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Abstract
The solute carrier family 6 member 14 (SLC6A14) protein imports and concentrates all neutral amino acids as well as the 
two cationic acids lysine and arginine into the cytoplasm of different cell types. Primarily described as involved in several 
cancer and colonic diseases physiopathological mechanisms, the SLC6A14 gene has been more recently identified as a genetic 
modifier of cystic fibrosis (CF) disease severity. It was indeed shown to have a pleiotropic effect, modulating meconium ileus 
occurrence, lung disease severity, and precocity of P. aeruginosa airway infection. The biological mechanisms explaining 
the impact of SLC6A14 on intestinal and lung phenotypes of CF patients are starting to be elucidated. This review focuses 
on SLC6A14 in lung and gastrointestinal physiology and physiopathology, especially its involvement in the pathophysiol-
ogy of CF disease.
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Introduction

Cystic fibrosis (CF), the most common lethal autosomal 
recessive genetic disease in Caucasians, is caused by vari-
ants in the gene encoding the cystic fibrosis transmembrane 

conductance regulator (CFTR), a chloride channel expressed 
ubiquitously within epithelia [1–3].

Symptoms can occur as early as birth with meconium 
ileus (MI), a severe neonatal intestinal obstruction affecting 
around 15% of CF neonates. This is followed by manifesta-
tions of the disease in other organs such as the liver, the 
pancreas, and the intestine, with lung complications as the 
main cause of morbidity and mortality in CF patients. In the 
lungs, absence or dysfunction of CFTR proteins results in 
altered salt and water transport through the airway epithe-
lium leading to an altered mucociliary clearance, progres-
sive colonization with different pathogens, exacerbation of 
inflammation, and lung tissue damage. Among the multitude 
of pathogens colonizing the CF lungs, Pseudomonas aer-
uginosa is the most common and life-threatening pathogen. 
Indeed, P. aeruginosa chronic lung colonization has been 
associated with a more severe lung disease and reduced sur-
vival [4].

Although CF is a monogenic disease, considerable phe-
notypic diversity is observed in patients carrying identical 
CFTR variants [5–7]. In addition to environmental factors, 
twins and siblings’ studies have revealed that genetic modi-
fiers outside the CFTR locus are involved in this interindi-
vidual variability [5]. It is expected that these modifier genes 
account for 50% of the lung function variation. The current 
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challenge is to identify these variants and determine how 
they contribute to the severity of the disease by performing 
in vitro/in vivo functional studies. Among the several modi-
fier genes identified thus far, the solute carrier family 6 mem-
ber 14 (SLC6A14, also known as ATB0,+) has been shown to 
have pleiotropic effect in CF [8–14]. It was first identified 
as a modifier of MI occurrence [14], and then associated 
with lung disease and age at first P. aeruginosa infection [8, 
10]. SLC6A14, the protein encoded by this gene, belongs to 
the solute carrier family 6 and uses the energy provided by 
Na+ and Cl− gradients to import and concentrate all neutral 
amino acids as well as the two cationic acids lysine and argi-
nine into the cytoplasm of different cell types. Besides the 
genotype/phenotype associations, the biological mechanisms 
explaining the impact of SLC6A14 on intestinal and lung 
phenotypes of CF patients are beginning to be elucidated as 
evidenced by recent studies [15–17]. This review focuses on 
SLC6A14 in the context of CF, especially its involvement in 
the pathophysiology of CF lung and gastrointestinal disease.

SLC6A14 expression and regulation 
in the lung and gastrointestinal tract

SLC6A14 gene is located on chromosome X and was cloned 
in 1999 from a mammary gland cDNA library [18]. This 
gene produces two transcripts (ENST00000598581.3 
and ENST00000463626.1) but only one codes for a pro-
tein (ENSG00000087916.7) which is comprised of 642 
amino acids with an expected molecular weight of 72 kDa. 
SLC6A14 is a plasma membrane protein belonging to 
the solute carrier 6 (SLC6) family which contains 21 
human proteins based on the similarity in their amino acid 
sequences [19]. Although no structural studies have been 
conducted on SLC6A14 specifically, crystal structure and 
structural studies on others members of the SLC6 family, 
as well as topological domain analysis (https​://unipr​ot.org/
unipr​ot/Q9UN7​6) suggest that SLC6A14 N- and C-terminal 
domains are cytoplasmic and that the sequence includes 12 
putative transmembrane domains and 1 large extracellular 
domain between transmembrane domains 3 and 4 [19]. In 
the endoplasmic reticulum, the quality control of SLC6A14 
folding involves interactions with the heat shock proteins 
HSP70 and HSP90 [20]. SLC6A14 trafficking from the 
endoplasmic reticulum to the Golgi apparatus depends on 
its interaction with the cargo-recognizing protein SEC24 
isoform C and the coatomer II (COPII) complex [21]. Fur-
ther studies are needed to fully understand the mechanisms 
allowing SLC6A14 trafficking to the plasma membrane.

