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ABSTRACT: Background: Machine learning algorithms
using magnetic resonance imaging (MRI) data can accu-
rately discriminate parkinsonian syndromes. Validation in
patients recruited in routine clinical practice is missing.
Objective: The aim of this study was to assess the accu-
racy of a machine learning algorithm trained on a research
cohort and tested on an independent clinical replication
cohort for the categorization of parkinsonian syndromes.
Methods: Three hundred twenty-two subjects, including
94 healthy control subjects, 119 patients with
Parkinson’s disease (PD), 51 patients with progressive
supranuclear palsy (PSP) with Richardson’s syndrome,

35 with multiple system atrophy (MSA) of the parkinso-
nian variant (MSA-P), and 23 with MSA of the cerebellar
variant (MSA-C), were recruited. They were divided into a
training cohort (n = 179) scanned in a research environ-
ment and a replication cohort (n = 143) examined in clini-
cal practice on different MRI systems. Volumes and
diffusion tensor imaging (DTI) metrics in 13 brain regions
were used as input for a supervised machine learning
algorithm. To harmonize data across scanners and
reduce scanner-dependent effects, we tested two types
of normalizations using patient data or healthy
control data.
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Results: In the replication cohort, high accuracies were
achieved using volumetry in the classification of
PD–PSP, PD–MSA-C, PSP–MSA-C, and PD-atypical par-
kinsonism (balanced accuracies: 0.840–0.983, area under
the receiver operating characteristic curves:
0.907–0.995). Performances were lower for the classifica-
tion of PD–MSA-P, MSA-C–MSA-P (balanced accura-
cies: 0.765–0.784, area under the receiver operating
characteristic curve: 0.839–0.871) and PD–PSP–MSA
(balanced accuracies: 0.773). Performance using DTI
was improved when normalizing by controls, but

remained lower than that using volumetry alone or com-
bined with DTI.
Conclusions: A machine learning approach based on
volumetry enabled accurate classification of subjects
with early-stage parkinsonism, examined on different
MRI systems, as part of their clinical assessment. ©
2020 International Parkinson and Movement Disorder
Society

Key Words: Parkinson’s disease; progressive supra-
nuclear palsy; multiple system atrophy; multimodal mag-
netic resonance imaging; machine learning algorithm

Diagnosis of idiopathic Parkinson’s disease (PD) and
atypical parkinsonism, whose most frequent types are
progressive supranuclear palsy (PSP) and multiple sys-
tem atrophy (MSA), relies on clinical criteria.1–3 The
diagnostic accuracy of PD is greatly improved when
made by clinical experts in movement disorders with a
sensitivity of 91.1% and a specificity of 98.4%.1,4

However, on initial presentation, a correct diagnosis of
atypical parkinsonism may be difficult, and clinical
uncertainty is high. Accurate diagnosis is crucial to
assess the prognosis, enroll patients in adequate care
systems, and allow their inclusion in appropriate thera-
peutic trials.
Degeneration of dopaminergic neurons within the

substantia nigra pars compacta is the hallmark of neu-
rodegenerative parkinsonian syndromes.5–7 Although
patients with PD exhibit only nigral abnormalities in a
limited number of small brain stem nuclei at the early
stage of the disease,5–8 patients with PSP show a larger
involvement of the midbrain, dentate nucleus, and
superior cerebellar peduncles (SCPs),6,7,9–11 and
patients with MSA are characterized by damage partic-
ularly affecting the posterior putamen in the parkinso-
nian variant (MSA-P) and the pons, middle cerebellar
peduncles, and cerebellum in the cerebellar variant
(MSA-C).6,7,12

Multimodal magnetic resonance imaging (MRI) can
detect these different patterns of brain damage.13–17

Atrophy is visible on T1-weighted images, tissue micro-
structure alterations are detected using diffusion-
weighted images, and iron deposition can be evidenced
using iron-sensitive sequences.13–17 Using MRI data,
machine learning algorithms can accurately differentiate
between parkinsonian syndromes.18–25 Most studies
have used a single type of MRI data, either
volumetry18–20 or diffusion-weighted data.25 Some
studies have combined volumetry and diffusion,21 or
have included R2* relaxometry22 or spectroscopy.23

Two studies have included large cohorts of 1002 sub-
jects25 or 464 subjects,19 whereas most studies have
investigated smaller samples.18,20–23 Only two studies

have included subjects with PD, PSP, MSA-P, and
MSA-C,19,23 while other studies have not differentiated
between MSA-P and MSA-C,18 have included only
patients with MSA-P25 or MSA-C,24 or have not
included patients with MSA20,21 or PSP.22 Moreover,
these studies have been mainly designed in a research
environment and have been tested without an indepen-
dent replication cohort.19–22 To transpose an auto-
mated MRI classification approach based on machine
learning to clinical practice, it is necessary to evaluate
this approach on large cohorts scanned in clinical envi-
ronments and including the different types of parkinso-
nian syndromes.
Our objective was to assess the predictive perfor-

mance of machine learning algorithms for the categori-
zation of parkinsonian syndromes, including PSP,
MSA-C, and MSA-P, compared with PD and healthy
control subjects (HCs). Such algorithms were trained
on a research cohort and tested on an independent rep-
lication cohort scanned on different MRI scanners in
clinical conditions in a neuroradiology department,
using volumetry and diffusion tensor imaging (DTI).

