as a datadriven exploratory technique and repeated-measures analysis of variance (RM-ANOVA). For the MFA, a first analysis was run by grouping the data by normalization \times biomarkers generating six blocks (2 normalizations \times 3 biomarkers) of four variables (four algorithms) each.
to determine which “normalization × biomarker” blocks induced the same structures.
A second analysis was run on four blocks (four algorithms) of six variables (2 normalizations × 3 biomarkers) to identify similarities/dissimilarities between algorithms performances. As a first step, individual principal component analysis was performed on each block, which was then normalized by the corresponding first eigenvalue. The obtained matrices were merged to form a global matrix, and a global principal component analysis was performed. The individual observations were then projected onto the global space.

We used RM-ANOVA with a $2 \times 4 \times 3$ factorial design [normalization (1 and 2) × algorithm (logistic regression, linear SVM, radial SVM, random forest) × biomarker (volumetry, volumetry + DTI, DTI)] after testing data for normality with Shapiro-Wilk test ($p > 0.05$). Sphericity assumption was checked using Mauchly’s test and, if necessary, corrected using Greenhouse-Geisser correction. Pairwise comparisons with Bonferroni correction were then performed.

3 Results

3.1 Participants’ Clinical and Demographic Characteristics

In total, 322 subjects were analyzed, divided into a training cohort ($n = 179$) and a replication cohort ($n = 143$) (Table 1). In the training cohort, there was a significant difference in sex distribution (Fisher’s test, $p = 0.031$) due to a difference between HCs and patients with PD ($p = 0.040$). There was no significant difference in age and disease duration between groups. Patients with PD had lower UPDRS III scores than other patient groups ($p < 0.002$). In the replication cohort, there was a difference in age (Kruskal-Wallis, $p < 0.002$), with patients with PSP being older than other groups. There were no differences in sex distribution, disease duration, and UPDRS III scores between groups.

When comparing both cohorts, there was a significant difference in sex distribution for patients with PSP ($p = 0.042$) and age, because HCs ($p = 0.007$), patients with PD ($p = 0.002$), and patients with PSP ($p = 0.019$) were older in the replication cohort. Disease duration was shorter in the replication cohort for patients with PD ($p < 0.001$), MSA-P ($p < 0.001$), and MSA-C ($p = 0.020$), but not for patients with PSP ($p = 0.055$). UPDRS III scores were lower for MSA-P ($p = 0.003$) and MSA-C ($p = 0.002$) in the replication cohort.

3.2 Comparison of Normalization Methods

The first MFA showed that the first two components with eigenvalues greater than 1 explained 56% and 20% of the total variance. Both normalizations with volumetry and normalization 2 with volumetry + DTI strongly correlated with the first dimension,
Table 1: Demographic and clinical characteristics of the population.

<table>
<thead>
<tr>
<th>Groups</th>
<th>Training cohort (n = 179)</th>
<th>Replication cohort (n = 143)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HC</td>
<td>PD</td>
</tr>
<tr>
<td>n</td>
<td>72</td>
<td>63</td>
</tr>
<tr>
<td>Sex ratio (M/F)</td>
<td>24/48<sup>a</sup></td>
<td>37/26<sup>c</sup></td>
</tr>
<tr>
<td>Age at MRI scan (year)</td>
<td>60.8 ± 8.2<sup>c</sup></td>
<td>60.7 ± 9.7<sup>c</sup></td>
</tr>
<tr>
<td>Disease duration (year)</td>
<td>NA</td>
<td>6.0 ± 4.0<sup>e</sup></td>
</tr>
<tr>
<td>UPDRS III scores<sup>f</sup></td>
<td>0.4 ± 0.7</td>
<td>21.0 ± 13.1<sup>g</sup></td>
</tr>
</tbody>
</table>

Group demographics and clinical scores within each cohort were compared. Statistical difference in sex distribution was evaluated using Fisher’s exact test, followed by pairwise comparisons with p adjustment (Holm’s method). Age, disease duration, and UPDRS III scores were compared using Kruskal-Wallis test, followed by pairwise comparisons with Holm-Bonferroni correction. Inter-cohort comparisons were also performed by assessing group-wise differences using Fisher’s exact test for sex and Wilcoxon’s rank sum test with continuity correction for age, disease duration, and UPDRS III scores.

