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In atomic systems, clock states feature a zero projection of the total angular momentum and thus
a low sensitivity to magnetic fields. This makes them widely used for metrological applications like
atomic fountains or gravimeters. Here, we show that a mixture of two such non-magnetic states still
display magnetic dipole-dipole interactions comparable to the one expected for the other Zeeman
states of the same atomic species. Using high resolution spectroscopy of a planar gas of 87Rb atoms
with a controlled in-plane shape, we explore the effective isotropic and extensive character of these
interactions and demonstrate their tunability. Our measurements set strong constraints on the
relative values of the s-wave scattering lengths aij involving the two clock states.

Quantum atomic gases constitute unique systems to
investigate many-body physics thanks to the precision
with which one can control their interactions [1, 2]. Usu-
ally, in the ultra-low temperature regime achieved with
these gases, contact interactions described by the s-
wave scattering length dominate. In recent years, non-
local interaction potentials have been added to the quan-
tum gas toolbox. Long-range interactions can be medi-
ated thanks to optical cavities inside which atoms are
trapped [3]. Electric dipole-dipole interactions are rou-
tinely achieved via excitation of atoms in Rydberg elec-
tronic states [4]. Atomic species with large magnetic mo-
ments in the ground state, like Cr, Er or Dy, offer the
possibility to explore the role of magnetic dipole-dipole
interactions (MDDI) [5]. The latter case has led, for in-
stance, to the observation of quantum droplets [6], roton
modes [7], or spin dynamics in lattices with off-site inter-
actions [8–10].

For alkali-metal atoms, which are the workhorse of
many cold-atom experiments, the magnetic moment is
limited to . 1 Bohr magneton (µB) and in most cases,
MDDI have no sizeable effect on the gas properties [11].
However, some paths have been investigated to evidence
their role also for these atomic species. A first route con-
sists in specifically nulling the s-wave scattering length
using a Feshbach resonance [12, 13], so that MDDI be-
come dominant. A second possibility is to operate with a
multi-component (or spinor) gas [14], using several states
from the ground-level manifold of the atoms. One can
then take advantage of a possible coincidence of the var-
ious scattering lengths in play. When it occurs, the spin-
dependent contact interaction is much weaker than the
spin-independent one, and MDDI can have a significant
effect [15], e.g. on the generation of spin textures [16, 17]
and on magnon spectra [18]. In all instances studied
so far with these multi-component gases, each compo-
nent possesses a non-zero magnetic moment and creates
a magnetic field that influences its own dynamics, as well
as the dynamics of the other component(s).

In this Letter, we present another, yet unexplored,
context in which MDDI can influence significantly the
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FIG. 1. (a) Level diagram of the hyperfine ground-level man-
ifold showing the two states relevant to this work |1〉 ≡ |F =
1,mZ = 0〉 and |2〉 ≡ |F = 2,mZ = 0〉. (b) Image of the
atomic cloud obtained through absorption imaging along the
direction perpendicular to the atomic plane. Atoms are con-
fined in the xy plane in a disk of radius 12 µm. The orientation
of the magnetic field B is tuned in the xz plane. (c) Schemat-
ics of atoms prepared in the state |1〉, with no MDDI in this
case. MDDI are also absent when all atoms are in |2〉. (d)
Significant MDDI occur for atoms in a linear superposition of
|1〉 and |2〉.

physics of a two-component gas of alkali-metal atoms.
We operate with a superposition of the two hyperfine
states of 87Rb involved in the so-called hyperfine clock
transition, |1〉 ≡ |F = 1,mZ = 0〉 and |2〉 ≡ |F =
2,mZ = 0〉, where the quantization axis Z is aligned
with the uniform external magnetic field (Fig. 1a). For
a single-component gas prepared in one of these two
states, the average magnetization is zero by symmetry
and MDDI have no effect. However, when atoms are si-
multaneously present in these two states, we show that
magnetic interactions between them are non-zero, and
that the corresponding MDDI can modify significantly
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the position of the clock transition frequency.
Our work constitutes a magnetic analog of the obser-

vation of electric dipole-dipole interactions (EDDI) be-
tween molecules in a Ramsey interferometric scheme [19].
There, in spite of the null value of the electric dipole mo-
ment of a molecule prepared in an energy eigenstate, it
was shown that EDDI can be induced in a molecular
gas by preparing a coherent superposition of two rota-
tional states. Both in our work and in [19], the coupling
between two partners results in a pure exchange inter-
action, with one partner switching from |1〉 to |2〉, and
the other one from |2〉 to |1〉. This exchange Hamiltonian
also appears for resonant EDDI between atoms prepared
in different Rydberg states [20].