Materials and Methods
Population

Two populations of participants were included: a
training cohort to train and validate the algorithms and
a replication cohort to independently evaluate each
algorithm’s performance. The training cohort was con-
stituted of research studies conducted between 2007
and 2012 at the Paris Brain Institute (ICM): Genepark
(LSHB-CT-2006-037544), BBBIPPS (DGS 2006/0524),
and Nucleipark (RCB 2009-A00922-55). Inclusion
criteria for patients were a diagnosis of PD, PSP, or
MSA established by movement disorders specialists
according to published consensus criteria for PD1 with
no or minimal cognitive disturbances with Mini Mental
State Examination score >24, PSP with Richardson’s
syndrome,26 or MSA.3
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Participants in the replication cohort were consecu-
tively enrolled between 2013 and 2019 in the move-
ment disorders clinic of the Pitié-Salpêtrière Hospital,
Paris. Diagnosis of probable PD, PSP, or MSA was ret-
rospectively established in 2019 by movement disorders
specialists according to the aforementioned clinical
criteria based on all available clinical data.
The clinical examination included the Unified

Parkinson’s Disease Rating Scale Part III (UPDRS III)
scores. Baseline MRI scans were obtained on the same
days as the clinical examination. For both cohorts, HCs
without a history of neurological or psychiatric disease
were included. Subjects were excluded if they had any
additional neurological disorder.
Local institutional review boards approved the stud-

ies (Genepark: CPP Paris II, 2007-A00208-45;
BBBIPPS: CPP Paris VI, P040410–65-06; Nucleipark:
CPP Paris VI, 65–09; Park Atypique: CPP Ile-de-France
VI, 08012015). Written informed consent was obtained
from all participants.

Image Acquisition
Participants in the training cohort were scanned at

the Paris Brain Institute using a 3T Siemens Trio system
(Siemens Healthineers, Erlangen, DE) with a
32-channel head coil. Participants in the replication
cohort were scanned in clinical conditions for diagnos-
tic purposes in the Neuroradiology Department of the
hospital using two MRI systems: (1) a 3T GE Signa
HDxt (GE Healthcare, Chicago, IL) with an 8-channel
head coil, and (2) a 3T Siemens Skyra using a
64-channel head coil. HCs in the replication cohort
were scanned twice during different sessions on Siemens
Skyra and GE Signa systems.
All participants were scanned using a standardized

protocol including a high-resolution T1-weighted
gradient-recalled echo sequence (magnetization-
prepared rapid acquisition with gradient-recalled echo
or spoiled gradient recalled acquisition in steady state)
and DTI with 30 (Siemens Skyra and GE Signa), 60, or
64 (Siemens Trio) diffusion directions. Acquisition
parameters are provided in Supporting Information
Table S1. Quality control was performed by visual
inspection; T1-weighted and diffusion-weighted images
with significant motion artifacts or image distortions
were excluded.

Data Processing and Analysis
Image processing and analysis were performed using

Matlab (R2017b; The MathWorks, Inc., Natick, MA).
T1-weighted images were automatically segmented
using FreeSurfer 6.0 (http://freesurfer.net/; MGH,
Boston, MA, USA).27 DTI preprocessing was performed
using the FMRIB Software Library v5.0 (FMRIB,
Oxford, United Kingdom). Motion and eddy currents

were corrected using the eddycor function. Fractional
anisotropy (FA) and diffusivity maps were computed
using the DTIfit function for the entire brain volume.
The diffusion maps were coregistered to the three-
dimensional T1-weighted volume using the Statistical
Parametric Mapping coregister function (SPM 12;
https://www.fil.ion.ucl.ac.uk/spm/software/spm12/).
We included 13 regions of interest known for being

involved in parkinsonian syndromes in the gray matter
(midbrain, pons, putamen, posterior putamen, caudate,
thalamus, pallidum, precentral cortex, insular cortex),
white matter (SCPs, cerebellum white matter including
the middle cerebellar peduncles), and ventricles (third
ventricle, fourth ventricle). Volumes, average values of
FA, mean diffusivity, axial diffusivity, and radial diffu-
sivity (RD) were calculated in all segmented regions of
interest and used as input features for the algorithms.
To remove interindividual variability, all volumes were
corrected by the total intracranial volume for each par-
ticipant. Means of the volumes and DTI metrics were
used for bilateral regions.