Abbreviations: HC, healthy control subjects; PD, Parkinson’s disease; PSP, progressive supranuclear palsy; MSA-P, parkinsonian variant of multiple system atrophy; MSA-C, cerebellar variant of multiple system atrophy; M, male; F, female; MRI, magnetic resonance imaging; UPDRS III, Unified Parkinson’s Disease Rating Scale Part III.

^a p < 0.05 for HCs vs patients with PD in the training cohort.

^b p < 0.05 for patients with PSP between both cohorts.

^c p < 0.05 for HCs, patients with PD, and patients with PSP between both cohorts.

^d p < 0.05 for patients with PSP vs HCs and patients with PD; p < 0.001 for patients with PSP vs MSA-P and MSA-C in the replication cohort.

^e p < 0.001 for PD and MSA-P groups between both cohorts; p < 0.05 for patients with MSA-C.

^f UPDRS III scores were missing in 20.2% of the participants.

^g p < 0.002 for PD vs PSP, MSA-P, and MSA-C in the training cohort.

^h p < 0.05 for patients with MSA-P and MSA-C between both cohorts.
and thus showed the same profiles. Normalization 2 with DTI also correlated with the first dimension but less strongly. Normalization 1 with DTI and normalization 1 with volumetry + DTI had a different profile and did not perform as well as the other combinations (Supporting Information Figs. S2 and S3).

RM-ANOVA showed a significant effect of the normalization factor with higher performance of normalization 2 \((p < 0.001)\) and no interactions with the biomarker and algorithm factors. Thus, only results with normalization 2 are provided in the following paragraphs (see Supporting Information Table S4 for results with normalization 1).

3.3 Comparisons of Biomarkers

The highest mean BA was observed for volumetry (mean BA = 0.803) followed by volumetry + DTI (mean BA = 0.756) and DTI (mean BA = 0.631). RM-ANOVA with sphericity correction showed a significant effect of biomarkers \((p = 0.03)\) and a trend for an algorithm \(\times\) biomarkers interaction \((p = 0.050)\). Paired t-tests confirmed that volumetry had similar performances to that of volumetry + DTI \((p = 0.1)\), and that both performed better than DTI alone \((p < 0.001)\). Therefore, DTI underperformed compared with volumetry and did not improve classification when combined with volumetry. Additional MFA did not reveal any significant difference between analyses performed with and without patients with missing DTI. Therefore, imputing the data did not have a significant effect on the overall analysis (Supporting Information Table S6 and Fig. S4). Performances obtained with UPDRS III scores alone were low in both cohorts (BA: 0.397–0.861, AUC: 0.473–0.899 in the training cohort; BA: 0.316–0.656, AUC: 0.567–0.659 in the replication cohort) (Supporting Information Table S7).

3.4 Comparison of Algorithms

The second MFA showed that logistic regression, linear SVM, and random forest had similar performances and outperformed radial SVM (Supporting Information Fig. S5). The highest mean BA was observed for logistic regression (mean BA = 0.768), followed by random forest (mean BA = 0.754), linear SVM (mean BA = 0.745), and radial SVM (mean BA = 0.652). RM-ANOVA with sphericity correction showed a trend for an algorithm effect \((p = 0.055)\) and a trend for a normalization \(\times\) algorithm interaction \((p = 0.051)\). Post hoc t-tests showed that radial SVM underperformed compared with the other three algorithms that had similar performances. In the following paragraphs, only the results obtained with the logistic regression are reported because it provided the highest mean BA. Results with the three other algorithms are provided in Supporting Information Table S5.
3.5 Results per Group Comparison With Normalization 2 and Logistic Regression