SLC6A14 mRNA was initially shown to be expressed 
mainly in the lung, fetal lung, trachea, and salivary gland 
[18]. Microarray and RNA-sequencing data obtained from 
Expression Atlas public resource confirm that SLC6A14 

is predominantly expressed in human and mouse lung tis-
sue (Table 1). However, SLC6A14 is also detected albeit 
in extremely low levels in gastrointestinal tissues including 
intestine and colon.

SLC6A14 expression and regulation in the lung

Before SLC6A14 mRNA and protein were identified in the 
human lung, Galietta et al. demonstrated the presence of a 
Na+-dependent amino acid transport at the apical membrane 
of bronchial epithelial cells isolated from CF or non-CF sub-
jects [32]. Upon showing that SLC6A14 mRNA was strongly 
expressed in the human lung and trachea compared to other 
organs [18], Sloan et al. also showed that SLC6A14 pro-
tein was expressed in membrane fractions of human airway 
and distal lung samples from normal, emphysema, and CF 
patients [33]. Interestingly, the authors pointed out differ-
ences in the molecular mass of SLC6A14 protein detected 
either in the airways or in the distal lung, which was due to 
alternative splicing or posttranslational modification. Several 
studies have also shown expression of SLC6A14 in various 
cell lines of either airway or distal epithelial cell origin, as 
well as in primary bronchial epithelial cells (Table 2). In 
the alveolar A549 cell line, SLC6A14 protein was either 
detected or absent according to the study considered [34, 
35]. Di Paola et al. observed that primary cells from indi-
viduals with CF or healthy donors showed a similar mRNA 
level for SLC6A14 [17], suggesting that CFTR pathogenic 
variants had no impact on SLC6A14 mRNA expression. 
Interestingly, a recent study using single RNA sequencing 
revealed that SLC6A14 expression was reduced in alveo-
lar type II cells from idiopathic pulmonary fibrosis (IPF) 
patients compared to controls [36]. Via single-cell analysis, 
the authors also showed that SLC6A14 was expressed in 
basal, club cells, and alveolar type 2 cells.

In vitro, Gorrieri et al. observed that SLC6A14 transcripts 
were enhanced in bronchial epithelial cells exposed to inter-
leukin-4 [39]. In the human glandular bronchial epithelial 
cell line Calu-3 and in primary human bronchial epithelial 
cells, flagellin or lipopolysaccharide from P. aeruginosa 
exposures increase the expression of SLC6A14 mRNA [17]. 
Finally, in relation to CF, a study using HEK-293 cells over-
expressing SLC6A14 showed that SLC6A14 protein expres-
sion was reduced by suprapharmacological concentrations 
of Vx-770, a CFTR potentiator [40].

SLC6A14 expression and regulation 
in the gastrointestinal tract

In the human gastrointestinal tract, SLC6A14 appears to 
be heterogeneously expressed (Table 3). Sloan et al. first 
detected SLC6A14 mRNA in the stomach, although its levels 
were significantly lower than those observed in lung samples 
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[18]. Two studies then detected SLC6A14 transcripts in 
mucosal biopsies from duodenum and rectum, respectively 
[41, 42]. Finally, Anderson et al. compared the expression 
of SLC6A14 mRNA throughout the gastrointestinal tract 
and showed that stomach, duodenum, and descending colon 
expressed high levels of SLC6A14 transcripts, while low 
levels were found in jejunum, ileum, ascending colon, and 
transverse colon [43]. Conflicting results have been obtained 
on the expression of SLC6A14 in the human colon epithe-
lial cell line Caco-2, reporting either some or no SLC6A14 
transcripts or protein [16, 42–44]. Interestingly, in mice, 
SLC6A14 mRNA expression is negligible in the ileum of 
control animals, but is strongly induced in epithelial ileal 
cells of CF mice [45].