Normalization Procedures
Two independent normalization procedures were

investigated and performed in both cohorts. “Normali-
zation 1” scaled the features so that they were normally
distributed. For a given between-group comparison (eg,
PSP-PD), each variable of each participant was normal-
ized using the mean and standard deviation (SD) of this
variable in all patients in these two groups of the train-
ing cohort (eg, all patients with PSP and PD in the
training cohort). For example, for the “PD-PSP” classi-
fication in either the training or the replication cohort,
each variable of each patient with PD and PSP in the
corresponding cohort was normalized using the follow-
ing formula: (Variable – mean of PD and PSP in the
training cohort)/SD of PD and PSP in the training
cohort.
“Normalization 2” aimed to harmonize data across

scanners, reduce scanner-dependent effects in the
images, and find a good trade-off between standard
normal distribution and same distribution of the fea-
tures in both cohorts. Normalization 2 used the mean
and SD of the controls scanned using the same scanner
as the patient, according to the formula: (Variable –

mean of controls scanned using the same scanner)/SD
of controls scanned using the same scanner.

Machine Learning Algorithms
Using the scikit-learn package,28 four supervised

machine learning algorithms were used: logistic regres-
sion, support vector machine (SVM) with a linear ker-
nel, SVM with a radial basis function kernel, and
random forest. They were trained and validated on the
training cohort, then tested on the replication cohort.
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The cross-validation procedure on the training cohort
included two nested loops: an outer loop with repeated
stratified random splits with 50 repetitions evaluating
the classification performances and an inner loop
with 5-fold cross-validation used to optimize the
hyperparameters of the algorithms. One model was
created for each split, leading to 50 models. We
selected the model with the highest mean balanced
accuracies among the models with frequencies of
appearance greater than 10% (Supporting Informa-
tion Fig. S1).
Correlation between the different input features was

investigated in both cohorts (Supporting Information
Tables S2 and S3). Ridge regularization was used to
avoid overfitting and to deal with possible correlation
between the features. Three models were evaluated:
“volumetry only,” “DTI only,” and “volumetry + DTI”
with age and sex as covariates. DTI was missing in
13 patients of the training cohort and 14 patients of the
replication cohort. Missing values were imputed with
the mean values of the features from the training
cohort. The algorithms were retrained and retested after
removing subjects with missing DTI images. In addi-
tion, analysis with UPDRS III scores alone was per-
formed, and performances were compared with the
other models.
We evaluated binary classification tasks (PD–PSP,

PD–MSA-P, PD–MSA-C, PSP–MSA-P, PSP–MSA-C,
MSA-P–MSA-C, PD-atypical parkinsonism) and the
multiclass classification task (PD-–SP–MSA, with
patients with MSA merged in one group because of
their small number).
Receiver operating characteristic curves were gener-

ated, and balanced accuracy (BA), area under the
curve (AUC), sensitivity, and specificity were calcu-
lated to evaluate the algorithm performances. BA was
defined as the average sensitivity and specificity in
each group. BA avoids overestimation of classifica-
tion performance because of imbalanced group
sizes.19

Weighting Factors
Weighting factors of the volume and DTI metrics of

each brain region were extracted from the logistic
regression training after normalization
2 (corresponding to the best model). They reflected
the contribution of each feature to group differentia-
tion. A rescaling to a range of −1 to +1 was applied
to highlight the relative importance of each feature:
the higher the absolute value, the bigger the contribu-
tion of the feature. This assertion relied on the
assumption that each feature had the same scale,
which was a reasonable assumption because all fea-
tures were standardized. When the coefficient was

positive, the algorithm favored the first group if the
value of the feature was high or the second group if
the value was low, and vice versa.19

Statistical Analyses
Participant Characteristics

Statistical analyses were performed using R software
(R Core Development Team, 2017). Group demographic
and clinical scores within each cohort were analyzed. Sta-
tistical difference in sex distribution was evaluated using
Fisher’s exact test, followed by pairwise comparisons with
P adjustment (Holm’s method). Age, disease duration,
and UPDRSIII scores were compared using the Kruskal–
Wallis test, followed by pairwise comparisons with
Holm–Bonferroni correction. Intercohort comparisons
were also performed by assessing group-wise differences
using Fisher’s exact test for sex and Wilcoxon’s rank sum
test with continuity correction for age, disease duration,
and the UPDRS III scores.

Comparison of Normalization Procedures,
Biomarkers, and Algorithms

We compared BAs between normalization, bio-
marker, and classification methods in the replication
cohort using multiple factor analysis (MFA) as a data-
driven exploratory technique and repeated-measures
analysis of variance (RM-ANOVA). For the MFA, a
first analysis was run by grouping the data by normali-
zation × biomarkers generating six blocks (2 normaliza-
tions × 3 biomarkers) of four variables (four
algorithms) each to determine which “normalization ×
biomarker” blocks induced the same structures. A sec-
ond analysis was run on four blocks (four algorithms)
of six variables (2 normalizations × 3 biomarkers) to
identify similarities/dissimilarities between algorithms
performances. As a first step, individual principal com-
ponent analysis was performed on each block, which
was then normalized by the corresponding first eigen-
value. The obtained matrices were merged to form a
global matrix, and a global principal component analy-
sis was performed. The individual observations were
then projected onto the global space.
We used RM-ANOVA with a 2 × 4 × 3 factorial

design [normalization (1 and 2) × algorithm (logistic
regression, linear SVM, radial SVM, random forest) ×
biomarker (volumetry, volumetry + DTI, DTI)] after
testing data for normality with Shapiro–Wilk test
(P > 0.05). Sphericity assumption was checked using
Mauchly’s test and, if necessary, corrected using
Greenhouse–Geisser correction. Pairwise comparisons
with Bonferroni correction were then performed.
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Results
Participants’ Clinical and Demographic