In the training cohort, using volumetry, the best classification performances were obtained in decreasing order for PSP vs MSA-C, PD vs MSA-C, PD vs PSP, PD vs atypical parkinsonian syndromes, and PD vs MSA-P (BA: 0.892 – 0.963, AUC: 0.928 – 0.997). The performances were lower for the classification of PD vs PSP vs MSA (BA: 0.807), PSP vs MSA-P, and MSA-C vs MSA-P (BA: 0.668 – 0.732, AUC: 0.757 – 0.858). Combining volumetry and DTI did not tend to improve BAs (0.622 – 0.942) or AUCs (0.723 – 0.998), while performances with DTI alone were lower (BA: 0.373 – 0.880, AUC: 0.243 – 0.967) (Table 2).

In the replication cohort, using volumetry, performances remained high for the classifications of PD vs MSA-C, PSP vs MSA-C, PD vs PSP, and PD vs atypical parkinsonism (BA: 0.840 – 0.983, AUC: 0.907 – 0.995). Better accuracies than in the training cohort were obtained for the comparisons of PSP vs MSA-P (BA: 0.896, AUC: 0.968) and MSA-C vs MSA-P (BA: 0.784, AUC: 0.871). Performances were lower for the classifications of PD vs MSA-P (BA: 0.765, AUC: 0.839) and PD vs PSP vs MSA (BA: 0.773). Classification accuracy using DTI alone was significantly lower (BA: 0.560 – 0.917, AUC: 0.731 – 0.982) than volumetry alone (p < 0.001), whereas volumetry + DTI (BA: 0.777 – 0.982, AUC: 0.833 – 0.994) did not differ from volumetry alone (p = 0.1) (Table 2).

3.6 Weighting Factors

The best features to differentiate PD and PSP were the volumes of the midbrain (1) and third ventricle (−0.94), FA in the SCP (0.72), and the volumes of the globus pallidus (0.71) and the putamen (0.63). For discriminating subjects with MSA-C, the most relevant features were the midbrain/pons ratio (vs PD and PSP: −1, MSA-P: 1) and the pons atrophy (vs PD: 0.61, MSA-P: −0.47, PSP: 0.31). The other features were the volumes of the fourth ventricle (vs PD: −0.46) and the cerebellum (vs PD: 0.49, PSP: 0.22, MSA-P: −0.36). MSA-P differentiation relied mostly on the putamen volume (0.46 – 1), with the contribution of DTI metrics in the putamen being low (Table 3 and Figure 1).

4 Discussion

Our study demonstrates the feasibility of an automated classification of parkinsonian syndromes in a clinical setting using a large cohort of patients (Archer et al., 2019; Huppertz et al., 2016). The classification algorithms were tested on a large independent replication cohort comprising patients recruited in a movement disorder clinic and scanned using different MRI systems as part of their routine diagnostic workup. Over-
Table 2: Performances of the logistic regression classification in both cohorts using normalization 2, with volumetry, DTI, and the combination of volumetry and DTI.