In vitro, it has been showed that SLC6A14 expression 
may be modulated by several factors including toxins, bac-
terial constituents, and proinflammatory cytokines. Indeed, 

Flach et al. showed that SLC6A14 mRNA levels are signifi-
cantly increased after 18 h of stimulation with cholera toxin 
in Caco-2 cells [42]. Other molecules have also been shown 
to regulate SLC6A14 expression. For example, in porcine 
intestinal cells, Wang et al. showed that SLC6A14 mRNA 
was increased by L-tryptophan [47]. Ikpa et al. also showed 
that antibiotic treatment of CF mice induces an important 
reduction of SLC6A14 transcripts in ileal epithelial cells 
[45].

Genetic association studies in CF

Given the diversity of phenotypic severity in CF patients 
with the same causal CFTR variants, several genetic studies 
have been conducted to identify CF modifier genes. Among 
the identified loci, one locus on chromosome X, near the 

Table 2   Expression of 
SLC6A14 at the mRNA and 
protein levels in the human 
respiratory tract

Calu-3 human lung adenocarcinoma cell line, NCI-H69 and A549 human lung carcinoma cell line, BEAS-
2B human bronchial epithelial cell line from a normal subject, NCI-H441 human lung papillary adenocar-
cinoma cell line, CFBE41o- human cystic fibrosis bronchial epithelial cell line, – not studied, qPCR quanti-
tative polymerase chain reaction, WB Western blot

Sample Tissue/cell types mRNA Protein Ref

Tissues Lung tissue samples Expressed (WB) [33]
Cell lines Calu-3 Expressed (qPCR) – [37]

NCI-H69 Expressed (qPCR) – [38]
A549, BEAS-2B Barely detectable (qPCR) Undetected (WB) [34]
Calu-3, NCI-H441 Expressed (qPCR) Expressed (WB) [34]
Calu-3, CFBE41o- Expressed (qPCR) – [17]
A549 – Expressed (WB) [35]

Primary cells Alveolar type 2 cells isolated 
from control and idiopathic 
pulmonary fibrosis (IPF) lung 
tissue

Expressed. Reduced in IPF 
cells (scRNAseq, qPCR)

– [36]

Bronchial epithelial cells isolated 
from posttransplant tissue from 
healthy donors and CF patients

Expressed (qPCR) – [17]

Table 3   Expression of 
SLC6A14 at the mRNA 
and protein level in human 
gastrointestinal tract

Caco-2, HT29 and LS174T human adenocarcinoma colorectal epithelial cell lines, CCD841 normal human 
colon epithelial cell line, HCT116 human colon epithelial cell line from colorectal carcinoma, HT29 and 
LS174T human epithelial cell lines from colon adenocarcinoma (– not studied, WB Western blot, IF immu-
nofluorescence, IHC immunohistochemistry)

Sample Tissues/cell types mRNA Protein Ref

Tissues Intestinal epithelium (cholera patients) Expressed Expressed (IHC) [42]
Gastrointestinal tissues Expressed – [43, 46]

Cell lines Caco-2 Expressed – [42]
Undetectable – [43]
– Expressed (WB & IF) [44]
Not expressed (PCR) Not expressed (WB) [16]

CCD841, HCT116, HT29, LS174T – Expressed (WB) [44]
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SLC6A14 gene, was associated with a variability in the 
severity of CF clinical manifestations including lung dis-
ease severity/pulmonary infections or presence of MI/onset 
of digestive symptoms (Table 4). Linkage disequilibrium 
pattern of the different genetic variants studies in this review 
is shown in Fig. 1.

The initial evidence showing that SLC6A14 may be a 
modifier gene in CF has been described by Sun et al. in a 
“genome wide association study” (GWAS) involving 6135 
CF patients [14]. This study identified a significant asso-
ciation between susceptibility to MI and three SLC6A14 
genetic variants (rs12839137, rs5905283, and rs3788766). 