Characteristics
In total, 322 subjects were analyzed, divided into a

training cohort (n = 179) and a replication cohort
(n = 143) (Table 1). In the training cohort, there was a
significant difference in sex distribution (Fisher’s test,
P = 0.031) due to a difference between HCs and
patients with PD (P = 0.040). There was no significant
difference in age and disease duration between groups.
Patients with PD had lower UPDRS III scores than
other patient groups (P < 0.002). In the replication
cohort, there was a difference in age (Kruskal–Wallis,
P < 0.002), with patients with PSP being older than
other groups. There were no differences in sex distribu-
tion, disease duration, and UPDRS III scores between
groups.
When comparing both cohorts, there was a signifi-

cant difference in sex distribution for patients with PSP
(P = 0.042) and age, because HCs (P = 0.007), patients
with PD (P = 0.002), and patients with PSP (P = 0.019)
were older in the replication cohort. Disease duration
was shorter in the replication cohort for patients with
PD (P < 0.001), MSA-P (P < 0.001), and MSA-C
(P = 0.020), but not for patients with PSP (P = 0.055).
UPDRS III scores were lower for MSA-P (P = 0.003)
and MSA-C (P = 0.002) in the replication cohort.

Comparison of Normalization Methods
The first MFA showed that the first two components

with eigenvalues greater than 1 explained 56% and
20% of the total variance. Both normalizations with
volumetry and normalization 2 with volumetry + DTI
strongly correlated with the first dimension, and thus
showed the same profiles. Normalization 2 with DTI
also correlated with the first dimension but less
strongly. Normalization 1 with DTI and normalization
1 with volumetry + DTI had a different profile and did
not perform as well as the other combinations
(Supporting Information Figs. S2 and S3).
RM-ANOVA showed a significant effect of the nor-

malization factor with higher performance of normali-
zation 2 (P < 0.001) and no interactions with the
biomarker and algorithm factors. Thus, only results
with normalization 2 are provided in the following par-
agraphs (see Supporting Information Table S4 for
results with normalization 1).

Comparisons of Biomarkers
The highest mean BA was observed for volumetry

(mean BA = 0.803) followed by volumetry + DTI (mean
BA = 0.756) and DTI (mean BA = 0.631). RM-ANOVA
with sphericity correction showed a significant effect of
biomarkers (p = 0.03) and a trend for an algorithm ×

biomarkers interaction (P = 0.050). Paired t tests con-
firmed that volumetry had similar performances to that
of volumetry + DTI (P = 0.1), and that both performed
better than DTI alone (p < 0.001). Therefore, DTI
underperformed compared with volumetry and did not
improve classification when combined with volumetry.
Additional MFA did not reveal any significant differ-
ence between analyses performed with and without
patients with missing DTI. Therefore, imputing the data
did not have a significant effect on the overall analysis
(Supporting Information Table S6 and Fig. S4).
Performances obtained with UPDRS III scores alone

were low in both cohorts (BA: 0.397–0.861, AUC:
0.473–0.899 in the training cohort; BA: 0.316–0.656,
AUC: 0.567–0.659 in the replication cohort)
(Supporting Information Table S7).

Comparison of Algorithms
The second MFA showed that logistic regression, lin-

ear SVM, and random forest had similar performances
and outperformed radial SVM (Supporting Information
Fig. S5). The highest mean BA was observed for logistic
regression (mean BA = 0.768), followed by random for-
est (mean BA = 0.754), linear SVM (mean BA = 0.745),
and radial SVM (mean BA = 0.652). RM-ANOVA with
sphericity correction showed a trend for an algorithm
effect (P = 0.055) and a trend for a normalization ×
algorithm interaction (P = 0.051). Post hoc t tests
showed that radial SVM underperformed compared
with the other three algorithms that had similar perfor-
mances. In the following paragraphs, only the results
obtained with the logistic regression are reported
because it provided the highest mean BA. Results with
the three other algorithms are provided in Supporting
Information Table S5.