<table>
<thead>
<tr>
<th></th>
<th>Training cohort</th>
<th>Replication cohort</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Vol</td>
<td>DTI</td>
</tr>
<tr>
<td>PD vs PSP BA</td>
<td>0.892 (0.090)</td>
<td>0.794 (0.103)</td>
</tr>
<tr>
<td>AUC</td>
<td>0.977 (0.033)</td>
<td>0.885 (0.104)</td>
</tr>
<tr>
<td>Se</td>
<td>0.850 (0.189)</td>
<td>0.695 (0.197)</td>
</tr>
<tr>
<td>Sp</td>
<td>0.934 (0.066)</td>
<td>0.892 (0.091)</td>
</tr>
<tr>
<td>PD vs MSA-P BA</td>
<td>0.845 (0.127)</td>
<td>0.800 (0.190)</td>
</tr>
<tr>
<td>AUC</td>
<td>0.928 (0.096)</td>
<td>0.863 (0.167)</td>
</tr>
<tr>
<td>Se</td>
<td>0.909 (0.069)</td>
<td>0.931 (0.081)</td>
</tr>
<tr>
<td>Sp</td>
<td>0.780 (0.251)</td>
<td>0.670 (0.373)</td>
</tr>
<tr>
<td>PD vs MSA-C BA</td>
<td>0.963 (0.088)</td>
<td>0.798 (0.177)</td>
</tr>
<tr>
<td>AUC</td>
<td>0.991 (0.026)</td>
<td>0.948 (0.070)</td>
</tr>
<tr>
<td>Se</td>
<td>0.995 (0.024)</td>
<td>0.977 (0.045)</td>
</tr>
<tr>
<td>Sp</td>
<td>0.930 (0.175)</td>
<td>0.620 (0.358)</td>
</tr>
<tr>
<td>PSP vs MSA-C BA</td>
<td>0.938 (0.084)</td>
<td>0.880 (0.109)</td>
</tr>
<tr>
<td>AUC</td>
<td>0.997 (0.016)</td>
<td>0.967 (0.058)</td>
</tr>
<tr>
<td>Se</td>
<td>0.970 (0.082)</td>
<td>0.960 (0.152)</td>
</tr>
<tr>
<td>Sp</td>
<td>0.907 (0.166)</td>
<td>0.860 (0.179)</td>
</tr>
<tr>
<td>PSP vs MSA-P BA</td>
<td>0.732 (0.181)</td>
<td>0.833 (0.155)</td>
</tr>
<tr>
<td>AUC</td>
<td>0.858 (0.149)</td>
<td>0.966 (0.066)</td>
</tr>
<tr>
<td>Se</td>
<td>0.784 (0.180)</td>
<td>0.896 (0.135)</td>
</tr>
<tr>
<td>Sp</td>
<td>0.680 (0.331)</td>
<td>0.770 (0.307)</td>
</tr>
<tr>
<td>MSA-C vs MSA-P BA</td>
<td>0.668 (0.152)</td>
<td>0.373 (0.172)</td>
</tr>
<tr>
<td>AUC</td>
<td>0.757 (0.203)</td>
<td>0.243 (0.185)</td>
</tr>
<tr>
<td>Se</td>
<td>0.630 (0.282)</td>
<td>0.320 (0.346)</td>
</tr>
<tr>
<td>Sp</td>
<td>0.707 (0.239)</td>
<td>0.427 (0.337)</td>
</tr>
<tr>
<td>PD vs typical Parkinsonism BA</td>
<td>0.879 (0.073)</td>
<td>0.742 (0.089)</td>
</tr>
<tr>
<td>AUC</td>
<td>0.948 (0.051)</td>
<td>0.832 (0.097)</td>
</tr>
<tr>
<td>Se</td>
<td>0.903 (0.083)</td>
<td>0.840 (0.098)</td>
</tr>
<tr>
<td>Sp</td>
<td>0.856 (0.113)</td>
<td>0.644 (0.174)</td>
</tr>
<tr>
<td>PD vs PSP vs MSAa BA</td>
<td>0.807 (0.071)</td>
<td>0.711 (0.100)</td>
</tr>
<tr>
<td>Se (PD)</td>
<td>0.906 (0.060)</td>
<td>0.842 (0.109)</td>
</tr>
<tr>
<td>Se (MSA)</td>
<td>0.684 (0.145)</td>
<td>0.672 (0.218)</td>
</tr>
<tr>
<td>Se (PSP)</td>
<td>0.830 (0.176)</td>
<td>0.620 (0.201)</td>
</tr>
</tbody>
</table>

For the training cohort, we have reported means and standard deviations (in parentheses) of performance metrics across all repetitions during the cross-validation procedure.

Abbreviations: Vol, volumetry; DTI, diffusion tensor imaging; PD, Parkinson’s disease; PSP, progressive supranuclear palsy; BA, balanced accuracy; AUC, area under the curve; Se, sensitivity; Sp, specificity; MSA-P, parkinsonian variant of multiple system atrophy; MSA-C, cerebellar variant of multiple system atrophy; HC, healthy control subjects.