Table 4   Genetic associations tested between SLC6A14 variants and digestive and pulmonary manifestations in CF patients

Chromosomic position (forward strand); minor allele in the European population, Minor allele Frequency (MAF), data were collected from 
Ensembl, 1000 Genomes, European population. IRT immunoreactive trypsinogen, PI pancreatic insufficiency

rs ID (Alleles) MAF Variant localization Association with Number of 
CF patients

Cohort/patients characteristics Ref

rs7879546 (T/C) 0.41 Intergenic Lung disease severity 6365 Mean age: 19.5 years; PI (99.8%); F508del homozy-
gotes (65%)

[8]
rs5905376 (C/A) 0.23 Intergenic Lung disease severity
rs5952223 (C/T) 0.23 Intergenic Lung disease severity
rs12839137 (G/A) 0.12 Intergenic Presence of meconium ileus 6135 Two independent cohorts (patients with two severe 

CFTR mutations): 3,763 North American (F508del 
homozygotes 71.4%) and 2,372 French (> 6 years 
old) and American patients

[14]

No association with pediatric 
lung disease severity

815 Mean age of lung function measurements: 
12.63 years; F508del homozygotes: 62.3%

[10]

No association with age of 
first infection by P. aerugi-
nosa

730 Median age at first detection of positive P. aerugi-
nosa culture: 5.55 years; F508del homozygotes: 
61%

No association with early exo-
crine pancreatic disease

126 Median age of the first available IRT measurement: 
0.36 years; F508del homozygotes: 60.3%

No association with early exo-
crine pancreatic damage

111 Patients from Colorado, median age at IRT measure-
ment: 2 days; F508del homozygotes: 56%

[11]

rs5905283 (A/C) 0.47 Intergenic (2 KB 
Upstream Variant)

Presence of meconium ileus 6,135 Two independent cohorts (patients with two severe 
CFTR mutations): 3,763 North American (F508del 
homozygotes 71.4%) and 2,372 French (> 6 years 
old) and American patients

[14]

Pediatric lung disease severity 815 Mean age of lung function measurements: 
12.63 years; F508del homozygotes: 62.3%

[10]

No association with age of 
first infection by P. aerugi-
nosa

730 Median age at first detection of positive P. aerugi-
nosa culture: 5.55 years; F508del homozygotes: 
61%

No association with early exo-
crine pancreatic phenotypes

126 Median age of the first available IRT measurement: 
0.36 years; F508del homozygotes: 60.3%

No association with early exo-
crine pancreatic damage

111 Patients from Colorado, median age at IRT measure-
ment: 2 days; F508del homozygotes: 56%

[11]

rs3788766 (G/A) 0.36 Regulatory region Presence of meconium ileus 6,135 Two independent cohorts (patients with two severe 
CFTR mutations): 3,763 North American (F508del 
homozygotes 71.4%) and 2,372 French (> 6 years 
old) and American patients

[14]

Pediatric lung disease severity 815 Mean age of lung function measurements: 
12.63 years; F508del homozygotes: 62.3%

[10]

Age of first infection by P. 
aeruginosa

730 Median age at first detection of positive P. aerugi-
nosa culture: 5.55 years; F508del homozygotes: 
61%

No association with early exo-
crine pancreatic phenotypes

126 Median age of the first available IRT measurement: 
0.36 years; F508del homozygotes: 60.3%

No association with early exo-
crine pancreatic damage

111 Patients from Colorado, median age at IRT measure-
ment: 2 days; F508del homozygotes: 56%

[11]

Early pulmonary symptoms 79 Brazilian patients [12]
P. aeruginosa infection 83
Presence of meconium ileus 6,770 Patients with two severe CFTR mutations associated 

with PI; F508del homozygotes: 64.2%
[9]

rs12710568 (G/C) 0.31 Regulatory region Presence of meconium ileus 6,770 Patients with two severe CFTR mutations associated 
with PI; F508del homozygotes: 64.2%

[9]
rs5905177 (C/T) 0.35 SLC6A14 intron Presence of meconium ileus
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In a study involving more than 6700 CF patients from the 
International CF Gene Modifier Consortium, Gong et al. 
recently replicated the association between susceptibil-
ity to MI and rs3788766 [9]. This study also identified an 
association between MI susceptibility and two new variants 
(rs12710568 and rs5905177) located within the SLC6A14 
regulatory region and SLC6A14 intron, respectively. Several 
groups performed sex-specific association analysis based 
on the fact that SLC6A14 gene is located within the region 
associated with random X-inactivation [9, 14]. Interestingly, 
they found higher odd ratios in male than in female only for 
genetic variants associated with susceptibility to MI.