Results per Group Comparison With
Normalization 2 and Logistic Regression

In the training cohort, using volumetry, the best clas-
sification performances were obtained in decreasing
order for PSP–MSA-C, PD–MSA-C, PD–PSP, PD-
typical parkinsonian syndromes, and PD–MSA-P (BA:
0.892–0.963, AUC: 0.928–0.997). The performances
were lower for the classification of PD–PSP–MSA (BA:
0.807), PSP–MSA-P, and MSA-C–MSA-P (BA:
0.668–0.732, AUC: 0.757–0.858). Combining vol-
umetry and DTI did not tend to improve BAs
(0.622–0.942) or AUCs (0.723–0.998), while perfor-
mances with DTI alone were lower (BA: 0.373–0.880,
AUC: 0.243–0.967) (Table 2).
In the replication cohort, using volumetry, perfor-

mances remained high for the classifications of PD–

MSA-C, PSP–MSA-C, PD–PSP, and PD-atypical par-
kinsonism (BA: 0.840–0.983, AUC: 0.907–0.995). Bet-
ter accuracies than in the training cohort were obtained
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for the comparisons of PSP–MSA-P (BA: 0.896, AUC:
0.968) and MSA-C–MSA-P (BA: 0.784, AUC: 0.871).
Performances were lower for the classifications of PD–

MSA-P (BA: 0.765, AUC: 0.839) and PD–PSP–MSA
(BA: 0.773). Classification accuracy using DTI alone
was significantly lower (BA: 0.560–0.917, AUC:
0.731–0.982) than volumetry alone (P < 0.001),
whereas volumetry + DTI (BA: 0.777–0.982, AUC:
0.833–0.994) did not differ from volumetry alone
(P = 0.1) (Table 2).

Weighting Factors
The best features to differentiate PD and PSP were

the volumes of the midbrain (1) and third ventricle
(−0.94), FA in the SCP (0.72), and the volumes of the
globus pallidus (0.71) and the putamen (0.63). For dis-
criminating subjects with MSA-C, the most relevant
features were the midbrain/pons ratio (vs PD and PSP:
−1, MSA-P: 1) and the pons atrophy (vs PD: 0.61,
MSA-P: −0.47, PSP: 0.31). The other features were the
volumes of the fourth ventricle (vs PD: −0.46) and the
cerebellum (vs PD: 0.49, PSP: 0.22, MSA-P: −0.36).
MSA-P differentiation relied mostly on the putamen
volume (0.46–1), with the contribution of DTI metrics
in the putamen being low (Table 3 and Fig. 1).

Discussion

Our study demonstrates the feasibility of an auto-
mated classification of parkinsonian syndromes in a
clinical setting using a large cohort of patients.19,25 The
classification algorithms were tested on a large indepen-
dent replication cohort comprising patients recruited in
a movement disorder clinic and scanned using different
MRI systems as part of their routine diagnostic
workup. Overall, patients in the replication cohort had
a shorter disease duration than those in the training
cohort, suggesting that the algorithm could differentiate
between patients with early to moderately advanced
parkinsonism. A further strength is that patients with
both parkinsonian and cerebellar subtypes of MSA
were included in addition to PD and PSP, which was
only done in two previous studies.19,23

Our results are in agreement with previous studies
using machine learning to differentiate parkinsonian
syndromes and reporting BAs between from 69 and
89%,19 and AUC greater than 93%,25 and 95%.18

Nevertheless, algorithm performances are difficult to
compare across studies given differences in terms of
input data, diseases studied, type of classification and
performance indices used. Performances of the logistic
regression using Volumetry were also equivalent to
those obtained with automated methods using clinical
measurements such as the Magnetic Resonance Parkin-
sonism Index (MRPI) for the differentiation of PSP-RS
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from non-PSP participants.29 However, we found
lower accuracy for the classification of MSA-P versus
PD and MSA-C and for the multiclass classification.
Indeed, MSA-P and MSA-C patients often have over-
lapping features, a clinical and brain imaging contin-
uum existing between both variants, which makes them
more difficult to distinguish.5,12 The lower performance
in categorizing MSA-P and MSA-C may also be
explained by the fact we included mixed participants
with both patterns of MSA in the MSA-P group, and
by insufficient algorithm training due to the relative
small number of MSA patients in the training cohort.
We confirmed that morphometric measurements are

robust MRI biomarkers for the discrimination of par-
kinsonism.18–20 In line with previous pathological and
imaging studies,6,7,13,17,30 the best features for the

differentiation between PD and PSP were the midbrain
and third ventricle volumes. The midbrain to pons vol-
ume ratio was the most relevant feature for the discrim-
ination between PSP and both MSA variants as
reported with manual morphometric indices such as the
midbrain to pons area ratio31,32 and the MRPI33. The
putamen volume was highly discriminant between
MSA-P and PD, MSA-P being characterized by a prom-
inent putamen atrophy as compared to PD,14,17,30,34

but less relevant for the differentiation with PSP30 and
MSA-C patients12.
Diffusion measurements in the putamen had low con-

tributions to differentiate MSA-P from other disease
groups in our study. Several studies have shown
increased diffusivity in the posterior putamen in MSA-P
versus PD patients,35–37 Results are less clear between

TABLE 2. Performances of the logistic regression classification in both cohorts using normalization 2, with volumetry, DTI,
and the combination of volumetry and DTI