*a For the multi-class classification task (PD vs PSP vs MSA), in addition to BAs, we have reported sensitivities, that is, the proportion of subjects who have been accurately classified for each class. For instance, Se(PD) = 0.80 means that 80% of the patients with PD have been classified as PD by the algorithm.
Table 3: Weighting factors extracted from the logistic regression training for the different group comparisons using normalization 2.

<table>
<thead>
<tr>
<th></th>
<th>PD vs PSP</th>
<th>PD vs MSA-P</th>
<th>PD vs MSA-C</th>
<th>PSP vs MSA-P</th>
<th>PSP vs MSA-C</th>
<th>MSA-C vs atypical parkinsonism</th>
</tr>
</thead>
<tbody>
<tr>
<td>Midbrain_vol</td>
<td>1.00</td>
<td>0.28</td>
<td>0.34</td>
<td>-0.15</td>
<td>-0.46</td>
<td>-0.11</td>
</tr>
<tr>
<td>Putamen_vol</td>
<td>0.02</td>
<td>1.00</td>
<td>-0.02</td>
<td>-0.36</td>
<td>0.11</td>
<td>1.00</td>
</tr>
<tr>
<td>Insula_vol</td>
<td>0.01</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>-0.03</td>
<td>0.01</td>
</tr>
<tr>
<td>Thalamus_FA</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.05</td>
<td>0.06</td>
<td>-0.03</td>
</tr>
<tr>
<td>Caudate_FA</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.03</td>
<td>-0.03</td>
</tr>
<tr>
<td>Pallidum_FA</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.05</td>
<td>0.06</td>
<td>-0.03</td>
</tr>
<tr>
<td>SCP_AD</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.03</td>
<td>-0.03</td>
</tr>
<tr>
<td>Putamen_MD</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.02</td>
<td>-0.03</td>
</tr>
<tr>
<td>Midbrain_MD</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.05</td>
<td>0.06</td>
<td>-0.03</td>
</tr>
<tr>
<td>Caudate_MD</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.03</td>
<td>-0.03</td>
</tr>
<tr>
<td>Pallidum_MD</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.05</td>
<td>0.06</td>
<td>-0.03</td>
</tr>
<tr>
<td>SCP_MD</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.03</td>
<td>-0.03</td>
</tr>
<tr>
<td>Putamen_AD</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.02</td>
<td>-0.03</td>
</tr>
<tr>
<td>Midbrain_AD</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.05</td>
<td>0.06</td>
<td>-0.03</td>
</tr>
<tr>
<td>Caudate_AD</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.03</td>
<td>-0.03</td>
</tr>
<tr>
<td>Pallidum_AD</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.05</td>
<td>0.06</td>
<td>-0.03</td>
</tr>
<tr>
<td>SCP_AD</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.03</td>
<td>-0.03</td>
</tr>
</tbody>
</table>

Weighting factors were scaled to a range of −1 to +1. Higher absolute values indicate greater contribution of the feature. When the coefficient was positive, the algorithm favored the first disease group if the value of the feature was high or the second disease group if the value was low. Conversely, when the coefficient was negative, the algorithm favored the second group if the value of the feature was high, or the first group if the value was low. Positive values are highlighted in shades of red while negative values are highlighted in shades of blue.

Abbreviations: PD, Parkinson’s disease; PSP, progressive supranuclear palsy; vol, volume; MSA-P, parkinsonian variant of multiple system atrophy; MSA-C, cerebellar variant of multiple system atrophy; SCP, superior cerebellar peduncles; V3, third ventricle; V4, fourth ventricle; FA, fractional anisotropy; MD, mean diffusivity; AD, axial diffusivity; RD, radial diffusivity.
Figure 1: Contribution of each region of interest for the group classification using volumetry. A color shade was attributed to the weighting factor corresponding to the volume for each brain region, depending on its relevance for the group differentiation. A color bar in the top left corner of the figure indicates the shades, with brighter color representing greater weight. Weighting factors were rescaled to the range of 0 to 1. Weighting factors corresponding to diffusion tensor imaging metrics are not represented. The most relevant regions were Parkinson’s disease (PD) versus progressive supranuclear palsy (PSP): midbrain and putamen; PD versus parkinsonian variant of multiple system atrophy (MSA-P): putamen; PD versus cerebellar variant of multiple system atrophy (MSA-C): pons; PSP versus MSA-P: midbrain and third ventricle; PSP versus MSA-C: pons and third ventricle; MSA-P versus MSA-C: putamen and pons; and PD versus atypical parkinsonism: putamen, midbrain, cerebellum, and fourth ventricle.
all, patients in the replication cohort had a shorter disease duration than those in the training cohort, suggesting that the algorithm could differentiate between patients with early to moderately advanced parkinsonism. A further strength is that patients with both parkinsonian and cerebellar subtypes of MSA were included in addition to PD and PSP, which was only done in two previous studies (Huppertz et al., 2016; Morisi et al., 2018).