Li et al. further assessed the association of MI risk alleles 
of SLC6A14 with other CF co-morbidities, such as the lung 
disease severity and age at first P. aeruginosa infection [10]. 
Their study involved 815 CF Canadian pediatric patients 
who were genotyped for the following SLC6A14 variants: 
rs12839137, rs5905283, and rs3788766. Among the variants 
studied, rs5905283 and rs3788766 risk alleles were associ-
ated with pediatric lung disease severity; whilst rs3788766 
variant was associated with age at first P. aeruginosa 

infection, as confirmed later in a smaller cohort [12]. In 
2015, a GWAS involving 6,365 patients confirmed that 
SLC6A14 modifies the severity of the lung disease in CF [8]. 
Indeed, the authors found a significant association between 
genotypes of three SLC6A14 intergenic variants (rs7879546, 
rs5905376, and rs5952223) and the lung disease severity.

Gong et al. recently integrated GWAS and tissue-spe-
cific gene expression data to determine whether modifier 
loci on chromosome X (encompassing SLC6A14) influence 
SLC6A14 mRNA expression levels in different tissues [9]. 
This kind of analysis indicates whether eQTL (expression 
quantitative trait loci) colocalize with loci associated with 
CF phenotypes that may indicate the existence of a genetic 
regulator. Their results showed that SLC6A14 mRNA 
expression in CF nasal epithelia and in the pancreas colo-
calize with the lung disease and MI-associated variants, 
respectively, suggesting that each locus impacts SLC6A14 
expression with tissue specificity. Besides, neither associa-
tion between SLC6A14 genetic variants and early exocrine 
pancreatic phenotype nor immunoreactive trypsin levels at 
birth have been found [10, 11].

Fig. 1   Linkage disequilibrium (LD) pattern of the twelve SLC6A14 genetic variants studied. The dark red squares indicate pairs in strong LD. R2 
are from https​://ldlin​k.nci.nih.gov

https://ldlink.nci.nih.gov
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Putative biological roles of SLC6A14 in CF

Several studies showed that SLC6A14 plays a primary role 
as an amino acid transporter in various epithelial cells and 
models [32, 48–52]. Taken together, SLC6A14 expression 
data in human and genetic studies suggest that SLC6A14 
may have an important role in the lung and intestinal patho-
physiology of CF patients (see Parts 1 and 2).

SLC6A14 function in the lung

In the lung, it was first suggested that the apical transport 
of amino acid in the airway epithelial cells may play an 
important role in infection resolution [32] as pathogens need 
amino acids to proliferate into the airways. The authors sug-
gested that amino acid transporter at the apical membrane 
may be activated following infection to rapidly decrease the 
amino acid concentration of the airway surface liquid (ASL) 
(Fig. 2). This phenomenon could then help to fight against 
infections. This hypothesis is supported by the unique char-
acteristics of SLC6A14 allowing it to strongly concentrate 
all essential amino acids into the cytoplasm of epithelial 
cells.

As SLC6A14 genetic variants have been associated with 
age at first acquisition of P. aeruginosa in CF patients, Di 
Paola et al. sought to determine how SLC6A14 might impact 
the airways colonization by these bacteria [17]. They sug-
gested that exposure to P. aeruginosa increased SLC6A14 
mRNA expression, inducing a decrease in amino acid con-
centration in the ASL that resulted in a decrease in P. aer-
uginosa attachment to the airway epithelial cells rather than 
a reduced viability of planktonic P. aeruginosa. Indeed, they 

found that purified flagellin from P. aeruginosa enhanced 
SLC6A14 mRNA expression and SLC6A14-dependent argi-
nine import in Calu-3 cells and in primary airway epithelial 
cells from non-CF and CF patients. Moreover, they showed 
that pharmacological inhibition of SLC6A14 increased P. 
aeruginosa attachment in non-CF primary airway epithe-
lial cells and slightly in the bronchial epithelial cell line 
CFBE41o-.

Ahmadi et al. recently reported that arginine transport 
through SLC6A14 increased F508del-CFTR Cl− efflux 
in CF airway epithelial cells stimulated with or without a 
CFTR corrector, lumacaftor [15]. They also observed that 
this increase in CFTR function induced an increase in the 
ASL height and that the potentiation of F508del-CFTR 
channel function in CF cells induced by SLC6A14 arginine 
uptake occurred via the nitric oxide (NO) signaling pathway 
(Fig. 3). Finally, they suggested that SLC6A14 activation 
may be considered as a complement therapy to CFTR cor-
rection and potentiation in CF patients.