Group Comparisons Metric

Training Cohort Replication Cohort

Volumetry DTI Volumetry + DTI Volumetry DTI Volumetry + DTI

PD vs PSP BA 0.892 (0.090) 0.794 (0.103) 0.892 (0.094) 0.840 0.644 0.879
AUC 0.977 (0.033) 0.885 (0.104) 0.974 (0.033) 0.968 0.739 0.943
Se 0.850 (0.189) 0.695 (0.197) 0.840 (0.187) 0.733 0.467 0.900
Sp 0.934 (0.066) 0.892 (0.091) 0.945 (0.062) 0.946 0.821 0.857

PD vs MSA-P BA 0.845 (0.127) 0.800 (0.190) 0.880 (0.133) 0.765 0.679 0.744
AUC 0.928 (0.096) 0.863 (0.167) 0.975 (0.044) 0.839 0.749 0.847
Se 0.909 (0.069) 0.931 (0.081) 0.969 (0.044) 0.821 0.857 0.946
Sp 0.780 (0.251) 0.670 (0.373) 0.790 (0.269) 0.708 0.500 0.542

PD vs MSA-C BA 0.963 (0.088) 0.798 (0.177) 0.928 (0.112) 0.982 0.902 0.982
AUC 0.991 (0.026) 0.948 (0.070) 0.992 (0.023) 0.995 0.966 0.994
Se 0.995 (0.024) 0.977 (0.045) 0.995 (0.018) 0.964 0.804 0.964
Sp 0.930 (0.175) 0.620 (0.358) 0.860 (0.227) 1.000 1.000 1.000

PSP vs MSA-C BA 0.938 (0.084) 0.880 (0.100) 0.942 (0.092) 0.983 0.917 0.967
AUC 0.997 (0.016) 0.967 (0.058) 0.998 (0.012) 0.991 0.982 0.994
Se 0.970 (0.082) 0.900 (0.152) 0.990 (0.049) 0.967 0.833 0.933
Sp 0.907 (0.166) 0.860 (0.179) 0.893 (0.184) 1.000 1.000 1.000

PSP vs MSA-P BA 0.732 (0.181) 0.833 (0.155) 0.828 (0.156) 0.896 0.750 0.833
AUC 0.858 (0.149) 0.966 (0.066) 0.962 (0.075) 0.968 0.814 0.892
Se 0.784 (0.180) 0.896 (0.135) 0.896 (0.147) 0.833 0.833 0.833
Sp 0.680 (0.331) 0.770 (0.307) 0.760 (0.307) 0.958 0.667 0.833

MSA-C vs MSA-P BA 0.668 (0.152) 0.373 (0.172) 0.622 (0.179) 0.784 0.725 0.788
AUC 0.757 (0.203) 0.243 (0.185) 0.723 (0.217) 0.871 0.811 0.871
Se 0.630 (0.282) 0.320 (0.346) 0.590 (0.345) 0.750 0.542 0.667
Sp 0.707 (0.239) 0.427 (0.337) 0.653 (0.260) 0.818 0.909 0.909

PD vs atypical parkinsonism BA 0.879 (0.073) 0.742 (0.089) 0.880 (0.077) 0.853 0.658 0.839
AUC 0.948 (0.051) 0.832 (0.097) 0.947 (0.053) 0.907 0.731 0.905
Se 0.903 (0.083) 0.840 (0.098) 0.934 (0.062) 0.875 0.732 0.893
Sp 0.856 (0.113) 0.644 (0.174) 0.827 (0.139) 0.831 0.585 0.785

PD vs PSP vs MSAa BA 0.807 (0.071) 0.711 (0.100) 0.812 (0.078) 0.773 0.560 0.777
Se (PD) 0.906 (0.080) 0.842 (0.100) 0.912 (0.081) 0.875 0.750 0.911
Se (MSA) 0.684 (0.145) 0.672 (0.218) 0.708 (0.171) 0.743 0.629 0.686
Se (PSP) 0.830 (0.176) 0.620 (0.201) 0.815 (0.172) 0.700 0.300 0.733

For the training cohort, we have reported means and standard deviations (in parentheses) of performance metrics across all repetitions during the cross-validation
procedure.
Abbreviations: DTI, diffusion tensor imaging; PD, Parkinson’s disease; PSP, progressive supranuclear palsy; BA, balanced accuracy; AUC, area under the curve;
Se, sensitivity; Sp, specificity; MSA-P, parkinsonian variant of multiple system atrophy; MSA-C, cerebellar variant of multiple system atrophy; HC, healthy control
subjects.
aFor the multiclass classification (PD vs PSP vs MSA), in addition to BAs, we have reported sensitivities, that is, the proportion of subjects who have been accu-
rately classified for each class. For instance, Se(PD) = 0.80 means that 80% of the patients with PD have been classified as PD by the algorithm.
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TABLE 3. Weighting factors extracted from the logistic regression training for the different group comparisons using
normalization 2