In spite of their different origin, the physical manifes-
tations of MDDI in our setup are similar to the stan-
dard ones. Here, we study it for a 2D gas using high-
resolution Ramsey spectroscopy (Fig. 1b) and we explic-
itly test two important features of DDI in this planar
geometry: their effect does not depend on the in-plane
shape of the cloud (isotropy), nor on its size (extensivity).
More precisely, we recast the role of MDDI as a modifi-
cation of the s-wave inter-species scattering length a12,
and show the continuous tuning of a12 by changing the
orientation of the external magnetic field with respect to
the atom plane. We obtain in this way an accurate infor-
mation on the relative values of intra- and inter-species
bare scattering lengths of the studied states.

We start with the restriction of the MDDI Hamilto-
nian to the clock state manifold [21], using the magnetic
interaction between two electronic spins ŝA and ŝB with
magnetic moments mA,B = 2µBsA,B

V̂dd(r,u) =
µ0µ

2
B

πr3
[ŝA · ŝB − 3(ŝA · u)(ŝB · u)], (1)

where r is the distance between the two dipoles and u
is the unit vector connecting them. The calculation de-
tailed in [22] shows that MDDI do not modify the in-
teractions between atoms in the same state |1〉 or |2〉,
but induce a non-local, angle-dependent, exchange inter-
action (Figs. 1cd). The second-quantized Hamiltonian of
the MDDI for the clock states is thus:

Ĥ
(1,2)
dd =

µ0µ
2
B

4π

∫∫
d3rA d3rB

1− 3 cos2 θ

r3
Ψ̂†2(rA) Ψ̂†1(rB) Ψ̂2(rB) Ψ̂1(rA), (2)

where the Ψ̂i(rα) are the field operators annihilating a
particle in state |i〉 at position rα, r = |rA − rB | and θ
is the angle between rA − rB and the quantization axis.

We now investigate the spatial average value of Ĥ
(1,2)
dd .

We note first that for a 3D isotropic gas, the angular in-

tegration gives 〈Ĥ(1,2)
dd 〉3D = 0, as usual for MDDI [5].

We then consider a homogeneous quasi-2D Bose gas con-
fined isotropically in the xy plane with area L2. We as-
sume that the gas has a Gaussian density profile along the

third direction z, n1,2(z) = N1,2e
−z2/`2z/

√
π`zL

2, where

`z =
√
~/mωz is the extension of the ground state of

the harmonic confinement of frequency ωz for particles
of mass m and N1,2 is the atom number in states |1〉, |2〉.
One then finds [23–25]:

〈Ĥ(1,2)
dd 〉2D =

µ0µ
2
BN1N2

3
√

2π`zL2
(3 cos2 Θ− 1), (3)

where Θ is the angle between the external magnetic field
B and the direction perpendicular to the atomic plane.
This energy is maximal and positive for B perpendicular
to the atomic plane (Θ = 0), and minimal and negative
for B in the atomic plane (Θ = π/2). Eq. (3) shows that
the energy per atom in state |1〉 depends only on the
spatial density N2/L

2 of atoms in state |2〉, which proves
the extensivity.

In 2D, the Fourier transform of the dipole-dipole
Hamiltonian possesses a well-defined value at the origin
k = 0 [23]. Consequently, for a large enough sample

(typically L � `z), the average energy 〈Ĥ(1,2)
dd 〉2D, eval-

uated by switching the integral (2) to Fourier space, is
independent of the system shape. This contrasts with
the 3D case, for which the MDDI energy changes sign
when switching from an oblate to a prolate cloud [5, 26].
Considering the effective isotropy of the MDDI in this
2D configuration, it is convenient to describe their role
as a change δa12 of the inter-species scattering length

with respect to its bare value defined as a
(0)
12 . In 2D,

interspecies contact interactions lead to 〈Ĥ(1,2)
contact〉2D =√

8π a12 ~2N1N2/(m`zL
2) and we deduce

δa12(Θ) = add

(
3 cos2 Θ− 1

)
, (4)

where add = µ0µ
2
Bm/(12π~2) is the so-called dipole

length that quantifies the strength of MDDI [27].
We now tackle the experimental observation of this

modification of the inter-species scattering length in a
quasi-2D Bose gas. The experimental setup was de-
scribed in [28, 29]. Basically, a cloud of 87Rb atoms in
state |1〉 is confined in a 2D box potential: A “hard-wall”
potential provides a uniform in-plane confinement inside
a 12 µm radius disk, unless otherwise stated. The vertical
confinement can be approximated by a harmonic poten-
tial with frequency ωz/2π = 4.4(1) kHz, corresponding
to `z = 160 nm. We operate in the weakly interacting
regime characterized by the dimensionless coupling con-
stant g̃ =

√
8π a11/`z = 0.16(1), where a11 is the s-wave

scattering length for atoms in |1〉. The in-plane density
of the cloud is n̄ ≈ 95/µm2 and we operate at the lowest
achievable temperature in our setup T < 30 nK. A ≈ 0.7
Gauss bias magnetic field B with tunable orientation is
fixed during the experiment.

