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Abstract. Growth of living species generates stresses which ultimately design their shapes. As a consequence,
complex shapes, that everybody can observe, remain difficult to predict, even when the growth biology is
over-simplified. One way to tackle this question consists in limiting ourselves to quasi-planar objects like
leaves in the spring. However, even in this case the diversity of shapes is really vast. Here, we focus on growing
tips with the aim to compare their role in elastic growth to classical viscous fingering and dendritic growth.
With the help of complex analysis, we show that a parabola under constant growth is free of stress while
growing but any growth perturbation will strongly affect its final shape. Two models of finite elasticity are
considered: the Neo-Hookean and the poro-elastic model with incompressibility.

Résumé. La croissance biologique génère des contraintes mécaniques qui contribuent à façonner la forme
des tissus, des organes et des organismes vivants. En raison de l’extrême complexité des phénomènes de
croissance biologique, il est en général impossible de prédire ces formes. Dans certains cas géométriquement
simples, par exemple des tissus biologiques minces en croissance quasi-planaire tels que des feuilles, les
lois de la mécanique contraignent les formes possibles. Toutefois, l’espace des formes atteignables reste
particulièrement vaste. Dans ce compte-rendu, nous nous intéressons au cas particulier des pointes en
croissance, que nous décrivons dans le cadre de la théorie de la morpho-élasticité et de la poro-élasticité
non-linéaire, et qui partage des similarités frappantes avec deux sujets d’étude classiques en physique :
la croissance dendritique et la digitation visqueuse. Les outils de l’analyse complexe sont mobilisés pour
montrer qu’une parabole en croissance homogène est stable et ne développe pas de contrainte mécanique.
En revanche, la forme de la pointe est fortement affectée par les perturbations du champ de croissance.
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1. Introduction

Morphogenesis is the biological process by which living organisms acquire their shape. While
biological growth is mostly under the control of genetics, the set of possible shapes of biological
objects is ultimately constrained by physical principles. At a cellular scale, growth and division
can be described by local, time-dependent, laws. However, integrating such local laws in order
to explain the (possibly evolving) shapes of macroscopic objects (leaves, flowers, trees, organs,
tumors, biofilms, etc.) is a formidable task. If we limit ourselves to botanics, which is simpler in
the sense that growth is less constrained by boundary conditions, and even if we further restrict
ourselves to leaves because of their geometric simplicity, a broad diversity appears in nature that
perhaps physics and mechanics may help to understand or at least to classify.

Upon observing the growing leaves of trees in spring, one may first notice that some leaves are
mostly planar, in particular when the ribs are not too thick compared to the leaf thickness. When
this is not the case, the leaf typically buckles between two successive ribs and the differential
growth leads to sharp pointed tips, one being along the symmetry axis of the leaf with the others
organized on both sides, as observed on holly leaves. But for thin leaves and tiny ribs, on the
other hand, the membrane remains planar and the outer contour is smooth, with either regular
or undulated boundaries depending on species.

Tip instabilities of growing inert matter are also frequently observed. Archetypal examples
of “growing” systems exhibiting morphological instabilities in physics are dendritic (diffusive)
growth and radial viscous fingering [1, 2], illustrated in Figure 1. Of course, unlike biological
growth, there is no creation of matter in these classical experiments but rather a displacement
of a material into an another one. Two broad classes of instabilities in these systems have been
documented: tip splitting in viscous fingering and side-branching in diffusive out-of-equilibrium
processes. Due to the nonlocal nature of the “growth” processes, ie the competition between
surface tension and a diffusive or Laplacian field, understanding these patterns turned out to
be a real challenge and both of these topics have been the subject of a considerable amount of
experimental, numerical, mathematical and theoretical work in the past forty years.

A naive idea to explain the predominance of side-branching events in dendrite growth and of
tip-splitting instabilities in viscous fingering lies on the difference between Laplacian and diffu-
sional fields. Dendrite tips in diffusive systems preserve their size to maintain stabilization by sur-
face tension while growing Laplacian fingers in open geometries keep growing and thus must di-
vide in order to maintain stability by surface tension. This sharp separation of physical processes
can be somewhat perturbed by the addition of a localized perturbation. As demonstrated by Yves
Couder and his collaborators, trapping of a small bubble at the tip of a growing viscous finger re-
sults in a stable finger growing at constant velocity and emitting dendrite-like sidebranches [3–5].