      Group   
Feature

PD vs PSP PD vs MSA-P PD vs MSA-C PSP vs MSA-C PSP vs MSA-P MSA-C vs -P PD vs atypical 
parkinsonism 

Midbrain_vol 1.00 0.28 0.34 -0.15 -0.46 -0.11 1.00 
Pons_vol 0.42 0.29 0.61 0.31 0.14 -0.47 0.74 

Midbrain/Pons_vol 0.32 -0.27 -1.00 -1.00 -1.00 1.00 -0.41
SCP_vol 0.37 0.16 0.25 0.04 -0.04 -0.13 0.48 
V3_vol -0.94 -0.18 -0.06 0.37 0.64 -0.12 -0.69 
V4_vol -0.46 -0.41 -0.50 -0.25 -0.10 0.41 -0.71 

Cerebellum_vol 0.49 0.35 0.49 0.22 0.07 -0.36 0.81 
Thalamus_vol 0.59 0.22 0.07 -0.21 -0.24 0.18 0.36 
Caudate_vol 0.12 0.33 0.02 -0.04 0.20 0.24 0.17 
Putamen_vol 0.63 1.00 0.20 -0.09 0.46 0.57 0.98 
Pallidum_vol 0.71 0.51 0.17 -0.17 0.03 0.36 0.83 

Insula_vol -0.02 0.04 0.03 0.04 0.05 -0.05 -0.15 
Precentral_vol 0.24 0.25 -0.01 -0.12 0.03 0.23 0.06 
Midbrain_FA 0.40 0.00 0.13 -0.05 -0.20 -0.06 0.24 

Pons_FA 0.30 0.15 0.18 0.05 0.06 -0.03 0.20 
SCP_FA 0.72 0.17 0.11 -0.22 -0.44 0.06 0.56 

Putamen_FA -0.25 -0.23 -0.11 0.00 -0.11 -0.09 -0.43 
Posteriorputamen_FA -0.13 -0.14 -0.11 -0.04 -0.04 0.06 -0.25 

Pallidum_FA 0.01 0.00 0.02 0.00 -0.03 0.00 0.13 
Thalamus_FA 0.15 -0.11 -0.03 -0.09 -0.33 -0.11 -0.15 
Caudate_FA -0.01 0.08 0.07 0.05 0.00 -0.08 0.07 

Cerebellum_FA 0.21 -0.11 0.13 0.02 -0.23 -0.21 -0.04
Insula_FA 0.01 0.03 0.11 0.06 -0.03 -0.14 -0.02 

Precentral_FA 0.25 0.07 0.10 -0.03 -0.21 -0.11 0.26 
Midbrain_MD -0.33 0.01 -0.11 0.04 0.20 0.10 -0.20 

Pons_MD -0.04 -0.08 -0.19 -0.18 -0.26 0.12 -0.05 
SCP_MD -0.22 -0.56 -0.31 -0.21 -0.52 -0.01 -0.43 

Putamen_MD -0.06 0.07 -0.05 -0.01 0.06 0.06 -0.07 
Posteriorputamen_MD 0.00 -0.01 -0.13 -0.09 -0.05 0.11 -0.12

Pallidum_MD 0.04 0.21 0.08 0.05 0.17 0.02 0.11 
Thalamus_MD -0.03 0.18 0.10 0.09 0.23 0.03 0.20 
Caudate_MD -0.20 -0.08 -0.01 0.05 0.13 0.02 -0.21 

Cerebellum_MD -0.08 -0.23 -0.27 -0.24 -0.34 0.18 -0.23 
Insula_MD -0.27 0.03 -0.02 0.08 0.25 0.08 -0.13 

Precentral_MD -0.21 0.07 0.02 0.10 0.26 0.04 -0.06
Midbrain_AD -0.21 0.11 -0.07 0.04 0.28 0.16 -0.08 

Pons_AD 0.07 0.00 -0.18 -0.22 -0.26 0.18 0.07 
SCP_AD 0.14 -0.41 -0.22 -0.29 -0.64 0.03 -0.08 

Putamen_AD -0.12 0.01 -0.08 -0.02 0.03 0.04 -0.19 
Pallidum_AD 0.07 0.27 0.12 0.07 0.20 0.02 0.22 
Thalamus_AD 0.00 0.20 0.11 0.08 0.22 0.03 0.22 
Caudate_AD -0.18 -0.06 0.01 0.06 0.12 0.01 -0.16 

Cerebellum_AD 0.01 -0.21 -0.20 -0.21 -0.37 0.10 -0.15 
Insula_AD -0.25 0.05 0.01 0.10 0.25 0.05 -0.09 

Precentral_AD -0.14 0.11 0.07 0.10 0.22 0.00 0.05 
Midbrain_RD -0.34 0.01 -0.10 0.09 0.24 -0.02 -0.26 

Pons_RD -0.06 0.05 -0.16 -0.11 -0.07 0.09 0.00 
SCP_RD -0.46 -0.43 -0.23 0.01 -0.03 -0.08 -0.46 