Our results are in agreement with previous studies using machine learning to differentiate parkinsonian syndromes and reporting BAs between from 69% and 89% (Huppertz et al., 2016), and AUC greater than 93% (Archer et al., 2019), and 95% (Scherfler et al., 2016). Nevertheless, algorithm performances are difficult to compare across studies given differences in terms of input data, diseases studied, type of classification and performance indices used. Performances of the logistic regression using volumetry were also equivalent to those obtained with automated methods using clinical measurements such as the Magnetic Resonance Parkinsonism Index (MRPI) for the differentiation of PSP-RS from non-PSP participants (Nigro et al., 2020). However, we found lower accuracy for the classification of MSA-P versus PD and MSA-C and for the multi-class classification. Indeed, MSA-P and MSA-C patients often have overlapping features, a clinical and brain imaging continuum existing between both variants, which makes them more difficult to distinguish (Castellani, 1998; Dickson, 2018). The lower performance in categorizing MSA-P and MSA-C may also be explained by the fact we included mixed participants with both patterns of MSA in the MSA-P group, and by insufficient algorithm training due to the relative small number of MSA patients in the training cohort.

We confirmed that morphometric measurements are robust MRI biomarkers for the discrimination of parkinsonism (Huppertz et al., 2016; Salvatore et al., 2014; Scherfler et al., 2016). In line with previous pathological and imaging studies (Dickson, 2012; Kassubek, 2018; Levin et al., 2016; Messina et al., 2011; Whitwell et al., 2017), the best features for the differentiation between PD and PSP were the midbrain and third ventricle volumes. The midbrain to pons volume ratio was the most relevant feature for the discrimination between PSP and both MSA variants as reported with manual morphometric indices such as the midbrain to pons area ratio (Mangesius et al., 2018; Möller et al., 2017) and the MRPI (Quattrone et al., 2008). The putamen volume was highly discriminant between MSA-P and PD, MSA-P being characterized by a prominent putamen atrophy as compared to PD (Heim et al., 2018; Kassubek, 2018; Messina et al., 2011; Whitwell et al., 2011), but less relevant for the differentiation with PSP (Messina et al., 2011) and MSA-C patients (Castellani, 1998).

Diffusion measurements in the putamen had low contributions to differentiate MSA-P from other disease groups in our study. Several studies have shown increased diffusivity in the posterior putamen in MSA-P versus PD patients (Pellecchia et al., 2009; Seppi et al., 2006; Tsukamoto et al., 2012). Results are less clear between MSA-P
and PSP patients with overlapping diffusivity (Focke et al., 2011; Nicoletti et al., 2006; Seppi et al., 2003) and iron content (Focke et al., 2011; Sjöström et al., 2017) reported in the entire putamen. Measurements in the posterior putamen may provide better results (Tsukamoto et al., 2012). In our study, co-registration inaccuracies between T1-weighted images and diffusion maps due to echo planar imaging distortions and susceptibility artifacts could have contributed to reducing the accuracy of the diffusion measurements and the performance of the algorithms.