SLC6A14 function in the gastrointestinal tract

Ahmadi et  al. also conducted another study to deter-
mine the biological function of SLC6A14 in the murine 
gastrointestinal tract [16]. They first demonstrated that 
SLC6A14 is a major apical amino acid transporter in 
the murine colon. Indeed, Slc6a14(-/y) mice exhibited 
almost 75% reduction in apical arginine transport com-
pared to WT mice. In CF mice, they observed that Slc6a14 
disruption induced a reduction in weight gain and BMI 
post-weaning and worsen the intestinal phenotype, i.e., 
decreased F508del-CFTR-mediated fluid secretion. They 
also highlighted that SLC6A14 does not seem to affect 

Fig. 2   Proposed mechanism of the role of SLC6A14 in the host response against P. aeruginosa. AA amino acids, Na+ sodium ions, Cl− chloride 
ions
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the processing or stability of F508del-CFTR neither co-
immunoprecipitated with F508del-CFTR in an F508del-
CFTR BHK over-expression system, which led them to 
investigate intracellular signaling such as NO synthesis. 
They observed that SLC6A14 inhibition impaired argi-
nine uptake by intestinal epithelial cells inducing both 
a decrease in NO production and cGMP regulation of 
F508del-CFTR. These results suggest that an increase 
in SLC6A14 activity may enhance NO production and 
F508del-CFTR residual activity in CF tissues. However, 

it is not known whether these mechanisms are conserved 
in humans.

It has to be emphasized that in the lung or the intes-
tine, functional studies were conducted with either over-
expression (plasmid) or inhibition experiments (siRNA) of 
the whole gene. The role of the specific genetic variants 
identified in genetic studies (see Part entitled "Genetic 
association studies in CF") is not yet known and further 
elucidation is warranted.

Fig. 3   Relationships between 
SLC6A14, F508del-CFTR, and 
nitric oxide signaling pathway. 
CF cystic fibrosis, ASL airway 
surface liquid, AA amino acids, 
Na+ sodium ions, Cl− chloride 
ions, HCO3- bicarbonate ions, 
iNOS inducible NO synthetase, 
NO nitric oxide

Table 5   Expression of SLC6A14 in other diseases

ER+ estrogen receptor-positive, IPF idiopathic pulmonary fibrosis, NSIP non-specific interstitial pneumonia. If not specifically mentioned, the 
expression of SLC6A14 is relative to control patients. IF immunofluorescence, IH immunohistochemistry, HIS hybridization in situ, PCR poly-
merase chain reaction, WB western blot

Disease SLC6A14 expression Methods Ref

Cancer Cervical Up-regulated PCR, IF/IH, HIS [54]
Colorectal Up-regulated PCR, Northern blot, IH [55]
Pancreatic Up-regulated Microarray, qPCR, WB, IF, IH [56, 57]
Breast (ER +) Up-regulated PCR, IF [58]

Colonic diseases Crohn’s disease Up-regulated qPCR [46]
Ulcerative colitis Up-regulated qPCR, microarray [41, 59, 60]
Long vs. short duration of ulcerative 

colitis
Down-regulated Microarray [61]

Ischemic or infectious colitis Up-regulated qPCR [60]
Cholera Acute vs. convalescence phase Up-regulated Microarray, qPCR, IH [42]
IPF IPF Down-regulated scRNAseq [36]

IPF vs. NSIP Up-regulated Microarray [62]
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SLC6A14 in non‑CF diseases

SLC6A14 expression in other diseases

SLC6A14 expression has been shown to be differentially 
up-regulated in several pathological contexts (Table 5), espe-
cially in cancer and colonic diseases (reviewed in [53]).

Cancer

SLC6A14 is significantly upregulated in tissues from cervi-
cal [54], colorectal [55], pancreatic [56, 57], and estrogen 
receptor-positive (ER+) breast cancer [58]. In ER+ breast 
cancer, high expression of SLC6A14 mRNA has been cor-
related with a better survival among patients [63]. Using 
a mouse model of spontaneous breast cancer, Babu et al. 
showed that its development and progression was sig-
nificantly decreased when the mice were crossed with 
Slc6a14−/− mice [64]. The molecular mechanisms associated 
with these up- or down-regulations are largely unknown. 
SLC6A14 expression was shown to be regulated by estro-
gen [58] which explains its specific increased expression in 
ER+ but not in ER- breast cancer. Also, inverse expression 
patterns of SLC6A14 mRNA and the microRNA (miR)-23a 
[65, 66] were found suggesting its regulatory effect. How-
ever, no functional studies (using miR mimic or inhibitors) 
confirmed miR-23a involvement in SLC6A14 expression reg-
ulation. In contrast, inverse correlation of miR-23b-3p [67] 
and SLC6A14 expression was recently confirmed. Functional 
studies have shown that the downregulation of SLC6A14 
observed in endocrine therapy (ER + breast cancer standard 