The emergence of a theoretical framework coupling biomechanics to growth in the last years
now offers a unique way to understand problems of morphogenesis and embryogenesis where
the biology at small scales is strongly coupled to biomechanics, and elasticity, see in particu-
lar [6, 7]. By analogy with some of his favorite hydrodynamic instabilities, namely crystal growth
and viscous fingering, Yves Couder has suggested some universality in growth patterns poten-
tially dominated by leading growing tips, in particular in botany. More precisely, he suggested
that growing tips, described within the formalism of morpho-elasticity, might share some char-
acteristics with Laplacian or diffusive growth. The aim of this paper is thus to scrutinize carefully
this hypothesis. Let us stress however, that it took fifty years to understand Laplacian [8] or den-
dritic growth [9] following the first pioneering works of respectively Saffman and Taylor [10] and
Ivantsov [11] and unfortunately, the mathematics of finite or nonlinear elasticity is much more
complex than that of diffusive or Laplacian growth. As a consequence, our modest contribution
will be limited to the simple case of a parabola under: (i) constant volumetric growth, isotropic
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Martine Ben Amar and Julien Dervaux 615

Figure 1. On the left, viscous fingering in an open geometry. The anomalous dendritic
finger is due to a pulsating tip. The image is reproduced from Couder, Y., Cardoso, O.,
Dupuy, D., Tavernier, P. and Thom, W. [3]. On the right, a dendrite of succinonitrile growing
in an undercooled melt, exhibiting the characteristic paraboloidal tip and the secondary
sidebranching behind the tip. The figure is reproduced from J. S. Langer [4].

or slightly anisotropic and (ii) homogeneous poro-elastic swelling and (iii) to the existence of un-
dulating modes at the leave borders.

2. Finite-Elasticity in complex geometry

The basis of elasticity dates at least from the 17th-century with the first statement De Potentia
Restitutiva of Robert Hooke (1678), but any application of the first principles remains challeng-
ing in bodies of non trivial shapes and of finite size [12]. Indeed, if we really want to analyze the
field of deformations of a specific body under an external loading, we are faced to its geomet-
rical description. It is why, in textbooks, examples are restricted to bars, spheres, cylindrical or
spherical shells. This challenge is even increased in non-linear elasticity [13–15] since we need to
consider both the initial and the final geometries or initial and final configurations. This explains
why, only simple geometries have been considered since not only the shape is important but also
the writing of equilibrium equations (density of forces and torques or Euler–Lagrange equations)
in a more or less standard coordinate systems. As for living systems which to some extent, can be
considered as soft elastic tissues, their shapes are much more diverse and also their elastic prop-
erties. In addition, it exists strong differences between living and inert matter, the most obvious
one being the ability to grow with specific rules. This induces stresses that need to be combined
to loading or to other constrains, as the boundary conditions for example.

Keeping the strategies that many have followed for viscous fingering and dendritic growth,
that is to focus on growing tips, we consider this shape which has been completely discarded
in the context of volumetric growth. Tips are present in nature as the ends of branches, leaves,
blades. We restrict on planar or quasi-planar objects to maintain plane strain elasticity. The
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advantage of this geometry is a simple expression with holomorphic functions for borders, a
simple way to construct a curvilinear system of coordinates where the initial shape turns out to
correspond to one coordinate and finally a simple writing of the equations of non-linear elasticity
with growth, as shown in the following. Adopting the technique of needle-crystals which have
been assimilated to parabola or paraboloid, discarding side-branchings, we perform the elastic
treatment in parabolic coordinates [16, 17].

2.1. Elasticity in parabolic coordinates

We consider a growing parabolic tip and write all the relevant equations of finite elasticity with
growth [15] in the parabolic system of coordinates based on the conformal mapping of the (X ,Y )
plane:

Z = X + I Y =− I

2
((µ+ Iη)2 +1) = ηµ+ I /2(η2 −µ2 −1). (1)