Putamen_RD -0.03 0.10 0.07 0.10 0.07 -0.17 0.09 
Pallidum_RD 0.05 0.30 0.18 0.14 0.20 -0.11 0.34 
Thalamus_RD -0.08 0.24 0.10 0.13 0.27 -0.04 0.16 
Caudate_RD -0.28 -0.02 -0.02 0.11 0.22 -0.02 -0.28 

Cerebellum_RD -0.22 -0.23 -0.43 -0.29 -0.25 0.30 -0.45 
Insula_RD -0.36 -0.04 0.02 0.19 0.25 -0.17 -0.25 

Precentral_RD -0.39 0.00 0.07 0.25 0.42 -0.16 -0.21 

Weighting factors were scaled to a range of −1 to +1. Higher absolute values indicate greater contribution of the feature. When the coefficient was positive, the
algorithm favored the first disease group if the value of the feature was high or the second disease group if the value was low. Conversely, when the coefficient
was negative, the algorithm favored the second group if the value of the feature was high, or the first group if the value was low. Positive values are highlighted in
shades of red while negative values are highlighted in shades of blue.
Abbreviations: PD, Parkinson’s disease; PSP, progressive supranuclear palsy; vol, volume; MSA-P, parkinsonian variant of multiple system atrophy; MSA-C, cere-
bellar variant of multiple system atrophy; SCP, superior cerebellar peduncles; V3, third ventricle; V4, fourth ventricle; FA, fractional anisotropy; MD, mean diffusiv-
ity; AD, axial diffusivity; RD, radial diffusivity.
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FIG. 1. Contribution of each region of interest for the group classification using volumetry. A color shade was attributed to the weighting factor
corresponding to the volume for each brain region, depending on its relevance for the group differentiation. A color bar in the top left corner of the fig-
ure indicates the shades, with brighter color representing greater weight. Weighting factors were rescaled to the range of 0 to 1. Weighting factors
corresponding to diffusion tensor imaging metrics are not represented. The most relevant regions were Parkinson’s disease (PD) versus progressive
supranuclear palsy (PSP): midbrain and putamen; PD versus parkinsonian variant of multiple system atrophy (MSA-P): putamen; PD versus cerebellar
variant of multiple system atrophy (MSA-C): pons; PSP versus MSA-P: midbrain and third ventricle; PSP versus MSA-C: pons and third ventricle;
MSA-P versus MSA-C: putamen and pons; and PD versus atypical parkinsonism: putamen, midbrain, cerebellum, and fourth ventricle. [Color figure
can be viewed at wileyonlinelibrary.com]
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MSA-P and PSP patients with overlapping diffusivity38–40

and iron content40,41 reported in the entire putamen.
Measurements in the posterior putamen may provide bet-
ter results.37 In our study, co-registration inaccuracies
between T1-weighted images and diffusion maps due to
echo planar imaging distortions and susceptibility artifacts
could have contributed to reducing the accuracy of the
diffusion measurements and the performance of the
algorithms.
In the replication cohort, normalization using control

data reduced the scanner effect and improved categoriza-
tion performances using DTI. However, combining DTI
to Volumetry did not improve performances while DTI
alone had lower performances, as assessed by the overall
low weighting factors associated with DTI measure-
ments. The heterogeneity of DTI data in the replication
cohort, which included images acquired using two MRI
systems and heterogeneous acquisition parameters (voxel
size, number of directions, geometric distortions), proba-
bly explained the lower categorization accuracy. Stan-
dardization of DTI acquisition parameters may improve
classification performances as suggested previously.25

Our study has several limitations. First, there was no
neuropathological confirmation of parkinsonian diag-
nosis, which is the case in most neurodegenerative stud-
ies. Second, our study focused on PSP-RS while the
differential diagnosis between PD and PSP-Parkinson-
ism is also challenging. The recruitment of PSP variants
will be the scope of future studies. Third, DTI-derived
white matter tract microstructure could have improved
categorization performance, especially since these large
tracts could be less susceptible to changes in DTI scan
resolution. Future work could also involve free-water
and free-water-corrected measurements, which may
improve classification accuracy.25 Furthermore, the
automated segmentation and machine learning
approach that we used are time-consuming and not yet
available in clinical routine unlike morphometric
methods such as the MRPI. However, there is a huge
interest in machine learning approaches, with a high
potential for translation in clinical practice.
To conclude, our study showed that automated cate-

gorization of parkinsonian syndromes was applicable to
patients with early to moderately advanced parkinson-
ism recruited in a clinical environment, despite variabil-
ity in scanners and acquisition parameters. Volumetry
was the most robust discriminative biomarker. Improve-
ment in acquisition and analysis of diffusion data and
inclusion of iron measurements may improve classifica-
tion. Implementing a machine learning algorithm in the
clinical workflow may thus be relevant to help clinicians
improve diagnosis of parkinsonism.
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