In the replication cohort, normalization using control data reduced the scanner effect and improved categorization performances using DTI. However, combining DTI to volumetry did not improve performances while DTI alone had lower performances, as assessed by the overall low weighting factors associated with DTI measurements. The heterogeneity of DTI data in the replication cohort, which included images acquired using two MRI systems and heterogeneous acquisition parameters (voxel size, number of directions, geometric distortions), probably explained the lower categorization accuracy. Standardization of DTI acquisition parameters may improve classification performances as suggested previously (Archer et al., 2019).

Our study has several limitations. First, there was no neuropathological confirmation of parkinsonian diagnosis, which is the case in most neurodegenerative studies. Second, our study focused on PSP-RS while the differential diagnosis between PD and PSP-Parkinsonism is also challenging. The recruitment of PSP variants will be the scope of future studies. Third, DTI-derived white matter tract microstructure could have improved categorization performance, especially since these large tracts could be less susceptible to changes in DTI scan resolution. Future work could also involve free-water and free-water-corrected measurements, which may improve classification accuracy (Archer et al., 2019). Furthermore, the automated segmentation and machine learning approach that we used are time-consuming and not yet available in clinical routine unlike morphometric methods such as the MRPI. However, there is a huge interest in machine learning approaches, with a high potential for translation in clinical practice.

To conclude, our study showed that automated categorization of parkinsonian syndromes was applicable to patients with early to moderately advanced parkinsonism recruited in a clinical environment, despite variability in scanners and acquisition parameters. Volumetry was the most robust discriminative biomarker. Improvement in acquisition and analysis of diffusion data and inclusion of iron measurements may improve classification. Implementing a machine learning algorithm in the clinical workflow may thus be relevant to help clinicians improve diagnosis of parkinsonism.
Acknowledgments

This work was supported by grants from Agence Nationale de la Recherche [grant numbers: ANR-11-INBS-0006 (France Life Imaging), ANRMNP 2009 (Nucleipark), ANR-11-INBS-0011 (NeurATRIS), Investissements dAvenir (ANR-19-P3IA-0001, PRAIRIE 3IA Institute, and ANR-10-IAIHU-06, IHU Paris Institute of Neurosciences)], Association France Parkinson, Ecole Neuroscience de Paris, Électricité de France (Fondation dEntreprise EDF), Institut National de la Santé et de la Recherche Médicale, DHOS-Inserm (2010, Nucleipark), PSP France, the Fondation Thérèse and René Planiol pour létude du Cerveau, European Union (EU) Framework Project 6GENEPARK, the Programme Hospitalier de Recherche Clinique [grant Numbers: PHRC 2007-A00169-44 (LRRK) and PHRC 2004 (BBBIPPS)], the ICM Big Brain Theory Program (project PredictICD), and the Inria Project Lab Program (project Neuromarkers).

Supporting Data

Additional Supporting Information may be found in the online version of this article at the publisher’s web-site.
References

Publisher: Elsevier Ltd.

Gunter U. Hoglinger, Gesine Respondek, Maria Stamelou, Carolin Kurz, Keith A. Josephs, Anthony E. Lang, Brit Mollenhauer, Ulrich Muller, Christer Nilsson, Jennifer L. Whitwell, Thomas Arzberger, Elisabet Englund, Ellen Gelpi, Armin Giese, David J. Irwin, Wassilios G. Meissner, Alexander Pantelyat, Alex Rajput, John C. van Swieten, Claire Troakes, Angelo Antonini, Kailash P. Bhatia, Yvette Bordeleon, Yaroslau Compta, Jean-Christophe Corvol, Carlo Colosimo, Dennis W. Dickson,

Giuseppe Nicoletti, Raffaele Lodi, Francesca Condino, Caterina Tonon, Francesco Fera, Emil Malucelli, David Manners, Mario Zappia, Letterio Morgante, Paolo Barone, Bruno Barbiroli, and Aldo Quattrone. Apparent diffusion coefficient measurements of the middle cerebellar peduncle differentiate the Parkinson variant of

John C. Steele, J. Clifford Richardson, and Jerzy Olszewski. Progressive supranuclear palsy: a heterogeneous degeneration involving the brain stem, Basal Ganglia and