If the coordinate η is fixed to one, we derive the following relationships: X = µ and Y = − 1
2 X 2

which represent a parabola of radius of curvature equal to unity (R = 1), oriented symmetrically
along the negative Y axis. Here after, we choose as unit of length this radius of curvature. µ and η
are orthogonal coordinates with a scale factor hµ equal to |∂µ~R|, where ~R = X~eX +Y~eY , and the
equivalent definition for hη. In the following, we will adopt arbitrarily either the notation ∂/∂α or
the notation ∂α for the partial derivative with respect to α. hη and hµ are the classical notations
for changes of coordinate systems, see Morse and Feshbach’s book [18]) and for the parabolic
coordinate defined by (1), we easily derive hµ = hη =

√
η2 +µ2. Considering that Z is the complex

coordinate in the configuration of reference and z in the current configuration, the geometric
strain F and the elastic strain Fe (after conformal mapping transformation of coordinates) are
then:

F = 1

h2
µ

[
∂µx ∂ηx
∂µy ∂ηy

]
and Fe = 1

h2
µ

[
∂µx/gµ ∂ηx/gη
∂µy/gµ ∂ηy/gη

]
(2)

where gµ and gη are the eigenvalues of a growth tensor, diagonal in the parabolic system of
coordinates, possibly anisotropic when gµ 6= gη. To simplify, these eigenvalues will be chosen
independent of space coordinates but they can be dependent on time if the typical time-scale
of growth is long compared to any dissipation process. We choose the simplest model of finite
elasticity, the Neo-Hookean modelling [13–15] , and we assume incompressibility so:

DetFe = 1 and DetF = gµgη so J = ∂µx∂ηy −∂ηx∂µy −h2
µgµgη = 0. (3)

The elastic energy of the initially growing parabola is then:

E = E

2τ

∫
Ṽ

dµdη{(∂µx)2 + (∂µy)2 +τ2{(∂ηx)2 + (∂ηy)2}−2h2
µg 2

µ−2pJ } (4)

where E is the shear modulus and p is the Lagrange multiplier which allows to impose the
incompressibility constraint. A priori, p is a function of bothµ andη. The coefficient of anisotropy
is given by τ= gµ/gη. We can eliminate the anisotropy coefficient by dilating the variable µ= τν

but the price to pay is the change of the scaling factors hµ. Indeed, we must reminder that h is a
function of µ and η so only when h depends on a unique coordinate, the anisotropic case can be
treated as the isotropic one (this is the case of the cylindrical or radial geometry). If not, we are
really constrained. In this curvilinear coordinate system, the Euler–Lagrange equations read:

∆η,µx = ∂2x

∂µ2 +τ2 ∂
2x

∂η2 = ∂p

∂µ

∂y

∂η
− ∂p

∂η

∂y

∂µ

∆η,µy = ∂2 y

∂µ2 +τ2 ∂
2 y

∂η2 =−∂p

∂µ

∂x

∂η
+ ∂p

∂η

∂x

∂µ
.

(5)
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One can notice that (5) are similar to the same equations for the growth of a sample in a stripe,
written in cartesian coordinates. If the choice is made of holomorphic function for x and y and for
isotropic growth, τ= 1, the Lagrange parameter p is a constant. Because of the incompressibility
constraint, our choice for the deformation will be in favor of a solution which restores the
parabolic shape. So we hypothesize:

x =λxηµ and y = λy

2
(η2 −µ2 −1). (6)

The Jacobian of the new configuration is then J =λxλy ·(η2+µ2) =λxλy h2
µ so the incompressibil-

ity condition imposes λxλy = g 2
ητ, according to (3). But we one cannot verify the second Euler–

Lagrange equation for y and new guess of possible solution is not so easy to find. It is why we
choose first the isotropic case with τ= 1, ∆µ,ηx = ∆µ,ηy = 0 and the pressure p constant and opt
for a weak anisotropic perturbation. So, our exact result is limited to isotropic growth and weak
perturbed elastic fields will be evaluated once driven by weakly anisotropic growth. Boundary
conditions for η= 1 concern the cancellation of the two components of the nominal stress:

Sη,η = E

(
τ2 ∂y

∂η
−p

∂x

∂µ

)
and Sη,µ = E

(
τ2 ∂x

∂η
+p

∂y

∂µ

)
(7)

which gives: p = 1 and λy = λx = gη = g . So finally a parabola which grows isotropically enlarges
during development and its radius of curvature R is simply the growth factor g . This solution
differs from the initial configuration. If g > 1, the parabola seems smoother than the initial one
while if g < 1, it appears more sharp-pointed. Since this constant homogeneous growth process
does not generate any kind of stress, the parabolic shape is stable and no shape bifurcation is
then expected, contrary to the growth of a layer [19, 20]. In the next section, we confirm that the
parabola, with constant isotropic growth, is a robust shape and that deviation from this shape
will require a change in the growth conditions.