Spectroscopy is performed thanks to a Ramsey se-
quence similar to [30]. Atoms initially in |1〉 are coupled
to state |2〉 with a microwave field tuned around the hy-
perfine splitting of 6.8 GHz. A first Ramsey pulse with a
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FIG. 2. (a-b) Normalized Ramsey oscillations measured for B
perpendicular (Θ = 0◦) or parallel (Θ = 90◦) to the atomic
plane. For both cases, we show the transferred population
as a function of detuning δ to the single-atom resonance.
In each case the resonance is marked by a vertical dashed
line. The circles (resp. squares) correspond to a balanced
(resp. unbalanced) mixture f = 0 (resp. f ≈ 0.95). Verti-
cal error bars represent the standard deviation from the two
measurements realized for each points. (c) Variation of the
frequency shift ∆ν with the transferred fraction f . We re-
strict to positive imbalances, for which the population in |2〉
remains small enough to limit the role of two-body relaxation
and spin-changing collisions. For each angle, the solid line is
a linear fit to the data.

typical duration of a few tens of µs creates a superposi-
tion of the two clock states with a tunable weight. After
an “interrogation time” TR = 10 ms, a second identical
Ramsey pulse is applied [31]. After this second pulse,
we perform absorption imaging to determine the popula-
tion in |2〉. We measure the variation of this population
as a function of the frequency of the microwave field,
see Figs. 2ab. We fit a sinusoidal function to the data,
so as to determine the resonance frequency of the atomic
cloud. All frequency measurements ∆ν are reported with
respect to reference measurements of the single-atom re-
sponse that we perform on a dilute cloud. The typical dis-
persion of the measurement of this single-atom response
is about 1 Hz and provides an estimate of our uncertainty
on the frequency measurements. We checked that the
measured resonance frequencies are independent of TR

in the range 5-20 ms. Shorter delays lead to a lower ac-
curacy on the frequency measurement. For longer delays,
we observe demixing dynamics [32] between the two com-
ponents and a modification of the resonance frequency.

In the following, we restrict to the case of strongly de-
generate clouds [33] described in the mean-field approxi-
mation. Consider first the case of a uniform 3D gas. The
resonant frequency ∆ν can be computed by evaluating
the difference of mean-field shifts for the two components
[30],

∆ν =
~
m
n [a22 − a11 + (2a12 − a11 − a22)f ] . (5)

Here the aij are the inter- and intra-species scattering
lengths, n = n1 + n2 is the total 3D density of the cloud
where each component i has a density ni after the first
Ramsey pulse and f = (n1 − n2)/(n1 + n2) describes the
population imbalance between the two states.

It is interesting to discuss briefly two limiting cases of
Eq. (5). In the low transfer limit f ≈ 1, the first Ramsey
pulse produces only a few atoms in state |2〉, imbedded
in a bath of state |1〉 atoms. Interactions within pairs of
state |2〉 atoms then play a negligible role, so that the
shift ∆ν does not depend on a22. It is proportional to
(a12−a11), hence sensitive to MDDI. In the balanced case
f = 0, the Ramsey sequence transforms a gas initially
composed only of atoms in state |1〉 into a gas composed
only of atoms in state |2〉. The energy balance between
initial and final states then gives a contribution ∆ν ∝
(a22 − a11), which is insensitive to MDDI.

It is important to note that the validity of Eq. (5) for
a many-body system is not straightforward and requires
some care [34, 35]. We discuss in Ref. [36] the applica-
bility of this approach to our experimental system, and
show that it relies on the almost equality of the three
relevant scattering lengths aij of the problem. Note also
that in our geometry, even if the gas is uniform in plane,
the density distribution along z is inhomogeneous and
the spectroscopy measurement is thus sensitive to the in-
tegrated density n̄(x, y) =

∫
dz n(x, y, z).

We now discuss the measurement of the frequency shift
∆ν as a function of the imbalance f for different orien-
tations of the magnetic field with respect to the atomic
plane, see Fig. 2c. For each orientation, we confirm the
linear behavior expected from Eq. (5). The variation of
the slope d∆ν/df for different orientations reflects the
expected modification of a12 with Θ of Eq. (4). More
quantitatively, we fit a linear function to the data for each
Θ. The ratio of the slope to the intercept of this line is
R(Θ) = [a22 + a11 − 2a12(Θ)]/(a22 − a11). Interestingly,
this ratio is independent of the density calibration and is
thus a robust observable.