of care)-resistant cells is associated with an increase of miR-
23b-3p [63].

Colonic diseases

SLC6A14 mRNA levels are significantly higher in colonic 
mucosal specimens obtained from patients with Crohn’s dis-
ease compared to controls [46]. SLC6A14 expression was 
also increased in rectal and colonic biopsies from patients 
with ulcerative colitis or infectious/ischemic colitis com-
pared to controls, suggesting that SLC6A14 upregulation 
might be the result of the inflammatory context rather than 
a specific pathophysiological consequence of the ulcera-
tive colitis [41, 59, 60, 68]. Low et al. further observed that 
SLC6A14 was down-regulated in colonic biopsies from 
patients with long-duration of ulcerative colitis compared 
with patients with short duration [61]. In rats, D’Argenio 
et al. showed that experimental colitis induced a marked 
decrease in SLC6A14 transcript expression in the colon [69]. 
Finally, Kou et al. found that colon cancer cell lines over-
expressed SLC6A14 compared to normal colon cells [44].

Idiopathic pulmonary fibrosis

SLC6A14 has been found to be downregulated in alveolar-
type II cells of idiopathic pulmonary fibrosis (IPF) patients 
[36], while it is overexpressed in specimens from explanted 
lungs of patients with non-specific interstitial pneumonia 
compared to specimens from IPF patients [62].

Table 6   Genetic associations tested between SLC6A14 variants and diseases

Chromosomic position (forward strand); Alleles (Minor), Minor allele Frequency (MAF), data were collected from Ensembl, 1000 Genomes, 
European population

rs ID (alleles) MAF Variant localization Association with Number of patients/cohort characteristics Ref

rs2312054 (A/T) 0.21 SLC6A14 intron Food intake 344 children, age 7–8 years [70]
rs12391221 (C/A) 0.30 SLC6A14 intron Food intake 344 children, age 7–8 years [70]
rs2071877 (C/T) 0.30 SLC6A14 intron Obesity 1267 obese adults and 649 lean controls (French) [71]

Adiposity 344 children, age 7–8 years [70]
rs2011162 (C/G) 0.45 SLC6A14 exon 14; 3′UTR​ Obesity Two independent cohorts: 117 obese and 182 controls 

(Finnish); 837 obese and 968 controls (Finnish and 
Swedish)

[72]

Obesity 1267 obese adults and 649 lean controls (French) [71]
Reduced fat 

oxidation in 
women

722 obese subjects of white European origin (541 women, 
181 men), age 20–25 years

[73]

Male infertility 370 infertile men and 241 fertile controls (Macedonian 
and Slovenian)

[74]

rs2312054(A)/
rs2071877(C)/
rs2011162(G) haplotype

Male infertility 370 infertile men and 241 fertile controls (Macedonian 
and Slovenian)

[74]
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Infectious diseases

SLC6A14 mRNA levels have been shown to be increased in 
biopsies of duodenum collected during the acute phase of 
cholera compared to biopsies collected during convalescence 
phase [42].

Genetic associations studies in other diseases

Four additional SLC6A14 genetic variants have been associ-
ated with phenotypic variability in other diseases than CF 
(Table 6).

SLC6A14 genetic variants have been associated with obe-
sity in different populations (Table 6). In a candidate gene 
analysis, later replicated in an independent cohort, Suviolahti 
et al. found significant differences in SLC6A14 rs2011162 
genetic variant allele frequencies between obese and non-
obese subjects [72]. Another study suggested an association 
between the rs2011162 and fat oxidation in women which 
may be, when not adapted to fat intake, responsible to weight 
gain over time [73]. Finally, in a French family cohort study 
comprising of 1,267 obese adults and 649 lean control sub-
jects, Durand et al. found a significant association between 
rs2011162 genetic variant and obesity. They observed that 
the risk allele was associated with higher body fat and modi-
fied perception of hunger and satiety in adult women with 
moderate obesity and in obese girls [71]. Durand et al. also 
identified an association between SLC6A14 rs2071877 
genetic variant and obesity in a French cohort [71]. This 
variant has also been associated with sum of triceps and 
subscapular skinfolds thickness, an objective measure of adi-
posity, in boys 7–8 of age [70]. Finally, Miranda et al. also 
found evidences of associations between two other genetic 
variants, rs2312054 and rs12391221, and several parameters 
used to assess the food intake in children [70].