3. Variations around the stress-free parabola

The stress-free parabola found previously is an exact solution of the elasto-static growth problem.
To find exact solutions, even in the Neo-Hookean approach remains a challenge but it remains
possible to slightly perturb the growth conditions. Considering anisotropic growth, the weakness
is represented by the small coefficient ε= τ−1 where τ intervenes in (4), (5), (7). We will use this
parameter to expand linearly the main equations.

3.1. Weakly anisotropic growth

At linear order in ε, x, y , p and J are transformed into:

x = g (ηµ+εu(µ,η))

y = g

2
(η2 −µ2 −1)+εg v(µ,η)

p = 1+επ(µ,η)

J = g 2(η2 +µ2)+ε j (µ,η)− g 2τ(η2 +µ2).

(8)

For j (µ,η), it reads:

µ

(
∂u

∂η
− ∂v

∂µ

)
+η

(
∂v

∂η
+ ∂u

∂µ

)
= a0(η2 +µ2) (9)

where a0 is equal to 1 if τ 6= 1 and is zero for the isotropic case, τ= 1.
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that we can transform into: 
∂u

∂η
− ∂v

∂µ
= ηm(µ,η)+a0µ

∂v

∂η
+ ∂u

∂µ
=−µm(µ,η)+a0η

(10)

where m(µ,η) is an arbitrary function. Notice that m = 0 means that (u, v) are complex conjugates
since they verify the Cauchy relations. Deriving the first equation of (10) with respect to η and the
second equation with respect to µ and adding both results gives:

∆u = η∂m

∂η
−µ∂m

∂µ
(11)

and the same operation consisting in taking first the derivation with respect to µ, then with
respect to η gives after substraction:

∆v =−η∂m

∂µ
−µ∂m

∂η
. (12)

These two relationships have to be compared to the linear version of (5) which gives:

∆u =
(
η
∂π

∂µ
+µ∂π

∂η

)
(13)

∆v +2a0 =
(
−µ∂π

∂µ
+η∂π

∂η

)
. (14)

So we relate π to m:

∂π

∂µ
= ∂m

∂η
− 2a0µ

η2 +µ2 and
∂π

∂η
=−∂m

∂µ
+ 2a0η

η2 +µ2 (15)

π satisfies the Poisson equation:

∆π= 4a0
µ2 −η2

(η2 +µ2)2 . (16)

The general solution for u and v can be found more easily if we combine both (41) and (42) and
define U = u + I v

∆U =−2I
dπ

dζ̄
ζ−2I a0 where ζ=µ+ Iη (17)

π is a real function which can be decomposed into an holomorphic one P (ζ) and a contribution
due to the anisotropy. It is easy to show that

π= 1

2

(
P (ζ)+ P̄ (ζ̄)−a0

(
ζ

ζ̄
+ ζ̄

ζ

))
(18)

and one easily find that
∂2U

∂ζ∂ζ̄
=−I /4

(
dP̄ (ζ̄)

dζ̄
ζ+a0

(
1+ ζ2

ζ̄2

))
. (19)

Before going further, let us remind the boundary conditions: first symmetry along the X axis:
x =U (µ,η) = 0 and ∂µx = 0 = ∂µU = 0 for η = 0, second cancellation of the stresses Sη,µ and Sη,η

for η= 1, see (7). Let us first consider linear perturbation of the stresses:

Σ(µ,η) = Sµ,η+ I Sη,η =−2I
∂U

∂ζ̄
−πζ+2a0ζ= 0 for η= 1,∀µ. (20)

Integrating (19) with respect to ζ, we obtain:

∂U

∂ζ̄
=− I

8

(
dP̄ (ζ̄)

dζ̄
ζ2 +2a0

(
ζ+ ζ3

3ζ̄2

))
+Q ′(ζ̄) (21)
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Figure 2. On left, quasi parabolic shapes for anisotropic growth. In blue, the growing
parabola with ε= 0 (isotropic growth), in green the perturbed shape with ε=−0.1, in orange
similar result with ε = 0.1. ε ≥ 0 means that the growth factor along µ is larger than along

η. All lengths are scaled by the growth coefficient g . On right,
√
Σi , j S2

i j (with i < j ) average

stress density inside the parabolic shape. Notice the divergence of the stresses near the tip:
µ∼ 0, η∼ 0.