The evolution of the measured ratio for different angles
is shown in Fig. 3. For Θ = 0◦ and 90◦, we also show the
ratio measured for a density approximately twice smaller
than the one of Fig. 2. These two points overlap well
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FIG. 3. Variation of the ratio R(Θ) determined from the
data of Fig. 2c with the magnetic field orientation Θ. Blue
circles (resp. red squares) correspond to the measurement
at maximum density (resp. half density). The variation of
this ratio is well fitted by a cosine variation compatible with
the prediction for MDDI. The amplitude and offset of this
variation allow one to determine accurately relative values
of the scattering lengths. Vertical error bars represent the
uncertainty obtained from the fitting procedure of the data
in Fig.2. The uncertainty on the determination of the angles is
limited by the geometrical arrangement of the coils generating
the field B, estimated here at the level of 1◦.

with the main curve, which confirms the insensitivity of
R with respect to n̄. We fit a sinusoidal variation Θ 7→
α+β cos(2Θ) to R(Θ) from which we extract α = 0.53(1)
and β = 0.30(1). We then determine a22−a11 = −3add/β

and a
(0)
12 − a11 = add(3α− 3− β)/(2β). Using add =

0.70 a0, with a0 the Bohr radius, we find a22 − a11 =

−7.0(2) a0 and a
(0)
12 − a11 = −2.0(1) a0. These results

are in good agreement with the values predicted in [37],

a11 = 100.9 a0, a22 − a11 = −6.0 a0 and a
(0)
12 − a11 =

−2.0 a0.
All experiments described so far have been realized

with a fixed disk geometry. As stated above, the de-
scription of the contribution of MDDI as a modification
of the inter-species scattering length relies on the effec-
tive isotropy of the interaction in our 2D system. We
investigate this issue by measuring the frequency shift
of the clock transition for an in-plane magnetic field ori-
entation (Θ = 90◦), which breaks the rotational sym-
metry of the system. We operate with a fixed density
(n̄ ≈ 80/µm2) and a varying elliptical shape. We choose
a large imbalance f ≈ 0.95 to have the highest sensitivity
to possible modifications of a12. We define an anisotropy
parameter η = (Ry −Rx)/(Rx +Ry) for the ratio of the
lengths Rx and Ry of the two axes of the ellipse. We
report in Fig. 4 the measured shifts as a function of η
and confirm, within our experimental accuracy, the inde-
pendence of the MDDI energy with respect to the cloud
shape. We have also investigated the influence of the size
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FIG. 4. Interaction shift ∆ν as a function of the anisotropy
parameter η. For a fixed density and an in-plane magnetic
field, we vary the anisotropy of the elliptically-shaped 2D
cloud. No dependence on the shape of the cloud is observed,
in agreement with the expected isotropic character of MDDI
in 2D when Rx,y � `z. Vertical error bars represent the esti-
mated 1 Hz accuracy on the determination of the single-atom
resonance frequency. Inset: interaction shift as a function of
the size of the cloud, for B normal to the atom plane.

of the cloud on ∆ν (inset of Fig. 4). Here we choose a
disk-shaped cloud and a magnetic field perpendicular to
the atomic plane. We observe no detectable change of ∆ν
when changing the disk radius from 8 to 18 µm , which
confirms the absence of significant finite-size effects.

In conclusion, thanks to high resolution spectroscopy
we revealed the non-negligible role of magnetic dipolar
interactions between states with a zero average magnetic
moment. We observed and explained the modification of
the inter-species scattering length in a two-component
cloud. Because of the smallness of MDDI for alkali-
metal atoms, we did not observe any modification of the
global shape of the cloud. This contrasts with the case
of single-component highly-magnetic dipolar gases where
the shape of a trapped gas has been modified with a static
[38–40] or time-averaged-field [11, 41]. Nevertheless, the
effect observed here provides a novel control on the dy-
namics of two-component gases. For example, the effec-
tive interaction parameter between two atoms in state
|2〉 mediated by a bath of atoms in state |1〉 can be writ-
ten as g̃eff

22 = g̃22 − g̃2
12/g̃11, where g̃ij =

√
8πaij/`z [42].

With our parameters, we achieve a variation by a factor
7 of g̃eff

22 , which will lead to important modifications of
polaron dynamics. Similarly, it can be exploited to tune
the miscibility of mixtures or the dynamics of spin tex-
tures. The distance to the critical point for miscibility,
whose position is given by g̃22g̃11 = g̃2

12, is also strongly
sensitive to a variation of g̃12. For instance, the length
scale of spin textures appearing in phase separation dy-
namics of a balanced mixture will be modified, for our
parameters, by a factor of almost 3 when Θ is switched
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from 0 to 90◦ [32]. In addition, one can exploit the non-
local character of MDDI by confining the atoms in a deep
lattice at unit filling, where the exchange coupling evi-
denced here will implement the so-called quantum XX
model [43] without requiring any tunneling between lat-
tice sites. The extreme sensitivity of the clock transition
and its protection from magnetic perturbations will then
provide a novel, precise tool to detect the various phases
of matter predicted within this model.
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