SLC6A14 genetic variants have been also associated with 
male infertility. Indeed, Noveski et al. found that rs2011162 
alone and rs2011162(G)/rs2071877(C)/rs2312054(A) hap-
lotype were differently distributed among fertile and infertile 
groups in their cohort [74]. As rs2011162 is located within 
the 3′UTR region of SLC6A14, they investigated the possible 
consequences of this genetic variation on the RNA second-
ary structure. They found a significant structural effect of 
this genetic variant that may result in a differential mRNA 
expression depending on the allele.

It was recently shown that SLC6A14 expression quantita-
tive trait loci (eQTL) from nasal epithelial cells and pancreas 
tissues coincide with lung disease and meconium ileus-asso-
ciated variants, respectively, supporting an important role 
for SLC6A14 variants in CF [9]. However, whether in CF or 
other diseases, the functional in vitro/in vivo consequences 
of identified SLC6A14 genetic variants on SLC6A14 protein 
expression and/or function have never been studied. This gap 

in knowledge needs to be addressed to better understand the 
molecular mechanisms by which SLC6A14 affect pheno-
types or diseases. SLC6A14 genetic variants described in 
this review are located in the non-coding region either inter-
genic or located in the regulatory region (promoter), introns, 
or in the 3′UTR region of SLC6A14, and, subsequently, do 
not modify the amino acid sequence of SLC6A14 protein. 
However, these variants may have multiple effects not only 
on SLC6A14, but also on nearby and/or distant genes. For 
example, genetic variants located in the promoter may affect 
transcriptional activity by altering transcription factor bind-
ing. Other functional consequences of these SNPs have to 
be studied including DNA methylation and histone modifi-
cations, alternative splicing, conformation and stability of 
mRNA as well as structure, expression level, and function of 
proteins. Even if bioinformatic tools may predict functional 
consequences of genetic variants, downstream in vitro/
in vivo experimental studies will also be necessary. Suc-
cessfully used for several complex traits, genome-editing 
technologies may also be used to create isogenic cell lines 
with specific alleles to assess their functionality including 
chromatin structure, transcription factor binding, gene and 
protein expression, and specific cellular assays [75]. Fur-
thermore, as previously mentioned, in addition to the impact 
of genetic variants, SLC6A14 expression can be regulated 
by environmental factors (inflammatory molecules, patho-
gens, and pharmacological treatments) and possibly age 
(fetal vs. adult, Table 1). Thus, the development of different 
experimental models to identify the causality of SLC6A14 
expression and function variability over the course of disease 
progression will be a major challenge.

Conclusion

SLC6A14 seems to be predominantly expressed in epithelial 
cells of the human lung and to a lesser extent in the human 
gastrointestinal epithelium. Importantly, SLC6A14 expres-
sion profiles appear to be different between human and mice, 
suggesting that studies investigating the biological roles of 
this protein in murine models may not directly correlate with 
findings obtained in human models. Several groups have 
observed that SLC6A14 levels are up- or down-regulated in 
pathological conditions, however, the mechanisms involved 
in these dysregulations have mostly not been elucidated. 
Moreover, some studies have demonstrated that inflam-
matory mediators and pathogen molecules may impact 
SLC6A14 expression.

Furthermore, genetic studies highlight that SLC6A14 
genetic variants modulate the severity of digestive and pul-
monary diseases in CF patients. The biological function 
of this pleiotropic modifier gene is not fully explained and 
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the biological direct consequences of identified variants in 
genetic studies remained to be clarified. However, some 
recent studies suggest that SLC6A14 may play an important 
role in the response to respiratory infection and fluid secre-
tion related to CFTR. Thus, SLC6A14 may be a potential 
therapeutic target to improve anti-infective response and 
CFTR function and/or correction in CF patients in a per-
sonalized way.
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