Q(ζ̄) can be evaluated once introduced in the stress function, Equation (20), which vanishes for
η= 1 so for ζ= ζ̄+2I . So we get:

Q(ζ̄) = 1

6

(
−4/ζ̄+12ζ̄− 7I

2
ζ̄2

)
. (22)

Finally, U will be fully determined by integrating (21) imposing u = 0 = ∂µu = 0 for η = 0 and
imposing also convergence when µ− > ±∞. Then, the profile function becomes, under weakly
anisotropic growth:

x = gηµ

{
1+ε

(
−3

2
+ 2

3

η2

µ2 +η2

)}
y = g

2

{(
1+ 3ε

2

)
(η2 −µ2 −1)+ 34ε

3
−2εη

(
4+η− 2

3

η3 −2

η2 +µ2

)}
 (23)

where ε = τ− 1 = gµ/gη. So anisotropic growth reduces the radius of curvature of the parabola
when gµ > gη as shown in Figure 2 on left. One also notices on right that the stresses diverges
at the tip which seems unphysical. This explains that the real tip requires a modification of the
growth law or a change in structure like a rib. If we think about botany, it is clear that this model
has not enough flexibility to represent a real leaf.

3.2. Free harmonic modes

We consider now free harmonic modes, modes which can be superposed to the stress-free
parabola found in Section 2, without modification of the growth condition. These modes can be
generated by a noisy environment and may play a crucial role in dynamics. For a growing tissue,
such a noise may arise as a consequence of fluctuations in cell growth rates and/or mechanical
properties. Interestingly, an interface that is linearly stable in absence of noise may roughen
in response to small fluctuations [21, 22]. During this process called kinetic roughening, the
interface will remain flat on average but its width (i.e. the typical distance between the crests and
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the valleys of the interface) will grow over time. Such a behavior arise when modes of different
wavelengths exhibit different dynamics of relaxation and have been observed in various inert or
biological systems (for example [23,24]). Free harmonic modes are also observed during dendritic
growth. They are considered as the result of a thermal noise mostly located at the tip, generating
growing side-branching events on both sides, far from the tip [25]. In viscous fingering in a
channel, on the contrary, the finger is especially stable and side-branching is observed only when
a perturbation is introduced artificially [3, 5]. At high forcing, a tip-splitting event may occur,
similar to the ones observed in radial geometry. Indeed, in this geometry and also in the wedge
geometry, a cascade of tip-splitting events is observed as time goes on, mimicking a quasi fractal
pattern at long time [26–28]. But this scenario can be inhibited and transformed into dendrites
if anisotropy occurs [29]. Here we assume an harmonic mode for the pressure and examine the
consequences for the shape of the parabolic growing elastic tip. The wavelength is not a priori
specified and modes of any wavelength can be superposed but they do not interact at the linear
approximation. In addition, they can be superposed to the previous solution given by (23). So we
focus on one mode of wavenumber k which gives a symmetric shape. In addition, we require,
as previously, that the asymptotic deformation (u, v) will not be larger than the initial shape so
|u| < η|µ| and |v < |µ2 −η2|. Most of the results of Section 3.1 will remain valid but with a0 = 0.
In particular, the pressure π will be the real part of an holomorphic function as shown by (16),
a necessary condition to check incompressibility. For deriving the free modes, we focus on the
pressure which is the key quantity to solve the elasticity problem. A symmetric shape will require
for the pressure π an even function of µ vanishing on the border. At the linear approximation, it
reads

π= sinh(kη−k)cos(kµ) =−Re[sinh(k + I k(µ+ Iη))]. (24)

Solving (19), we deduce on the interface η= 1

∂U

∂ζ̄
=− I

8

(
dP̄ (ζ̄)

dζ̄
ζ2

)
+Q ′(ζ̄) =Q ′(ζ̄)+ 1

8
kζ2 cosh(k − ik ζ̄) (25)

which allows the determination of Q(ζ̄) for ζ being replaced by ζ̄ = ζ+2I . Finally, integrating U
and adding a holomorphic function of ζ to limit the growth of the result so that:

U = 1

8
kζ2(cosh(k − ik ζ̄)−cosh(k − ikζ)+Q(ζ̄)−Q(ζ) (26)

we derive:
u = − 1

2k2 sin(kµ){2k cosh(k)(kηcosh(kη)− sinh(kη))

+ sinh(k)(−kηcosh(kη)+ (1+2k2)sinh(kη))}

+ µ

2k
cos(kµ){−kηsinh(k)cosh(kη)+ sinh(kη)((η−2)k cosh(k)+ sinh(k))}

(27)

and 
v = 1

2k2 cos(kµ){2k sinh(k)(−kηcosh(kη)+ sinh(kη))

− cosh(k)(−kηcosh(kη)+ (1+2k2)sinh(kη))}

+ µ

2k
sin(kµ)cos(k){kηcosh(kη)− sinh(kη)− (η−2)k sinh(k)sinh(kη)}

(28)
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Figure 3. Superposition of the growing parabola and free holomorphic modes: on left in
green, k = 3,ε = 0.12/cosh2(3), in orange, k = 3,ε = −0.12/cosh2(3), in blue the non-
perturbed parabolic shape. A tip-splitting event accompanies the side-branching on the
curve in green but not on the orange-profile. So the undulated mode depends on the tip-
perturbation. On the right: zoom on the tip.

which gives for η= 1

u =−sin(kµ)

4k2 {(4k2 +1)cosh(2k)−3k sinh(2k)−1}

−µsinh(k)

2k
cos(kµ)(2k cosh(k)− sinh(k))

v =−cos(kµ)

4k2 {(4k2 +1)sinh(2k)+k −3k cosh(2k)}

+ sin(kµ)

2k
{k(sinh2(k)+cosh(k)2)− sinh(k)cosh(k)}.

(29)

In Figure 3, we give several possible solutions for the new shapes at fixed wavenumber: k = 3
which means a wavelength close to the tip radius. At linear approximation, it is easy to obtain a
tip-splitting event versus a dendrite but the two kinds of mode differ only at the tip which is a
difference with viscous fingering. Concerning the shape of leaves, both undulating modes exist
but the sharp tips seem to be the most common case. In the next section, we present another
growth model triggered by diffusion: the poro-elastic model.

4. Nonlinear poro-elasticity in parabolic coordinates

Let us now extend the preceding analysis to the case of a simple nonlinear poro-elastic material.
This model is well-suited to describe swelling gels but also, to some extent, the behavior of vegetal
tissues as it incorporates both an elastic and a liquid phase. In response to pressure gradients, the
liquid phase moves inside the solid phase in order to minimize the total energy of the system. At
equilibrium, a nonlinear poro-elastic material is therefore equivalent to an elastic material with
a space-dependent compressibility. As such it also provide a (highly simplifed) model of stress-
modulated growth. Ignoring the mixing contributions arising from the interactions between the
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solvent molecules and the polymer chains, the Helmoltz free energy is simply that of the highly
compressible cross-linked polymer network [30]:

W = E

2
(Tr(F T F −2)−2logdetF ) (30)

so that the Grand potential to be minimized is simply:

E [~u] = E

2

∫
Ṽ

dµdη

{
(∂ηx)2 + (∂ηy)2 + (∂µx)2 + (∂µy)2 −2h2

µ (31)

−2log

(
∂µx∂ηy −∂ηx∂µy

h2
µ

)}
(32)

− µ0

v

∫
Ṽ

dµdη(∂µx∂ηy −∂ηx∂µy −h2
µ). (33)

The first two terms in the equation above are just the Helmoltz free energy density integrated
over the volume of the poro-elastic tip while the third integral enforces the molecular incom-
pressibility constraint at the thermodynamic equilibrium. Here µ0 is the chemical potential of
solvent molecules in the particle reservoir in contact with the system and v is the volume per
solvent molecule. In the context of plant sciences, µ0 is sometimes referred to as the pore pres-
sure. Similarly to the growing case, we may obtain the Euler–Lagrange equations by requesting
the Gâteaux derivative of the functional E [~u] above to vanish and we obtain the following set of
equations:

J∆µ,ηx = ∂ log J

∂µ

∂y

∂η
− ∂ log J

∂η

∂y

∂µ

J∆µ,ηy =−∂ log J

∂µ

∂x

∂η
+ ∂ log J

∂η

∂y

∂µ

(34)

where:

J = ∂µx∂ηx −∂ηx∂µy

h2
µ

. (35)

As previously suggested [31, 32], a swelling body is, at equilibrium, equivalent to a compress-
ible structure subjected to an hydrostatic pressure at its free surface. This is illustrated by writing
the boundary condition at the free surface in the following form:

ST ~N = µ0

v
JF F−T ~N (36)

where the definition for the nominal stress has been kept:

S = ∂W

∂F
(37)

but now care must be taken to interpret S as the partial stress associated with the solid phase of
the swelling material. Recalling that hµ =

√
η2 +µ2, it is not difficult to check that the following

solution:

x =αηµ y = α

2
(µ2 −η2) and J =α2 (38)

with

α= 1√
1− µ0

Ev

(39)

is a nonlinear symmetric solution of the equilibrium equations and boundary conditions. This
solution correspond to an homogeneous swelling process. The one-dimensional swelling ratio α
is comprised between 0 and ∞ and is directly controlled by the dimensionless chemical potential
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of the solvent particles reservoir µ0/(Ev). Let us now perturb the fields x, y , and J using the
following expansion: 

x =αηµ+εαu(µ,η)

y = α

2
(µ2 −η2)+εαv(µ,η)

J =α2 +εα2 j (µ,η).

(40)

Inserting the expansions above in the equilibrium equations (34), we obtain the following
equations:

∆u =− 1

α2

(
η
∂ j

∂µ
+µ∂ j

∂η

)
(41)

∆v =− 1

α2

(
µ
∂ j

∂µ
−η∂ j

∂η

)
(42)

where j is given by:

j = 1

η2 +µ2

{
η

(
∂u

∂µ
− ∂v

∂η

)
+µ

(
∂u

∂η
+ ∂v

∂µ

)}
. (43)

As previously, let us introduce the complex displacement U = u + I v and the complex coordi-
nates ζ=µ+ Iη to obtain the following equations:

∆U =−2Iζ

α2

∂ j

∂ζ
(44)

j = I

ζ

∂U

∂ζ
− I

ζ

∂U

∂ζ
. (45)

The previous equations can immediately be integrated to give, after using the symmetry
condition with respect to µ:

U (ζ,ζ) = 1+2α2

2+2α2

{
F ′(ζ)

2ζ
(ζ

2 −ζ2)+F (ζ)−F (ζ)

}
(46)

where F is an arbitrary holomorphic function with appropriate behavior at infinity (|u| < η|µ| and
|v < |µ2 −η2|) that must satisfy the linearized boundary condition (36):

∂U

∂ζ
+ ∂U

∂ζ
+F

′
(ζ) = 0 for ζ= ζ−2I (47)

which cannot be satisfied for periodic holomorphic functions F , indicating that the swollen poro-
elastic tip is also linearly stable.

5. Conclusion

Motivated by several discussions with Yves Couder, we have begun to investigate in this paper
the behavior of growing elastic tips. By analogy with the shape of several biological structures
but also with dendritic tips, we have chosen to describe growing tips as parabolas. We have
derived the Euler–Lagrange equations ruling the shape of growing hyperelastic tips as well as
nonlinear poro-elastic swelling tips, as a simple example of stress-modulated growth. In the case
of homogeneous growth, as well as at the thermodynamic equilibrium for the swelling case, the
parabolic tips were found to be linearly stable with respect to infinitesimal perturbations. Free
harmonic modes, which may trigger a roughening transition depending on their dynamic and
on the level of noise in the system, were also analyzed. More realistic models, incorporating
additional constraints arising from boundary conditions and non-homogeneous growth will be
considered in a forthcoming publication. Besides the problem of plant morphogenesis studied
here, an understanding of the behavior of growing tips might also contribute to the design of
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complex elastic structures using swelling gels [32, 33], inflatable structures [34] or electrically-
actuated materials [35].

This work, suggested to both of us by Yves, is the outcome of our last conversations. We are
convinced that he would have gently pushed us to explore more deeply the leading role of tips in
biological growth processes.This is only a first contribution on his physical intuitions which have
always combined universality and simplicity.
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